
Efficient circuit implementation for coined quantum walks on binary
trees and application to reinforcement learning

Thomas Mullor
IRT Saint Exupery

Toulouse
thomas.mullor@irt-saintexupery.com

David Vigouroux
IRT Saint Exupery

Toulouse
david.vigouroux@irt-saintexupery.com

Louis Bethune
Université Paul Sabatier, IRIT

Toulouse
louis.bethune@univ-toulouse.fr

Abstract— Quantum walks on binary trees are used in many
quantum algorithms to achieve important speedup over classical
algorithms. The formulation of this kind of algorithms as
quantum circuit presents the advantage of being easily readable,
executable on circuit based quantum computers and simulators
and optimal on the usage of resources. We propose a strategy
to compose quantum circuit that performs quantum walk on
binary trees following universal gate model quantum computa-
tion principles. We give a particular attention to NAND formula
evaluation algorithm as it could have many applications in game
theory and reinforcement learning. We therefore propose an
application of this algorithm and show how it can be used to
train a quantum reinforcement learning agent in a two player
game environment.

I. INTRODUCTION

Quantum computing is a computation paradigm using
properties of quantum mechanics to perform information
processing. Many famous quantum algorithms have been
shown to outperform their equivalent classical algorithm[1],
[2]. Quantum walk is a way to compose many promising
quantum algorithms. It can be viewed as the quantum
analogues of classical random walks [3]. In several studies,
it has been shown that it could provide some algorithmic
speedup on many problems [4], [5], [6] and possible
applications to tree search problems [7], [8].

To consider a quantum algorithm as implementable
on universal quantum computers, we describe them as a
quantum circuit using native quantum gates. For particular
cases of quantum walks, circuit implementation has been
proposed allowing us to execute them easily with an optimal
usage of resources [9]. To the best of our knowledge,
no circuit based implementation has been presented for
quantum walks on binary trees even if existing algorithms
uses such processes. In this work, we propose a strategy
to perform implementation of such a quantum walk using
quantum gate model where the number of gates used for
a walk step scales linearly with the depth of the tree.
We will give a particular interest to quantum walk based
algorithm performing boolean NAND tree evaluation[8] as
it has potential applications to game tree resolution and
reinforcement learning.

Reinforcement learning is an area of machine learning
where an agent learn to take the best actions in a given

environment to maximize a reward. Many classical
reinforcement learning algorithms showed impressive results
in two player games like chess or go [10], [11]. Most of the
algorithms who try to master a game relies on tree search
algorithms like Monte Carlo Tree Search (MCTS) to explore
game tree and choose best move [10], [11]. This technique
is very powerful but sometimes has flaws as it performs a
partial exploration of the game tree. In this article, we are
interested in the performances of quantum computing for
exploring game tree. Improving tree search algorithm could
improve training and results of a reinforcement learning
agent.

As NAND formula algorithm allow us to evaluate quality
of a position in a two-player game tree, we illustrate its
potential application by using it as a training tool for a
quantum agent in a simple two-player game. With the
speed-up proposed by this algorithm, we are able to perform
evaluation of deeper trees in equivalent time (twice deeper
exploration for a binary tree). By using quantum algorithm
to perform such explorations, we expect agents to achieve
better performances in their learning process.

II. RELATED WORKS

Many quantum algorithms based on quantum walks have
been presented with various application fields. For some
kinds of walks on very specifics graphs (cycles, hypercubes,
welded trees, highly symmetric graphs...), efficient quantum
circuit designs have been presented[9] and allows us to
easily implement quantum walks algorithms using circuit-
based quantum computers.

One of the main quantum algorithm based on quantum
walks on binary trees allows us to evaluate a boolean formula
of N variables taking the form of a NAND tree using only
N1/2+o(1) calls to a black box oracle[8]. By extension, this
allows us to evaluate any AND/OR tree (i.e. a tree where
vertices correspond alternately to AND and OR evaluations),
which is the boolean version of a MIN/MAX tree. As
MIN/MAX trees represents optimal decision makings in
a two-player game, its computation constitutes an useful
knowledge to learn to play a game. The work presented in
this paper is motivated by the potential applications of this
algorithm in game theory and reinforcement learning.

Quantum NAND formula evaluation algorithm is
presented as a quantum phase estimation performed on a
quantum walk operator using an input oracle. The operator
performs a quantum walk on a rooted binary tree, i.e. a
binary tree on which we added two-vertices tail attached
to the root of the tree. The input oracle gives values of the
leaves of the tree and is incorporated to the walk by turning
the leaves evaluating to 1 to probability sinks.

Fig. 1. The rooted binary tree for the simple boolean formula ϕ =
((x1∧̃x2) ∧̃ (x3∧̃x4)) ∧̃ ((x5∧̃x6) ∧̃ (x7∧̃x8)) where internal vertices is
result of NAND evaluation of their children. Vertices are filled if they
evaluate to 1. A root made of two vertices (r′ and r′′) has been added to
the tree. Leaves evaluating to 1 are turned to probability sinks as presented
in [8]

Let us remind from [8] that evaluating a binary NAND
tree allows us to evaluate any AND/OR tree after an efficient
classical preprocessing of the formula taking poly(N) time.

Contributions

In this paper, we propose an efficient circuit based im-
plementation of quantum walks on a binary tree and we
propose, as an application, a full implementation of the main
components of NAND formula evaluation algorithm where
the number of qubits and gates grows linearly with the depth
of the tree.

In a second part, we illustrate the usage of NAND formula
evaluation, using it in a reinforcement learning case by
proposing a way to learn the input oracle.

III. QUANTUM CIRCUITS FOR COINED QUANTUM WALK
ON AN ARBITRARY BINARY TREE

We can describe a coined quantum walk on a graph
G = (V,E) as a process defined by two operators acting
on their associated qubits registers :
- Coin : a flip operator F acts on a coin register C.
Superposition of states of C will indicate which paths the
walker must take.
- Walker : a shift operator S acts on a walker register W .
Depending on the state of C, the state of W will change to
go through the different vertices v of G.
The two operators define a walk step operator U = SF . For

a given superposition of vertices vt held in a register W and
an action at held in a register C :

U |vt〉|at〉 = |vt+1〉|at+1〉.

To facilitate execution of such a process on a quantum
computer, it is preferable that the shift operator can be easily
expressed as a quantum circuit of limited size. We therefore
propose a vertex labelling that allows us to express shift
operator with elementary mathematical operations and show
how we can implement quantum algorithm based specifically
on walks on binary trees.

A. Labeling of the nodes of the tree and shift operator

As we store the label of the vertices we go through in the
W qubits register, the way we label the vertices of our tree
will have a huge influence on the difficulty to implement the
shift operator. Finding a labeling of the vertices that allows
us to express easily the transition between any states as a
simple operation and thus express easily the shift operator is
a key step. We thus propose to label the vertices of the tree
by following labelling, which have such property.

We will consider here an arbitrary binary tree T we want
to perform quantum walk on. We perform labeling of the
vertices of the tree T considering the following rules:

1) root of T is vertex 1
2) left child of a vertex v is labeled 2v
3) right child of a vertex v is labeled 2v + 1

For the case of perfectly balanced binary trees, this cor-
responds to a breadth first labelling and is the canonical
labelling. It allows to implement easily all the operations
used to build the shift operator with a basic set of quantum
gates.

Fig. 2. Example of labelling on a balanced binary tree

With this labeling, we can define the shift application S :
|vt〉|a〉 7→ |vt+1〉|f(vt, at)〉 allowing us to perform steps
through the vertices of the tree starting from any vertex v :

S|v〉|left〉 = |2v〉|f(v, left)〉
S|v〉|right〉 = |2v + 1〉|f(v, right)〉

S|v〉|up〉 =
{
|v/2〉|f(v,up)〉 if v is even,
|(v − 1)/2〉|f(v,up)〉 if v is odd.

(1)
For now, we are only interested in the transformation

performed on the value held in the register W by an
application of S. The transformation performed on the coin
C (here represented by f(vt, at)) can be any transformation
as long as S is a valid (unitary) application and depends on
the algorithm we are implementing. Example of S operator

with detailed f will be given further in this paper.

The register W holding the position of the walker requires
a number of qubits equals to the maximal depth d of the tree.
The register must be able to store, using basis encoding, the
highest possible label of a vertex of the tree which is 2d− 1
and can thus be stored in a log2(2

d) = d qubits register.
Having an adapted register, we can implement the f : |v〉 7→
|v + 1〉 operation used in the left step with the following
circuit P (with the highest qubit as the most significant qubit)
:

•
...

. . .
P =

• •

• • •

• • • •
The f : |v〉 7→ |v − 1〉 application used in the down step is
implemented with the P † circuit :

•
.

P † =
• •

• • •

• • • •
The multi-controlled-X gates used in this circuit are not

native gates but can be implemented with a linear number
of elementary gates using the method proposed in [12], [13].

The f : |v〉 7→ |v ∗ 2〉 application used in both left and
right steps can be approximately implemented with a circular
left shift circuit M made of SWAP gates :

×
×

...
.

...
M = =

×
×
× × × ×

We can note that this circuit only implements
f : |v〉 7→ |v ∗ 2〉 application if the most significant
qubit of the W register is in |0〉 state, otherwise the least
significant qubit (who should always be zero as 2v is
obviously an even number) would be swapped with a qubit
in the |1〉 state. This inconvenience can be ignored in the
case of our quantum walk on a tree as the only situations
where the most significant qubit of W will be in |1〉 state
is the case where the label of the vertex v stored in W is
greater than 2d−1. This corresponds to the deepest vertices

(i.e. leaves) of the tree which have no child and thus are
not eligible nodes for f : |v〉 7→ |v ∗ 2〉 operation as it is
used to perform steps that goes deeper in the tree. The M
circuit operator therefore presents all the properties required
to implement the transformation allowing us to perform a
step on the tree.

The f : |v〉 7→ |v/2〉 application used in down steps can
be approximately implemented with the M† circular right
shift circuit. This circuit only implements |v〉 7→ |v/2〉 if
v is an even number which is guaranteed by the labeling
method and shift operator properties we defined.

A quantum walk on a binary tree also needs a coin register
C which is a qutrit holding three states : |down〉, |left〉
or |right〉. For the convenience of the implementation, we
simply materialize it by a 2 qubits register and use the
arbitrarily chosen following states :

|down〉 = |00〉 |left〉 = |10〉 |right〉 = |11〉 (2)

With this representation, we can implement a whole step
of coined quantum walk using calls to the different operators
defined above controlled by the qubits of the coin register.

B. Implementation of A. Childs & Al boolean formula eval-
uation algorithm

NAND tree evaluation performs a quantum phase esti-
mation on a quantum walk operator. The quantum walk is
performed on a binary tree extended with a root of two
vertices (r′ and r′′) and where leaves evaluating to 1 are
turned to probability sinks.

The added root does not change our labeling method in
any way : new root r′′ will now be labeled at 0, r′ at 1
and other vertices following rules defined previously starting
from 2 (new r value). This forces us to increase the size of
the W register by 1 qubit as we increase the total depth of
the tree.

The quantum walk operator is defined in two parts : the
diffusion step and the walk step. The walk step, is a simple
application that transforms the state of W to make it perform
a step in the direction specified by the coin and change the
value of the coin to make it point the vertex where the walker
comes from.

Considering this definition and the labeling we propose,
the walk step operator U is thereby defined by an unitary
transformation having the following properties :

U |2 ∗ k〉|down〉 = |k〉|left〉
U |2 ∗ k + 1〉|down〉 = |k〉|right〉

U |k〉|left〉 = |2 ∗ k〉|down〉
U |k〉|right〉 = |2 ∗ k + 1〉|down〉

(3)

As we can write this transformation with the operations
we have found circuits for and simple modification of the
coin, we can implement this walk step by simply making
controlled calls to previously defined circuits. We also have

to assure that the coin register ends up in the appropriate
state. This gives the circuit presented in Fig. 3 which
exactly describes the quantum walk step described above on
a binary tree where vertices are labeled as proposed. The
fully detailed gate description of this circuit can be found
in appendix A.

M P P † M†
...

...
...

• •

W

• • • • • •

• •

C

Fig. 3. Walk step circuit

The diffusion step is described in [8] as an application
of the oracle if we are on a leaf, an application of operator
Reflection|u〉 if we are in an internal vertice and an appli-
cation of Reflection|u′〉 if we are in r′ = 1. For a perfectly
balanced tree, as the most significant qubit of W indicates
whether we are on a leaf or not, the diffusion circuit can be
easily defined as presented in Fig. 4 with Of the input oracle
and R|u〉 and R|u′〉 the two diffusion operators proposed in
[8].

Of

• • • •

• • •
...

...
...

• • •

• • •

W

R|u〉 R|u〉 R|u〉 R|u′〉

C

Fig. 4. Diffusion step circuit

R|u′〉 is defined in [8] as:

R|u′〉 = 2 ∗ |u′〉〈u′| − I

with |u′〉 = 1
4√
N
|down〉+

√
1− 1√

(N)
|left〉.

(4)

This can be exactly implemented with the circuit:

• Z RY (θ)

Z Z X • X

with

θ = 2

(
2π − cos−1

(
2−

√
(N)√

(N)

))
.

And R|u〉 is defined as :

R|u〉 = 2 ∗ |u〉〈u| − I

with |u〉 = 1√
3
(|down〉+ |left〉+ |right〉).

(5)

This unitary transformation can be implemented with the
following circuit :

RY (π2) Z RY (−π2)

X • RY (θ1) • RY (θ2) • X

with :

θ1 = − cos−1(1/3).

θ2 = cos−1(−1/3) + π.

Using this implementation, the number of qubits and
the number of gates required grows in O(d) which, for a
balanced binary tree is O(log(N)).

All the circuits presented in this section have been imple-
mented and tested using MyQLM quantum simulators.

For the full implementation of this algorithm, we need an
oracle, a transformation Of : |x〉 7→ (−1)f(x)|x〉 for a given
boolean function f : {0, 1}n → {0, 1} giving us values of
the leaves of the tree.

It has been shown that an adapted tunable quantum circuit
could be parameterized to reproduce any boolean formula
[14]. Such a circuit could make an oracle adapted to any
NAND formula. As this circuit has to be applied only if
we are on a leaf and we want the result of the evaluated
function as a phase flip on the W register, we would have
to replace the X transformations used on the result qubit in
[14] by Z transformations. For cases of perfectly balanced
binary trees, this Z gate would be applied on the most
significant qubit of the W register as the value of this qubit
indicates whether we are on a leaf or not. The second most
significant qubit of the W register should never be used
to control the Z transformation as, with the labelling we
defined, no leave of the tree would have a label where the
two most significant qubits are in the |1〉 state.

We will show in the next section how such a circuit can
be trained to learn oracle knowledge by evaluating and
improving the ability of the circuit to fit a real tree in a two
player game.

IV. APPLICATION OF PARAMETERIZED NAND-FORMULA
EVALUATION ALGORITHM TO LEARN A 2 PLAYER GAME

BY PREDICTING ORACLE

In a two-player game, the decision tree of a game in
which each player has full and perfect knowledge about
the environment can be viewed as a MIN/MAX tree, a
tree describing the process where the first player tries to
maximize his chance to win the game and second player
tries to minimize it. For a simple win-or-lose game, this tree
takes the form of a boolean formula tree alternating AND
(boolean min) and OR (boolean max) at each node and where
the leaves evaluates to 1 if first player wins and 0 otherwise.

We introduced in previous section the possibility to
replace the oracle by a tunable quantum circuit able to fit
any AND/OR formula. With a circuit of this type, finding
the appropriate oracle for a given problem correspond to
find the weights of the circuit that make it fit the wanted
boolean function. In other terms, this is a combinatorial
optimisation problem where we search the combination of
activation of gates that gives us the good oracle.

To solve this problem, we need to store the labels of the
vertices of the NAND tree describing the game in the W
register. This represents even for simple games an amount
of qubits we are not in position to get or to simulate.
We therefore will apply this algorithm to solve subtrees
of a game. We define a game tree of limited size, locally
valid at a given state and for a given horizon. To face the
huge amount of subtree we would have to deal with and
therefore the huge amount of oracle we would have to find,
these oracles will be predicted by a neural network and the
exploration of action space will be done by resolving the
game tree by the quantum algorithm previously described.

Fig. 5. A neural network takes as input information about current state
of the game and predict adequate oracle for subtree. NAND tree evaluation
is made for this subtree and action is taken by agent according to result of
NAND tree evaluation

We give in appendix B more details about the policy used
by the agent to take decision in game using NAND formula
evaluation.

Game Tree parametrization and neural network
To implement this method, the neural network has to

predict a quantum circuit who will take the place of the oracle
in NAND formula evaluation. We propose two strategies to
allow the neural network to make such a prediction.

The first strategy is to prepare the oracle as a fully
expressive tunable parameterized quantum circuit for

boolean function as presented in [14] with slight modification
explained in the previous section. The neural network will
thus have to predict the weights of this circuit (which
are binary values). This method allows the parameterized
quantum circuit to take any boolean formula and thus gives
us the guarantee that any oracle can be done to face any
state of the game. Nevertheless, it requires a large amount
of quantum gates.

The second strategy allows us to reduce the number
of required gates by forcing the circuit to be of limited
depth. Instead of predicting activation of the gates of a
fixed structure parameterized quantum circuit, we define
a maximal number of gates and train the neural network
to predict directly the gates who will compose the circuit
: this can be implemented by making the neural network
predicting the matrix corresponding to the positions of
control of each multi-controlled Z gate applied on the most
significant qubit of the W register (already controlled by
second most significant qubit). This method allow us to limit
the number of gates composing the oracle circuit but may
not be able to express any boolean function depending on
the maximum number of gates the circuit can be made of.
This is the method that we selected for our strategy which
is a good balance between resources usage and performance.

Consequently, the neural network will be a feed forward
neural network which computes the matrix of multiple
controls of Z gates composing the oracle circuit for each
possible action at a given state of the game.

Learning Procedure
Our method presents the inconveniences that our predictor

is not differentiable. The neural network will thus be trained
in a simple reinforcement learning process with a genetic
algorithm [15] : a wide population of predictors will be
initialized and fitness of agents will be calculated by let-
ting them play a two-player game. Best predictors will be
selected, mutated and crossed to create the next generations
of agents.

The parameters of the algorithm and the details of the
learning procedure are given in appendix B.

Experiments & Results
By implementing and executing the method described above,
we have been able to train a quantum player for the slime
volley game[16], a simple 2 player game environment with
a limited action space size. Making multiple experiments
changing the hyperparameters of the evolution, we have been
able to beat the default baseline agent implemented in slime
volley environment.

Fig. 6 and 7 shows the evolution of fitness of our two best
agents over 1000 generations using parameterized NAND
formula evaluation to choose their action as it plays against
a classical agent. We can observe that the genetic algorithm
first stagnates for about 400 generations. It is possible that
better heuristics or method for the neuroevolution[17] could

improve the ability of the model to find a good strategy.
Another RL agent has been trained on the same problem

using similar neural network and optimization method but
using classical reinforcement learning methods. For now they
give performances that are similar to quantum agents but we
could hope the quantum agent to achieve better performances
by exploring deeper vertices of the game tree with more
simulation resources.

Fig. 6. Best Agent Fig. 7. 2nd best agent

For the experiment presented in this paper, a neural
network has been used to complete the capacity of
parameterized quantum circuits as we do not dispose of
enough qubits or simulation power to deal with enough
qubits. A fully-quantum agent could be implemented on a
simpler game using a reasonable number of qubits.

limitations and critics of the learning method
The method used for the training of the agent presents
limitations : As we evaluate fitness of agents on their ability
to play a game and so on the quality of the actions they
have taken (depending on the result of the NAND formula
evaluation), we can’t be sure that the oracle proposed by the
neural network gives an appropriate knowledge about the
leaves of the tree. It could either be a proposition of leaves
values that leads to the same NAND evaluation result but
does not give an appropriate vision of the game tree.

V. CONCLUSIONS
In this article, we have presented a simple method to

build circuits for quantum walks on binary trees using
basic quantum gates. We have applied this method in the
implementation of a quantum algorithm to evaluate boolean
NAND formulas using quantum walk on a NAND tree.
Finally, we have shown that we could build a quantum agent
for a two player game by training a circuit to take the place
of the oracle in the NAND formula evaluation algorithm.

REFERENCES

[1] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, 1996, pp. 212–219.

[2] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41,
no. 2, pp. 303–332, 1999.

[3] S. E. Venegas-Andraca, “Quantum walks: a comprehensive review,”
Quantum Information Processing, vol. 11, no. 5, pp. 1015–1106, jul
2012. [Online]. Available: https://arxiv.org/abs/1201.4780

[4] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and
D. A. Spielman, “Exponential algorithmic speedup by a quantum
walk,” in Proceedings of the thirty-fifth ACM symposium on Theory
of computing - STOC '03. ACM Press, 2003. [Online]. Available:
https://arxiv.org/abs/quant-ph/0209131

[5] A. Ambainis, “Quantum walk algorithm for element distinctness,”
SIAM Journal on Computing, vol. 37, no. 1, pp. 210–239, 2007.
[Online]. Available: https://doi.org/10.1137/S0097539705447311

[6] F. Magniez, M. Santha, and M. Szegedy, “Quantum algorithms
for the triangle problem,” SIAM Journal on Computing,
vol. 37, no. 2, pp. 413–424, 2007. [Online]. Available:
https://doi.org/10.1137/050643684

[7] F. Magniez, A. Nayak, J. Roland, and M. Santha, “Search via quantum
walk,” SIAM Journal on Computing, vol. 40, no. 1, pp. 142–164,
2011. [Online]. Available: https://doi.org/10.1137/090745854

[8] A. Ambainis, A. M. Childs, B. W. Reichardt, R. Spalek, and S. Zhang,
“Any and-or formula of size n can be evaluated in time n1̂/2 + o(1) on a
quantum computer,” in 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’07), 2007, pp. 363–372.

[9] B. L. Douglas and J. B. Wang, “Efficient quantum
circuit implementation of quantum walks,” Phys. Rev. A,
vol. 79, p. 052335, May 2009. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.79.052335

[10] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai,
A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap,
K. Simonyan, and D. Hassabis, “Mastering chess and shogi by
self-play with a general reinforcement learning algorithm,” 2017.
[Online]. Available: https://arxiv.org/abs/1712.01815

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

[12] Y. He, M.-X. Luo, E. Zhang, H.-K. Wang, and X.-F. Wang, “De-
compositions of n-qubit toffoli gates with linear circuit complexity,”
International Journal of Theoretical Physics, vol. 56, no. 7, pp. 2350–
2361, 2017.

[13] L. Biswal, D. Bhattacharjee, A. Chattopadhyay, and H. Rahaman,
“New techniques for fault-tolerant decomposition of multi-controlled
toffoli gate,” CoRR, vol. abs/1904.06920, 2019. [Online]. Available:
http://arxiv.org/abs/1904.06920

[14] V. P. Ngoc and H. Wiklicky, “Tunable quantum neural
networks for boolean functions,” 2020. [Online]. Available:
https://arxiv.org/abs/2003.14122

[15] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement
learning,” CoRR, vol. abs/1712.06567, 2017. [Online]. Available:
http://arxiv.org/abs/1712.06567

[16] D. Ha, “Slime volleyball gym environment,”
https://github.com/hardmaru/slimevolleygym, 2020.

[17] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. O. Stanley, and
J. Clune, “Improving exploration in evolution strategies for deep
reinforcement learning via a population of novelty-seeking agents,”
2017. [Online]. Available: https://arxiv.org/abs/1712.06560

APPENDICES

A. Full quantum circuit for quantum walk step in NAND formula algorithm (without diffusion step)

B. Parameters and details on experiments to train the agent

The way the agent takes decisions for the game is the
following : A simple feed-forward neural network made of
6 layers of 80 neurons takes as input a vector of basic
information about the state of the game (position and speed
of players and ball) and gives as output a matrix describing
which qubits of the W register will be used to control the
Z operator that defines the phase flip of the oracle for each
possible move, allowing us to compute the value of each
immediately accessible vertices of the game tree. The agents
thus chooses randomly one action among all the actions
evaluated by NAND computation as winning moves (which
keeps us in winning position).

As the simulation time grows with the exploration depth,
we have chosen to train our agent with small exploration
depth (2-3 steps) but this is sufficient to show the ability of
the neural network and the oracle circuit to locally fit to the
game.

For these experiments, a population of P ∈ [1152, 9162]
agents is initialized randomly and evolves with following
parameter ranges for the genetic algorithm :
- Selection of next generation is simply made by k-bests
selection (with k ∈ [1; P2])
- Mutation is made following a Gaussian distribution with a
standard deviation of [0; 0.1]
- Crossovers are made between randomly selected individ-
uals of the k-bests population. They are made by uniform
crossover by windows with window size in [50; 1200]
The evolution is made for 1000 generations, each agent is
evaluated on at least 25 games where it has to beat an
already well trained classical agent. The parameters ranges
used for the training of the quantum agent have been chosen
by training a fully classical reinforcement learning agent
materialized by a neural network with a structure similar
to the one used for the experiment and the same genetic
algorithm.

The final score of a game is calculated as follows :
- 1 point if the player wins
- 0 points in the event of a draw
- -1 point if the player looses
At each step of the game, a discount factor of γ = 0.99 is
applied to the final score to value the agents that wins faster
or repel the defeat further.
At the end of their evolution, agents are reevaluated on 1000
games.

Score in the table 1 correspond to their average fitness
playing against the default trained agent of the slime volley
environment (positive if they win, negative if they lose).

TABLE I
RESULTS

Mut. proba. Select. portion Std dev. Cross. window Score
1 0.1 0.1 600 0.047
1 0.1 0.1 300 0.031
1 0.1 0.5 300 -0.25

Our application is not differentiable and thus impossible
to train with gradient-based reinforcement learning methods.
It could be interesting to think about a similar differentiable
process allowing us to perform a better optimization.

Our limited computation power limits us to explore the
game tree two or three steps ahead as the simulation time
increases with the exploration depth. It is conceivable that
ability to explore deeper vertices of the tree would allow us
to achieve better performance in the game.

