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A B S T R A C T

The present work investigates the influence of uncertain tooth profile modifications on the nonlinear
dynamic response of a spur gear pair induced by a backlash nonlinearity. To this end, an original ap-
proach based on bifurcation tracking is developed. The equations of motion are solved in the frequency
domain with the harmonic balance method (HBM) coupled to an arc-length continuation algorithm
and a bordering technique. The evolution of the bifurcation points with respect to the uncertain pa-
rameter is computed in a deterministic way. The study focuses on minimizing the amplitude-jump
instabilities induced by the backlash nonlinearity around the primary resonance peak. The proposed
methodology allows for a fast and reliable estimation of the tooth profile modification that minimizes
the amplitude-jump instability by defining two criteria using the results of the bifurcation tracking
algorithm. Probability density functions (PDF) of various indicators of the severity of vibro-impacts
can be computed with Monte-Carlo (MC) simulation with minimal computational burden. Results
show that the tooth profile modification that minimizes the amplitude-jump instabilities differs from
the optimum obtained with static computations.

1. Introduction
Vibration and noise mitigation in geared system remains

to this day a major challenge and research interest. The rea-
sons are twofold. Firstly, large vibration amplitudes induce
wear, fatigue and can compromise the structural integrity of
the system. Secondly, vibrations generated at the gear are
transferred to the housing via the shafts and bearings, which
creates an unwanted noise: whining noise in case of perma-
nent contact [6], or hammering or rattle noise when the re-
sponse exhibits vibro-impacts [32, 34].

The meshing process is the origin of the transmission
error and mesh stiffness fluctuations, which are assumed to
be the main sources of excitation in geared systems. The
former is defined as the difference between the actual po-
sition of the ouput gear and the position it would occupy,
were the gear pair perfectly conjugate [40]; the latter is ex-
pressed as the derivative of the transmitted load with re-
spect to the transmission error. Modifications of the gear
micro-geometry, i.e. the profile of the tooth flanks, are com-
monly employed to optimize contact conditions, compensate
for manufacturing defects and minimize the gear dynamic re-
sponse. Such modifications consist in an intentional removal
of material from the tooth flanks so that the tooth profile
differs from the theoretical perfect involute. Their effect on
both the static and dynamic responses of geared systems are
well known [14, 20, 30, 19]. Most studies aim at minimiz-
ing the fluctuations of the transmission error to mitigate the
dynamic response. This is traditionally carried out by op-
timizing the tooth profile modifications through static com-
putations [36, 3, 5, 12]. Very few studies carry out dynamic
analyses to define the best TPM, which often lead to different
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optimal solutions [24, 10, 30]. Such works try to minimize
the peak-to-peak (𝐷𝑇𝐸𝑃𝑃 ) or the the root mean square val-
ues (𝐷𝑇𝐸𝑅𝑀𝑆 ) of the dynamic transmission error. However
such studies rely on computations of the dynamic response
over the full range of operating rotational speed for a few dis-
crete values of tooth profile modifications which can result
in a significant computational effort.

Uncertainties in the system parameters are unavoidable
due to manufacturing tolerances, wear, etc. They are sel-
dom taken into account in dynamics analyses, all the more
when the backlash nonlinearity is considered, since the as-
sociated computational costs are prohibitive. Tobe investi-
gated the effect of random tooth-to-tooth errors on the dy-
namic behaviour of a gear pair both numerically [37] with
Monte-Carlo simulations and experimentally [38]. Driot in-
vestigated the variability of the gearbox whining noise [9]
and modal characteristics [8] induced by gear manufactur-
ing tolerances. Uncertainties in the torque fluctuations were
studied [2] with polynomial chaos expansion. Guerine [17]
employed perturbation techniques to investigate uncertain
structural parameters. Wei [39] implemented the incremen-
tal harmonic balance solver with the Chebyshev inclusion
function to study the effects on uncertainties in the mesh
stiffness, static transmission error, damping ratio and torque
fluctuations.

Bifurcation tracking is a method to carry out parametric
analyses of nonlinear systems. The first attempts at numeri-
cally tracking bifurcations date back to the 1970s. This type
of dynamic analysis has gained a lot of attention in recents
years, following the papers from Detroux [7] and Xie [41].
Carrying out parametric analyses of nonlinear systems can
be computationally expensive because of the required com-
putation of the forced response curves (FRC) for all consid-
ered points of the design space. Bifurcation tracking is par-
ticularly attractive as it consists in only following the evo-
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lution of bifurcation points, reducing the number of com-
puted points to the number of bifurcations. Another benefit
of directly following bifurcation points is that a folding of
the bifurcation curves can reveal isolated responses, i.e., re-
sponses that are not connected to the main solution branch
[1, 15].

The objectives of this work are twofold: to introduce
bifurcation tracking as a efficient tool to design tooth pro-
file modifications in order to mitigate the nonlinear dynamic
response of the system and to investigate the influence of
uncertainty on the optimal tooth profile modifications. The
present paper is structured as follows: the mathematical model
of the gear pair is introduced in Sect. 2. The computational
strategy and uncertainty modelling is detailed in Sect. 3.
Results are discussed in Sect. 4 and main conclusions are
drawn in Sect. 5.

2. Mathematical model of the gear pair
2.1. Equation of motion of the gear pair

The geared system used in this paper is a spur gear pair
whose gear ratio is equal to 1. The gears are modelled as two
rigid disks with respective inertia 𝐼1 and 𝐼2 and rotational
degrees of freedom (DoF) 𝜃1 and 𝜃2. A nonlinear elastic
force, noted 𝑓𝑛𝑙, representing the contact between gear teeth
acts along the line of action, i.e. in the normal direction of
the tooth profile.

The equations of motion of this two-degree-of-freedom
model are:

{

𝐼1�̈�1 − 𝑇1 + 𝑟𝑏,1𝑓𝑛𝑙 = 0
𝐼2�̈�2 + 𝑇2 − 𝑟𝑏,2𝑓𝑛𝑙 = 0 (1)

where 𝑇1 = 𝑇2 = 100 N⋅m are respectively the input and
output torques and 𝑟𝑏,𝑘 denotes the base radius of gear 𝑘.
The transmission error 𝑞 = 𝑟𝑏,1𝜃1 − 𝑟𝑏,2𝜃2 can be introduced
at this stage in order to remove the rigid body motion cor-
responding to the rotation of the gear pair. The resulting
equation of motion reads:

𝑀𝑒𝑞𝑞 + 𝑓𝑛𝑙 (𝑞, 𝑡) = 𝐹𝑠 (2)

with the equilavent mass 𝑀𝑒𝑞 and static mesh force 𝐹𝑠:

⎧

⎪

⎨

⎪

⎩

𝑀𝑒𝑞 =
𝐼1𝐼2

𝑟2𝑏,1𝐼2+𝑟
2
𝑏,2𝐼1

𝐹𝑠 =
𝑇1
𝑟𝑏,1

= 𝑇2
𝑟𝑏,2

(3)

2.2. Gear coupling
The nonlinear mesh force 𝑓𝑛𝑙 describes an elastic cou-

pling when the gears are in contact and must be able to model
potential contact loss and resulting impacts between gear
teeth.

2.2.1. Backlash nonlinearity
Linerarizing the transmitted load around the static equi-

librium, i.e. the static transmission error 𝑞𝑠, allows one to

Figure 1: Nonlinear gear model.

Table 1
Characteristics of the gear pair

Name Gear 1 Gear 2 Unit

Module 𝑚 2 mm
Number of teeth 𝑍 50 50 -
Pressure angle 𝛼 20 deg
Base radius 𝑟𝑏 46.984 46.984 mm

Profile shift coefficient 𝑥 0 0 -
Addendum coefficient ℎ𝑎 1 1 -
Dedendum coefficient ℎ𝑑 1.25 1.25 -

Face width 𝑏𝑓 20 mm

Inertia 𝐼1 1.52e-3 1.52e-3 kg.m2

define, for each angular position 𝜃1, a mesh stiffness 𝑘𝑚(𝜃1)
coupling the two gears in contact:

𝑘𝑚(𝜃1) =
𝜕𝐹𝑠

𝜕𝑞𝑠(𝜃1)
(4)

Note that for non-zero rotational speeds 𝑘𝑚(𝜃1) = 𝑘𝑚(Ω𝑡).
Due to the linearization, the contact force associated to the
mesh stiffness equals zero for a positive displacement if:

𝑞(𝑡) ≤ 𝑔(𝑡) = 𝑏 + 𝑞𝑠(𝑡) −
𝐹𝑠

𝑘𝑚(𝑡)
(5)

where 𝑏 is half backlash, considered constant in the follow-
ing. The mesh force (cf. Fig. 2) including the backlash
nonlinearity can therefore be expressed as:

𝑓𝑛𝑙 (𝑞, 𝑡) = 𝑘𝑚(𝑡) (𝑞 − 𝑔(𝑡)) (𝑞 − 𝑔(𝑡))
+ 𝑘𝑚(𝑡) (𝑞 + 𝑔(𝑡)) (−𝑞 − 𝑔(𝑡)) (6)

where  is the Heaviside step function.

2.2.2. Damping
In the following, we consider an equivalent viscous damp-

ing that does not depend on the contact state [21, 11, 28, 29].
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The damping term reads:

𝐶 = 2𝜉
√

𝑘𝑚𝑀𝑒𝑞 (7)

where 𝑘𝑚 is the mean value of the periodic mesh stiffness and
𝜉 the damping ratio. Thus, the complete equation of motion
of the gear pair is:

𝑀𝑒𝑞𝑞 + 𝐶�̇� + 𝑓𝑛𝑙 (𝑞, 𝑡) = 𝐹𝑠 (8)

𝐹

𝑘𝑚(𝑡)𝐹𝑠

𝑞𝑏 𝑔 𝑡 𝑞𝑠(𝑡)−𝑏

Figure 2: Nonlinear force model for a given angular position
of the gear pair.

3. Computational strategy and uncertainty
modelling
Monte-Carlo simulations [26] are commonly used in dy-

namic analyses in order to propagate uncertainties. Despite
their widespread use, such simulations often lead to hefty
computational effort due to the large number of samples and
computations of the forced response curves required to en-
sure convergence. To avoid such issues, the proposed ap-
proach is based on a deterministic computation of the bifur-
cation curves of the investigated system. This reduces the
number of points to compute for each value of the uncertain
parameter to the number of identified bifurcations. Herein,
bifurcation tracking analysis is applied to the amount of tip
relief, corresponding to an intentional removal of material
at the tip of the gear teeth (see. Fig. 3). The study focuses
on minimizing the dynamic response around the primary
resonance, especially the amplitude-jump phenomenon in-
duced by the folding of the response curve delimited by two
saddle-node (SN) bifurcations. The location of bifurcation
points with respect to this parameter are obtained with mini-
mal computational effort using the methodology thoroughly
detailed in [29]. For the sake of completeness a short de-
scription is provided hereafter.

3.1. Nonlinear solver
The periodic solutions of equation (8) are sought as trun-

cated Fourier series:

𝑞 ≈ Re

( 𝐻
∑

𝑘=0
q̃𝑘e𝑖𝑘Ω𝑡

)

, (9)

Eq. (9) and its time derivatives are plugged into the equation
of motion (8) and Galerkin projection is performed with the
same harmonic base functions to obtain a system of nonlin-
ear algebraic equations. An arc-length continuation proce-
dure [35] with a tangent predictor is then used to follow the
evolution of the solution point with respect to the forcing
(rotational) frequency Ω. At each iteration, the nonlinear
mesh force is evaluated from Eq. (6) with the alternating
frequency/time (AFT) algorithm [4].

In order to track bifurcation points with respect to an ad-
ditional parameter, a minimaly extended system is built by
appending an additional equation to the system [13, 7, 29].
The bifurcation equation, noted 𝐺, is evaluated through the
resolution of a linear system of equations which depends on
the bifurcation being tracked:

[

A b
d† 0

](

w
𝐺

)

=
(

0
1

)

(10)

where vectors b and d are bordering vector that ought to en-
sure that system (10) is nonsingular and superscript † de-
notes the Hermitian transpose. Matrix 𝐴 is the Jacobian ma-
trix of the system with respect to the unknown Fourier co-
efficients when saddle-node (SN) bifurcations are tracked.
For computational efficiency, the derivatives of the resid-
ual and arc-length equation are evaluated analytically. The
derivatives of the bifurcation equation𝐺 are computed semi-
analytically in parallel. The above described computational
strategy relies on a Newton-Raphson solver which requires a
initial guess sufficiently close to an actual solution point. For
bifurcation tracking, a preliminary forced response curve is
computed and bifurcation points are detected with a stability
analysis based on Hill’s method [27, 16, 23, 18, 31].

3.2. Static transmission error and mesh stiffness
During the computation of the bifurcations curves, the

residual of the system and its derivatives have to be evaluated
at values that are unknown beforehand. The computation of
the nonlinear forces, given by Eq. (6), involves the STE and
time-varying mesh stiffness (TVMS). Both heavily depend
on the amount of tip relief 𝜇 and are periodic under station-
ary operating conditions. The strategy employed hereafter
[29] consists in expressing the STE, TVMS and their deriva-
tives with respect to the amount of tip relief 𝜇 as truncated
Fourier series with interpolated Fourier coefficients:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑞𝑠(𝜇, 𝑡) =
𝐻𝑞𝑠
∑

𝑘=0
𝑞𝑐,𝑘𝑠 (𝜇) cos(𝑘Ω𝑡) + 𝑞𝑠,𝑘𝑠 (𝜇) sin(𝑘Ω𝑡)

𝑘𝑚(𝜇, 𝑡) =
𝐻𝑘𝑚
∑

𝑘=0
𝑘𝑐,𝑘𝑚 (𝜇) cos(𝑘Ω𝑡) + 𝑘𝑠,𝑘𝑚 (𝜇) sin(𝑘Ω𝑡)

𝜕𝜇𝑞𝑠(𝜇, 𝑡) =
𝐻𝑞𝑠
∑

𝑘=0
𝜕𝜇𝑞

𝑐,𝑘
𝑠 (𝜇) cos(𝑘Ω𝑡) + 𝜕𝜇𝑞

𝑠,𝑘
𝑠 (𝜇) sin(𝑘Ω𝑡)

𝜕𝜇𝑘𝑚(𝜇, 𝑡) =
𝐻𝑘𝑚
∑

𝑘=0
𝜕𝜇𝑘

𝑐,𝑘
𝑚 (𝜇) cos(𝑘Ω𝑡) + 𝜕𝜇𝑘

𝑠,𝑘
𝑚 (𝜇) sin(𝑘Ω𝑡)

(11)

where 𝜕𝜇 denotes the partial derivative with respect to the
bifurcation tracking parameter, corresponding to the amount
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of tip relief in the present study. The in-house solver TERRA
(Transmission ERRor Analysis) [33, 12] is used to com-
pute the STE and TVMS for several amounts of tip relief.
Fast Fourier transforms (FFT) are performed and coefficients
𝑞𝑐,𝑘𝑠 , 𝑞𝑠,𝑘𝑠 , 𝑘𝑐,𝑘𝑚 and 𝑘𝑠,𝑘𝑚 are interpolated. The derivatives of
the Fourier coefficients are then calculated analytically, di-
rectly within the AFT algorithm. For more details, the inter-
ested reader can refer to [29].

Figure 3: Schematic representation of a tip relief modification.
𝜇 is the amount of tip relief, 𝜙𝑡𝑟 is starting radius of the profile
modification (𝜙𝑡𝑟 = 50.26 𝜇m).

3.3. Uncertainty modelling
In present study, we consider an uncertain amount of tip

relief 𝜇 on both gears. In order to evaluate its influence on
the dynamic response of the system and resulting optimum
TPM, we define two criteria. The nonlinearity can induce
multiple co-existing solutions for a given set of parameters.
As is well known, if the vibration amplitude is large enough,
saddle-node bifurcations can appear and lead to potential
amplitude-jumps under variations of the rotational speed or
perturbations of the system.
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Figure 4: Example of forced response curve without tip relief
modification (𝜇 = 0 𝜇m). Solid and dashed lines denote stable
and unstable responses, respectively. Saddle-node bifurcation
points are represented by red circle markers.

In this work, we define the optimum TPM as the median
amount of tip relief 𝜇𝑚𝑒𝑑 that best mitigates the severity of
the amplitude jump phenomenon. We introduce two ad hoc
criteria to be minimised, namely 𝑓𝑟𝑒𝑞 and 𝑓𝑟𝑒𝑞:

𝑓𝑟𝑒𝑞(𝜇) = ∫

𝜇𝑚𝑎𝑥

𝜇𝑚𝑖𝑛
ΔΩ(𝑥)𝑓𝑝(𝑥)d𝑥 (12)

𝑎𝑚𝑝𝑙(𝜇) = ∫

𝜇𝑚𝑎𝑥

𝜇𝑚𝑖𝑛
Δ𝐷𝑇𝐸(𝑥)𝑓𝑝(𝑥)d𝑥 (13)

where 𝑓𝑝(𝑥) corresponds to a probability density function,
ΔΩ(𝑥) andΔ𝐷𝑇𝐸(𝑥) are respectively the frequency and am-
plitude interval between the upper and lower SN bifurcation
on the primary resonance (see Fig. 4). 𝜇𝑚𝑖𝑛 and 𝜇𝑚𝑎𝑥 are
the bounds of the interval of variability. The size of the
latter is herein taken equal to 5 𝜇m with the lower bound
𝜇𝑚𝑖𝑛 ∈ [0, 10] 𝜇m. Negative values are not considered here,
as it would imply added material.

Information regarding distribution laws of tooth profile
modification is scarce, although a few sources report uni-
form, Gaussian or Weibull distributions. Due to the lack of
information and in order to quantify the influence of the type
of distribution on the results all three distributions as well as
a beta distribution are considered in the following (see Fig.
5). The first two are symmetric while the Weibull and beta
distributions are asymmetric in most cases, depending on the
chosen parameters.

The uniform distribution depends on the lower and upper
bounds of the uncertainty interval such that:

𝑓𝑝(𝑥) =
1

𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛
, ∀𝑥 ∈ [𝜇𝑚𝑖𝑛, 𝜇𝑚𝑎𝑥] (14)

The normal distribution is expressed with its mean value
𝜇 = (𝜇𝑚𝑖𝑛 + 𝜇𝑚𝑎𝑥)∕2 and its standard deviation 𝜎 such that
3𝜎 = (𝜇𝑚𝑖𝑛 − 𝜇𝑚𝑎𝑥)∕2:

𝑓𝑝(𝑥) =
1

𝜎
√

2𝜋
exp

(

−1
2

(𝑥 − 𝜇
𝜎

)2
)

(15)

The Weibull distribution has the following expression:

𝑓𝑝(𝑥) =
𝑘
𝜆

(𝑥 − 𝜃
𝜆

)𝑘−1
exp

(

−
(𝑥 − 𝜃

𝑘

)𝑘)

, ∀𝑥 ≥ 𝜃 (16)

where 𝑘 and 𝜆 are the shape and scale parameters. Param-
eter 𝜃 is a location parameter allowing for an offset of the
distribution on the x-axis to account for the varying lower
bound of the interval of uncertainty. The shape and scale
parameters chosen in this study are 𝑘 = 1.75 and 𝜆 = 2,
respectively, which results in a "left-skewed" distribution.

The beta distribution considered hereafter is expressed:

𝑓𝑏𝑒𝑡𝑎(𝑥) =
Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

𝑥𝛼−1(1 − 𝑥)𝛽−1, ∀𝑥 ∈ [0, 1] (17)

where Γ is the gamma function and 𝛼 and 𝛽 are shape pa-
rameters whose value are 𝛼 = 2.5 and 𝛽 = 2 in this study,
resulting in a "right-skewed" distribution. The beta distribu-
tion is defined for 𝑥 ∈ [0, 1]. In the following, the beta PDF
is computed with 𝑥 ∈ [𝜇𝑚𝑖𝑛, 𝜇𝑚𝑎𝑥] and normalized, i.e.:

𝑓𝑝(𝑥) =
𝑓𝑏𝑒𝑡𝑎

(

𝑥−𝜇𝑚𝑖𝑛
𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛

)

𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛
(18)
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Figure 5: Probability density functions considered for the uncertain tip relief parameter.
(a) Uniform distribution (b) Normal distribution, (c) Weibull distribution with parameters
𝜆 = 1.75 and 𝑘 = 2, (d) beta distribution with parameters 𝛼 = 2.5 and 𝛽 = 2.

4. Results and discussion
4.1. Optimization of the static transmission error

with respect to the amount of tip relief
In order to highlight the benefits of the proposed method-

ology, we first discuss the choice of tip relief to minimize
the excitation induced by the meshing process, as is stan-
dard practice in gear design. The static transmission error
is computed for each value of the amount of tip relief in the
discretized design interval  = [0 15] 𝜇m.

Figure 6 shows the evolution of the peak-to-peak STE
with respect to the amount of tip relief for the input torque
𝑇 = 100 N⋅m. The STE𝑃𝑃 first decreases as the amount
of tip relief is increased. The peak-to-peak value decreases
from 2.1 𝜇m with no tip relief to 1.2 𝜇m when the amount
of tip relief reaches 3 𝜇m, which will be henceforth referred
to as static optimum. The STE𝑃𝑃 then increases with the
amount of tip relief.
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Figure 6: Evolution of the peak-to-peak static transmission
error with respect to the amount of tip relief. The red dot
denotes the optimum solution, corresponding to the smallest
peak-to-peak value of the static transmission error
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(a) 3D space

(b) Frequency-tip relief plane (c) Amplitude-tip relief plane

Figure 7: Saddle-node bifurcation curves. The blue lines represent the forced response
curves; saddle-node bifurcation points are represented by red circle markers and red lines
denote the bifurcation curves.

4.2. Optimization of the dynamic behaviour with
respect to the uncertain amount of tip relief

The first step of the proposed methodology is to compute
the bifurcation curves with respect to the uncertain param-
eter. The number of sampling points used in the AFT algo-
rithm is 𝑁𝑠 = 211 and the list of harmonics for the HBM is
𝐻 = (0, 50, 100, 150, 200, 250, 300, 350), corresponding to
harmonics of the meshing frequency 𝐻50. The bifurcation
tracking algorithm requires an initial guess close to the loca-
tion of a bifurcation point in the design space. Two prelimi-
nary forced response analyses are carried out at each end of
the interval of variability, i.e. for 𝜇 = 0 𝜇m and 𝜇 = 15 𝜇m.
A stability analysis allows one to detect two SN bifurcations

on each curve. The SN bifurcations located at the top of the
primary resonances are chosen as initial guesses.

Figure 7 shows the SN bifurcation curves computed with
the tracking algorithm with respect to the excitation (rota-
tional) frequency and amount of tip relief. The root mean
square value of the fluctuations of dynamic transmission er-
ror, 𝐷𝑇𝐸𝑅𝑀𝑆 , is chosen as a measure of the response am-
plitude. Figures 7b and 7c show the bifurcation curves in the
frequency-tip relief and amplitude-tip relief planes, respec-
tively. The tracking reveals two unstable zones delimited by
the saddle-node bifurcations, i.e. the red lines, where mul-
tiple solution coexist and a small zone that doesn’t exhibit
amplitude-jump instability in between.
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Figure 8: Evolution of the frequency criterion (a) and amplitude criterion (b) with respect
to the amount of tip relief. Red circle markers denote the optimal value of tip relief. The
evolution of the peak-to-peak STE is represented as a black line with cross markers.

The first unstable zone exists for values of tip relief 𝜇 ∈
[0 2.4] 𝜇m, which is quite close to the optimal tip relief com-
puted with static analyses. The second unstable zone ap-
pears for 𝜇 ≥ 5.3 𝜇m. Interestingly, the shapes of the un-
stable zones in the frequency-tip relief plane (cf. Fig. 7b)
are quite similar since the width ΔΩ seems to stabilize at
approximately ΔΩ = 100 rad/s. Nevertheless, the first un-
stable zone shows a rapid decline in the amplitude-tip relief
plane (cf. Fig. 7c). Indeed, the width of the unstable zone is

Δ𝐷𝑇𝐸 = 4.8 𝜇m at 𝜇 = 0 𝜇m and decreases rapidly until the
two SN bifurcations coalesce and disappear at 𝜇 = 2.4 𝜇m.
The width of the second unstable zone grows significantly
slower as the tip relief increases. For instance, the SN bifur-
cations emerge at 𝜇 = 5.3 𝜇m and the width only reaches
Δ𝐷𝑇𝐸 = 3.1 𝜇m at 𝜇 = 10 𝜇m.

To carry out the uncertainty analysis, the interval  =
[0, 10] 𝜇m, in which the lower bound of the uncertainty in-
terval varies, is discretized with 100 points. The uncertainty
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Figure 9: Probability density functions of the amplitude (a, b, c, d, e, f, g, h) and frequency
intervals (i, j, k, l, m, n, o, p) between upper and lower SN bifurcations. PDF computed
with MC simulations in the interval whose median equals the optimum obtained from static
computations (a, b, c, d, i, j, k, l) and dynamic computations (e, f, g, h, m, n, o, p). (a, e,
i, m) Uniform distribution, (b, f, j, n) Normal distribution, (c, g k, o) Weibull distribution
with parameters 𝜆 = 1.75 and 𝑘 = 2, (d, h, l, p) beta distribution with parameters 𝛼 = 2.5
and 𝛽 = 2. The red solid lines denote the mean values while the red dashed lines represent
the medians.

interval 𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛 itself is discretized with an odd number
of points, 101 in this study, for an accurate representation of
the probability density functions. The criteria defined by Eq.
(12) and (13) are computed for each value of the lower bound
of the uncertainty interval with almost no additional compu-
tational effort using the results of the bifurcation tracking
analysis. For each value of the lower bound 𝜇𝑚𝑖𝑛, the me-
dian value of tip relief for each probability density function
is stored.

Figure 8 shows the evolution of both criteria with respect
to the median value of the amount of tip relief 𝜇𝑚𝑒𝑑 . Solid,
dashed and dotted lines are associated to the criteria calcu-
lated with the different probability density functions. The
peak-to-peak values of the STE are superimposed for easier
comparison. The optimum amount of tip relief, i.e. the me-
dian tip relief associated to the smallest value of the criteria,
for each considered probability density function is denoted
with a red circle marker.
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One can see that the optimal tip relief is shifted towards
larger values compared with the STE computations. Inter-
estingly, the type of probability density function used for the
calculation has a moderate influence of the optimal value of
tip relief, with all optimums located approximately at 𝜇 =
4 𝜇m. Overall, both criteria have a similar evolution with
the tip relief and yield somewhat similar results. One can
also note that both criteria reach values close to zero at the
optimal value of tip relief, indicating that amplitude-jump
instabilities are well mitigated and almost non-existent.

This is confirmed by carrying out Monte-Carlo simula-
tions from the bifurcation tracking results. For each distribu-
tion of the amount of tip relief, a Monte-Carlo simulation is
performed within the uncertainty interval associated to the
optimum amount of tip relief computed with the proposed
methodology. Note that when the optimums obtained with
the two criteria differ, the one minimizing 𝑎𝑚𝑝𝑙 is used. Fig-
ure 9 shows the probability density functions of Δ𝐷𝑇𝐸 and
ΔΩ computed with 𝑛𝑀𝐶 = 100000 samples. For reference,
MC simulations with the uncertainty interval associated to
the static optimum, i.e. with a median equal to 𝜇 = 3 𝜇m, is
also carried out (cf. Fig. 9a-9d and Fig. 9i-9l). One can see
that, for all cases, the probability density functions of both
Δ𝐷𝑇𝐸 andΔΩ are utterly different from the probability den-
sity functions of the amount of tip relief. Besides, the major-
ity of samples are characterized by an absence of amplitude
jump as indicated by a median equal to zero. Furthermore,
it appears that the dynamic optimum induces a shift of the
mean value of both Δ𝐷𝑇𝐸 and ΔΩ towards zero as well as a
smaller standard deviation. Thus, amplitude-jump instabili-
ties are better mitigated.

5. Conclusion
A computational procedure based on bifurcation track-

ing was proposed to design tooth profile modifications in the
presence of uncertainties. The proposed approach allows
one to analyze the influence of uncertainty in tooth profile
modifications on the nonlinear dynamic response of a gear
pair and to define a optimal design. It was found that con-
sidering uncertainties leads to a different optimal value of
the tooth profile modification compared to the one obtained
with static computations. Four probability density functions
were considered in the analysis. Results suggest that their
influence on the optimal value is limited.

The methodology was applied to the amount of tip re-
lief but can be implemented with any type of tooth profile
modification. At the moment, only one uncertain param-
eter can be investigated at a time. Future work may look
into extending the methodology to higher co-dimensions.
It can also be extended to large-scale geared system mod-
els using model order reduction techniques [25] without the
need to resort to parametric reduced-order models [22] since
the gear coupling is treated in physical coordinates. Finally,
the approach can be extended to other types of bifurcation
(Neimark-Sacker, period-doubling) for better designs.
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