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Tanguy Appriou∗†‡, Didier Rullière†, David Gaudrie‡
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Abstract

Kriging metamodeling (also called Gaussian Process regression) is a popular ap-
proach to predict the output of a function based on few observations. The Kriging
method involves length-scale hyperparameters whose optimization is essential to obtain
an accurate model and is typically performed using maximum likelihood estimation
(MLE). However, for high-dimensional problems, the hyperparameter optimization is
problematic due to the shape of the likelihood function, to the exponential growth of
the search space with the dimension, and to over-fitting issues when there are too few
observations. It often fails to provide correct hyperparameter values. In this article,
we propose a method for high-dimensional problems which avoids the hyperparameter
optimization by combining Kriging sub-models with fixed length-scales. Contrarily to
other approaches, it does not rely on dimension reduction techniques and it provides
a closed-form expression for the model. We present a recipe to determine a suitable
range for the sub-models length-scales based on the designs and on the employed ker-
nel. We also compare different approaches to compute the weights in the combination.
We show for a 50-dimensional test problem that our combination provides a more
accurate surrogate model than the classical Kriging approach using MLE.

Keywords— Kriging, Gaussian Process Regression, High Dimension, Hyperparameter Optimiza-
tion, Length-scales Bounds, Model Aggregation.

MSC2020 Classification: 62H11, 62J02, 60G15.

1 Introduction

Kriging models (Cressie, 1993; Stein, 1999) are non-parametric statistical models which
have been used in many different fields to infer the output of a function y based on a
few observations. Applications include geostatistics (Krige, 1951; Matheron, 1963), opti-
mization in numerical experiments (Sacks et al., 1989; Jones et al., 1998; Santner et al.,
2003), machine learning where the method is known as Gaussian process (GP) regression
(Rasmussen and Williams, 2006).

One of the main drawbacks of Kriging method is that it scales poorly for large-scale prob-
lems: it suffers from the curse of dimensionality (Bellman, 1966) when the dimension of
the input is large. This issue is especially prevalent in engineering design optimization
(Sobester et al., 2008) as industrial designs are commonly parametrized by more than 50
shape parameters (Shan and Wang, 2010; Gaudrie et al., 2020).
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High-dimensional Kriging models face two main challenges. First, the higher the dimension,
the larger the design space and the more sample points are needed to obtain a Kriging
surrogate model with a good accuracy. Due to the O(n3) cost (where n is the number of
sample points) for inverting the covariance matrix, which is necessary for predicting the
mean and variance, the computational cost of the Kriging model can become prohibitive
when n is large. Different approaches have been proposed to tackle this first challenge (see
Liu et al. (2020) for a review) . In Quinonero-Candela and Rasmussen (2005), Titsias (2009)
and Hensman et al. (2013), the authors use a low-rank approximation of the covariance
matrix to reduce the computational cost of the inversion. Other authors reduce this cost
by aggregating smaller local Kriging models built over subsets of points and by combining
them in different ways (Rasmussen and Ghahramani, 2001; Cao and Fleet, 2014; Deisenroth
and Ng, 2015; Rullière et al., 2018).

The second challenge for building high-dimensional Kriging models resides in the hyper-
parameter optimization. Most Kriging models consider one length-scale hyperparameter
per dimension which all need to be optimized simultaneously. Thus, this optimization is
a multidimensional and multimodal problem which can be difficult to solve, and since it
involves the inverse of the covariance matrix, the optimization can also be computationally
expensive. Moreover in high-dimension, the training data is often sparse since one cannot
afford to compute too many points in the high-dimensional design space. This, along with
the large number of hyperparameters, can cause the usual criterion for the optimization to
over-fit the training data leading to a poor estimation of the hyperparameters (Mohammed
and Cawley, 2017). Reducing the dimension of the problem is a way to solve these issues
(see Binois and Wycoff (2021) for a review), but, because y is computationally expensive,
classical sensibility analysis (Saltelli et al., 2008) cannot be performed beforehand for vari-
able selection. Some methods reduce the dimension by embedding the design space into a
lower-dimension space (Constantine, 2015; Bouhlel et al., 2016). Additive Kriging (Dur-
rande et al., 2012) is another approach where y is decomposed into a sum of one dimensional
components, enabling a sequential optimization of the length-scale hyperparameters.

In this paper, we propose a new method to tackle the challenging hyperparameter optimiza-
tion for high-dimensional problems. Our approach avoids this optimization by combining
Kriging sub-models with fixed length-scales. It avoids reducing the dimension of the de-
sign space and preserves the correlation between all the input variables. Furthermore,
the combination we propose has a closed-form expression and does not require any inner
optimization. This article starts by briefly recalling the main concepts in Kriging and in-
troduces the employed notations in Section 2. Our combined Kriging method is detailed
in Section 3. Finally, results of our method on numerical test problems are presented and
discussed in Section 4.

2 Kriging model

2.1 Kriging predictions

This section briefly recalls the Kriging method and introduces the notations used through-
out this paper. We denote by y : x ∈ X ⊂ Rd → y(x) ∈ R the d-dimensional black-box
function that we want to approximate. We suppose y is known on an ensemble of n sample
points X = (x1, . . . ,xn)

T and we denote Y = (y(x1), . . . , y(xn))
T the observed values

at these locations. The Kriging method approximates y as the realization of a Gaussian
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process on X :
Y (.) ∼ GP (µ, kσ,θ(., .)) .

Without loss of generality, we can assume that the GP is centered (µ = 0), and kσ,θ :
X ×X → R is the positive definite covariance function (also called kernel) indexed by the
hyperparameters σ2 ∈ R+, the variance of the GP, and θ ∈ Rd, the covariance length-scales.
A stationary GP with a Matérn-class covariance function is typically chosen (Rasmussen
and Williams, 2006).

The Simple Kriging (SK) predictor is a linear combination of the observations which is
obtained by conditioning the Gaussian process Y over D = (X,Y ):

M(x) := E(Y (x)|D) = k(x,X)K(X,X)−1Y , (1)

where k(x,X) is the vector of covariances between the prediction point x and the sample
points X, and K(X,X) is the covariance matrix of the model, i.e. the n × n matrix of
covariances between the components of X. The predictive variance of the model can also
be obtained as:

σ̂2(x) := V ar(Y (x)|D) = k(x,x)− k(x,X)K(X,X)−1k(X,x). (2)

2.2 Hyperparameter estimation

The covariance hyperparameters must be chosen appropriately to obtain an accurate model.
Usually, they are set using the maximum likelihood estimation (MLE) (Jones, 2001), which
consists on maximizing the marginal likelihood of the model:

L(σ,θ) := 1

(2π)d/2 det(Kσ,θ)1/2
exp

(
−1

2
Y TK−1

σ,θY

)
. (3)

This is equivalent to minimizing −log(L(σ,θ)). For a fixed θ , the MLE estimator for σ2

is:

σ̂2
MLE =

Y TRθ
−1Y

n
, (4)

where R is the correlation matrix such that K = σ2R. After substituting (4) into the
log-likelihood, we obtain the length-scales θ by solving:

θMLE = argmin
θ

−1

2
log
(
σ̂2
MLE

)
− 1

2
log (det(Rθ)) . (5)

An alternative to MLE is to minimize the leave-one-out cross-validation (LOOCV) error
(Bachoc, 2013) of the model:

eLOOCV (θ) :=
1

n

n∑
k=1

(Mθ−k(xk)− y(xk))
2 , (6)

where Mθ−k is the simple Kriging model built by removing the kth sample point xk. For
Kriging models, the LOOCV error can be computed easily (Ginsbourger and Schärer, 2021)
without having to build n models using the formula:

eLOOCV (θ) =
1

n

n∑
k=1

(
[K−1

θ Y ]k

[K−1
θ ]k,k

)2

. (7)
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Finally, the LOOCV estimation of the length-scales is obtained as:

θLOOCV = argmin
θ

eLOOCV (θ). (8)

In practice, both optimization problems (5) and (8) can be difficult to solve numerically
due to their multi-modality, to flat areas of the objectives, and to the fact that the objective
evaluations can be expensive (cost in O(n3) for both objectives and their gradients). This
is particularly true for high-dimensional problems since the objective θ has dimension d.
(5) and (8) are typically solved using gradient-based method (e.g BFGS) with multi-start,
or using evolutionary algorithms (Roustant et al., 2012). However, as we will show in
Section 4, these methods can fail to produce suitable values of the hyperparameters in
high-dimensional problems, when the data is relatively sparse.

In the next section, we propose an alternative method for building a Kriging-based surro-
gate model which avoids this challenging optimization of the length-scale hyperparameters.

3 Combined Kriging with fixed length-scales

3.1 Description of the method

Combining different surrogate models using weights has been explored by many authors
in the past years. The proposed methods differ in the purpose of the combination, in the
type of the surrogate models employed, and in the way the weights are computed. For
example, Bayesian model averaging (Gelman et al., 1995; Hoeting et al., 1999; Burnham
et al., 2011) combines different models using different parameters to perform a multimodel
inference while accounting for the uncertainty in the choice of the model. In Goel et al.
(2007), Acar and Rais-Rohani (2009) and Viana et al. (2009), different metamodels build
on the same data set are combined to obtain an ensemble of surrogates whose accuracy
is better than the one of the best metamodel. As mentioned in the previous section, to
circumvent the difficulties of Kriging metamodels in the presence of large datasets, several
methods combining local Kriging sub-models optimized on subset of points have been
proposed. In the context of Bayesian optimization, Ginsbourger et al. (2008) present a
method to combine Kriging sub-models with various covariance functions, or with different
hyperparameter optimization criteria. The combination of Kriging sub-models for selecting
the covariance function is further explored in Palar and Shimoyama (2018), and Pronzato
and Rendas (2017) combine several local Kriging sub-models with different covariance
functions in a fully Bayesian manner to build a non-stationary model.

Contrarily to the combinations of Kriging sub-models presented above, in the method we
propose, the length-scale hyperparameters are not optimized but fixed to random values.
It avoids the expensive and difficult optimization of these hyperparameters for high di-
mensional problems by emphasizing the appropriate random length-scales through their
weights in the combination, which are obtained in closed-form.

The combined model writes as:

Mtot(x) :=

p∑
i=1

wi(x)Mi(x), (9)

where Mtot is the combined model, P is the number of sub-models, and wi, i = 1, . . . , p,
are the weights of each sub-model. The sub-models Mi are simple Kriging models with
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fixed length-scales, hence:

Mi(x) := E(Yθi(x)|Di) = kθi(x,Xi)Kθi(Xi,Xi)
−1Yi, (10)

where θi is the fixed length-scale vector and Di = (Xi,Yi) the training data set of the ith
sub-model. We also have access to the variance of each sub-model:

σ̂2
i (x) := kθi(x,x)− kθi(x,Xi)Kθi(Xi,Xi)

−1kθi(Xi,x). (11)

The proposed method enables the construction of a Kriging model for high dimensional
problems without reducing the dimension. It both preserves the correlation between all
input variables and avoids a loss of information due to a truncated design space. Moreover,
this method is very flexible since each sub-model can for instance be constructed on different
subsets of points, can take into account different design variables, or can have different
covariance functions. Sub-models with very different behaviors sweeping through a wide
range of length-scales can therefore be combined. In this paper, all Kriging sub-models
are simply constructed with all sample points and all design variables: Di = D = (X,Y ),
i = 1, . . . , p. Instead, we focus on comparing different methods to compute the weights in
Section 3.2, and on the choice of the sub-models’ length-scales in Section 3.3. The interest
in this paper is for high-dimensional problems with typical dimension d > 20. The number
of sub-models is limited to p < d ≪ n, which is sufficient as will be shown in Section
4. Finally, we consider a moderate number of, at most, few thousands samples so that,
albeit slightly expensive, the inverse of the covariance matrix can be computed for the p
sub-models. Thus, the complexity of the combination is O(pn3) which is generally less than
the cost of an ordinary Kriging model in O(αitern

3) where αiter is the number of matrix
inversions (i.e. the number of iterations, typically of the order of 100) in the optimization
of the d hyperparameters.

3.2 Choice of the weighting method

Five methods to compute the weights in (9) are investigated throughout this paper. Their
performance is assessed on numerical experiments in Section 4.

PoE approach

Product of Experts (PoE) (Hinton, 2002) arises from the hypothesis that the posterior
probability distribution of the combined model can factorize as a product of the posterior
distribution of each sub-model (experts). Thus, it assumes independence between each sub-
model, which is not the case for the proposed method where the sub-models are correlated.
The PoE can also be seen as the best convex combination in the case of independent sub-
models, which minimizes the variance of the combined model. The PoE weights are given
by:

wPoEi(x) =
σ̂−2
i (x)∑p

j=1 σ̂
−2
j (x)

, (12)

where σ̂2
i (x) is the variance of the ith sub-model given in equation (11). Note that these

weights depend only on the position of the sample points and not on the observed values.
When the Kriging sub-models are all built with the same sample points, this method will
emphasize the sub-models with large length-scales because these are the ones with smallest
predicted variance. Thus, we expect this method to favor large length-scales and to fail in
selecting the correct sub-models.
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gPoE approach

The generalized Product of Experts (gPoE) approach (Cao and Fleet, 2014; Deisenroth
and Ng, 2015) was originally developed in the context of aggregating Kriging sub-models
to alleviate some shortcomings of the PoE method, namely the fact that a single poor
sub-model can cause a biased mean prediction and an overconfident variance. In gPoE,
flexibility in the model is added by introducing internal weights β∗ to the contribution of
each sub-model. This results in the following expression for the gPoE weights:

wgPoEi(x) =
β∗
i σ̂

−2
i (x)∑p

j=1 β
∗
j σ̂

−2
j (x)

. (13)

Cao and Fleet (2014) suggest to compute β∗ as the difference in entropy between the prior
and posterior of each sub-model. In Deisenroth and Ng (2015), in order to recover the prior
outside the data, the authors imposed the constraint

∑p
i=1 β

∗
i = 1 and proposed uniform

weights β∗
i = 1/p.

In this paper, we use the gPoE approach to adjust the PoE weights in order to account for
the observed values at the sample points. To this aim, the internal weights are optimized
to minimize the LOOCV error of the combined model, with the constraint that their sum
must be equal to one.

β∗ = argmin
β

eLOOCV

(
p∑

i=1

wgPoEi(β)Mi

)
, subject to:

p∑
i=1

βi = 1.

This is equivalent to optimizing the LOOCV error of a Kriging model whose precision
matrix is the weighted sum of the precision matrices of each sub-models: K−1

tot (β) =∑p
i=1 βiK

−1
θi

∈ Rn×n. Thus, using the LOOCV formula for Kriging models given in equa-
tion (7):

β∗ = argmin
β

n∑
k=1

(
[K−1

tot (β)Y ]k

[K−1
tot (β)]k,k

)2

, subject to:
p∑

i=1

βi = 1. (14)

This inner optimization can be performed numerically, and since only the inverses of the
covariance matrices of each sub-model are required, it is inexpensive to perform as these
inverses are already computed to build the sub-models. Although it accounts for the
observed values, a closed-form expression of the weights is no longer available because of
the inner optimization.

LOOCV approach

To combine different surrogates, Viana et al. (2009) proposed a method which minimizes
the global mean-square error (MSE) of the combination over the design space X ⊂ Rd

given by:

MSEtot :=
1

V (X )

∫
X
(Mtot(x)− y(x))2 dx,

where V (X ) is the volume of X . Since in practice we only dispose of a few observations,
the global MSE is approximated using cross-validation. A discrete approximation of the
global MSE using the LOOCV error can be obtained as:

eLOOCV (Mtot) =
1

n

n∑
k=1

(
p∑

i=1

wiMi−k
(xk)− y(xk)

)2

= wTCw, (15)
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where the components of the matrix C ∈ Rp×p are:

cij =
1

n
eTi ej , i = 1, . . . , p, j = 1, . . . , p,

with ei, i = 1, . . . , p the LOOCV vector for the ith sub-model: ei = (e
(1)
i , . . . , e

(n)
i ). Using

(7), these elements can be expressed easily as: e
(k)
i = [KθiY ]k/[Kθi ]k,k.

The weights are obtained by minimizing (15) with respect to w:

wLOOCV = argmin
w

wTCw, subject to
p∑

i=1

wi = 1.

Using a Lagrange multiplier and setting the derivatives to zero, this gives the following
weights for the LOOCV approach:

wLOOCV =
C−11

1TC−11
. (16)

Contrarily to the two previous approaches, these weights are constant and do not depend on
x. We also note that this method might lead to negative or greater than one weights. As we
will discuss in Section 4, negative weights can raise some issues for the combination. Thus,
following the suggestion of Viana et al., we propose a second weight definition enforcing
wi ∈ [0, 1] by keeping only the diagonal elements of the matrix C in equation (16):

wLOOCVdiag
=

C−1
diag1

1TC−1
diag1

⇐⇒ wLOOCVdiagi
=

eLOOCV (Mi)
−1∑p

j=1 eLOOCV (Mj)−1
. (17)

MoE approach

In Mixture of Experts (MoE) (Yuksel et al., 2012) predictions of each expert are weighted
by their posterior probability. The posterior predictive distribution of the mixture at x∗

given the data D is:

p(y∗|D,x∗) =

p∑
i=1

p(θ = θi|D)pθi(y
∗|D,x∗), (18)

where p(θ = θi|D) is the posterior probability of the sub-model i (with length-scales θi).
Using Bayes formula, we can express this posterior probability as:

p(θ = θi|D) =
p(D|θ = θi)p(θ = θi)∑p
j=1 p(D|θ = θj)p(θ = θj)

. (19)

The prior for the ith sub-model, p(θ = θi) is taken constant and p(D|θ = θi) is the
marginal likelihood L(θi) of the ith sub-model which is Gaussian and whose expression
was given in equation (3).

From equation (18), we can then obtain the predictive mean and variance of the combina-
tion:

Mtot(x) := E(y∗|D,x∗) =

p∑
i=1

wMoEiMi(x),

σ̂2
tot(x) := V ar(y∗|D,x∗)

=

p∑
i=1

wMoEi σ̂
2
i (x) +

p∑
i=1

wMoEi (Mi(x)−Mtot(x))
2 ,
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where the weights wMoEi are obtained combining equations (3) and (19):

wMoEi =
L(θi)∑p
j=1 L(θj)

. (20)

One drawback of MoE is that the likelihood of different sub-models can vary by several
orders of magnitude. Thus this method may emphasize one single sub-model with the best
likelihood instead of combining different sub-models.

3.3 Choice of the models length-scales

An appropriate choice of the fixed length-scales is essential to obtain a combined Kriging
model with a good accuracy. Variety among the sub-models is crucial so that the combined
model can select the most well-suited behaviors through the weights in the combination.
Since no prior knowledge is available for the length-scales and as they are the unique
source of difference between the Mi’s, to keep some variability, we choose them randomly
in a bounded interval:

θ(ℓ) ∈
[
θ
(ℓ)
min, θ

(ℓ)
max

]
, ℓ = 1, . . . , d, (21)

where θ
(ℓ)
min and θ

(ℓ)
max are lower and upper bounds for the ℓth component θ(ℓ) of θ. To

the best of our knowledge, only few works in the literature deal with length-scale bounds.
Mohammadi et al. (2016, 2018) deal with these bounds in an optimization context, but
it is common practice to assume pre-specified bounds. In the DiceKriging R package
(Roustant et al., 2012), by default, θ(ℓ)min = 10−10 and θ

(ℓ)
max is twice the observed range in

the ℓth dimension. Obrezanova et al. (2007) fix the length-scales based on the standard
deviation of the data. Issues related to flat likelihood landscapes may occur for too small
length-scales and a suitable lower bound for maximum likelihood estimation is proposed
in Richet (2018).

Intuitively, the choice of the length-scales range depends both on the design and on the
covariance function family. We study hereafter both factors separately, although it would
be possible to study them jointly.

Design impact

If the length-scales are large compared to most observed pairwise distances, then the cor-
relations will tend to one. If they are smaller than most distances, trajectories with higher
frequencies than observed in the given samples are implicitly considered. Therefore, length-
scales should be of the order of most of the observed pairwise distances.

Let us investigate the distribution of observed distances between design points. Assume
that design points are distributed as a random vector X = (X(1), . . . , X(d)), with respective
standard deviations σ(1), . . . , σ(d). As we do not consider here the cross influence of joint
length-scales, we investigate the impact of length-scales variations along the curve:

C :=
{
θ = λ(σ(1), . . . , σ(d)), λ ∈ R+

}
.

Now denote by
∥∥R

θ

∥∥ the scaled random distance between two distinct independent points
X and X′ of the design, using component-wise division. When θ ∈ C, this distance can be
expressed as a function of θ(ℓ):∥∥∥∥Rθ

∥∥∥∥2 := d∑
i=1

(
X(i) −X ′(i)

θ(i)

)2

=

(
σ(ℓ)

θ(ℓ)

)2 d∑
i=1

(
X(i) −X ′(i)

σi

)2

.
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Assuming the finiteness of the first four moments, when all components of X and X′ are
mutually independent with common kurtosis κ,

E

(∥∥∥∥Rθ
∥∥∥∥2
)

= 2d

(
σ(ℓ)

θ(ℓ)

)2

and V ar

(∥∥∥∥Rθ
∥∥∥∥2
)

= 2d

(
σ(ℓ)

θ(ℓ)

)4

(κ+ 1) .

Along the direction ℓ, using a simplified model, for d large enough, typical values of the
unscaled distance ∥θ(ℓ)Rθ ∥ are given by the root of a Gaussian 95% confidence interval (for
a Gaussian design, one should use the confidence interval of a χ distribution):[

r
(ℓ)
min, r

(ℓ)
max

]
:= σ(ℓ)[rmin, rmax]

:=

[
σ(ℓ)
√
2d− 1.96

√
2(κ+ 1)d, σ(ℓ)

√
2d+ 1.96

√
2(κ+ 1)d

]
. (22)

This interval corresponds to typically observed unscaled distances in the dimension ℓ. No-
tice that it grows as

√
d and that it is built around an average distance σ(ℓ)

√
2d along this

axis. For uniform random variables, the kurtosis is κ = 9/5, for Gaussian ones, it is κ = 3.

Covariance family impact

The impact of a change in the length-scales depends on the covariance function: for in-
stance, the covariance varies slowly at short distances for Gaussian kernels, whereas it varies
rapidly for exponential ones. This has to be taken into account when choosing length-scales
bounds.

Let k(
∥∥ r
θ

∥∥) be the covariance between two design points x and x′, where
∥∥ r
θ

∥∥ is the scaled
distance between the points and k(.) is the covariance function of an isotropic stationary
Gaussian Process. When θ ∈ C,

∥∥ r
θ

∥∥ can be expressed using only θ(ℓ). The influence of
θ(ℓ) on the covariance can be measured by the following normalized derivative:

I(ℓ)
(∥∥∥ r

θ

∥∥∥ , θ(ℓ)) :=

∣∣∣∣∣∣∣
∂

∂θ(ℓ)
k(
∥∥ r
θ

∥∥)
max

θ(ℓ),θ∈C
∂

∂θ(ℓ)
k(
∥∥ r
θ

∥∥)
∣∣∣∣∣∣∣ . (23)

The derivative with respect to the length-scale can be obtained easily by direct calculation
for the usual covariance functions. Along the axis ℓ, at a scaled distance

∥∥ r
θ

∥∥ = r
θ(ℓ)

, a
length-scale θ(ℓ) is considered influential enough if it belongs to:

Θ
(ℓ)
adm(r) :=

{
θ : I(ℓ)

(r
θ
, θ
)
≥ δ
}
,

where δ ∈ (0, 1) is a user-defined threshold that we set to δ = 1/10 in the following.

For r ∈
[
r
(ℓ)
min, r

(ℓ)
max

]
, length-scales bounds are chosen as:

θ
(ℓ)
min := inf

⋃
r∈

[
r
(ℓ)
min,r

(ℓ)
max

]Θ(ℓ)
adm(r) and θ(ℓ)max := sup

⋃
r∈

[
r
(ℓ)
min,r

(ℓ)
max

]Θ(ℓ)
adm(r) .

Note that multiplying distances by a scale factor α > 0 changes the set of admissible
length-scales by the same factor, Θ(ℓ)

adm(αr) = αΘ
(ℓ)
adm(r). Therefore, one only has to solve

for r = 1 in θ:
I(ℓ)

(
1

θ
, θ

)
= δ . (24)
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Figure 1: Influence index I(ℓ)(r/θ, θ) as a function of θ, for Gaussian (red) and exponential (blue)
covariance functions, r = 1. Threshold δ = 1/10 (black horizontal line). Large length-scales have
more impact with an exponential kernel than with a Gaussian one.

Design influence Kernel influence Resulting bounds
d Kernel k σ(ℓ) rmin rmax θ−(k) θ+(k) θ

(ℓ)
min θ

(ℓ)
max

10

Exponential
1√
12

2.31 5.89

0.15 3.76 0.10 6.39
Matérn 3/2 0.21 2.74 0.14 4.66
Matérn 5/2 0.23 2.44 0.15 4.15
Gaussian 0.29 1.96 0.19 3.33

50

Exponential
1√
12

8.20 11.5

0.15 3.76 0.36 12.5
Matérn 3/2 0.21 2.74 0.50 9.10
Matérn 5/2 0.23 2.44 0.54 8.10
Gaussian 0.29 1.96 0.69 6.51

d → ∞

Exponential
1√
12

√
2d

√
2d

0.15 3.76 0.061
√
d 1.54

√
d

Matérn 3/2 0.21 2.74 0.086
√
d 1.12

√
d

Matérn 5/2 0.23 2.44 0.094
√
d 1.00

√
d

Gaussian 0.29 1.96 0.12
√
d 0.80

√
d

Table 1: Table illustrating some values of the different terms in equation (25) for usual kernels, for
a uniform design plan (κ = 9/5), and for a standard deviation σ(ℓ) = 1/

√
12 corresponding to a

uniform designs in [0, 1]d. The chosen kernel influence threshold is δ = 1/10.

We denote respectively as θ−(k) and θ+(k) the smallest and largest roots of (24), which
depend only on the chosen covariance function k(.). The influence index and its roots are
illustrated in Figure 1 for the exponential and Gaussian kernels. The roots do not depend
on the component number ℓ, and we finally get:

θ
(ℓ)
min = σ(ℓ) rmin θ

−(k) and θ(ℓ)max = σ(ℓ) rmax θ
+(k) . (25)

Notice that rmin, rmax depend only on the design kurtosis κ and on the dimension d.
Examples of obtained bounds for uniformly sampled designs are given in Table 1. When d
tends to infinity, the length-scale range becomes equivalent to σ(ℓ)

√
2d[θ−(k), θ+(k)], and

only depends on the design distribution through σ(ℓ). The surprising result of distance
concentration in high dimension (rmin and rmax both equivalent to

√
2d as d increases, see

last lines in Table 1) is also discussed in the literature, see e.g. Aggarwal et al. (2001).
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Sampled bounds

The length-scales of the sub-models are sampled randomly in their corresponding interval.
Different sampling strategies can be considered (i.e. space-filling designs, sample plans
biased towards the center of the length-scale space). In this paper we use a uniform
sampling scheme:

θ(ℓ) ∼ U(θ(ℓ)min, θ
(ℓ)
max), ℓ = 1, . . . , d . (26)

4 Numerical results

4.1 Experiment setup

We compare the performances of the different combined models described in Section 3 with
the simple Kriging method on a numerical test problem. The test functions are random
samples of a high dimensional (d = 50) centered Gaussian process Y using a Matérn 5/2
covariance function with known isotropic length-scales θtrue = 2. To build the sub-models
and the simple Kriging model, ntrain = 500 random training points x1, . . . ,xntrain ∈ [0, 1]d

are uniformly sampled. For the length-scale bounds, we take a threshold δ = 1/10, the
kurtosis corresponding to a uniform distribution κ = 9/5, and we use the empirical standard
deviation of the design along each direction. The quality of each prediction Mtot is assessed
by the mean-square error (MSE) computed on a test set of ntest = 3000 random test point
x
(t)
1 , . . . ,x

(t)
ntest ∈ [0, 1]d:

MSE(Mtot) :=
1

ntest

ntest∑
k=1

(
Mtot(x

(t)
k )− Y (x

(t)
k )
)2

.

Additionally, in order to further interpret the results, the LOOCV error of each model is
also computed:

eLOOCV (Mtot) :=
1

ntrain

ntrain∑
k=1

(
Mtot−k

(xk)− Y (xk)
)2

.

In the first experiment, we consider a combination of p =10 isotropic Kriging sub-models
with a Matérn 5/2 covariance function and with fixed length-scales ranging from 1 to
10. The weights of the combinations are computed according to equations (12), (13),
(16), (17) and (20). In the second experiment, we build a set of p = 50 Kriging sub-
models M = {M1, . . . ,Mp}, this time with length-scales determined as in Section 3.3.
The combined models are then constructed by aggregating a gradually increasing number
of these sub-models (from 5 to all 50), using the 5 different methods for computing the
weights. Additionally, to investigate the robustness of the combinations to “wrong” sub-
models, the same combinations are also tested when 5 of these sub-models (M20, . . . ,M24)
are replaced with isotropic sub-models of large length-scales, θ = 10. For both experiments,
the performances of the combined models are compared with the accuracy of a simple
Kriging model with hyperparameters optimized by MLE (the optimization is performed
using the package DiceKriging in the R language Roustant et al. (2012)), and to a simple
Kriging model with the true hyperparameters θtrue as a reference. The experiments are
repeated for 10 different initial random samples of the Gaussian process, with different
random training and test samples, as well as different random length-scales for the sub-
models in the second experiment.

11



4.2 Results and discussion

The results of the first experiment are presented in the Figures 2 and 3. The first result to
note is the weak performance of the SK model with estimated hyperparameters (KrgMLE).
Since the model is well specified (the underlying function we try to approximate is a GP
sample with the same covariance structure), we would expect the MLE method to recover
the true hyperparameters (see Bachoc (2013)). The MSE error of this model is much
worse than the MSE of the model with the true hyperparameters in Figure 2a because the
maximum likelihood criterion for the hyperparameter optimization over-fits the training
data resulting in a maximum likelihood model with poor MSE performances. This over-
fitting is also highlighted in Figure 2b by the LOOCV error of the model with estimated
hyperparameters which is much smaller than that of the reference model. The PoE method
clearly performs the worst among the combined models because it gives almost all the
weight to the subs-models with large length-scales. The gPoE method avoids this issue
thanks its internal weights as shown in Figure 3a, and this method performs similarly to
the three others. The different weighting strategies of each method are shown in Figure
3. For the LOOCV method, the weights are fluctuating and hard to interpret, since their
values are not in the [0,1] interval. The LOOCV diag method gives weights which are
distributed quite uniformly among all sub-models though sub-models with θi ≈ θtrue are
highlighted, while the gPoE and MoE methods focus on the two more accurate sub-models.

(a) MSE (b) eLOOCV

Figure 2: MSE and LOOCV error (the lower the better) for the combinations of isotropic sub-
models for the approximation of an isotropic Gaussian process sample. The 5 five first boxes (blue)
correspond to the 5 weighting methods, the second to last box (red) to the simple Kriging model
with hyperparameters estimated by MLE, the last box (green) to a simple Kriging model with
θ = θtrue.

The results of the second experiment are given in Figure 4. First, we can note that the
SK model with estimated hyperparameters still overfits the data which results in a high
MSE. Contrarily to the first experiment, the PoE method performs well as seen in Figures
4a and 4f. This is because, in this experiment, the sub-models are no longer isotropic and
are all composed of both small and large length-scales. As such, the PoE combination
which favors the large length-scales is no longer restricted to a few “wrong” isotropic sub-
models with large length-scale. Moreover, a strategy which discriminates against small
length-scales lead to a better MSE since small length-scales often result in a Kriging model
with large variations, and thus potentially large MSE values, while large length-scales give
flatter models with moderate MSEs. We also note in Figure 4c that the accuracy of the
combined model using the LOOCV method steadily decreases when too many sub-models
are aggregated (more than 10). This is in contrast to the Figure 4h where the LOOCV error
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(a) gPoE (b) LOOCV

(c) LOOCV diag (d) MoE

Figure 3: Weights of the isotropic sub-models for the first experiment. The x-axis values represent
the isotropic length-scale of each sub-model, θ. For the gPoE method, the weights are the β internal
weights in equation 13, for the 3 other methods the weights are the constant weights used for the
combination.

of this method keeps decreasing when more sub-models are added, which is to be expected
as the weights in this method are designed to minimize this very error. This, again, can
be explained by the fact that this combination starts to overfit the data with too many
sub-models. However, this issue does not occur for the LOOCV diag method in Figures
4d and 4i where the MSE always decreases with P and converges to a threshold at about
15 sub-models in the combination. Finally, Figures 4e and 4j show that in this experiment
the MoE method produces poor results. This is because, in this 50-dimensional example,
the likelihoods of the sub-models are very small and differ by several order of magnitudes.
This results in an MoE weight of almost one for the sub-model with the best likelihood,
hence the method is almost equivalent to choosing only the best sub-model, thus using
only one single pre-specified covariance. We also note that, for the methods which give the
best accuracy (PoE, gPoE and LOOCV diag), the combined model is generally better than
the best sub-model with as few as five sub-models in the combination. This shows well
that the combination strategy is more effective compared to choosing the best sub-model
among random samples.

In the third experiment where “bad” sub-models with large length-scales are added, we see
in Figures 5a and 5f that the PoE method is strongly affected by the addition of these sub-
models as this method favors models with such length-scales. However, as seen in in Figure
5, the other methods are not affected and give similar results to the second experiment.

Table 2 gives a summary of the different properties observed for the 5 weighting methods in
these numerical experiments. The only method without a closed-form expression is gPoE
because of the inner weights optimization (equation (14)). As seen in the third experiment

13



(a) MSE (PoE) (b) MSE (gPoE) (c) MSE (LOOCV) (d) MSE (LOOCV diag) (e) MSE (MoE)

(f) eLOOCV (PoE) (g) eLOOCV (gPoE) (h) eLOOCV (LOOCV) (i) eLOOCV (LOOCV diag) (j) eLOOCV (MoE)

Figure 4: Results of the second experiment for an initial GP sample with isotropic length-scales
θ = 2. The top row shows the MSE results for the 5 combination methods, and the bottom row the
LOOCV error results (the lower the better). In each boxplot, the first box gives the accuracy of
the best sub-model BestSub (yellow), the next 10 boxes (blue) give the accuracy of the combined
model with an increasing number of sub-models (from 5 to 50), the second to last box KrgMLE (red)
gives the performance of a simple Kriging model with hyperparameters estimated by MLE, the last
box KrgTrue (green) gives the precision of a simple Kriging model using the same length-scale as
the initial GP sample.

(Figure 5b) PoE is not robust to “wrong” sub-models. In both the second (Figure 4c) and
the third (Figure 5c), we see that LOOCV overfits when there are too many sub-models.
Finally, all three experiments (Figures 2a, 4e and 5e) show that MoE does not suitably
balance the weight between all sub-models.

Method Closed-form
expression

Robust to wrong
sub-models

Robust to
over-fitting

Well-balanced
weights

PoE ✓ ✗ ✓ ✓

gPoE ✗ ✓ ✓ ✓

LOOCV ✓ ✓ ✗ ✓

LOOCV diag ✓ ✓ ✓ ✓

MoE ✓ ✓ ✓ ✗

Table 2: Empirical properties of the five weighting methods.
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(a) MSE (PoE) (b) MSE (gPoE) (c) MSE (LOOCV) (d) MSE (LOOCV diag) (e) MSE (MoE)

(f) eLOOCV (PoE) (g) eLOOCV (gPoE) (h) eLOOCV (LOOCV) (i) eLOOCV (LOOCV diag) (j) eLOOCV (MoE)

Figure 5: Results of the third experiment. The set-up is similar to the second experiment in Figure
4 with the exception that sub-models 20 to 24 are replaced by isotropic Kriging models with large
length-scales (θ = 10).

5 Conclusion

In this paper, we have proposed a new method to construct a surrogate model as a combina-
tion of Kriging sub-models which avoids the cumbersome optimization of the length-scales
hyperparameters. The length-scales of the sub-models are pre-specified, for instance ran-
domly, and the combined model emphasizes the important ones. We also provided a recipe
for the choice of the length-scale bounds, as well as a comparison of different methods for
weighting the sub-models.

Compared to other approaches, our method provides a novel way to build a Kriging-based
surrogate model for high dimensional problems without employing dimension reduction
techniques. The accuracy of our surrogate model is improved in comparison to simple
Kriging models where the length-scales are optimized by MLE and which performs poorly
in high-dimension. Moreover, the computational cost of the model is reduced as only p
matrix inversion are needed to build the p sub-models, which, for a reasonable number of
sub-models, is less expensive than the standard length-scale optimization which requires
iterative covariance matrix inversions.

The numerical results for the 50 dimensional test problem show that our method performs
significantly better than simple Kriging with hyperparameters optimized by MLE. In par-
ticular, both the gPoE and LOOCV diag stand out as the best approaches to combine
the sub-models and give an accuracy close to that of the reference model with about 15
sub-models.

Two main aspects still need to be explored in further research. First, we can think of com-
bining different kinds of sub-models, for example for problems where the design variables
can naturally be separated into different groups, or by varying the covariance function,
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to further diversify the sub-models instead of considering identical sub-models sharing the
same points and design variables. Second, the variance of the aggregated model, which
is mandatory to apply our method to the EGO framework for Bayesian optimization, is
currently available only for the MoE weighting. Extending the current method to obtain
variance estimates for other weighting approaches and applying it to Bayesian optimization
constitutes an interesting research direction.
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A Appendix - further numerical results

In this appendix, we give additional numerical results where we vary the length-scale of
the initial GP to approximate. The second and third experiments of Section 4 are repeated
for θtrue = 1.5 and θtrue = 3.

A.1 Smaller underlying length-scale θtrue = 1.5

The results for θtrue = 1.5 in Figures 6 and 7 are similar to what was obtained for θtrue = 2
in Section 4.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: Results of the second experiment for θtrue = 1.5

A.2 Larger underlying length-scale θtrue = 3

The results of the second experiment for θtrue = 3 are also similar to those with θtrue = 2.
However, there is a difference in the third experiment as in this case, the sub-models with
large length-scales (θ = 10) added in the combination have a better precision than the
sub-models with random length-scales. This is because the length-scale of the initial GP
θtrue = 3 is a quite large value in this 50-dimensional case. As such, the precisions of all
combinations in Figure 9 improve when these sub-models are added, especially for PoE (9a)
and MoE (9e) which assign them a lot of weight: PoE because it always favors the larger
length-scales, and MoE because in this case the sub-models with the larger likelihood,
which are assigned almost all the weight, are the sub-models with large length-scales.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7: Results of the third experiment for θtrue = 1.5

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8: Results of the second experiment for θtrue = 3
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9: Results of the third experiment for θtrue = 3
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