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Anis Hoayek* and Didier Rullière*
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Abstract

Unsupervised clustering algorithms are a very important source of in-
formation for how a dataset may be classi�ed into subgroups of homoge-
neous sets. For these algorithms we present a full analysis of their quality
by introducing a clustering con�dentness metric. Based on this metric,
a statistical test and a correction of cluster probabilities are introduced
to improve the performance of the di�erent algorithms. These results are
illustrated by simulation analysis and by an application on a real world
data set.

1 Introduction

In unsupervised learning, clustering methods are very popular methods that
associate each observation to a cluster index. Such methods are known as hard
clustering approaches. In situations where some observations are di�cult to
associate with certainty to speci�c clusters, fuzzy clustering may be used: fuzzy
clustering methods, known also as soft clustering methods, associate to each
observation the probability to belong to each possible cluster index, (see e.g
Ruspini et al., 2019; Yang, 1993; De Oliveira and Pedrycz, 2007, among many
other references). There is a wide diversity of clustering methods: a �rst subdiv-
ion is to distribute clustering methods into two families: 1) partitional clustering
algorithm (e.g. K-means, density based clustering, genetic algorithm and many
other methods), (see e.g. MacQueen (1967); Kriegel et al. (2011); Forrest (1996);
among many other references) in which data is organized into a sequence of
groups without any hierarchical structure (Ezugwu et al. (2022)); 2) hierarchi-
cal clustering algorithm (e.g. Linkage algorithm, divisive clustering), (see e.g.
Dawyndt et al. (2005); Roux (2015)) .

A problem for fuzzy clustering is to compare di�erent available methods. Are
they overcon�dent, as in the case where proposed probabilities are all close to 0
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or 1? are they undercon�dent, as in the case where each observation can belong
to any cluster, with equal probabilities? how to measure this con�dentness of
the clustering method? how to compare clustering methods? how to propose
corrections to proposed probabilities in case of over or undercon�dent clustering
method?

The con�dentness of a clustering method is indeed of practical interest, be-
yond the quality of a classi�cation. If the clustering method is too uncertain,
it may induce avoidable checks (medical investigations for example, with costs
or adverse e�ects). If the clustering method is too con�dent, it may disable
useful alerts (need of medical checks for example). It may be interesting also to
identify points in proposed clusters where the clustering is too uncertain. It is
thus of interest to choose carefully the fuzziness of a clustering method.

In the literature, to our knowledge there is very few works on the fuzziness
assessment of a clustering method. Some existing indices, as Dave's, Bezdek, and
Xi-Beni validity measurement indices (see for example Bataineh et al., 2011),
do not directly assess the con�dentness of the clustering method.

However, some papers in the literature deals with overcon�dentness issue,
see Park et al. (2021), in a speci�c context of computer vision. Aghababyan
et al. (2018) proposed an entropy based metric to evaluate the con�dentness of
clustering algorithm without proposing any correction of the underlying prob-
abilities in case of over/undercon�dent methods. Yao et al. (2000) introduced
a new fuzzy clustering algorithm based on entropy without investigating about
the con�dentness level of the proposed algorithm with respect to other state of
the art methods. In addition, to the best of author's knowledge no work has
been done on proposing a statistical hypothesis test to decide about accepting or
rejecting a clustering method based on its con�dentness level. In this paper an
entropy based clustering con�dentness metric is introduced. Based on this met-
ric one will be able to compare the performance of any two clustering algorithms
and a statistical test is introduced to decide about accepting or rejecting a clus-
tering method. Furthermore, in the context of over/undercon�dent clustering
method, a parametric correction of the underlying probabilities is proposed in
order to improve the performance of the clustering.

In this paper, we �rst introduce, in Section 2, a metric to measure clus-
tering con�dentness using entropy with some applications based on numeric
simulations. In Section 3, a statistical test helping users to decide about accept-
ing or rejecting a given clustering algorithm is described. Then, in Section 4,
we propose a parametric correction method of the underlying probabilities of
under/overcon�dent clustering algorithms. An application of the whole method-
ology on a real data set is shown in Section 5. A conclusion closes the paper.

2



2 Measuring clustering con�dentness

Let I be a �nite set of cluster indexes. In this work, (Ω,F ,P) is a probability
space and for any i ∈ I, Xi is a Rd valued random variable de�ned on Ω with a
cumulative distribution function Fi (·), and a probability density function fi (·)
with respect to the Lebesgue measure in Rd.

These random variables Xi, i ∈ I have distinct distributions, as they cor-
respond to individuals of di�erent clusters. Assume that one chooses a cluster
index with a random variable I taking values in I. One labelled observation of
the corresponding individual is given by the couple (XI , I). The purpose of a
clustering procedure is to retrieve the association between observations of the
mixture distribution XI and labels I when the labels are lost.

In this paper, we aim at assessing the performance of di�erent clustering
methods. Notice that the precise value of the labels has no impact, so that
a perfect clustering procedure can associate I or any permutation σ(I) to the
observations XI . The performance measure should be insensitive to permuta-
tions of I. We present hereafter a criterion and some tests based on Shannon's
entropy.

2.1 Theoretical entropy

A labeled clustering is given by the joint distribution of (XI , I). When the
labels are lost, we aim at inferring the values of the random variable I given the
observations XI .

Recall that I = {1, 2, . . . , |I|} is the �nite set of all possible cluster indexes.
Consider the mixture distribution given by:

G = XI , with I ∈ I and each Xi ∼ Fi, i ∈ I.

Fi is the cumulative distribution function (cdf ) of the random variable (rv) Xi.
Then, the cdf FG and the probability density functions (pdf ) fG of G are as

follows: {
FG (x) =

∑
i∈I αiFi (x) ,

fG (x) =
∑
i∈I αifi (x) ,

where, fi is the pdf of Xi, with αi = P [I = i] and
∑
i∈I αi = 1.

Therefore, the probability that a given observation x is sampled from the
underlying rv Xi is:

pi (x) := P [I = i | G = x] ,

=
αifi (x)∑
j∈I αjfj (x)

.

Now, we compute Shannon's entropy of the rv I given G = x, measuring the
information on the fact that an observation x is sampled from the distribution
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Fi, i ∈ I:

HG (x) = −
∑
i∈I

pi (x) log2 pi (x) ,

under the convention that 0 log2 0 = 0.
Recall that I is the hidden cluster index associated to XI . The former en-

tropy measures the uncertainty of the clustering at a given point x. When it is
equal to 0, e.g. in the case when pi(x) = 1 for a given i and 0 otherwise, then
it is certain that x was sampled from a speci�c known index i. This entropy is
maximal when all pi(x) are equal, so that one has totally lost the information
about the index I that has generated the observation x.
This entropy is insensitive to cluster index permutations, which is a desirable
property, as stated in the introduction.

Consider the function HG : x → HG (x) ∈ R+. Applied to a random ar-
gument G, this function de�nes the random variable HG (G) ∈ R+. HG(G)
measures the uncertainty of the clustering at a random point having the same
distribution as G

The distribution of this random variable shows the discriminating power of
the considered clustering approach: e.g., the higher its mean, the more ambigu-
ous the situation is. However, a mean close to zero re�ects a clustering where
one expects to easily associate a unique label to each point x. On the other
hand, a low dispersion shows that the di�culty of cluster labeling is the same
for all point x, whereas a high dispersion indicates that some points are easier
to label than others.

To illustrate the function HG we consider a few basic examples:

Case A Let G be a Gaussian mixture distribution in one dimension with a pdf :

fG (x) = 0.3fN (0,1)(x) + 0.5fN (10,1)(x) + 0.2fN (3,0.1)(x).

where fN (.,.) denotes the pdf of a Gaussian r.v. with indicated param-
eters. The left side of Figure 1 represents the pdf of G, while the right
side illustrates the function HG . One can remark that the labeling is per-
fectly accurate when the values x of G are far from the central area of
the distribution (i.e. left and right queues of the mixture distribution).
However, the di�culty of cluster labeling is higher for central values where
the region is fuzzy in terms of distribution selection.

Case B Let G be a Dirac mixture distribution in one dimension with a probability
distribution:

P [G = x] = 0.31{x=0} + 0.71{x=3}

where, 1{x=a}, a ∈ R is the indicator function de�ned by:

1{x=a} =

{
0 ifx 6= a

1 ifx = a
.
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Figure 1: Gaussian mixture distribution of Case A. Left: pdf of the mixture
distribution G, right: entropy HG representing the variation of the labeling
di�culty.

The left side of Figure 2 represents the probability masses of G, while the
right side illustrates the function HG . One can remark that the labeling is
perfectly accurate for all values of x. This is well suited to the Dirac case
where the discrimination between di�erent clusters/labels is obvious.

Case C Let G be a two dimensional Gaussian mixture distribution with a pdf :

fG (x) = 0.4fN (µ1,Σ1) + 0.6fN (µ2,Σ2),

where, µ1 = (0, 0)
T
and µ2 = (4, 4)

T
. In addition Σ1 =

(
1 0
0 1

)
and

Σ3 =

(
2 0.4

0.4 2

)
.

The left side of Figure 3 represents the contour lines of the pdf of G, while
the right side illustrates the contour lines of HG . Once again one can say
that the accuracy of the labeling is lower on zones that are with a high
fuzziness level (e.g. between the two modes), and thus di�cult to label.

2.2 Empirical entropy

The idea we develop below is that a fuzzy clustering algorithm, applied to an iid
sample of G, should end up with an entropy distributed as the random variable
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Figure 2: Dirac mixture distribution of Case B. Left: probability masses of the
mixture distribution G, right: zero-valued entropy HG representing the trivial
labeling of any observation of G.

Figure 3: Two dimensional Gaussian mixture distribution of Case C Left: pdf

of the mixture distribution G, right: entropy HG representing the variation of
the labeling di�culty.
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HG (G). If it concludes with a lower mean entropy, then the clustering algorithm
is too overcon�dent in its associations/labeling. If it concludes with a higher
mean entropy, then the clustering algorithm is too hesitating.
Hence, the distribution of HG (G) re�ects the di�culty of the labeling problem.
In fact, depending on the underlying structure of G, some clustering algorithms
may perform better then others.

Notice that we will be able to compare algorithms that associate a cluster
index probability for each point, and algorithms that associate a unique label
to each point.

We start by generating n observations D = {x`}`=1,...,n from an iid sample
of the mixture distribution G. Let Gn be a rv distributed as the empirical dis-
tribution of this data D.

We run a clustering algorithm on our generated data by �xing the set of
cluster indices to be a �nite set J , not necessary of the same cardinal of I.

Then, for each generated observation x`, ` = 1, . . . , n, we get, as an output
of the clustering algorithm, the probability distribution of belonging to di�erent

clusters, which will be denoted by
{
p

Cj
(x`)

}
j∈J

`=1,...,n

, where p
Cj

(x`) is the

probability to associate x` to cluster cj . Now, based on these probabilities a
new Shannon's entropy distribution is computed:

HC (x) = −
∑
j∈J

p
Cj

(x) log2 pCj
(x) .

Considering a random argument Gn, we aim at comparing the distributions
of the two random variables HG (G) and HC (Gn).

Therefore, in order to compare the entropy distributions of the random vari-
ables HG (G) and HC (Gn) a distance is calculated. We denote this distance
by:

D (HG (G) || HC (Gn)) .

Note that, the distribution of HG (G) represents the theoretical labeling dif-
�culty for the mixture distribution, whereas HC (Gn) represents the perceived
labeling di�culty of the clustering algorithm on the data.

Now, we reconsider the �rst two examples of Section 2.1 and we test the
proposed approach on two clustering methods:

1. In the �rst application, the K-means clustering approach is applied on a
sample of n = 10 000 observations generated from the mixture distribu-
tion G. In order to assess the performance of the considered method, the
Kolmogorov-Smirnov test is applied as a comparison tool between the en-
tropy distributions HG (G) and HC (Gn). In the one dimensional Gaussian
mixture model (Case A), the cardinal of J was considered to be equal to
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three. Kolmogorov-Smirnov statistics has a value ofD (HG (Gn) || HC (Gn)) =
0.43 with a p − value of ≈ 0%. Then, one can say that the two distribu-
tions are signi�cantly di�erent and that the proposed clustering method
fails to identify the labeling di�culty. This is expected as a hard cluster-
ing here is clearly overcon�dent in its labeling. However, the K-means
applied on Dirac mixture underlying distribution, with J = 2, gives
D (HG (Gn) || HC (Gn)) ≈ 0 and a p − value of ≈ 100%. Then, in the
Dirac case, K-means succeed perfectly in re-�nding the original labels of
the observations. Note that these results �t well with the nature of the
K-means algorithm, which proposes labeling with no degree of fuzziness,
known as hard clustering approach. Hence, one can conclude that such
kind of clustering algorithm is to be selected when the underlying structure
of G is more categorical, as in the case of a Dirac distribution.

2. In the second application, a soft clustering approach is applied. To do this,
we have chosen the fuzzy clustering algorithm called �fanny� which was
introduced in Chapter four of Kaufman and Rousseeuw (1990). Here, for
each observation, instead of considering only one clustering label, prob-
abilities of di�erent clustering labels is computed. Now, under the same
hypothesis of the �rst application, Kolmogorov-Smirnov statistics has a
value of ' 1 with a p − value of 0% for both Gaussian and Dirac cases.
Then, for the Gaussian underlying distribution, the considered soft ap-
proach has no additional value compared to the K-means and the algo-
rithm fails again in identifying the labeling di�culty. However, for the
Dirac case the soft approach, unlike the K-means, is not able to identify
well original labels, which is logical due to the fact that in Dirac case the
mass function is concentrated at only one point. Finally, the comparisons
of the cdf of both HG (·) and HC (·) in Figure 4 shows that, as a result
of its high fuzziness, the chosen clustering is under-con�dent. In fact, the
values ofHG (·) are almost concentrated in the interval [0, 0.15] while those
of HC (·) are spread on [0.15, 1.4]. In addition, Table 1 shows that, under
the Gaussian assumption, the distribution of HC (·) is more volatile with
signi�cantly higher mean comparing to HG (·) which is another evidence
of the high level of uncertainty of the soft clustering algorithm.

2.3 Jensen-Shannon Divergence

In this subsection the distance between two entropy distributions P and Q is
calculated based on Jensen-Shannon divergence (JSD) metric de�ned by:

JSD (P || Q) =
1

2
[KL (P || R) + KL (Q || R)] ,

8



Figure 4: CDF of di�erent entropies (under fanny algorithm) in the case of
a Gaussian mixture distribution (n = 10 000 observations). On the left: one
dimensional case of Case A, on the right: two dimensional case of Case C

1-D Gaussian case 2-D Gaussian case
HG (Gn) HC (Gn) HG (Gn) HC (Gn)

Mean 0.008 0.585 0.056 0.681
Variance 0.0014 0.1004 0.027 0.024
Minimum 0 0.144 ' 0 0.415
Maximum 0.993 1.534 ' 1 1

Table 1: Moments of entropy distributions for soft clustering fanny-algorithm
(n = 10 000 observations)
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Figure 5: CDF of di�erent entropies in the case of a 2-D Gaussian mixture
model, Case C, (n = 10 000 observations) for fanny and FKM algorithms.

where R = 1
2 (P +Q) and KL (P || R) denotes the Kullback-Leibler divergence

between probability distributions P and R. Note that the JSD has the following
properties: 1) Non negative measure; 2) Symmetric measure and 3) JSD ∈
[0, 1] , with JSD = 0 if and only if P = Q. In addition, this metric is more suited
to the case of fuzzy underlying distributions when soft clustering algorithm are
applied.

Then, by applying the JSD on our previous examples we get the following
results:

1. For the Gaussian mixture distribution and �fanny� clustering algorithm
context with a sample size n = 10 000: JSD (HG (Gn) || HC (Gn)) = 0.985
for one dimensional Gaussian case and JSD (HG (Gn) || HC (Gn)) = 0.897
for the two dimensional case. Then, one can say that the performance of
�fanny� algorithm is better in two dimensional Gaussian mixture distri-
bution but it still an under-con�dent approach (see Figure 4 and Table
1). Note that, in the numerical illustrations of this paper, in order to
compute di�erent JSD, random variables HG (Gn) and HC (Gn) were dis-
cretized with a constant step size of 0.001.

2. Now in order to compare the e�ciency of two di�erent soft clustering algo-
rithm �fanny� and �Fuzzy K-means (FKM)� introduced by Bezdek (1981)
we consider a sample n = 10 000 of the two dimensional Gaussian mixture
distribution Case C introduced in Section 2.1. Under these assumptions we
get JSD (HG (Gn) || HC (Gn))

fanny
= 0.897 > JSD (HG (Gn) || HC (Gn))

FKM
=

0.658. Then the FKM algorithm is more suited to �nd the hidden labels
of such data. The result is illustrated in Figure 5.
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n 1-D Gaussian case 2-D Gaussian case

100 1.000 1.000
500 0.991 0.967
1000 0.997 0.959
3000 0.990 0.921
5000 0.990 0.920

(a) Performance of �fanny� algorithm for di�erent values of n

n fanny FKM

100 1.000 0.960
500 0.967 0.846
1000 0.959 0.817
3000 0.921 0.707
5000 0.920 0.664

(b) Comparing the perfor-
mance of �fanny� and FKM al-
gorithms for di�erent values of
n, Case C

Table 2: JSD for di�erent values of n, the lower the better.

To study the impact of the sample size n on the quality and the performance
of di�erent clustering algorithms, Table 2a shows JSD (HG (Gn) || HC (Gn)) for
di�erent values of n in the case of one and two dimensional Gaussian underlying
distribution and in the context of �fanny� clustering algorithm. On the other
hand Table 2b shows a comparison between JSD (HG (Gn) || HC (Gn))

fanny
and

JSD (HG (Gn) || HC (Gn))
FKM

for di�erent values of n in the case of two dimen-
sional Gaussian mixture distribution. In both cases, especially for 2-D Gaussian
case, JSD is decreasing for high values of n. Then, one can say that the ability
of a clustering algorithm to reconstruct original hidden labels is partly related
to the uncertainty on the empirical distribution.

As not to be limited to the comparative aspect of our approach, its impor-
tant to propose a method that helps setting a kind of threshold or boundary
between accepted and rejected clustering method, in terms of labels reconstruc-
tion performance, for a given set of data.

3 Statistical test

Using the results of Section 2, we can also make some progress on the problem
of selecting a good clustering method that �ts well the original mixture distri-
bution assumption. We consider the context of a statistical test with H0 : �the
entropy of clustering method �ts the original mixture distribution assumption�
vsH1 : �the entropy of the clustering method doesn't �t the mixture distribution
assumption�. In other words one can write:

H0 : HC (G)
d
= HG (G) .

To this end, the problem of obtaining an approximate critical region of the
considered test, under H0, can be solved by applying a numerical simulation
method. To specify this critical region, two samples of n1 and n2 observa-
tions respectively are generated according to the mixture distribution G. The
distance between HG (Gn1

) and HG (Gn2
) is calculated. By repeating this pro-

cedure a large number of times, one obtains the approximate quantiles of the
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distribution of D (HG (Gn1) || HG (Gn2)) from which one can get a critical region
of approximated level α. Then, a clustering method, on a sample of n observa-
tions, is accepted if D (HG (Gn) || HC (Gn)) < (1− α)

th
quantile of the obtained

distance distribution.
If Kolmogorov Smirnov statistic is used to compute the distance between

HG (G) and HC (G), then the decision of accepting or rejecting H0 can be di-
rectly assessed based on the quantile of a Kolmogorov distribution under a given
asymptotic con�dence level α.

As an application, using JSD metric, we consider testing H0 vs H1 where
the underlying distribution is the two dimensional Gaussian mixture de�ned
in Section 2.1. Based on the numerical simulation method described above,
with n1 = n2 = 10 000, and by repeating the procedure 1000 times, we ob-
tain the approximate quantiles of the corresponding JSD distribution and the
critical region of approximated level α = 5%, which is qJSD0.95 = 0.04. Then
for a given clustering algorithm if JSD (HG (Gn) || HC (Gn)) > qJSD0.95 we re-
ject H0. Hence the clustering method fails to understand the labeling di�-
culty of the considered observation. In our case, both fanny and FKM are re-
jected as both JSD (HG (Gn) || HC (Gn))

fanny
and JSD (HG (Gn) || HC (Gn))

FKM

are greater than 0.04.

4 Correction of clustering probabilities

Assume that the statistical test of Section 3 is rejecting the clustering method.
Before proposing another clustering algorithm, a possible solution is to adjust
the underlying cluster probabilities using a parametric transformation.

Recall that p
Cj

(x`) is the probability to a�ect observation x` to cluster cj .
In order to adjust these probabilities to �t the original mixture distribution we
propose the following transformation:

p
Cj

(x`)
∗

=
p

Cj
(x`)

θ∑
i∈J pCi

(x`)
θ
, (1)

where J is the proposed set of cluster indices and θ ∈ R+ a parameter, to be
estimated, re�ecting the reason behind the bad clustering quality.

Then, based on these new probabilities a new clustering entropy is calcu-
lated. We denote it by HC (G, θ). Hence, one may assess the e�ect of this
transformation by recomputing JSD (HG (Gn) || HC (Gn, θ)).

Now, the optimal value of the parameter θ is the one minimizing the previous
JSD, which will be given by:

θ̂ = arg min
θ

JSD (HG (Gn) || HC (Gn, θ)) .

So, in case θ̂ > 1, one can say that the proposed clustering algorithm is not
categorical enough and has a higher fuzziness level then the one of the original
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Training set Testing set

JSD(θ = 1) θ̂ JSD
(
θ̂
)

JSD(θ = 1) JSD
(
θ̂
)

Fanny 0.895 5.958 0.043 0.918 0.088
FKM 0.630 3.348 0.039 0.678 0.084

Table 3: Comparison of JSD: original vs corrected on testing and training data

mixture distribution. Otherwise, if θ̂ < 1, the current clustering algorithm is too
categorical and we need to regularize it by injecting some source of fuzziness.
Due to this interpretation, the parameter θ̂ can be considered as a fuzziness
index.

To study the e�ciency of this approach, we apply it on a previous example
considering two di�erent soft clustering algorithm �fanny� and �Fuzzy K-means
(FKM)�. We generate a sample n = 10 000 of the two dimensional Gaussian
mixture distribution with the same parameters as the one in Section 2.1. Based
on this training sample we calculate the estimator θ̂ of θ. Then, we use the value
of this estimator to correct the probabilities proposed by each of the clustering
algorithm on a testing sample of 3000 observations and we compare the impact
of this correction on the quality of the clustering on both training and testing
sets by calculating the corresponding JSD. Under these assumptions we get
results summarized in Table 3.

Then, by applying the parametric transformation proposed in Equation (1)
we are able to reduce enormously the JSD and correcting the behavior of both
algorithms to be more suited to �nd the hidden labels of the original data. Even,
on the testing set the correction has a signi�cant positive impact on the clus-
tering quality for both algorithm. In addition, comparison of the cdf of di�erent

Entropies
(
HG (Gn) vsHC

(
Gn, θ̂

))
are illustrated in Figure 6 for training set

and Figure 7 for testing.
Note that a more complex transformation than the one proposed in (1) can

be done using more than one parameter and focusing on local parts of the
distribution. By adapting the same approach described in this section we can
select the best transformation according to, say, the least JSD criterion. Also,
as the application is done on data with gaussian underlying distributions, it is
obvious to expect that the best performance, in terms of clustering, will be for
the Gaussian Mixture Model (GMM) based clustering method, introduced by
McLachlan and Basford (1988), where gaussian distributions are considered as
priors. As expected, even before correction, JSD of the GMM method is about
0.042 for training and 0.089 for testing with a good �tting of the CDFs of the
two entropies (see Figure 8).
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Figure 6: CDF of di�erent entropies in the case of a 2-D Gaussian mixture model
(n = 10 000 observations, Case C) for fanny (θ̂ = 5.958) and FKM algorithms

(θ̂ = 3.348) with modi�ed probabilities applied on training data

Figure 7: CDF of di�erent entropies in the case of a 2-D Gaussian mixture model
(n = 3 000 observations, Case C) for fanny (θ̂ = 5.958) and FKM algorithms

(θ̂ = 3.348) with modi�ed probabilities applied on testing data

Figure 8: CDF of di�erent entropies in the case of a 2-D Gaussian mixture
model (n = 10 000 observations, Case C) for GMM algorithm (θ̂ = 0.970)
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Furthermore, in order to assess the ability of fuzzy clustering methods in
reconstructing the original clusters of an underlying data, after the application
of the proposed probability transformation, we used the theoretical labels of
the 2-D Gaussian mixture distribution generated in Subsection 2.1. Then, the
idea is to make a confusion matrix comparing theoretical labels with the labels
proposed by the clustering method. The accuracy of each clustering method is
calculated as the proportion of well classi�ed observation and formulated by:

Accuracy =
1

n

n∑
`=1

∑
j∈J

P [assign observation ` to cluster j/Theoretically observation ` is in cluster j] .

(2)
Tables 4 and 5 show the clustering accuracy as de�ned in Equation (2) for

several soft clustering method applied on 2-D Gaussian mixture distribution
generated data, before and after applying the correction of clustering probabili-
ties on training and testing sets respectively. Note that here also θ is estimated
on the training set and used to correct clustering probabilities on the testing
set. In general, the accuracy of the clustering is improving in a signi�cant way
after applying the correction method, except for the GMM clustering method
where the accuracy is almost the same as this method is designed to deal with
gaussian mixture underlying distributions which is �tting perfectly the gener-
ated data. In addition, the estimated value of θ is giving information about the
quality of the clustering method. For Fanny and FKM algorithms the fuzzi-
ness index θ̂ is far greater than one, so these two methods are not categorical
enough and have higher fuzziness level than the original mixture. However, θ̂
for GMM is close to one, which is reasonable because GMM is designed in a
way to generate original clusters of a gaussian mixture distribution. Also, an
added value of the proposed correction method, is that after performing the
correction one can revisit the result of the statistical test that was introduced in
Section 3 to reassess if after modi�cation a certain clustering method, that was
rejected previously, is now accepted. Conclusions of the statistical test applied
on several soft clustering methods before and after probability correction are
presented in Tables 6 and 7 for training and testing sets respectively. It is clear
that after applying the parametric correction of the probabilities, the values
of the statistic of the test of Section 3 decrease signi�cantly to become much
closer to the critical region empirical quantile

(
qJSD0.95 = 0.04

)
. In fact some of the

clustering algorithms that was rejected before correction are accepted after it.
Then, correcting clustering probabilities makes: 1) di�erent clustering method
more accurate in reconstructing original clusters and 2) the comparison between
di�erent clustering method more reasonable in addition to the selection of the
best performing one.
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Clustering method Accuracy before correction Accuracy after correction θ̂

GMM 0.968 0.980 0.970
Fanny 0.802 0.968 5.958
FKM 0.904 0.969 3.348

Table 4: Accuracy of di�erent clustering methods calculated on training data
before and after correction, the higher the better. θ is estimated based on the
training set and used to correct clustering probabilities on both training and
testing sets.

Clustering method Accuracy before correction Accuracy after correction θ̂

GMM 0.978 0.978 0.970
Fanny 0.798 0.967 5.958
FKM 0.901 0.967 3.348

Table 5: Accuracy of di�erent clustering methods calculated on testing data
before and after correction, the higher the better. θ is estimated based on the
training set and used to correct clustering probabilities on both training and
testing sets.

Value of the JSD statistic Decision about H0

Clustering method Before correction After correction Before correction After correction

GMM 0.042 0.035 Accepted Accepted
Fanny 0.895 0.043 Rejected Accepted
FKM 0.630 0.039 Rejected Accepted

Table 6: Statistical test conclusions on training data. JSD is calculated on
training data before and after correction, the lower the better. θ is estimated
based on the training set and used to correct clustering probabilities on both
training and testing sets.

Value of the JSD statistic Decision about H0

Clustering method Before correction After correction Before correction After correction

GMM 0.089 0.086 Rejected Rejected
Fanny 0.918 0.088 Rejected Rejected
FKM 0.678 0.084 Rejected Rejected

Table 7: Statistical test conclusions on testing data. JSD is calculated on testing
data before and after correction, the lower the better. θ is estimated based on
the training set and used to correct clustering probabilities on both training and
testing sets.
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5 Application on real data

As an application of our approach, we use an open source data from the UCI Ma-
chine Learning Repository, Dua and Gra� (2017), available at https://archive.

ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29. This data
classi�es n = 569 individuals in either malignant (M) or benign (B) breast cancer us-
ing 30 numeric features characterizing each person. I.e., a space of dimension R569×30,
labeled into I = {1 = ”M”, 2 = ”B”} cluster indexes. Therefore, assuming that we are
in the context of a mixture distribution G, the probability that a given observation x
is sampled from the underlying rv Xi can be estimated for any i ∈ I, by for example:

p̂i (x) =
α̂if̂ i (x)∑

j∈I α̂j f̂ j (x)
, (3)

with, f̂ i (·) the kernel density estimation (KDE) of the observations generated by
the underlying rv Xi (i.e., observations in the cluster of index i). In other words it
is an estimation of the pdf of the rv Xi. . Note that, practically one can use kernel
density estimation (KDE) functions, already implemented in statistical software, to
compute these values. The quantity α̂i is the proportion of observations in the same
cluster, i.e.,

α̂i =
Number of observations in cluster i

n
.

For the three di�erent soft clustering methods introduced previously, we compare the
impact of the parametric correction proposed in Equation (1) on the quality of the
clustering by �rst estimating the optimal value of θ, on a training set representing
80% of the considered data set, and then calculating the corresponding JSD on both
training and testing sets. Results are in Tables 8 and 9.

Considering clustering fuzziness, Fanny is the worst clustering method for the con-
sidered data, even after the correction it is a�ecting the same probability for both
clusters (1 and 2) without any discrimination power. On the other hand, the per-
formance of FKM and GMM is improving enormously after the correction with a
preference to the GMM method. The signi�cant impact of the parametric correction
on FKM and GMM can be seen also when comparing the CDF of the entropies before
and after correction in Figures 9 and 10. Note that, the impact of the correction for
the GMM is limited because even before correction GMM is performing well on re-
constructing original labels. In addition, one can remark that the estimated value of θ
for the FKM is far higher than one which is equivalent to say that FKM has a higher
fuzziness level than the original mixture of the considered cancer data set. However,

Training set

JSD(θ = 1) θ̂ JSD
(
θ̂
)

Fanny 1 0.001 1
FKM 0.989 9.883 0.249
GMM 0.0834 1.652 0.0556

Table 8: Comparison of JSD: original vs corrected on training data. θ is esti-
mated on the training set and used to compute JSD (the lower the better) on
both training and testing sets.
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Testing set

JSD(θ = 1) θ̂ JSD
(
θ̂
)

Fanny 1 0.001 1
FKM 1 9.883 0.352
GMM 0.0709 1.652 0.0827

Table 9: Comparison of JSD: original vs corrected on testing data. θ is estimated
on the training set and used to compute JSD (the lower the better) on both
training and testing sets.

Figure 9: CDF of di�erent entropies for FKM algorithms with and without
modi�ed probabilities applied on cancer data

the fuzziness index θ̂ for GMM is close to one, which is reasonable because GMM is
already performing well on discrimination level even before the correction.

Now, by focusing only on FKM and GMM we can also compute the accuracy
of each clustering method before and after the parametric correction based on the
approach described in Equation (2). Here also θ̂ is estimated on the training set and
used to compute the clustering accuracy for both training and testing sets. Results
are in Tables 10 and 11. On both training and testing datasets one may remark
that the clustering accuracy of the FKM method is improving signi�cantly after the
correction of the corresponding probabilities. However, the correction has no impact
on the accuracy of the GMM. This is also re�ected by the value of θ̂ which is close to
one, indicating that the con�dentness level of the GMM is acceptable and is capturing
well the original labels of the clusters. This may be explained by the possibility that
the underlying distribution of the considered dataset is following a gaussian mixture
distribution.
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Figure 10: CDF of di�erent entropies for GMM algorithms with and without
modi�ed probabilities applied on cancer data

Clustering method Accuracy before correction Accuracy after correction θ̂

FKM 0.7 0.91 9.883
GMM 0.937 0.937 1.652

Table 10: Accuracy of di�erent clustering methods based on training data, the
higher the better. θ is estimated on the training set and used to compute JSD
on both training and testing sets.

Clustering method Accuracy before correction Accuracy after correction θ̂

FKM 0.683 0.89 9.883
GMM 0.957 0.955 1.652

Table 11: Accuracy of di�erent clustering methods based on testing data, the
higher the better. θ is estimated on the training set and used to compute JSD
on both training and testing sets.
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6 Conclusion

This paper introduced an innovative metric, based on Shannon's entropy, assessing
the quality of clustering algorithms in term of con�dentness level . The proposed
metric can be used to compare the performance of two clustering algorithm in a way
to conclude which is more over/under con�dent. In addition a statistical test, based
also on the introduced metric, has been constructed to help taking the decision about
accepting or rejecting a clustering algorithm using its con�dentness quality. Moreover,
a parametric adjustment of the underlying probabilities of a clustering algorithm has
been introduced in order to improve the con�dentness quality of the corresponding
clustering method. According to many numerical simulations and real world data
application it was noticed that the proposed methodology helps users signi�cantly in
getting better discrimination power from a given clustering method. So far, a �rst
perspective of this work is to try to develop a theoretical proof of the probability
distribution of the proposed metric. A second perspective is to adapt the proposed
methodology on data of higher level of complexity (i.e., data of mixed typology).
Finally, this work may be developed in a way to use the di�erent metrics to identify
the optimal number of clusters when applying a particular clustering algorithm.
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