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ABSTRACT
In this paper, we present a novel efficient and parallel implementation, RELAXSE, for the calculation of the low-lying excited states and
energies of strongly correlated systems. RELAXSE is based on the fully uncontracted multi-reference method of Selected Active Space
+ Single excitations. This method has been specifically designed to be able to tackle systems with numerous open shells per atoms. It
is, however, computationally challenging due to the rapid scaling of the number of determinants and their non-trivial ordering induced
by the selection process. We propose a combined determinant-driven and integral-driven approach designed for hybrid OpenMP/MPI
parallelization. The performances of RELAXSE are evaluated on a controlled test set and show linear scaling with respect to the num-
ber of determinants and a small overhead due to the parallelization. Systems with up to 1 × 109 determinants are successfully
computed.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0045672., s

I. INTRODUCTION

Strongly correlated systems present the peculiar character-
istic that their low-energy physical and chemical properties are
not driven by the kinetic energy of their Fermi-level electrons.
In these systems, the electron–electron correlation, sub-dominant
or even negligible in most systems, is much larger than the
kinetic energy. As a consequence, degrees of freedom usually hid-
den by the kinetic aspects (charge, spin, orbital, etc.) can express
themselves, resulting in a large variety of competing ground
states and fascinating low-energy properties. It is, for instance,
in strongly correlated compounds that phenomena such as high-
temperature superconductivity,1,2 colossal magneto-resistance,3

large magneto-electric coupling,4 and exotic magnetic orders5,6

appear.
The consequences of strong correlation on the electronic struc-

ture are that

● the electrons responsible for the low-energy properties are
localized, both spatially and energetically, and

● the wave functions of their ground and low-lying excited
states are fundamentally multi-configurational.

It is, thus, not surprising that ab initio single-determinant based
methods (such as density functional theory or single-reference post-
Hartree-Fock methods) encounter difficulties in accurately describ-
ing the low energy properties of such systems. For this purpose, one
relies on multi-reference configuration interaction (MRCI) meth-
ods. Unfortunately, MRCI methods can only be used on finite and
relatively small systems. For infinite compounds, physicists, thus,
use effective model Hamiltonians (such as Hubbard, Heisenberg,
and related models), describing explicitly only the Fermi-level elec-
trons. Due to the locality of the latter, the parameters of such models
can be determined from spectroscopic calculations on embedded
fragments.7,8 One can then use ab initio MRCI calculations on the
ground and low-lying excited states of such fragments and extract
from them the pertinent degrees of freedom and the amplitude of
the effective interactions of the effective models.9

To be able to be predictive with respect to experiments, effec-
tive models should be determined with a great accuracy (typically
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1 meV for effective magnetic interactions). Specific ab initio MRCI
methods have been designed to reach this accuracy. For systems
with a few unpaired electrons per active or magnetic atoms, the
CAS + DDCI10–12 (Complete Active Space + Difference Dedicated
Configurations Interaction) or the LCAS + S13 (Large CAS + sin-
gle excitations) method proved their high reliability and efficiency.
For instance, on copper14–16 or vanadium oxides,17 they allowed
the determination of effective magnetic couplings within inelas-
tic neutron scattering accuracy. The precision of these methods is
even more obvious in molecular systems as the magnetic couplings
can be experimentally evaluated with a much greater accuracy.
For instance, the effective magnetic exchange was computed with
an error smaller than 5 cm−1 in oxalato-bridged Cu(II) binuclear
complexes.18

For systems with a large number of open shells per atom, these
methods unfortunately reach a computational wall as their cost
increases exponentially with the number of Fermi level orbitals to
correlate (open-shell orbitals such as magnetic orbitals). For such
systems, one has to rely on the SAS + S method developed in
our group a few years ago.19 The basic idea of this multi-reference
method is to treat

● the strong correlation within the Fermi-level electrons,
● specific charge transfers if needed, and
● dynamical correlation (screening effect).

This method, described in detail in Sec. II, has shown its
ability to predict magnetic couplings with similar accuracy as
the standard CAS + DDCI method on nickel (Ni2+: 3d2) and
cobalt (Co2+: 3d7) compounds19 and within inelastic neutron scat-
tering experimental accuracy on manganese (Mn3+: 3d4) com-
pounds.20 While the SAS + S method has proven accurate, no
efficient, parallel code existed until now. The purpose of the present
paper is to describe our implementation of such a code and its
efficiency.

The SAS + S method is detailed in Sec. II. The challenges to be
met and the adopted solutions are described in Sec. III, while a few
examples and their scalability are given in Sec. IV.

II. THEORETICAL BACKGROUND
Prior to describing the SAS + S method, let us shortly recall

the principle of the more standard CAS + DDCI10 and LCAS
+ S13 methods, which constitute special cases of the SAS + S
method.

These variational methods are based on the fully uncon-
tracted expansion of the wave functions for the low-energy states
of the system under consideration. They treat exactly the static
correlation effects within the magnetic orbitals. Each configura-
tion involved in this process is then used as a reference config-
uration for the inclusion of the dynamical correlation (screening
effects).

One characteristic of these methods is that the reference space
is a Complete Active Space21 (CAS) based on the partitioning of the
orbital space into three subsets, namely,

● the doubly occupied orbitals (doubly occupied in all the
determinants of the CAS) and

● the active orbitals (that take in the CAS all possible occupa-
tions and spins, within a sector of fixed Sz and a number of
electrons), and

● the virtual orbitals (empty in all the determinants of the
CAS).

The CAS wave functions can, thus, be written as follows:

∣ΨCAS
m ⟩ =∑

I
CI,m∣ΦCAS

I ⟩

with

∣ΦCAS
I ⟩ = ∣∏

nocc
o=1

o dbl occ
oσoσ̄∏

nelact
aI=1
aI act

aσaII ⟩, (1)

where nelact is the number of active electrons and σ is the orbital
spin (Sz =∑iσi). The CAS + DDCI or LCAS + S wave functions take
the following form:

∣Ψm⟩ =

reference=CAS
¬

∣Ψref
m ⟩ +

screening
¬

∣Ψ∗m⟩

=∑
I
CI,m∣ΦCAS

I ⟩ +∑
J∗

CJ∗ ,m∣ΦJ∗⟩. (2)

In the LCAS + S method, all orbitals associated with the leading
charge-transfer configurations, such as the ligand orbitals bridging
the super-exchange terms in magnetic interactions, are included in
the active space (see Ref. 13 and Fig. 1 for more details). The remain-
ing dynamical correlation effects (screening effects on the CAS and
charge transfer configurations) can, thus, be described by adding all
determinants obtained by a single excitation on each determinant of
this large CAS (see Fig. 1).

In the CAS + DDCI method,10–12 on the contrary, the CAS is
reduced to the main open-shell orbitals (such as magnetic orbitals).
The leading charge-transfer configurations are, thus, treated as
dynamical correlation terms. In order to get the screening effects
on these configurations (in addition to the CAS ones), one has to
include in the screening configurations not only the single but also
the double excitations on each of the CAS determinants (two holes
and two particles). The CAS + DDCI method differs from CAS
+ single and double excitations (CASSD) as it does not include the
two occupied toward two virtual excitations (see Fig. 1 for more
details). Indeed, it can be shown that, while these excitations largely
contribute to the total energies, their contribution is essentially a
global shift on the low-energy spectrum (provided that the sought
states are defined by different CAS contributions as in magnetic
excitations).

FIG. 1. Schematic representation of the LCAS + S and CAS + DDCI methods.
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While it has been shown that these two methods provide equiv-
alent low-energy spectra in correlated systems,13 one sees from the
previous discussion that the MRCI space to diagonalize could be
further pruned without much loss of accuracy. Such a reduction
becomes mandatory when the number of open shells per atom
increases. This is the aim of the SAS + S method.19 The price for
such a reduction of the computational cost is an increase in the
complexity. Indeed, we need now to define five classes of orbitals
(seven including frozen occupied and deleted virtual orbitals that
do not contribute in the calculation) and two levels of reference
configurations. The first idea of the SAS + S method resides in
the fact that, when the number of open shells per atom is large,
most of the CAS configurations have a negligible weight in the
sought states. The zeroth-order reference space for the SAS + S
method is, thus, a selected sub-space of the minimal CAS. The
second set of references contains the CAS configurations needed
to correlate the previous set and the main charge-transfer con-
figurations. The screening effects are then included by the addi-
tion of all single excitations on each determinant of the two ref-
erence spaces. The SAS + S wave function can, thus, be written as
follows:

∣Ψm⟩ =

references
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∑
I
C0
I,m∣Φ

0
I⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
zeroth-order

ref0

+ ∑
J
C1
J,m∣Φ

1
J⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
charge transfer + static corr

ref1

+

screening
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∑
J∗

CJ∗ ,m∣ΦJ∗⟩

= ∣Ψ0
m⟩ + ∣Ψ1

m⟩ + ∣Ψ∗m⟩. (3)

The orbital space is partitioned into

● the doubly occupied orbitals (named occ),
● the occupied ligand orbitals (named ligo),
● the active orbitals (named act),
● the virtual ligand orbitals (named ligv), and
● the virtual orbitals (named virt).

The zeroth-order configurations (ref0) have all occ and ligo
orbitals doubly occupied, all ligv and virt orbitals empty, and var-
ious occupations and spins within the active orbitals. The charge
transfer, correlation, and reference configurations (ref1) are single
excitations

● within the CAS,
● from the ligo to the actives,
● from the ligo to the ligv space, and
● from the actives to the ligv space

(see Fig. 2 for more details). Finally, the screening effects are built
from all possible single excitations on each of these references.

As can be seen from Fig. 2, the SAS + S space is a sub-space of
both the CAS + DDCI and LCAS + S methods. Indeed, it includes
up to double excitations with respect to the selected configuration
of the minimal CAS (ref0); however, one of the two excitations
does not involve the occ and virt orbitals that are usually the far
most numerous. It results in a large reduction of the variational
space to diagonalize without loss of accuracy (see Ref. 19 for more
details).

FIG. 2. Schematic representation of the SAS + S method. The blue screening-
excitation lines can start either from the occ or ligo spaces and end either in the
ligv or virt spaces.

Let us finally point out that the requirement for the variational
space to be stable by the Ŝ2 operator (so that to insure that the
sought states are eigenfunctions of both Ŝz and Ŝ2) is the inclusion
of spin exchanges within the CAS. This requirement is responsible
for some formally higher-level excitations in the SAS + S method,
as it involves spin exchanges within the active space, on single and
double excitations from the occ/ligo spaces toward ligv/virt
ones.

III. CHALLENGES AND IMPLEMENTATION
All Configuration Interaction (CI) methods eventually reduce

to the diagonalization of the Hamiltonian matrix on a given determi-
nant space. When applying such methods on systems of increasing
size, two computational bottlenecks are usually encountered:

● the number of determinants on which the matrix is
expanded upon and

● the number of two-electron integrals used to compute each
of the matrix elements.

For most flavors of CI methods, one of these challenges is
usually dominant, and therefore, either a determinant-driven or an
integral-driven implementation is used in order to circumvent it. In
the SAS + S case, both challenges are faced simultaneously, with an
additional complexity due to the selection of the determinants, as
they no longer have a straightforward ordering.

In order to tackle this issue, we propose a hybrid MPI-OpenMP
parallel implementation driven both by integral and determinant
blocks. This approach uses a direct algorithm in order to treat
large numbers of determinants (typically up to 108, 109), i.e., each
matrix element is recomputed on-the-fly. To distribute the calcula-
tion across several nodes (MPI parallel programming), the Hamil-
tonian matrix and the integrals are divided into blocks, and the
contribution of each integral block to a given matrix block is com-
puted independently. Moreover, for each pair integral/matrix block,
a dedicated set of instructions is written within which OpenMP
multi-threading is used. This allows us to fully exploit the sparsity
of the Hamiltonian matrix and to minimize the number of cen-
tral processing unit (CPU) operations, more specifically the num-
ber of tests. A simplified flowchart of the algorithm is depicted in
Fig. 3.
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FIG. 3. Flowchart of the RELAXSE code.

Another important issue of the code is its built-in ability
to accurately deal with (quasi-)degenerate eigenstates. Indeed, as
we are interested in the low-energy excitations of strongly cor-
related systems and more specifically in computing low-energy
magnetic excitations with great accuracy, the chosen diagonal-
ization method should be able to handle the frequent (quasi-)
degeneracy of these magnetic states. As a consequence, one can-
not rely on simple Krylov space methods, such as the Lanczos22

method (known to encounter difficulties with degenerate eigen-
states) or the state-by-state Davidson method.23 We, therefore,
use the effective Hamiltonian variant of the Davidson method
that treats on an equal footing all quasi-degenerate states24,25 (see
below).

A. Determinant generation and storage
A set of ref0 configurations is given as input by specifying

the occupancy of the nact active orbitals by the nelact active
electrons. In order to ensure that the obtained determinant space
is stable with respect to the spin operators Ŝ2 and Ŝz , all possible

spin permutations are applied on the input reference configurations.
The obtained set of determinants is hereinafter denoted as the ref0
determinants.

The complete list of determinants is then generated depending
on the number of occupied (nocc), virtual (nvirt), ligand occupied
(nligo), and ligand virtual (nligv) orbitals, as well as the method
name (method = CAS+S, CAS+SD, SAS+S, CAS+DDCI, or SAS+DDCI).
This list is not explicitly used during the Davidson procedure as only
a few pointers and the ordering of the active parts are needed for its
complete (and unique) description.

B. Block partitioning
The determinants are divided into nine blocks, denoted DNexc

Nel ,
where Nel is the number of additional electrons in the active part
with respect to the reference configurations and Nexc is the number
of additional excitations outside of the active space. This partitioning
results in a block representation of the Hamiltonian matrix shown in
Fig. 4.

For each block of the matrix, the number of orbital differences
between the determinants and the nature of these differences (occu-
pied, virtual, or active orbitals) determine the components needed to
compute that block (Fock matrix elements, two-electron integrals,
and pseudo-core energy).

The one- and two-electron integrals on the fragment orbitals
are not recomputed. They are read from the TraOne and TraInt
files generated by a MOLCAS/MOTRA calculation. The two-
electron integrals (ij|kl) are then sorted in 20 different categories
depending on the virtual (virt + ligv) “v,” active “a,” or occupied
(occ + ligo) “o” status of the orbitals involved (“aaaa,” “aaao,” “vaaa,”
“aaoo,” “vaao,” “vvaa,” “vaoo,” “vvao,” “vvoo,” “vava,” “vvvo,”
“vvva,” “vvvv,” “oooo,” “vovo,” “aooo,” “vavo,” “vooo,” “aoao,” and

FIG. 4. Block representation of the upper half of the Hamiltonian matrix ⟨A∣Ĥ∣B⟩.
In the striped blocks, all determinants differ by at least three orbitals, and these
blocks are, therefore, 0. In the yellow blocks, they show at least two differences, in
the orange blocks at least 1, and in the red none.
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“voao”) and stored to disk in separate files. Only the integral block
of interest is loaded in memory at a given time.

In order to speed up the calculations, the pseudo-Fock matrix
(taking only into account the effect of the occupied and ligo orbitals)
and the diagonal of the Hamiltonian matrix are computed and
stored prior to the Davidson procedure.

C. Effective Hamiltonian Davidson’s diagonalization
The effective-Hamiltonian Davidson diagonalization works on

all M sought eigenstates simultaneously and builds over the itera-
tions an effective Hamiltonian matrix (see Fig. 5).

At the first iteration, the effective Hamiltonian is defined by the
Hamiltonian block over the guess vectors only,

H1
eff = P̂1ĤP̂1,

where P̂1 = ∑
M
m=1 ∣V

1
m⟩⟨V1

m∣ is the projector on the ∣V1
m⟩ guess vectors.

At iteration n, the effective Hamiltonian is built as

Hn
eff = (P̂1 +

n

∑
i=2

P̂i) Ĥ (P̂1 +
n

∑
i=2

P̂i),

where P̂i = ∑M
m=1 ∣V

i
m⟩⟨V i

m∣ is the projector on the ortho-normalized
Davidson’s correction vectors ∣V i

m⟩. The correction vectors ∣V i
m⟩ are

defined as follows: The expansion of the raw correction vectors, ∣Ṽn
m⟩,

on a determinant basis set {|Φk⟩} can be written as follows:

∣Ṽn
m⟩ =∑

i
C̃n
k,m∣Φk⟩

with

C̃n
k,m =

∑hHk,hCn−1
h,m −HkkCn−1

k,m

En−1
m −Hkk

,

where En
m is the energy of the m-th eigenvector Ψn

m of Ĥn
eff and

Ci
k,m are the coefficients of the ∣V i

m⟩ expansion on the deter-
minant basis set. The final correction vectors ∣Vn

m⟩ are obtained
from ∣Ṽn

m⟩ by Schmidt’s orthogonalization of ∣Ṽn
m⟩ with respect to

FIG. 5. Effective Hamiltonian matrix as built over Davidson’s iterations.

ALGORITHM 1. Effective Hamiltonian Davidson’s diagonalization.

Data: Guess vectors V1
m

Result: Em, Ψm
while convergence not reached do

for i <maxit do
compute ∀m, W i

m = ĤV i
m

compute Ĥi
eff = [V

j
m ⋅Wk

n]

diagonalize Ĥi
eff Ð→ Ei

m,Ψi
m

if conv. on energies then exit
compute raw corrections vectors
if conv. on vectors then exit
for j < i do

— Schmidt-orthog. V i+1
m with V j

m

— Löwdin orthog. V i+1
m

— V1
m = Ψmaxit

m

{∣V i
m⟩, i = 1,n − 1}, followed by Löwdin’s orthonormalization

between them.
Every maxit iteration, the effective Hamiltonian is contracted,

i.e., the guess vectors are replaced by the eigenvectors of Ĥmaxit
eff , and

the effective Hamiltonian is reset to the H1
eff = P̂1ĤP̂1 block (see

Algorithm 1).

D. Computing HV
At each iteration i of the Davidson procedure, the time-

consuming step is the evaluation of ∣W i
m⟩ = H∣V i

m⟩. For simplicity,
the iteration and state indices (i, m) are dropped in what follows. The
computation of W = H⋅V is done block-wise at the integral and the
determinant level. For each integral kind intkind in the list given in
Sec. III B and for the Fock integrals, we determine the pairs of deter-
minant blocks (DA, DB) for which these integrals have a non-zero
contribution, Hintkind

AB , to the Hamiltonian block HAB = ⟨DA|H|DB⟩.
The tuples (intkind, DA, DB) constitute the items on which the MPI
parallelization is performed as shown in Algorithm 2. When the
determinant blocks are very large, it is possible to divide the cal-
culation in smaller parts by batching the determinants. However,
the gain is not systematic as the overhead due to the reading of the
integrals from disk can be large.

ALGORITHM 2. External loop for the MPI parallelization.

Data: Vectors Vm
Result: Vectors Wm
mpi_init()
mpi_comm_rank(mpi_comm_world, id_cpu)
mpi_comm_size(mpi_comm_world, nb_cpu)
nblock = nb_item/(nb_cpu −1)
for i = 1, nblock do

indx = (i − 1) ∗ nb_cpu + id_cpu +1
(intkind, A, B) = MPI_item_list(indx)
load intkind from file

— compute_HVm(Vm, Wm, intkind, A, B)
mpi_allreduce(Wm, mpi_sum, mpi_comm_world)
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ALGORITHM 3. External loops for the OpenMP parallelization.

Data: Blocks A and B of Vm, intkind
Result: Blocks A and B of Wm
!$OMP PARALLEL
!$OMP DO reduction(+:WB) reduction(+:WA)
for particles of A do

for holes of A do
for active of A do

for particles of B do
for holes of B do

for active of B do
compute diff. in the active parts
compute matrix element elm
WA

m+ = elm∗VB
m

WB
m+ = elm∗VA

m

— — — — — —

!$OMP END DO
!$OMP END PARALLEL

For each MPI item (intkind, DA, DB), specific instructions were
generated in order to minimize the number of CPU operations. The
code generator uses all the information on the determinant blocks
(number of holes and particles), the ordering and spin of the par-
ticles and holes, and the number of differences between the active
parts of the determinants, to produce an optimal code, with no or
very little branching due to if/then/else statements. Moreover, the
position of each matrix element is computed on-the-fly, and the
explicit determinant ordering is not needed. At this level, OpenMP
multi-threading is used on the most external loop, chosen to be on
the particle indices (or on the holes when there are no particles). The
hermiticity of the Hamiltonian is fully exploited for both the diago-
nal blocks (only the upper-half is computed) and the off-diagonal
blocks (simultaneous computation of both blocks choosing the most
favorable external loop in terms of OpenMP performances). The
OpenMP loops are shown in Algorithm 3.

When determinant batching is turned on, the outer loop runs
only on a batch of particles instead of the complete set so that the
workload can be shared on several nodes at the MPI level.

IV. PERFORMANCES AND EXAMPLES
The calculations presented in this section were performed on

the CPU partition of the Jean-Zay supercomputer of the CNRS
national computer center: IDRIS. Jean-Zay CPU partition is a HPE
SGI 8600 computer of 1528 nodes with 2 Intel Cascade Lake 6248
processors (20 cores at 2.5 GHz), that is, 40 cores per node, and
192 GB of memory per node. It uses an Omni-PAth interconnection
network of 100 Gb/s: 1 link per scalar node.

The code was compiled with gcc/9.1.0 and openmpi/3.1.5 at the
-O2 optimization level, enabling OpenMP and MPI parallelizations.

Most of the test calculations were performed on a middle size
system in order to be able to run a large number of calculations
with different characteristics. We chose the calculation of the mag-
netic integrals in the YMnO3 compound used in Ref. 20 as a testing
system. We, thus, used a Mn2O9 quantum cluster, embedded in

a bath of total ion pseudopotentials26 and renormalized27 point
charges that reproduce the Madelung potential.

The total number of orbitals is 199 with 8 active orbitals. The
calculations were done in the Sz = 3 sector computing the two
eigenvectors required for the calculation of the magnetic interaction.

In order to evaluate the performances of the code with respect
to the total number of determinants, calculations were performed for
different numbers of ligand occupied and ligand virtual orbitals (LIGO

and LIGV test sets, respectively), keeping the total number of occupied
and virtual orbitals constant, as shown in Table I.

The last test BIG was designed to reach a total number of deter-
minants greater than 1 × 109. Due to the 192 GB memory limitation
of the nodes of the Jean-Zay supercomputer, this calculation was
performed on a local node boosted with 2TB of memory. The node is
a Lenovo ThinkSystem SR645 with AMD EPYC 7402 3.0 GHz pro-
cessors. As we had a unique node, the calculation was done using
OpenMP parallelization only and 40 OpenMP-threads.

On this architecture, the code was compiled with gcc/8.3.1 and
openmpi/4.0.2 at the -O2 optimization level, enabling only OpenMP
parallelizations.

A. Code stability
Prior to detailing the efficiency of the code with respect to the

different parallelization schemes, let us say a work on the stability
of the code with respect to the number of OpenMP threads and
MPI precesses. At each iteration, the energies of the two states that
are computed do not exhibit any difference on the 15 significative
numbers expected in a Fortran double precision code, whether as a
function of the number of OpenMP threads or MPI processes.

B. Scaling with respect to the number
of determinants

The total CPU time per iteration as a function of the number of
determinants is shown in Fig. 6. For each, except the last orbital con-
figuration of Table I, a total of 16 calculations were performed with
different parallelization options: with 4 or 6 MPI processes, with 10,
20, 30, or 40 OpenMP threads, without batching, and with batches
of 40 particles. One can immediately see that the code scales lin-
early with the number of determinants. The typical CPU time per
determinant is 10−3 s.

TABLE I. Orbital partitioning in the YMnO3 calculations.

Test set nocc nligo nact nligv nvirt ndet

LIGO 49 2 8 0 140 30 267 828
47 4 8 0 140 53 017 324
45 6 8 0 140 74 811 684
43 8 8 0 140 95 650 908

LIGV 51 0 8 2 138 30 721 372
51 0 8 4 136 54 531 036
51 0 8 6 134 77 992 188
51 0 8 8 132 101 104 828

BIG 47 4 8 6 134 1 097 706 172
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FIG. 6. Total CPU time as a function of the number of determinants for either
occupied (ligo) or virtual (ligv) ligand orbitals. The number of ligo (ligv) orbitals
is 2, 4, 6, and 8. Calculations were performed with 4 or 6 MPI processes, with
10–40 OpenMP threads, and with (circles) and without (stars) batching of the
determinants.

Depending on the orbital partitioning (ligo vs ligv) and the
computational conditions (batching), the slope is slightly differ-
ent, as expected due to the parallelization overhead. Indeed, as the
OpenMP parallelization is done preferably on the particle loops, at a
constant number of determinants, it is more effective to have numer-
ous but shorter tasks (long particle loops and short hole loops). This
is the reason why the “ligv” configurations show a smaller CPU
time per determinant than the “ligo” configurations. For the same
reason, the dynamic distribution of the OpenMP tasks is more effec-
tive when the full particle loop is treated in one go, rather than in
batches.

The CPU time is independent of the number of MPI processes,
which means that the MPI reduction has a negligible overhead. Con-
cerning the dependence with respect to the number of OpenMP
threads, an increase of only 6% in the CPU time is observed, inde-
pendently of the calculation, when going from 20 to 40 threads.

C. OpenMP speedup
As shown in the previous paragraph, the total CPU time is

mostly constant with respect to the number of OpenMP threads.
However, the performance of the OpenMP implementation needs
to be evaluated on the wall time. In Fig. 7, the wall-time speedup
as a function of the number of OpenMP threads is shown for the
different orbital configurations of Table I and 6 MPI processes. Cal-
culations with ten threads were taken as references. Perfect scaling is
drawn as a dashed line.

As the number of OpenMP threads increases, one can see that
the speedup is going away from optimal scaling (83% for 20 threads
to 70% for 40 threads) and is slightly better for the “ligv” orbital
configurations than the “ligo” ones, as discussed in Sec. IV B. The
sub-optimal behavior of the OpenMP speedup is due to the fact that
(i) within a given (intkind, DA, DB) block, the external loop on which
the parallelization is done is too short with respect to the number

FIG. 7. OpenMP speedup compared to calculations with ten OpenMP threads. The
number of MPI processes is 6, and the batching of the virtual orbitals was turned
off. The number of ligo (ligv) orbitals is 2, 4, 6, and 8.

of threads, and (ii) for some blocks [the diagonal cases (intkind, DA,
DA) and two-particle blocks], the OpenMP tasks have different sizes,
which impairs the load balancing.

D. MPI speedup
The MPI speedup on the wall time is shown in Fig. 8 as a func-

tion of the number of MPI processes. Calculations are performed
for the different orbital configurations of Table I with 40 OpenMP
threads, enabling the determinant batching (batches of 40 on the

FIG. 8. MPI speedup compared to a calculation with four MPI processes. The
number of OpenMP threads, as well as the size of the batches, is 40. The number
of ligo (ligv) orbitals is 2, 4, 6, and 8.
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particle loops). Calculations with four MPI processes were taken as
references. Optimal speedup is drawn as a dashed line.

A very different behavior is observed for the “ligo” and “ligv”
calculations. The “ligv” calculations exhibit an almost perfect scal-
ing up to 16 MPI processes (16 × 40 = 640 threads), while the gain
becomes quite limited after eight processes in the case of the “ligo”
calculations.

The MPI load balancing is done after the first full iteration
by distributing the (intkind, DA, DB) blocks on the different MPI
processes according to their wall time in the previous iteration. As
the number of determinants per block and the number of integrals
can be very different according to the system under consideration,
the absolute (and relative) timings of the blocks can vary by sev-
eral orders of magnitude, effectively bounding the wall time to one
of the largest blocks. In order to circumvent this issue, determinant
batching was introduced to divide the largest block calculations into
several smaller ones. The cost is the reading of the integrals from
files for each batch. As the batching is currently only coded on the
particles, when the blocks are getting larger due to the “ligo,” there
is no option to divide the work, and the gain of adding more CPUs
becomes negligible. This is the reason for the poor performances of
these calculations with more than eight MPI processes. This issue
should be fixed in the next version of the code.

E. 109 dets
When the number of open shells per atom increases—for

instance, if one aims at evaluating the magnetic interaction between
two rare-earth atoms—or when the basis set increases—as in systems
with non-trivial ligands—the number of determinants increases very
fast. One of our goals for the RELAXSE code was to be able to tackle
such extreme cases and be able to diagonalize matrices up to 109

determinants. In the BIG test case, we, thus, increased the num-
ber of ligo and ligv orbitals in order to push the RELAXSE code
to its limits. Four orbitals in the ligo spaces and six in the ligv
orbital spaces lead to 1 097 706 172 determinants with the SAS + S
method.

The wall time per iteration was 10 h 45 min. As the effective
Hamiltonian Davidson procedure requires between 20 and 25 itera-
tions to converge, a complete calculation takes 10 days, making such
calculations accessible even if expensive. The total CPU time per
determinant is comparable with the calculations performed on Jean-
Zay: 0.96 × 10−3 s and the OpenMP speedup: ttotal CPUtime/tWalltime
≃ 27.3. This OpenMP speedup is comparable with the one
observed in the smaller calculations (see Fig. 7), confirming the
total independence of the OpenMP speedup with the size of the
calculation.

This large calculation confirms the complete linear scaling of
our code as a function of the number of determinants.

V. CONCLUSION
The RELAXSE code is an efficient OpenMP + MPI code dedi-

cated to compute low energy excitations with a high accuracy. It is
a totally decontracted MRCI code specifically designed for magnetic
excitations in strongly correlated systems, even if standard SDCI cal-
culations can also be performed. Indeed, RELAXSE is able to perform
MR-SCI, MR-SDCI, CAS + DDCI,10 and SAS + S19 calculations. The

specificity of the SAS + S method is to be able to compute the low
energy spectrum of systems containing atoms with numerous open
shells, with an accuracy better than meV. With the ability to reach
diagonalization up to 109 determinants, RELAXSE opens new possi-
bilities for the study of magnetic or multiferroic systems and even
heavy fermion systems with an accuracy comparable with inelastic
neutron scattering measurements. Similarly, it opens the possibil-
ity for relatively easy ab initio calculation of the magneto-electric
coupling tensor as the accurate determination of the magnetic exci-
tations as a function of an applied electric field is the main bottleneck
(see Ref. 28).

Concerning the current implementation, some further devel-
opments are being considered. For instance, an efficient batching
scheme needs to be implemented for “ligo” systems in order to
fully exploit the MPI parallelization. Another issue is the mem-
ory requirements for the very big systems. As mentioned above,
we had to switch to a high-memory node in order to run the cal-
culations on the BIG system. Such nodes are not common in the
High Performance Computing centers, and a more memory-friendly
implementation needs to be designed for these cases. One possibil-
ity would be to write the Davidson vectors to disk and only load
to memory the required blocks or sub-blocks (using determinant
batching).

Finally, we plan to explore additional methodological develop-
ments, such as the perturbative treatment of the double excitations
within effective Hamiltonian theory.

The RELAXSE code will be distributed under LGPL license
and shortly be accessible at the url https://code.ill.fr/relaxse/relaxse-
code.
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