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An Artificial Neural Network (ANN) involves a complex network of interconnected nodes called artificial neurons (AN); the AN sums N weighted inputs and passes the result through a non-linear activation function (AF). In this work, a modified version of the sigmoid activation function is proposed . In order to obtain a voltage-to-voltage (V-V) transfer function required by our specific ANN, the proposed solution uses a pseudo-differential pair configuration at the input as voltage to current converter. The proposed circuit is designed in a 180nm CMOS technology of TSMC and is simulated in Cadence-Virtuoso for the proper transistor sizing in order to obtain the desired steepness of the sigmoid function. The simulations results show an overall a minimum error of 1.09 % compared to the mathematical function and power consumption of 6.77µW. Comparison with previous works and the actual mathematical function prove very favorable.

I. INTRODUCTION

Deep Neural Network (DNN) has become popular in the last years despite its high complex computational cost [START_REF] Dlugosz | Nonlinear Activation Functions for Artificial Neural Networks Realized in Hardware[END_REF]. The learning capability and structural complexity has become a challenge for achieving high performance and efficiency [START_REF] Kim | MATLAB Deep Learning: With Machine Learning[END_REF][START_REF] Haensch | The Next Generation of Deep Learning Hardware: Analog Computing[END_REF]. Some of the most outstanding applications are handwritten, digits recognition and face recognition. DNN also referred as Deep Learning is a type of Machine Learning (ML) which is a modeling technique that figures out the model out of data (information such as audio, images, documents, etc.). The process of determining the model is called Learning Rule [START_REF] Alom | The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches[END_REF]. Learning is a procedure consisting of estimating the model parameters so that the learned model (algorithm) can perform a specific task [START_REF] Lau | Review of Adaptive Activation Function in Deep Neural Network[END_REF]. One of the models of ML can be implemented as Neural Network. Fig. 1 shows the taxonomy of Artificial Intelligence, ML and DNN.

A DNN is the multi-layer neural network that contains input layer, at least two hidden layers and the output layer. For each layer, input data is operated by a linear Vector-Matrix Multiplier (VMM) [START_REF] Koosh | VLSI neural network with digital weights and analog multipliers[END_REF] to later pass through a non-linear Activation Function (AF), which emulates the behavior of a biological neuron. Some possible implementations of the AF are the step, rectified-linear unit (ReLU), Sigmoid and Hyperbolic tangent functions [START_REF] Dlugosz | Nonlinear Activation Functions for Artificial Neural Networks Realized in Hardware[END_REF][START_REF] Chible | CMOS VLSI Hyperbolic Tangent Function & its Derivative Circuits for Neuron Implementation[END_REF][START_REF] Shamsi | Hyperbolic tangent passive resistive-type neuron[END_REF][START_REF] Khodabandehloo | Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron[END_REF][START_REF] Babu | NOVEL CIRCUIT REALIZATIONS OF NEURON ACTIVATION FUNCTION AND ITS DERIVATIVE WITH CONTINUOUSLY PROGRAMMABLE CHARACTERISTICS AND LOW POWER CONSUMPTION[END_REF][START_REF] Xing | Implementation of A Neuron Using Sigmoid Activation Function with CMOS[END_REF]. This paper is structured as follows. Section II gives the mathematical formulation of the neuron function. Section III describes the proposed circuit, which takes as reference a Resistive-Type Sigmoidal Neuron [START_REF] Khodabandehloo | Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron[END_REF] and current mirror configurations. Section IV presents simulation results of the proposed neuron circuit designed in 180-nm TSMC CMOS technology. Our simulation results are analyzed and compared with those of previously reported neurons circuits.

II. SIGMOID ACTIVATION FUNCTION

The neural network is one of the models of ML and imitates the mechanism of the brain, while brain is composed of connections of numerous neurons, the neural network is constructed with connections of nodes. A simple model of an artificial neuron is shown in Fig. 2.

The variable xi represents input signal i and wi is the weight for the corresponding input signal. The two values are multiplied and collected at the node represented in blue in Fig. 1. Equation [START_REF] Dlugosz | Nonlinear Activation Functions for Artificial Neural Networks Realized in Hardware[END_REF] shows the expression of the weighted sum of the input signals (the expression can even be written using matrices). After summation the neural node inputs the weighted sum into the activation function 𝝋 resulting in output y (2). The activation function is represented by 𝝋(•) and determines the behavior of the node. Sigmoid is one of the types of activation functions. It is a non-linear transfer function, which maps each input to an output in the range of [0;1], [START_REF] Khodabandehloo | Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron[END_REF][START_REF] Ghomi | Design of a new CMOS Low-Power Analogue Neuron[END_REF]. The sigmoid function is a common S-shaped curve and is expressed as follows:

𝝋(𝒗) = 𝟏 𝟏 + 𝒆 -𝜶𝒗 ( 3 
)
where α is the steepness of the slope in the linear region (v~0). Fig. 3 shows the behavior of sigmoid activation function (3), when α is 1, 5 and 10.

III. PROPOSED SIGMOID NEURON

The proposed neuron is based on the Resistive-Type Sigmoidal Neuron introduced in [START_REF] Khodabandehloo | Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron[END_REF]; the Sigmoid circuit in this reference uses transistors operating both in triode and saturation regions, and converts the total input summation current into a voltage at the output node. The sigmoid function is designed by using a nonlinear resistive load that takes current as input and delivers a voltage at the output of the neuron (output voltage).

Our design uses the one reported in [START_REF] Khodabandehloo | Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron[END_REF] to generate the sigmoid function and adds a pseudo-differential input conversion stage to accept voltage signals as input data. Fig. 4 shows the circuit implementing the sigmoid activation function, Eq. 3. There are two parts to the circuit: the shaded area on the right represents the sigmoid function generator of [START_REF] Khodabandehloo | Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron[END_REF] having the current 𝐼 𝑡𝑜𝑡 as input and producing the sigmoid function as 𝑉 𝑜𝑢𝑡 . The unshaded area represents the V to I converter enabling AF generator to take 𝑉 𝑖𝑛 as input and produce 𝐼 𝑡𝑜𝑡 to drive the right-hand circuit.

Transistors M1 -M6 represent the core circuit from [START_REF] Khodabandehloo | Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron[END_REF], transistors M1 and M3 set the bias voltage and transistors M2-M4-M5-M6 generate the sigmoid function by controlling the gain in linear operation and therefore the steepness of the curve i.e. α. All the transistors of the circuit are biased using only one supply voltage 𝑉 𝐷𝐷 . By operating the MOSFETs both in triode and saturation regions, the core of the neuron circuit can provide an accurate approximation of the sigmoid function. It was originally designed and laid out in 90-nm CMOS technology [START_REF] Khodabandehloo | Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron[END_REF].

The operation of the right-hand circuit is as follows. The input current 𝐼 𝑡𝑜𝑡 is either sourced by the shaded circuit i.e., it flows out of node 𝑉 𝑜𝑢𝑡 , or sunk by it i.e., it flows into the node; 𝐼 𝑡𝑜𝑡 is considered positive in the former case and negative in the latter. The circuit is designed such that when 𝐼 𝑡𝑜𝑡 = 0, 𝑉 𝑜𝑢𝑡 = 𝑉 𝐷𝐷
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. When 𝐼 𝑡𝑜𝑡 is negative, transistors M6 and M4 are in off and deep triode region (VDS4~0), respectively, while the other two transistors M5 and M2 are in saturation region, causing 𝑉 𝑜𝑢𝑡 to be close to ground. As 𝐼 𝑡𝑜𝑡 increases towards 0, i.e. becomes less negative, transistors M4 gets into saturation having its 𝑉 𝐷𝑆 and therefore also 𝑉 𝑜𝑢𝑡 increase; M2 stays in saturation and the other two transistors M5-M6 are off, causing 𝑉 𝑜𝑢𝑡 to increase towards 𝑉 𝐷𝐷 2 . As 𝐼 𝑡𝑜𝑡 increases and becomes positive, transistors M5 and M2 eventually are in off and deep triode region (VDS2~0), respectively, connecting 𝑉 𝑜𝑢𝑡 to 𝑉 𝐷𝐷 , while M6 and M4 are saturated [START_REF] Khodabandehloo | Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron[END_REF].

The added input stage M7 -M12 transforms the input voltage into current (𝐼 𝑡𝑜𝑡 ) by using a pseudo -differential structure and current mirror topology to generate the input current to the shaded circuit [START_REF] Koosh | VLSI neural network with digital weights and analog multipliers[END_REF] is shown in Fig. 4. The input voltage 𝑉 𝑖𝑛 is the input signal of the differential input stage with the + connected to M10 and theto M9. When the input voltage is negative transistor M10 is in ON, the current in transistor M10 flows through the current mirror M11-M12 to replicate and obtain 𝐼 𝑏 ; as the input voltage increases the current 𝐼 𝑏 decreases and when the input voltage becomes positive, transistor M10 is off and 𝐼 𝑏 is zero.

The opposite is the case with the transistor M9, when Vin is negative the gate voltage at M9 (-𝑉 𝑖𝑛 ) is positive therefore the transistor is OFF; as voltage Vin becomes positive, the VGS of M9 turns negative and the transistor turns on, consequently the current 𝐼 𝑏 decreases and most current, 𝐼 𝑎 , flows through the current mirror M7-M8. Fig. 5 shows the behavior of 𝐼 𝑎 , I b and 𝐼 𝑡𝑜𝑡 ; 𝐼 𝑡𝑜𝑡 is the sum of 𝐼 𝑎 and 𝐼 𝑏 , it is the total current that comes from transistors M7 (𝐼 𝑎 ) and M11 (𝐼 𝑏 ) needed as input for the shaded circuit in Fig. 4 to generated the sigmoid function, output signal (𝑉 𝑜𝑢𝑡 ).

Table I lists the size of the transistors used in the implementation to generate a sigmoid approximation when the steepness parameter α varies from 1 to 10. Input/Output characteristics of the proposed neuron are plotted in Fig. 6 for input voltage (Vin) between -2 to 2 V when  = 1,  = 2 and  = 10.

IV. SIMULATION RESULTS AND COMPARISONS

The advantages over the previous neuron, is that the implementation can be used without the need to use an extra I-V or V-I conversion unit thus reducing the complexity of the circuit. The implementation can be employed in the node of the hidden layer of the neural network and also in the output layer.

The proposed neuron in this work is simulated in Cadence-Virtuoso with HSPICE models using 180-nm CMOS technology TSMC and considering the minimum values as possible. The circuit design in Fig. 4 is has an asymmetric railto-rail 1V-supply.

In order to improve the steepness parameter, we must focus in transistors M1-M4, as well as transistors M9 and M10 that are generating the current necessary to obtain the sigmoid function at a given . It can be observed in Table I that as  value increases, it is necessary to decrease the widths of the M1-M4 transistors as well as the lengths of the M9 and M10 transistors.

Figure 6 compares the output voltage of the proposed neuron and the ideal Sigmoid function (3), for three values of the steepness parameter. When steepness parameter  is set to 1, the maximum error between the proposed neuron and the sigmoid function is 2.87% while the average error is 1.09%. In the same way when steepness parameter is 2, the maximum error is 3.27% and the average error is 1.12%. And when steepness parameter is 10, the maximum error is 5.29% and the average error is 1.935%.

Regarding the power consumption we observe that the average power consumption is 18.21W when steepness parameter is 1, 1.14W when steepness parameter is 2 and 6.77W when steepness parameter is 10. The comparison of this design with references is shown in Table II. Using the results of the implementation, Fig. 7 shows a estimation of the behavior of the power consumption and error while varying the steepness. Reference [START_REF] Khodabandehloo | Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron[END_REF], is a NMOS/PMOS circuit, transistors are biased both in triode and saturation region using only one supply voltage. The circuit provides an approximation of the Sigmoid function, and the Input/Output characteristic is I-V. In our case we can reach lower power and supply for for twice larger number of transistors and in 180nm technology rather than 90nm.

In the same way [START_REF] Babu | NOVEL CIRCUIT REALIZATIONS OF NEURON ACTIVATION FUNCTION AND ITS DERIVATIVE WITH CONTINUOUSLY PROGRAMMABLE CHARACTERISTICS AND LOW POWER CONSUMPTION[END_REF] the Input/Output characteristic is I-I by using two differential pairs and generates both tan-sigmoid and log-sigmoid neuron activation functions depending on the value of an specific voltage value, when is 0V the corresponding transistor conducts and get tan sigmoid function, while when the voltage is -1V the transistor is in cut off and get log-sigmoid function. In this circuit the slope and threshold levels can be continuously programmed externally by changing the bias voltages, while in our proposal we modify the size of the transistors to change the steepness parameter, therefore this feature helps to achieve lower power consumption.

Finally [START_REF] Xing | Implementation of A Neuron Using Sigmoid Activation Function with CMOS[END_REF] is simulated in TSMC 0.18 m CMOS technology, is a Sigmoid AF neuron composed of three phases, input signal weighting circuit, current-voltage conversion circuit, and Sigmoid AF fitting circuit. The designed circuit can fit Sigmoid function based on the currentvoltage relationship of differential pairs. The total area of the layout is 375m × 238m. The results in [START_REF] Khodabandehloo | Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron[END_REF] shown higher values of error, area and power consumption compared with our proposed. In terms of area our proposal is better since for steepness parameter of 10 the area of the layout is 196 m².

V. CONCLUSIONS

A sigmoidal V-to-V neuron considering only one biasing voltage is proposed and is based on the transfer characteristics of the CMOS differential pair. Some example approximation processes have been shown for different values of steepness parameter. The minimum error between the output of Sigmoid AF and the ideal Sigmoid function is 1.09% considering the steepness parameter 1 and the minimum power consumption is 6.77 W when steepness parameter is 10. The simulation results show that the proposed design approximates the sigmoid function more accurately compared to the previous design, the data shown are still better in terms of both error and power consumption, even area.
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 1 Fig. 1. Artificial Intelligence taxonomy and ML representation. The goal of this work is to implement a new analog circuit design for Sigmoid activation function with V-input/V-Output signal with low power consumption. Further this one enables modulation of the voltage response steepness and resulting in very low error compared to the theoretical function.
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 2 Fig. 2. Neuron model representation. 𝑣 = (𝑤 1 × 𝑥 1 ) + (𝑤 2 × 𝑥 2 ) + ⋯ + (𝑤 𝑛 × 𝑥 𝑛 ) () 𝒚 = 𝝋(𝒗) = 𝝋 (∑ 𝒘 𝒊 • 𝒙 𝒊 𝒏
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 3 Fig. 3. Sigmoid function behavior for different values of steepness parameter α.
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 4 Fig. 4. Schematic of the proposed sigmoidal neuron, shade region represents reference proposal [9].

Fig. 5 .

 5 Fig. 5. (Above) Plot of current behavior of 𝐼 𝑎 , 𝐼 𝑏 and 𝐼 𝑡𝑜𝑡 when =1, (below) Plot of total current (𝐼 𝑡𝑜𝑡 = -𝐼 𝑎 -𝐼 𝑏 ) when =1 and =10.
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 6 Fig. 6. Comparing the proposed sigmoidal neuron and the ideal Sigmoid function varying the steepness parameter (α).

Fig. 7 .

 7 Fig. 7. Aproximation of power consumption and error behavior using the results from the implementation at different values of steepness.

TABLE I .

 I TRANSISTOR SIZES OF THE PROPOSED NEURON

		 = 1	 = 2	 = 10
	Transistor	L	W	L	W	L	W
		[µm]	[m]	[µm]	[m]	[µm]	[m]
	M1	0.18	6	0.18	4	0.18	0.22
	M2	0.18	6.7	0.18	4.7	0.18	0.3
	M3-M4	0.18	4.5	0.18	3.1	0.18	1
	M5	0.18	0.22	0.18	0.22	0.18	0.22
	M6	0.18	0.22	0.18	0.22	0.18	0.22
	M7-M8	0.18	3	0.18	3	0.18	6
	M9	3	0.22	2	0.22	1	0.22
	M10	11	0.22	7	0.22	0.6	0.22
	M11	0.18	4.6	0.18	3.7	0.18	1
	M12	0.18	0.22	0.18	0.22	0.18	0.22

TABLE II .

 II 

			COMPARISON OF THIS PROPOSED WITH PREVIOUS
			REFERENCES		
	Ref	Tech [nm]	Supply Voltage [V]	Error [%]	Power Consumption [W]	CMOS Number
	[9]	90	1.2	7.67	21.6	6
	[10]	90	1.5	3	8.4	17
	[11]	180	1.8	1.76	8.02	10
	Proposed (=1)	180	1	1.09	18.21	12
	Proposed (=2)	180	1	1.12	14.1	12
	Proposed (=10)	180	1	1.93	6.77	12