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The present work investigates the influence of uncertain tooth profile modifications on the nonlinear dynamic response of a spur gear pair induced by a backlash nonlinearity. To this end, an original approach based on bifurcation tracking is developed. The equations of motion are solved in the frequency domain with the harmonic balance method (HBM) coupled to an arc-length continuation algorithm and a bordering technique. The evolution of the bifurcation points with respect to the uncertain parameter is computed in a deterministic way. The study focuses on minimizing the amplitude-jump instabilities induced by the backlash nonlinearity around the primary resonance peak. The proposed methodology allows for a fast and reliable estimation of the tooth profile modification that minimizes the amplitude-jump instability by defining two criteria using the results of the bifurcation tracking algorithm. Probability density functions (PDF) of various indicators of the severity of vibro-impacts can be computed with Monte-Carlo (MC) simulation with minimal computational burden. Results show that the tooth profile modification that minimizes the amplitude-jump instabilities differs from the optimum obtained with static computations.

Introduction

Vibration and noise mitigation in geared system remains to this day a major challenge and research interest. The reasons are twofold. Firstly, large vibration amplitudes induce wear, fatigue and can compromise the structural integrity of the system. Secondly, vibrations generated at the gear are transferred to the housing via the shafts and bearings, which creates an unwanted noise: whining noise in case of permanent contact [START_REF] Carbonelli | Vibro-Acoustic Analysis of Geared Systems-Predicting and Controlling the Whining Noise[END_REF], or hammering or rattle noise when the response exhibits vibro-impacts [START_REF] Pfeiffer | Hammering in diesel-engine driveline systems[END_REF][START_REF] Rigaud | Investigation of gear rattle noise including visualization of vibro-impact regimes[END_REF].

The meshing process is the origin of the transmission error and mesh stiffness fluctuations, which are assumed to be the main sources of excitation in geared systems. The former is defined as the difference between the actual position of the ouput gear and the position it would occupy, were the gear pair perfectly conjugate [START_REF] Welbourn | Fundamental knowledge of gear noise: A survey[END_REF]; the latter is expressed as the derivative of the transmitted load with respect to the transmission error. Modifications of the gear micro-geometry, i.e. the profile of the tooth flanks, are commonly employed to optimize contact conditions, compensate for manufacturing defects and minimize the gear dynamic response. Such modifications consist in an intentional removal of material from the tooth flanks so that the tooth profile differs from the theoretical perfect involute. Their effect on both the static and dynamic responses of geared systems are well known [START_REF] Gregory | Dynamic behaviour of spur gears[END_REF][START_REF] Kahraman | Effect of Involute Tip Relief on Dynamic Response of Spur Gear Pairs[END_REF][START_REF] Ozturk | Optimum profile modifications for the minimization of dynamic transmission error[END_REF][START_REF] Hotait | Experiments on the relationship between the dynamic transmission error and the dynamic stress factor of spur gear pairs[END_REF]. Most studies aim at minimizing the fluctuations of the transmission error to mitigate the dynamic response. This is traditionally carried out by optimizing the tooth profile modifications through static computations [START_REF] Tavakoli | Optimum Profile Modifications for the Minimization of Static Transmission Errors of Spur Gears[END_REF][START_REF] Bonori | Optimum profile modifications of spur gears by means of genetic algorithms[END_REF][START_REF] Carbonelli | Particle Swarm Optimization as an Efficient Computational Method in order to Minimize Vibrations of Multimesh Gears Transmission[END_REF][START_REF] Garambois | NVH robust optimization of gear macro and microgeometries using an efficient tooth contact model[END_REF]. Very few studies carry out dynamic analyses to define the best TPM, which often lead to different optimal solutions [START_REF] Liu | Dynamic Modeling and Analysis of Tooth Profile Modification for Multimesh Gear Vibration[END_REF][START_REF] Faggioni | Dynamic optimization of spur gears[END_REF][START_REF] Ozturk | Optimum profile modifications for the minimization of dynamic transmission error[END_REF]. Such works try to minimize the peak-to-peak (𝐷𝑇𝐸 𝑃 𝑃 ) or the the root mean square values (𝐷𝑇𝐸 𝑅𝑀𝑆 ) of the dynamic transmission error. However such studies rely on computations of the dynamic response over the full range of operating rotational speed for a few discrete values of tooth profile modifications which can result in a significant computational effort. Uncertainties in the system parameters are unavoidable due to manufacturing tolerances, wear, etc. They are seldom taken into account in dynamics analyses, all the more when the backlash nonlinearity is considered, since the associated computational costs are prohibitive. Tobe investigated the effect of random tooth-to-tooth errors on the dynamic behaviour of a gear pair both numerically [START_REF] Tobe | Statistical analysis of dynamic loads on spur gear teeth[END_REF] with Monte-Carlo simulations and experimentally [START_REF] Tobe | Statistical analysis of dynamic loads on spur gear teeth : Experimental study[END_REF]. Driot investigated the variability of the gearbox whining noise [START_REF] Driot | Allocation of gear tolerances to minimize gearbox noise variability[END_REF] and modal characteristics [START_REF] Driot | Variability of modal behavior in terms of critical speeds of a gear pair due to manufacturing errors and shaft misalignments[END_REF] induced by gear manufacturing tolerances. Uncertainties in the torque fluctuations were studied [START_REF] Beyaoui | Dynamic behaviour of a wind turbine gear system with uncertainties[END_REF] with polynomial chaos expansion. Guerine [START_REF] Guerine | A perturbation approach for the dynamic analysis of one stage gear system with uncertain nnparameters[END_REF] employed perturbation techniques to investigate uncertain structural parameters. Wei [START_REF] Wei | Dynamic response of a single-mesh gear system with periodic mesh stiffness and backlash nonlinearity under uncertainty[END_REF] implemented the incremental harmonic balance solver with the Chebyshev inclusion function to study the effects on uncertainties in the mesh stiffness, static transmission error, damping ratio and torque fluctuations.

Bifurcation tracking is a method to carry out parametric analyses of nonlinear systems. The first attempts at numerically tracking bifurcations date back to the 1970s. This type of dynamic analysis has gained a lot of attention in recents years, following the papers from Detroux [START_REF] Detroux | The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems[END_REF] and Xie [START_REF] Xie | Bifurcation tracking by harmonic balance method for performance tuning of nonlinear dynamical systems[END_REF]. Carrying out parametric analyses of nonlinear systems can be computationally expensive because of the required computation of the forced response curves (FRC) for all considered points of the design space. Bifurcation tracking is particularly attractive as it consists in only following the evo-lution of bifurcation points, reducing the number of computed points to the number of bifurcations. Another benefit of directly following bifurcation points is that a folding of the bifurcation curves can reveal isolated responses, i.e., responses that are not connected to the main solution branch [START_REF] Alcorta | Period doubling bifurcation analysis and isolated subharmonic resonances in an oscillator with asymmetric clearances[END_REF][START_REF] Grenat | A multiparametric recursive continuation method for nonlinear dynamical systems[END_REF].

The objectives of this work are twofold: to introduce bifurcation tracking as a efficient tool to design tooth profile modifications in order to mitigate the nonlinear dynamic response of the system and to investigate the influence of uncertainty on the optimal tooth profile modifications. The present paper is structured as follows: the mathematical model of the gear pair is introduced in Sect. 2. The computational strategy and uncertainty modelling is detailed in Sect. 3. Results are discussed in Sect. 4 and main conclusions are drawn in Sect. 5.

Mathematical model of the gear pair

Equation of motion of the gear pair

The geared system used in this paper is a spur gear pair whose gear ratio is equal to 1. The gears are modelled as two rigid disks with respective inertia 𝐼 1 and 𝐼 2 and rotational degrees of freedom (DoF) 𝜃 1 and 𝜃 2 . A nonlinear elastic force, noted 𝑓 𝑛𝑙 , representing the contact between gear teeth acts along the line of action, i.e. in the normal direction of the tooth profile.

The equations of motion of this two-degree-of-freedom model are:

{ 𝐼 1 θ1 -𝑇 1 + 𝑟 𝑏,1 𝑓 𝑛𝑙 = 0 𝐼 2 θ2 + 𝑇 2 -𝑟 𝑏,2 𝑓 𝑛𝑙 = 0 (1) 
where 𝑇 1 = 𝑇 2 = 100 N⋅m are respectively the input and output torques and 𝑟 𝑏,𝑘 denotes the base radius of gear 𝑘.

The transmission error 𝑞 = 𝑟 𝑏,1 𝜃 1 -𝑟 𝑏,2 𝜃 2 can be introduced at this stage in order to remove the rigid body motion corresponding to the rotation of the gear pair. The resulting equation of motion reads:

𝑀 𝑒𝑞 q + 𝑓 𝑛𝑙 (𝑞, 𝑡) = 𝐹 𝑠 (2)
with the equilavent mass 𝑀 𝑒𝑞 and static mesh force 𝐹 𝑠 :

⎧ ⎪ ⎨ ⎪ ⎩ 𝑀 𝑒𝑞 = 𝐼 1 𝐼 2 𝑟 2 𝑏,1 𝐼 2 +𝑟 2 𝑏,2 𝐼 1 𝐹 𝑠 = 𝑇 1 𝑟 𝑏,1 = 𝑇 2 𝑟 𝑏,2 (3)

Gear coupling

The nonlinear mesh force 𝑓 𝑛𝑙 describes an elastic coupling when the gears are in contact and must be able to model potential contact loss and resulting impacts between gear teeth.

Backlash nonlinearity

Linerarizing the transmitted load around the static equilibrium, i.e. the static transmission error 𝑞 𝑠 , allows one to 

𝑘 𝑚 (𝜃 1 ) = 𝜕𝐹 𝑠 𝜕𝑞 𝑠 (𝜃 1 ) (4) 
Note that for non-zero rotational speeds 𝑘 𝑚 (𝜃 1 ) = 𝑘 𝑚 (Ω𝑡).

Due to the linearization, the contact force associated to the mesh stiffness equals zero for a positive displacement if:

𝑞(𝑡) ≤ 𝑔(𝑡) = 𝑏 + 𝑞 𝑠 (𝑡) - 𝐹 𝑠 𝑘 𝑚 (𝑡) ( 5 
)
where 𝑏 is half backlash, considered constant in the following. The mesh force (cf. Fig. 2) including the backlash nonlinearity can therefore be expressed as:

𝑓 𝑛𝑙 (𝑞, 𝑡) = 𝑘 𝑚 (𝑡) (𝑞 -𝑔(𝑡))  (𝑞 -𝑔(𝑡)) + 𝑘 𝑚 (𝑡) (𝑞 + 𝑔(𝑡))  (-𝑞 -𝑔(𝑡)) ( 6 
)
where  is the Heaviside step function.

Damping

In the following, we consider an equivalent viscous damping that does not depend on the contact state [START_REF] Kahraman | Non-linear dynamics of a spur gear pair[END_REF][START_REF] Farshidianfar | Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems[END_REF][START_REF] Mélot | Effect of gear topology discontinuities on the nonlinear dynamic response of a multi-degree-of-freedom gear train[END_REF][START_REF] Mélot | Bifurcation tracking of geared systems with parameter-dependent internal excitation[END_REF].

The damping term reads:

𝐶 = 2𝜉 √ 𝑘 𝑚 𝑀 𝑒𝑞 (7)
where 𝑘 𝑚 is the mean value of the periodic mesh stiffness and 𝜉 the damping ratio. Thus, the complete equation of motion of the gear pair is: 

𝑀 𝑒𝑞 q + 𝐶 q + 𝑓 𝑛𝑙 (𝑞, 𝑡) = 𝐹 𝑠 (8) 𝐹 𝑘 𝑚 (𝑡) 𝐹 𝑠 𝑞 𝑏 𝑔 𝑡 𝑞 𝑠 (𝑡) -𝑏

Computational strategy and uncertainty modelling

Monte-Carlo simulations [START_REF] Metropolis | The monte carlo method[END_REF] are commonly used in dynamic analyses in order to propagate uncertainties. Despite their widespread use, such simulations often lead to hefty computational effort due to the large number of samples and computations of the forced response curves required to ensure convergence. To avoid such issues, the proposed approach is based on a deterministic computation of the bifurcation curves of the investigated system. This reduces the number of points to compute for each value of the uncertain parameter to the number of identified bifurcations. Herein, bifurcation tracking analysis is applied to the amount of tip relief, corresponding to an intentional removal of material at the tip of the gear teeth (see. Fig. 3). The study focuses on minimizing the dynamic response around the primary resonance, especially the amplitude-jump phenomenon induced by the folding of the response curve delimited by two saddle-node (SN) bifurcations. The location of bifurcation points with respect to this parameter are obtained with minimal computational effort using the methodology thoroughly detailed in [START_REF] Mélot | Bifurcation tracking of geared systems with parameter-dependent internal excitation[END_REF]. For the sake of completeness a short description is provided hereafter.

Nonlinear solver

The periodic solutions of equation ( 8) are sought as truncated Fourier series:

𝑞 ≈ Re ( 𝐻 ∑ 𝑘=0 q𝑘 e 𝑖𝑘Ω𝑡 ) , (9) 
Eq. ( 9) and its time derivatives are plugged into the equation of motion [START_REF] Driot | Variability of modal behavior in terms of critical speeds of a gear pair due to manufacturing errors and shaft misalignments[END_REF] and Galerkin projection is performed with the same harmonic base functions to obtain a system of nonlinear algebraic equations. An arc-length continuation procedure [START_REF] Seydel | Practical Bifurcation and Stability Analysis[END_REF] with a tangent predictor is then used to follow the evolution of the solution point with respect to the forcing (rotational) frequency Ω. At each iteration, the nonlinear mesh force is evaluated from Eq. ( 6) with the alternating frequency/time (AFT) algorithm [START_REF] Cameron | An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems[END_REF].

In order to track bifurcation points with respect to an additional parameter, a minimaly extended system is built by appending an additional equation to the system [START_REF] Govaerts | Numerical continuation of bifurcations of limit cycles in matlab[END_REF][START_REF] Detroux | The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems[END_REF][START_REF] Mélot | Bifurcation tracking of geared systems with parameter-dependent internal excitation[END_REF]. The bifurcation equation, noted 𝐺, is evaluated through the resolution of a linear system of equations which depends on the bifurcation being tracked:

[ A b d † 0 ] ( w 𝐺 ) = ( 0 1 
) ( 10 
)
where vectors b and d are bordering vector that ought to ensure that system (10) is nonsingular and superscript † denotes the Hermitian transpose. Matrix 𝐴 is the Jacobian matrix of the system with respect to the unknown Fourier coefficients when saddle-node (SN) bifurcations are tracked. For computational efficiency, the derivatives of the residual and arc-length equation are evaluated analytically. The derivatives of the bifurcation equation 𝐺 are computed semianalytically in parallel. The above described computational strategy relies on a Newton-Raphson solver which requires a initial guess sufficiently close to an actual solution point. For bifurcation tracking, a preliminary forced response curve is computed and bifurcation points are detected with a stability analysis based on Hill's method [START_REF] Moore | Floquet theory as a computational tool[END_REF][START_REF] Groll | The harmonic balance method with arc-length continuation in rotor/stator contact problems[END_REF][START_REF] Lazarus | A harmonic-based method for computing the stability of periodic solutions of dynamical systems[END_REF][START_REF] Guillot | A purely frequency based floquet-hill formulation for the efficient stability computation of periodic solutions of ordinary differential systems[END_REF][START_REF] Peletan | A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics[END_REF].

Static transmission error and mesh stiffness

During the computation of the bifurcations curves, the residual of the system and its derivatives have to be evaluated at values that are unknown beforehand. The computation of the nonlinear forces, given by Eq. ( 6), involves the STE and time-varying mesh stiffness (TVMS). Both heavily depend on the amount of tip relief 𝜇 and are periodic under stationary operating conditions. The strategy employed hereafter [START_REF] Mélot | Bifurcation tracking of geared systems with parameter-dependent internal excitation[END_REF] consists in expressing the STE, TVMS and their derivatives with respect to the amount of tip relief 𝜇 as truncated Fourier series with interpolated Fourier coefficients: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑞 𝑠 (𝜇, 𝑡) = 𝐻 𝑞 𝑠 ∑ 𝑘=0 𝑞
where 𝜕 𝜇 denotes the partial derivative with respect to the bifurcation tracking parameter, corresponding to the amount of tip relief in the present study. The in-house solver TERRA (Transmission ERRor Analysis) [START_REF] Rigaud | Modelling and Analysis of Static Transmission Error. Effect of Wheel Body Deformation and Interactions between Adjacent Loaded Teeth[END_REF][START_REF] Garambois | NVH robust optimization of gear macro and microgeometries using an efficient tooth contact model[END_REF] is used to compute the STE and TVMS for several amounts of tip relief. Fast Fourier transforms (FFT) are performed and coefficients 𝑞 𝑐,𝑘 𝑠 , 𝑞 𝑠,𝑘 𝑠 , 𝑘 𝑐,𝑘 𝑚 and 𝑘 𝑠,𝑘 𝑚 are interpolated. The derivatives of the Fourier coefficients are then calculated analytically, directly within the AFT algorithm. For more details, the interested reader can refer to [START_REF] Mélot | Bifurcation tracking of geared systems with parameter-dependent internal excitation[END_REF]. 

Uncertainty modelling

In present study, we consider an uncertain amount of tip relief 𝜇 on both gears. In order to evaluate its influence on the dynamic response of the system and resulting optimum TPM, we define two criteria. The nonlinearity can induce multiple co-existing solutions for a given set of parameters. As is well known, if the vibration amplitude is large enough, saddle-node bifurcations can appear and lead to potential amplitude-jumps under variations of the rotational speed or perturbations of the system. In this work, we define the optimum TPM as the median amount of tip relief 𝜇 𝑚𝑒𝑑 that best mitigates the severity of the amplitude jump phenomenon. We introduce two ad hoc criteria to be minimised, namely  𝑓 𝑟𝑒𝑞 and  𝑓 𝑟𝑒𝑞 :

 𝑓 𝑟𝑒𝑞 (𝜇) = ∫ 𝜇 𝑚𝑎𝑥 𝜇 𝑚𝑖𝑛 ΔΩ(𝑥)𝑓 𝑝 (𝑥)d𝑥 (12) 
 𝑎𝑚𝑝𝑙 (𝜇) = ∫ 𝜇 𝑚𝑎𝑥 𝜇 𝑚𝑖𝑛 Δ𝐷𝑇𝐸(𝑥)𝑓 𝑝 (𝑥)d𝑥 (13) 
where 𝑓 𝑝 (𝑥) corresponds to a probability density function, ΔΩ(𝑥) and Δ𝐷𝑇𝐸(𝑥) are respectively the frequency and amplitude interval between the upper and lower SN bifurcation on the primary resonance (see Fig. 4). 𝜇 𝑚𝑖𝑛 and 𝜇 𝑚𝑎𝑥 are the bounds of the interval of variability. The size of the latter is herein taken equal to 5 𝜇m with the lower bound 𝜇 𝑚𝑖𝑛 ∈ [0, 10] 𝜇m. Negative values are not considered here, as it would imply added material. Information regarding distribution laws of tooth profile modification is scarce, although a few sources report uniform, Gaussian or Weibull distributions. Due to the lack of information and in order to quantify the influence of the type of distribution on the results all three distributions as well as a beta distribution are considered in the following (see Fig. 5). The first two are symmetric while the Weibull and beta distributions are asymmetric in most cases, depending on the chosen parameters.

The uniform distribution depends on the lower and upper bounds of the uncertainty interval such that:

𝑓 𝑝 (𝑥) = 1 𝜇 𝑚𝑎𝑥 -𝜇 𝑚𝑖𝑛 , ∀𝑥 ∈ [𝜇 𝑚𝑖𝑛 , 𝜇 𝑚𝑎𝑥 ] (14) 
The normal distribution is expressed with its mean value 𝜇 = (𝜇 𝑚𝑖𝑛 + 𝜇 𝑚𝑎𝑥 )∕2 and its standard deviation 𝜎 such that 3𝜎 = (𝜇 𝑚𝑖𝑛 -𝜇 𝑚𝑎𝑥 )∕2:

𝑓 𝑝 (𝑥) = 1 𝜎 √ 2𝜋 exp ( - 1 2 
( 𝑥 -𝜇 𝜎 ) 2 ) (15) 
The Weibull distribution has the following expression:

𝑓 𝑝 (𝑥) = 𝑘 𝜆 ( 𝑥 -𝜃 𝜆 ) 𝑘-1 exp ( - ( 𝑥 -𝜃 𝑘 ) 𝑘 ) , ∀𝑥 ≥ 𝜃 (16)
where 𝑘 and 𝜆 are the shape and scale parameters. Parameter 𝜃 is a location parameter allowing for an offset of the distribution on the x-axis to account for the varying lower bound of the interval of uncertainty. The shape and scale parameters chosen in this study are 𝑘 = 1.75 and 𝜆 = 2, respectively, which results in a "left-skewed" distribution. The beta distribution considered hereafter is expressed:

𝑓 𝑏𝑒𝑡𝑎 (𝑥) = Γ(𝛼 + 𝛽) Γ(𝛼)Γ(𝛽) 𝑥 𝛼-1 (1 -𝑥) 𝛽-1 , ∀𝑥 ∈ [0, 1] ( 17 
)
where Γ is the gamma function and 𝛼 and 𝛽 are shape parameters whose value are 𝛼 = 2.5 and 𝛽 = 2 in this study, resulting in a "right-skewed" distribution. The beta distribution is defined for 𝑥 ∈ [0, 1]. In the following, the beta PDF is computed with 𝑥 ∈ [𝜇 𝑚𝑖𝑛 , 𝜇 𝑚𝑎𝑥 ] and normalized, i.e.: 

𝑓 𝑝 (𝑥) = 𝑓 𝑏𝑒𝑡𝑎 ( 𝑥-𝜇 𝑚𝑖𝑛 𝜇 𝑚𝑎𝑥 -𝜇 𝑚𝑖𝑛 ) 𝜇 𝑚𝑎𝑥 -𝜇 𝑚𝑖𝑛 ( 18 
)

Results and discussion

Optimization of the static transmission error with respect to the amount of tip relief

In order to highlight the benefits of the proposed methodology, we first discuss the choice of tip relief to minimize the excitation induced by the meshing process, as is standard practice in gear design. The static transmission error is computed for each value of the amount of tip relief in the discretized design interval  = [0 15] 𝜇m.

Figure 6 shows the evolution of the peak-to-peak STE with respect to the amount of tip relief for the input torque 𝑇 = 100 N⋅m. The STE 𝑃 𝑃 first decreases as the amount of tip relief is increased. The peak-to-peak value decreases from 2.1 𝜇m with no tip relief to 1.2 𝜇m when the amount of tip relief reaches 3 𝜇m, which will be henceforth referred to as static optimum. The STE 𝑃 𝑃 then increases with the amount of tip relief. 

Optimization of the dynamic behaviour with respect to the uncertain amount of tip relief

The first step of the proposed methodology is to compute the bifurcation curves with respect to the uncertain parameter. The number of sampling points used in the AFT algorithm is 𝑁 𝑠 = 2 11 and the list of harmonics for the HBM is 𝐻 = (0, 50, 100, 150, 200, 250, 300, 350), corresponding to harmonics of the meshing frequency 𝐻 50 . The bifurcation tracking algorithm requires an initial guess close to the location of a bifurcation point in the design space. Two preliminary forced response analyses are carried out at each end of the interval of variability, i.e. for 𝜇 = 0 𝜇m and 𝜇 = 15 𝜇m. A stability analysis allows one to detect two SN bifurcations on each curve. The SN bifurcations located at the top of the primary resonances are chosen as initial guesses.

Figure 7 shows the SN bifurcation curves computed with the tracking algorithm with respect to the excitation (rotational) frequency and amount of tip relief. The root mean square value of the fluctuations of dynamic transmission error, 𝐷𝑇𝐸 𝑅𝑀𝑆 , is chosen as a measure of the response amplitude. Figures 7b and7c show the bifurcation curves in the frequency-tip relief and amplitude-tip relief planes, respectively. The tracking reveals two unstable zones delimited by the saddle-node bifurcations, i.e. the red lines, where multiple solution coexist and a small zone that doesn't exhibit amplitude-jump instability in between. The first unstable zone exists for values of tip relief 𝜇 ∈ [0 2.4] 𝜇m, which is quite close to the optimal tip relief computed with static analyses. The second unstable zone appears for 𝜇 ≥ 5.3 𝜇m. Interestingly, the shapes of the unstable zones in the frequency-tip relief plane (cf. Fig. 7b) are quite similar since the width ΔΩ seems to stabilize at approximately ΔΩ = 100 rad/s. Nevertheless, the first unstable zone shows a rapid decline in the amplitude-tip relief plane (cf. Fig. 7c). Indeed, the width of the unstable zone is Δ𝐷𝑇𝐸 = 4.8 𝜇m at 𝜇 = 0 𝜇m and decreases rapidly until the two SN bifurcations coalesce and disappear at 𝜇 = 2.4 𝜇m. The width of the second unstable zone grows significantly slower as the tip relief increases. For instance, the SN bifurcations emerge at 𝜇 = 5.3 𝜇m and the width only reaches Δ𝐷𝑇𝐸 = 3.1 𝜇m at 𝜇 = 10 𝜇m.

To carry out the uncertainty analysis, the interval  = [0, 10] 𝜇m, in which the lower bound of the uncertainty interval varies, is discretized with 100 points. The uncertainty interval 𝜇 𝑚𝑎𝑥 -𝜇 𝑚𝑖𝑛 itself is discretized with an odd number of points, 101 in this study, for an accurate representation of the probability density functions. The criteria defined by Eq. ( 12) and ( 13) are computed for each value of the lower bound of the uncertainty interval with almost no additional computational effort using the results of the bifurcation tracking analysis. For each value of the lower bound 𝜇 𝑚𝑖𝑛 , the median value of tip relief for each probability density function is stored.

Figure 8 shows the evolution of both criteria with respect to the median value of the amount of tip relief 𝜇 𝑚𝑒𝑑 . Solid, dashed and dotted lines are associated to the criteria calculated with the different probability density functions. The peak-to-peak values of the STE are superimposed for easier comparison. The optimum amount of tip relief, i.e. the median tip relief associated to the smallest value of the criteria, for each considered probability density function is denoted with a red circle marker.

One can see that the optimal tip relief is shifted towards larger values compared with the STE computations. Interestingly, the type of probability density function used for the calculation has a moderate influence of the optimal value of tip relief, with all optimums located approximately at 𝜇 = 4 𝜇m. Overall, both criteria have a similar evolution with the tip relief and yield somewhat similar results. One can also note that both criteria reach values close to zero at the optimal value of tip relief, indicating that amplitude-jump instabilities are well mitigated and almost non-existent. This is confirmed by carrying out Monte-Carlo simulations from the bifurcation tracking results. For each distribution of the amount of tip relief, a Monte-Carlo simulation is performed within the uncertainty interval associated to the optimum amount of tip relief computed with the proposed methodology. Note that when the optimums obtained with the two criteria differ, the one minimizing  𝑎𝑚𝑝𝑙 is used. Figure 9 shows the probability density functions of Δ𝐷𝑇𝐸 and ΔΩ computed with 𝑛 𝑀𝐶 = 100000 samples. For reference, MC simulations with the uncertainty interval associated to the static optimum, i.e. with a median equal to 𝜇 = 3 𝜇m, is also carried out (cf. Fig. 9a-9d and Fig. 9i-9l). One can see that, for all cases, the probability density functions of both Δ𝐷𝑇𝐸 and ΔΩ are utterly different from the probability density functions of the amount of tip relief. Besides, the majority of samples are characterized by an absence of amplitude jump as indicated by a median equal to zero. Furthermore, it appears that the dynamic optimum induces a shift of the mean value of both Δ𝐷𝑇𝐸 and ΔΩ towards zero as well as a smaller standard deviation. Thus, amplitude-jump instabilities are better mitigated.

Conclusion

A computational procedure based on bifurcation tracking was proposed to design tooth profile modifications in the presence of uncertainties. The proposed approach allows one to analyze the influence of uncertainty in tooth profile modifications on the nonlinear dynamic response of a gear pair and to define a optimal design. It was found that considering uncertainties leads to a different optimal value of the tooth profile modification compared to the one obtained with static computations. Four probability density functions were considered in the analysis. Results suggest that their influence on the optimal value is limited.

The methodology was applied to the amount of tip relief but can be implemented with any type of tooth profile modification. At the moment, only one uncertain parameter can be investigated at a time. Future work may look into extending the methodology to higher co-dimensions. It can also be extended to large-scale geared system models using model order reduction techniques [START_REF] Mélot | Vibro-impact dynamics of large-scale geared systems[END_REF] without the need to resort to parametric reduced-order models [START_REF] Krack | Reliability optimization of friction-damped systems using nonlinear modes[END_REF] since the gear coupling is treated in physical coordinates. Finally, the approach can be extended to other types of bifurcation (Neimark-Sacker, period-doubling) for better designs.
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 1 Figure 1: Nonlinear gear model.

Figure 2 :

 2 Figure 2: Nonlinear force model for a given angular position of the gear pair.

Figure 3 :

 3 Figure 3: Schematic representation of a tip relief modification. 𝜇 is the amount of tip relief, 𝜙 𝑡𝑟 is starting radius of the profile modification (𝜙 𝑡𝑟 = 50.26 𝜇m).

Figure 4 :

 4 Figure 4: Example of forced response curve without tip relief modification (𝜇 = 0 𝜇m). Solid and dashed lines denote stable and unstable responses, respectively. Saddle-node bifurcation points are represented by red circle markers.

Figure 5 :

 5 Figure 5: Probability density functions considered for the uncertain tip relief parameter. (a) Uniform distribution (b) Normal distribution, (c) Weibull distribution with parameters 𝜆 = 1.75 and 𝑘 = 2, (d) beta distribution with parameters 𝛼 = 2.5 and 𝛽 = 2.
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Figure 6 :

 6 Figure 6: Evolution of the peak-to-peak static transmission error with respect to the amount of tip relief. The red dot denotes the optimum solution, corresponding to the smallest peak-to-peak value of the static transmission error

  (a) 3D space (b) Frequency-tip relief plane (c) Amplitude-tip relief plane

Figure 7 :

 7 Figure 7: Saddle-node bifurcation curves. The blue lines represent the forced response curves; saddle-node bifurcation points are represented by red circle markers and red lines denote the bifurcation curves.

Figure 8 :

 8 Figure 8: Evolution of the frequency criterion (a) and amplitude criterion (b) with respect to the amount of tip relief. Red circle markers denote the optimal value of tip relief. The evolution of the peak-to-peak STE is represented as a black line with cross markers.

Figure 9 :

 9 Figure 9: Probability density functions of the amplitude (a, b, c, d, e, f, g, h) and frequency intervals (i, j, k, l, m, n, o, p) between upper and lower SN bifurcations. PDF computed with MC simulations in the interval whose median equals the optimum obtained from static computations(a, b, c, d, i, j, k, l) and dynamic computations (e, f, g, h, m, n, o, p). (a, e, i, m) Uniform distribution, (b, f, j, n) Normal distribution, (c, g k, o) Weibull distribution with parameters 𝜆 = 1.75 and 𝑘 = 2, (d, h, l, p) beta distribution with parameters 𝛼 = 2.5 and 𝛽 = 2. The red solid lines denote the mean values while the red dashed lines represent the medians.

Table 1

 1 Characteristics of the gear pair

	Name		Gear 1	Gear 2	Unit
	Module	𝑚	2		mm
	Number of teeth	𝑍	50	50	-
	Pressure angle	𝛼	20		deg
	Base radius	𝑟 𝑏	46.984	46.984	mm
	Profile shift coefficient	𝑥	0	0	-
	Addendum coefficient	ℎ 𝑎	1	1	-
	Dedendum coefficient	ℎ 𝑑	1.25	1.25	-
	Face width	𝑏 𝑓	20		mm
	Inertia	𝐼 1 1.52e-3 1.52e-3 kg.m 2
	define, for each angular position 𝜃 1 , a mesh stiffness 𝑘 𝑚 (𝜃 1 )
	coupling the two gears in contact:		
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