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Abstract: By identifying the manipulator’s model that is integrated in some industrial model-
based controllers, recursive parameters’ estimation algorithms can be enhanced to have a better
performance in online applications. In this paper, two improvements on recursive estimation
of robot’s dynamic parameter estimation are addressed. Firstly, the internal model can serve
to initialize the parameters in recursive estimation algorithms, as the Recursive Least-Squares
(RLS) and the Recursive Instrumental Variables (RIV). Secondly, the commanded position,
which is used by the controller as a reference trajectory, can replace the external simulation of
the dynamic model needed for recursive algorithms as the RIV. These two improvements make
recursive algorithms more suitable for online application, specially RIV, where no data filtering
nor external simulation needs to be done. Offline experimental validation on the KUKA LBR
iiwa R820 is carried out, showing its feasibility for online application.
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1. INTRODUCTION

The main approach and best theoretical solution for con-
trolling a robotic manipulator is the use of the so-called
computed torque control, which consists in linearizing and
decoupling the dynamic equation of motion of the robot
(Khalil and Dombre (2002), Moberg (2010)). This method,
as well as most of the widely used model-based controllers
(Moberg (2010)), requires an accurate dynamic model of
the system. The more precise this model is, the better and
faster the performance of the controller will be.

Nowadays, most of manipulators available in the market
come along with their respective controller designed by
the manufacturer. However, they do not usually provide
a dynamic model of the robot nor, for safety reasons,
the tools to modify the unknown controller’s structure
and parameters. Although these black-box controllers are
usually built by a trajectory generator and several control-
ling stages, this lack of information is an issue for many
branches of research where full knowledge of the system
is needed. Thus identifying the model of the robot that
is integrated in the controller is of main importance for
research. In Jubien et al. (2014), the authors achieved to
identify the so-called confidential parameters of the KUKA
LWR4+ controller in a reverse-engineering approach by
using measurements of joint torques and motor positions,
as well as sampled data of the inertia matrix and gravity
torques, which are computed by the KUKA controller.

Moreover, as human-robot interaction applications and
situations where robots are subjected to dynamically un-

predictably changing environments are getting more and
more popular (Ajoudani et al. (2018)), online identifica-
tion of parameters is becoming crucial. Monitoring the
evolution of the robot’s parameters is an approach to
implement powerful tools as adaptive controllers (Craig

et al. (1987)) and faults and collisions detection (Östring
(2002)). For this purpose, recursive algorithms as the Ex-
tended Kalman Filter (EKF) (Gautier and Poignet (2001),
Lightcap and Banks (2010)), Recursive Least-Squares
(RLS) (Kubus et al. (2008)) and Recursive Instrumental
Variables (RIV) (Brunot and Janot (2018)) have been
applied. The implementation of any of these algorithms
present two main challenges. Firstly, the convergence and
the speed of convergence are sensitive to initial condi-
tions. In Gautier and Poignet (2001), the authors mention
several ways to choose initial values depending on the
amount of a priori knowledge. Good a priori knowledge,
from CAD models or previous identification processes,
will lead to faster identification results. Secondly, the al-
gorithm computation needs to be fast enough to satisfy
the online application speed. This is specially an issue for
some recursive algorithms that make use of the dynamic
model simulation, which is not only time-demanding, but
sometimes not computationally possible. In order to solve
this issue, batch techniques have been developed (Barfoot
(2017)), but it can still be too slow for many applications in
which the dynamics change quickly during task execution
(e.g. human physical interaction). Therefore, authors in
Brunot and Janot (2018) proposed a new way to build
the instrumental matrix in the RIV method making use of
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(2002)). For this purpose, recursive algorithms as the Ex-
tended Kalman Filter (EKF) (Gautier and Poignet (2001),
Lightcap and Banks (2010)), Recursive Least-Squares
(RLS) (Kubus et al. (2008)) and Recursive Instrumental
Variables (RIV) (Brunot and Janot (2018)) have been
applied. The implementation of any of these algorithms
present two main challenges. Firstly, the convergence and
the speed of convergence are sensitive to initial condi-
tions. In Gautier and Poignet (2001), the authors mention
several ways to choose initial values depending on the
amount of a priori knowledge. Good a priori knowledge,
from CAD models or previous identification processes,
will lead to faster identification results. Secondly, the al-
gorithm computation needs to be fast enough to satisfy
the online application speed. This is specially an issue for
some recursive algorithms that make use of the dynamic
model simulation, which is not only time-demanding, but
sometimes not computationally possible. In order to solve
this issue, batch techniques have been developed (Barfoot
(2017)), but it can still be too slow for many applications in
which the dynamics change quickly during task execution
(e.g. human physical interaction). Therefore, authors in
Brunot and Janot (2018) proposed a new way to build
the instrumental matrix in the RIV method making use of



224	 Fabio Ardiani  et al. / IFAC PapersOnLine 55-20 (2022) 223–228

the reference trajectory and its derivatives, avoiding the
simulation of the model.

The objective of this work is to tackle the two mentioned
issues of recursive parameter identification of robots by
using the knowledge of the identified robot model that
is integrated in the controller and of its assumed struc-
ture. Indeed, knowing this model is a tool to initialize
parameters in recursive algorithms. Moreover, thanks to
the signals that some controllers make available and to the
knowledge of its structure, RIV can be applied without
the need of simulation of the dynamic model, making it
more suitable for online application. This is an extension
to industrial redundant collaborative manipulators of the
work done in Brunot and Janot (2018) where tests of the
RIV were carried out on a 2 dof SCARA manipulator.
Although experimental tests of RLS and RIV are carried
out on the KUKA LBR iiwa 14 R820 in an offline way
to show results, the methods are also suitable and an
interesting approach for online applications.

Section 2 reviews the structure and the model of col-
laborative manipulators, while Section 3 describes the
algorithms and the methodology for dynamic parameter
identification. Details on the experimental setup of the
KUKA LBR iiwa 14 R820, as well as the design of tra-
jectories, data acquisition and data processing are shown
in Section 4. Finally, Section 5 discusses the experimental
results and improvements on the performance of recursive
identification methods, and Section 6 gives some conclud-
ing remarks.

2. MODELING

2.1 Structure of Collaborative Manipulators

The structure of a collaborative robot (Albu-Schäffer et al.
(2007)) is graphically presented in Fig. 1. As these robots
are intended to work alongside with humans, many times
sharing not only objectives but also tasks, there are sensors
measuring torques acting on the link side (sensed torque)
(Albu-Schäffer et al. (2007)). They are also equipped with
position sensors on the motor-side, and by knowing the
gearbox characteristics, manufacturers usually make the
link position available for users (sensed position).

As mentioned previously, model-based controllers are com-
monly used, and it could be assumed that the commanded
position and commanded torque given by these controllers,
as KUKA controllers, are the input and output of the
dynamic model of the robot that is integrated in them.

Fig. 1. KUKA Industrial Collaborative Manipulator Struc-
ture (Albu-Schäffer et al. (2007)).

2.2 Equations of Motion

The equation describing the inverse dynamic model (IDM)
of a n-dof serial manipulator without considering external
forces, elasticity nor couplings between links and motors
is (Khalil and Dombre (2002)):

τ = M(q)q̈ +H(q, q̇)q̇ +G(q) + τf , (1)

where τ ∈ Rn is the vector of the link-side torques;
q, q̇, q̈ ∈ Rn are the joint positions, velocities and ac-
celerations, respectively; H(q, q̇)q̇ ∈ Rn is the vector of
the Coriolis and centrifugal forces; G(q) ∈ Rn stands for
gravity torques; M(q) ∈ Rn×n is the symmetric positive
definite inertia matrix; and τf ∈ Rn are the friction
torques. The friction model of joint i used here is the one
described in Hamon et al. (2011):

τfi = Fsisign(q̇i) + Fviq̇i + τoffi, (2)

where τfi is the ith component of the friction vector;
Fsi and Fvi are Coulomb and viscous friction parameters
respectively; and τoffi is an offset in torque measurements
regrouping amplifiers and sensors offsets and the asym-
metrical Coulomb friction coefficient.

The IDM in (1) can be expressed in a linear way w.r.t. a
set of standard dynamic parameters χst as:

τ = IDMst(q, q̇, q̈)χst, (3)

where IDMst(q, q̇, q̈) is the regressor matrix. χst is com-
posed by 13 standard parameters from each link i:

χi
st =[XXi XYi XZi YYi YZi ZZi

MXi MYi MZi Mi Fsi Fvi τoffi]
T .

(4)

where XXi, XYi, XZi, YYi, YZi and ZZi are the 6
components of the inertia tensor considered from the origin
of the link; MXi, MYi and MZi are the components of its
first moment of inertia; and Mi is its mass.

Furthermore, the base parameters are commonly defined
as a minimum set of identifiable parameters with which
the dynamic model can be calculated. It is obtained
from the reduction of the set of standard parameters by,
eliminating some which have no effect on the model and
regrouping others which are not identifiable separately
(Gautier and Khalil (1990)). The model in terms of base
parameters can be expressed in the same way as (3), with
the corresponding changes in the regressor matrix and the
parameters’ vector.

After sampling the IDM during a period of time, an over-
determined linear system with all the measurements can
be constructed in the following way:

Y = W (q, q̇, q̈)X + ρ, (5)

where Y is the vector of torques; W (q, q̇, q̈) is the ob-
servation matrix; X is the set of base parameters; and ρ
refers to the vector of errors due to noise and not modeled
effects. From these base parameters, there may be some of
them that, given the measured data, do not substantially
affect the model. If they are deleted, the set of essential
parameters is obtained (Pham and Gautier (1991)). In
Janot et al. (2014), it is suggested to ignore those base
parameters with a relative standard deviation higher than
20%.
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the reference trajectory and its derivatives, avoiding the
simulation of the model.

The objective of this work is to tackle the two mentioned
issues of recursive parameter identification of robots by
using the knowledge of the identified robot model that
is integrated in the controller and of its assumed struc-
ture. Indeed, knowing this model is a tool to initialize
parameters in recursive algorithms. Moreover, thanks to
the signals that some controllers make available and to the
knowledge of its structure, RIV can be applied without
the need of simulation of the dynamic model, making it
more suitable for online application. This is an extension
to industrial redundant collaborative manipulators of the
work done in Brunot and Janot (2018) where tests of the
RIV were carried out on a 2 dof SCARA manipulator.
Although experimental tests of RLS and RIV are carried
out on the KUKA LBR iiwa 14 R820 in an offline way
to show results, the methods are also suitable and an
interesting approach for online applications.

Section 2 reviews the structure and the model of col-
laborative manipulators, while Section 3 describes the
algorithms and the methodology for dynamic parameter
identification. Details on the experimental setup of the
KUKA LBR iiwa 14 R820, as well as the design of tra-
jectories, data acquisition and data processing are shown
in Section 4. Finally, Section 5 discusses the experimental
results and improvements on the performance of recursive
identification methods, and Section 6 gives some conclud-
ing remarks.

2. MODELING

2.1 Structure of Collaborative Manipulators

The structure of a collaborative robot (Albu-Schäffer et al.
(2007)) is graphically presented in Fig. 1. As these robots
are intended to work alongside with humans, many times
sharing not only objectives but also tasks, there are sensors
measuring torques acting on the link side (sensed torque)
(Albu-Schäffer et al. (2007)). They are also equipped with
position sensors on the motor-side, and by knowing the
gearbox characteristics, manufacturers usually make the
link position available for users (sensed position).

As mentioned previously, model-based controllers are com-
monly used, and it could be assumed that the commanded
position and commanded torque given by these controllers,
as KUKA controllers, are the input and output of the
dynamic model of the robot that is integrated in them.

Fig. 1. KUKA Industrial Collaborative Manipulator Struc-
ture (Albu-Schäffer et al. (2007)).

2.2 Equations of Motion

The equation describing the inverse dynamic model (IDM)
of a n-dof serial manipulator without considering external
forces, elasticity nor couplings between links and motors
is (Khalil and Dombre (2002)):

τ = M(q)q̈ +H(q, q̇)q̇ +G(q) + τf , (1)

where τ ∈ Rn is the vector of the link-side torques;
q, q̇, q̈ ∈ Rn are the joint positions, velocities and ac-
celerations, respectively; H(q, q̇)q̇ ∈ Rn is the vector of
the Coriolis and centrifugal forces; G(q) ∈ Rn stands for
gravity torques; M(q) ∈ Rn×n is the symmetric positive
definite inertia matrix; and τf ∈ Rn are the friction
torques. The friction model of joint i used here is the one
described in Hamon et al. (2011):

τfi = Fsisign(q̇i) + Fviq̇i + τoffi, (2)

where τfi is the ith component of the friction vector;
Fsi and Fvi are Coulomb and viscous friction parameters
respectively; and τoffi is an offset in torque measurements
regrouping amplifiers and sensors offsets and the asym-
metrical Coulomb friction coefficient.

The IDM in (1) can be expressed in a linear way w.r.t. a
set of standard dynamic parameters χst as:

τ = IDMst(q, q̇, q̈)χst, (3)

where IDMst(q, q̇, q̈) is the regressor matrix. χst is com-
posed by 13 standard parameters from each link i:

χi
st =[XXi XYi XZi YYi YZi ZZi

MXi MYi MZi Mi Fsi Fvi τoffi]
T .

(4)

where XXi, XYi, XZi, YYi, YZi and ZZi are the 6
components of the inertia tensor considered from the origin
of the link; MXi, MYi and MZi are the components of its
first moment of inertia; and Mi is its mass.

Furthermore, the base parameters are commonly defined
as a minimum set of identifiable parameters with which
the dynamic model can be calculated. It is obtained
from the reduction of the set of standard parameters by,
eliminating some which have no effect on the model and
regrouping others which are not identifiable separately
(Gautier and Khalil (1990)). The model in terms of base
parameters can be expressed in the same way as (3), with
the corresponding changes in the regressor matrix and the
parameters’ vector.

After sampling the IDM during a period of time, an over-
determined linear system with all the measurements can
be constructed in the following way:

Y = W (q, q̇, q̈)X + ρ, (5)

where Y is the vector of torques; W (q, q̇, q̈) is the ob-
servation matrix; X is the set of base parameters; and ρ
refers to the vector of errors due to noise and not modeled
effects. From these base parameters, there may be some of
them that, given the measured data, do not substantially
affect the model. If they are deleted, the set of essential
parameters is obtained (Pham and Gautier (1991)). In
Janot et al. (2014), it is suggested to ignore those base
parameters with a relative standard deviation higher than
20%.

3. IDENTIFICATION METHODOLOGY

First, an analysis of the commanded signals (commanded
position and commanded torque) and the sensed signals
(sensed position and sensed torque) is required to show
that the controller is one of a model-based type. Then, the
parameters of the robot’s model that is integrated in the
controller can be identified offline using the commanded
signals and the LS method. This identified model will
be used for the initialization of the recursive algorithms
RLS and RIV in order to identify the real robot’s parame-
ters. RLS will be applied using sensed signals, and RIV
using commanded position for the instrumental matrix
generation and sensed signals. In this section, the three
mentioned identification methods are briefly detailed.

3.1 Least-Squares

The LS solution X̂LS minimizes the squared 2-norm of
the vector of errors:

X̂LS = (W TW )−1W TY . (6)

The covariance matrix of the estimation error is:

CX̂LS
=

||Y −WX̂LS ||
r − nb

(W TW )−1, (7)

where r is the product between the amount of measure-
ments nm and the number of joints n, and nb is the amount
of base parameters. Then, the relative standard deviation
of the ith estimate X̂i

LS is given by:

%σ̂i
X̂LS

= 100

√
Cii

X̂LS

X̂i
LS

, (8)

where Cii
X̂LS

are the diagonal coefficients of CX̂LS
.

The main challenge for this method, lays in the data
processing and the way to ensure noise properties. X̂LS

is considered to be the best linear unbiased estimator if
the error terms have zero mean, they are homoscedastic
(constant finite variance), they do not present multi-
collinearity and they are not autocorrelated.

3.2 Recursive Least-Squares

LS is a method to be applied once all the measurements
are made. In order to be able to implement it online,
as measurements are carried out, its recursive version
is necessary. The RLS solution X̂RLS is given by the
following algorithm (Young (2011)):

Kk = P k−1W
T
k (In +W kP k−1W

T
k )

−1

P k = P k−1 −KkW kP k−1

X̂
k

RLS = X̂
k−1

RLS +Kk(Y k −W kX̂
k−1

RLS)

(9)

where P k, Kk, W k, Y k and X̂
k

RLS are the covariance
matrix, the estimator gain matrix, the observation matrix,
the vector of torques and the vector of RLS estimates
respectively, at iteration k (k = 1, ..., nm) being nm the
amount of measurements, and In is the identity matrix of
order n.

In general, when no a priori information is available, X̂RLS

should be started at zero and P as a diagonal matrix

with large elements. In robotics, this brings numerical
problems, and an alternative is to initialize them with
low values and the adequate sign. The choice of these
initial values affects the stability and speed convergence
of the algorithm (Gautier and Poignet (2001)). Therefore,
the best way to initialize values is with proper a priori
knowledge, either by having the CAD model or by carrying
out another identification process before applying the
recursive algorithm.

3.3 Recursive Instrumental Variables

The RIV solution X̂RIV is closely related to X̂RLS (Young
(2011)):

Kk = P k−1Z
T
k (In +W kP k−1Z

T
k )

−1

P k = P k−1 −KkW kP k−1

X̂
k

RIV = X̂
k−1

RIV +Kk(Y k −W kX̂
k−1

RIV )

(10)

being Zk and X̂
k

RIV are the instrumental matrix and the
RIV estimates at iteration k, respectively.

This method is more robust against noise than RLS, but
has the problem of how to choose Z for optimal results.
As mentioned in Janot et al. (2014), in robotics, a valid
auxiliary model for the generation of the instrumental
matrix is the dynamic model. However, computational
speed and numerical issues, makes the choice not suitable
for online application. To remove the need to simulate the
robot’s model online, the authors in Brunot and Janot
(2018) proved that the instrumental matrix can be also
built with the reference trajectories of position, velocity
and acceleration sent to the robot, which are usually
computed before the robot’s movement.

4. EXPERIMENTAL SETUP

4.1 Robotic Manipulator

To validate the approach, the 7 dof lightweight manipu-
lator KUKA LBR iiwa R820 was used (KUKA (2019)).
Its kinematic parameters following the modified Denavit-
Hartenberg (MDH) convention are shown and summarized
in Fig. 2. Considering the dynamic model in (1) and (2),
and the closed-loop rules for model reduction from Gautier
and Khalil (1990), 64 base parameters are derived from
the 91 standard parameters. Table 1 shows the 17 base
parameters which are the ones obtained from the regroup-
ing of standard parameters. The other 47 base parameters
are the ones related to friction (Fsi, Fvi and τoffi with
i = 1, ..., 7), and other inertial parameters (ZZ7, MY7 and
MXi, XYi, XZi and YZi, with i = 2, ..., 7).

The KUKA iiwa brings a load identification routine that
allows the controller to compensate the dynamics of the
load. As the robot is equipped with the ”Media Flange
Touch Electrical” on its tip (KUKA (2015)), this routine
has been performed before carrying out any experiment.

4.2 Trajectories, Data Acquisition and Processing

50 configurations of the robot are chosen in the useful
work-space of the robot in order to generate trajectories.
Constraints regarding joint limits and plaftorm position
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Fig. 2. MDH parameters and link frames of the KUKA
LBR iiwa 14 R820.

Table 1. Regrouped base parameters of the
KUKA LBR iiwa following the MDH conven-

tion stated in Fig. 2.

ZZR1=ZZ1+YY2

XXR2=XX2−YY2+YY3+2d3MZ3+(M3+M4+M5+M6+M7)d23
ZZR2=ZZ2+YY3+2d3MZ3+(M3+M4+M5+M6+M7)d23
MYR2=MY2−MZ3−(M3+M4+M5+M6+M7)d3
XXR3=XX3−YY3+YY4

ZZR3=ZZ3+YY4

MYR3=MY3−MZ4

XXR4=XX4−YY4+YY5+2d5MZ5+(M5+M6+M7)d25
ZZR4=ZZ4+YY5+2d5MZ5+(M5+M6+M7)d25
MYR4=MY4+MZ5+(M5+M6+M7)d5
XXR5=XX5−YY5+YY6

ZZR5=ZZ5+YY6

MYR5=MY5+MZ6

XXR6=XX6−YY6+YY7

ZZR6=ZZ6+YY7

MYR6=MY6−MZ7

XXR7=XX7−YY7

are considered to avoid collisions. We used the KUKA
Sunrise OS to interpolate these points, and to create the
position, velocity and acceleration profiles with the Spline
and PTP motion types (KUKA (2017)). This method of
generating trajectories (Jubien et al. (2014)) yields good
results in terms of the condition number of the regressor
matrix without any time and resource consuming non-
linear optimization (Khalil and Dombre (2002)). This kind
of trajectory is more real application-like, which makes it
more suitable for online application. Indeed, trajectories
specifically generated for parameters identification may
not be applied when executing a task.

The Fast Robot Interface (FRI), a library provided by
KUKA, allows the user to continuously exchange data in
real time between the robot controller and a C++ client
application on an external system (Schreiber et al. (2010)).
In this work, the client application records data from the
robot at its highest possible rate of 1000 Hz.

After data acquisition, the data is processed. For the
commanded signals, the data is first downsampled to 50
Hz and then velocities and accelerations are calculated
from the commanded position. In addition, when using the
sensed signals for RLS, as noise conditions (see Section 3.1)
cannot be ensured, a filter is needed. Therefore, a 2nd order
digital Butterworth filter with cutoff frequency of 3.5 Hz
in both directions to avoid time-lag is applied before the

downsample process. Moreover, points where the absolute
value of the velocity of any joint is lower than 0.01 rad/s
are deleted to avoid problems due to the discontinuity
around zero velocity of the friction model in (2).

5. RESULTS & DISCUSSION

5.1 Commanded vs Sensed Signals

To validate the assumption regarding the controller being
model-based, a comparison between the commanded and
sensed signals that the KUKA controller makes available
is done. This is important in order to analyze the behavior
of the controller, and verify if the decoupling of the non-
linear model is well-done by KUKA.

In Fig. 3, the respective signals from joint 4 and their
difference are depicted. Results from joint 4 are chosen to
be shown as it is a central link, with a lower relative effect
of noise and payload uncertainties w.r.t. applied torque.
This is not the case of links that are at the end of the
kinematic chain, where noise has more relative impact on
the behavior.

Fig. 3. Commanded Signals, Sensed Signals, and difference
between both for joint 4.

The error between the sensed position and commanded
position is lower than 1%, showing good performance
of the KUKA controller. Moreover, the position error
is bounded and has a profile similar to the one of the
velocity. This means that, for model-based controllers,
the inertial effects are well decoupled and compensated
with the internal model. As explained in Khalil and
Dombre (2002), an adequate linearization and decoupling
of the equations of the model, provides a uniform dynamic
behavior for every joint whatever the configuration of the
robot. Moreover, it can be seen in Fig. 3 that noise has
significant effects in the torque and acceleration signals.

5.2 Parameters Identification of Manipulator’s Model
Integrated in Controller with LS

The set of essential parameters obtained by applying the
LS method using the non-filtered commanded position
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Fig. 2. MDH parameters and link frames of the KUKA
LBR iiwa 14 R820.
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linear optimization (Khalil and Dombre (2002)). This kind
of trajectory is more real application-like, which makes it
more suitable for online application. Indeed, trajectories
specifically generated for parameters identification may
not be applied when executing a task.

The Fast Robot Interface (FRI), a library provided by
KUKA, allows the user to continuously exchange data in
real time between the robot controller and a C++ client
application on an external system (Schreiber et al. (2010)).
In this work, the client application records data from the
robot at its highest possible rate of 1000 Hz.

After data acquisition, the data is processed. For the
commanded signals, the data is first downsampled to 50
Hz and then velocities and accelerations are calculated
from the commanded position. In addition, when using the
sensed signals for RLS, as noise conditions (see Section 3.1)
cannot be ensured, a filter is needed. Therefore, a 2nd order
digital Butterworth filter with cutoff frequency of 3.5 Hz
in both directions to avoid time-lag is applied before the

downsample process. Moreover, points where the absolute
value of the velocity of any joint is lower than 0.01 rad/s
are deleted to avoid problems due to the discontinuity
around zero velocity of the friction model in (2).

5. RESULTS & DISCUSSION

5.1 Commanded vs Sensed Signals

To validate the assumption regarding the controller being
model-based, a comparison between the commanded and
sensed signals that the KUKA controller makes available
is done. This is important in order to analyze the behavior
of the controller, and verify if the decoupling of the non-
linear model is well-done by KUKA.

In Fig. 3, the respective signals from joint 4 and their
difference are depicted. Results from joint 4 are chosen to
be shown as it is a central link, with a lower relative effect
of noise and payload uncertainties w.r.t. applied torque.
This is not the case of links that are at the end of the
kinematic chain, where noise has more relative impact on
the behavior.

Fig. 3. Commanded Signals, Sensed Signals, and difference
between both for joint 4.

The error between the sensed position and commanded
position is lower than 1%, showing good performance
of the KUKA controller. Moreover, the position error
is bounded and has a profile similar to the one of the
velocity. This means that, for model-based controllers,
the inertial effects are well decoupled and compensated
with the internal model. As explained in Khalil and
Dombre (2002), an adequate linearization and decoupling
of the equations of the model, provides a uniform dynamic
behavior for every joint whatever the configuration of the
robot. Moreover, it can be seen in Fig. 3 that noise has
significant effects in the torque and acceleration signals.

5.2 Parameters Identification of Manipulator’s Model
Integrated in Controller with LS

The set of essential parameters obtained by applying the
LS method using the non-filtered commanded position

and the non-filtered commanded torque, and by removing
those parameters with a relative standard deviation higher
than 20% (Janot et al. (2014)), is shown in Table 2. 21
out of the 64 base parameters are identified. The friction
parameters are not identified in this set, which means that,
a priori, friction is not included in the controller’s model.
All the main inertial parameters (ZZRi for i = 1, ..., 7;
MYRi for i = 2, ..., 6; and XXRi for links with movement
against gravity, thus 2, 4 and 6) are identified with low
relative standard deviation. Moreover, all the identified
parameters in Table 2 are physically consistent, which
allows the simulation and control of the manipulator.

Table 2. Identified set of essential parameters
and their respective relative standard devia-

tion.

Param. Value %σ Param. Value %σ

ZZR1 0.0419 5.17 ZZR5 0.0094 10.39

XXR2 2.3452 0.30 YZ5 -0.0046 10.39

ZZR2 2.3963 0.21 MYR5 -0.0741 0.54

MYR2 -5.9076 0.02 XXR6 0.0196 4.94

ZZR3 0.0753 2.35 ZZR6 0.0185 4.20

XZ3 -0.0065 18.32 MYR6 -0.1439 0.25

MYR3 -0.0159 3.07 ZZ7 0.0073 7.60

XXR4 0.8064 0.23 XY7 -0.0030 12.17

ZZR4 0.8259 0.1634 YZ7 -0.0026 13.98

MYR4 2.4083 0.02 MX7 0.0244 1.04

MY7 0.0259 1.08

Moreover, to validate this model, Table 3 shows the
percent error of the torque reconstruction using two new
validation trajectories. A percent error lower than 11% for
all joints validates the model obtained. It can also be seen
that central links have a torque reconstruction percent
error lower than 3.5%, being higher for links 1 and 7 due
to the mentioned higher effect of noise.

Table 3. Percent error [%] of commanded
torque reconstruction using the model in Ta-
ble 2 and two new validation trajectories.

Joint 1 2 3 4 5 6 7

Traj. 1 3.44 0.45 0.56 0.61 1.80 1.68 3.83

Traj. 2 10.07 1.14 3.26 1.25 2.87 2.51 5.31

5.3 Parameter Initialization Effect on RLS

To evaluate the effect of parameters initialization in RLS
two situations are compared: when no a priori information
is available and when the set of essential parameters from
Table 2 is considered. Fig. 4 shows the evolution of some
identified parameters of joint 4 for these two situation.
In the case of initializing the parameters with no a priori
information, all values were started at 0 with a variance
of 100. When having a priori information, the essential
parameters were started as in Table 2, and all the non-
essential parameters (inertial and friction) at 0. Variance
values were started at 0.01 for essential parameters, at 1
for the non-essential inertial parameters and at 100 for
friction, answering to the different degrees of parameters’
knowledge. The choice of the magnitude of the variance
locks or lets free the parameters’ variation (Gautier and
Poignet (2001)). Moreover, the filtering process described
in Section 4 was carried out before the identification

Fig. 4. Evolution of some base parameters of joint 4 using
RLS with and without a priori information.

process, as assumptions mentioned in Section 3.1 regarding
the noise cannot be ensured.

In between 1000 and 2000 measurements, both methods
converge to the same results. As it was expected, main
inertial parameters’ estimations converge faster when ini-
tializing the parameters with the identified model from
Section 5.2. This is a substantial advantage for the begin-
ning of the execution, reducing the risk of having a non-
computable dynamic model. However, friction parameters
(FS4 in Fig.4) vary significantly more, as they are initial-
ized with much higher variance than the other parameters.
Nevertheless, it cannot cause problems in terms of calcu-
lation because this issue comes from the non-invertibility
of the inertia matrix M(q) in (1) which friction does not
affect.

These results show two things. First, initializing param-
eters in recursive algorithms with the values identified of
the model that is integrated in the controller is better than
initializing them with no a priori knowledge for an online
identification context. This method also avoids the need of
CAD models, which are often not provided by manufac-
turers. Furthermore, although the real robot parameters
are not exactly the same as the ones inside the model of
the controller, they are a good approximation, and they
can be used to control the robot.

5.4 RIV with Commanded Position

To compare with RLS results obtained in the previous sub-
section, RIV results are analyzed. Parameter identification
using RLS with filtered sensed signals, and using RIV with
non-filtered sensed signals and commanded position for the
instrumental matrix generation, are shown in Fig. 5. For
simplicity, some of the parameters of joint 4 shown in the
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previous subsection are depicted. Initial values for both
methods are the ones shown in Table 2 used in Section 5.3.

Fig. 5. Evolution of some base parameters of joint 4 using
RLS and RIV methods.

Results are very close for both methods, and it is not
possible to demonstrate with this study which is more
precise, as the real values are unknown. However, the fact
that results have a difference of less than 2% between each
other, and that no filtering process was made to the signals
in RIV, presents a huge advantage of this method over
others for online application.

6. CONCLUSIONS

In this work, two improvements for recursive identification
of dynamic parameters of robotic manipulators using the
knowledge of the model that is integrated in the controller
were discussed. First, after analyzing that the commanded
signals given by the KUKA LBR iiwa 14 R820 controller
are the input and output from the robot’s model that is
integrated in it, this model was identified using LS method.
These values were used to initialize values in RLS and
RIV methods, and it was shown that this approach is a
proper alternative to arbitrary or CAD-based initialization
of parameters. Secondly, RIV method was successfully
applied by generating the instrumental matrix with the
commanded position signal given by the KUKA controller.
This method is an interesting approach for recursive online
estimation, as it does not use any additional simulation of
the dynamic model nor filtering.
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