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Abstract—This paper focuses on maintenance optimization
strategies in complex manufacturing systems under uncertainty
of available resources and tasks duration constraints. We propose
a deterministic formulation of the maintenance optimization
problem and provide a chance constraints modeling to formu-
late uncertainty constraints. Our stochastic mathematical model
is reformulated using approximations providing deterministic
equivalent formulations that we solve in negligible times to reach
near global solutions. Simulation results are provided to illustrate
the efficiency of our mathematical models when highlighting
the convergence of the chance constraints formulation to the
deterministic form for given confidence levels.

Index Terms—Maintenance, Stochastic optimization, Complex
systems, Chance constraints

I. INTRODUCTION

During the past two decades, maintenance in complex indus-
trial systems has drawn the interest of academic and industrial
communities as its implication covers various domains such
as energy systems, medical equipment, etc. These industries
are growing rapidly and are changing considerably-thanks to
technology transformation- to be able to consider the data
lakes generated within their complex systems (industry 4.0).

Moreover, with the advent of industry 4.0, manufacturing
systems are growing in scale and complexity, and the
demand for high reliability is increasing. This necessitates
new efficient planning strategies since various dependencies
(economic, structural, stochastic, and/or resources) arise
within such complex systems.

To achieve a high production level in the aforementioned
manufacturing systems, when guaranteeing a set of
constraints such as limited number of resources, we
need cost efficient constrained maintenance planifications to
optimize the different maintenance tasks. In addition, and
to exploit efficiently the collected data from these different
manufacturing complex systems, it is important to propose
new approaches based on the relevant information that can be
retrieved in these data lakes. Hence, we will investigate Data
Driven approaches able to derive cost efficient maintenance
optimizations according to the harvested data.

However in many complex industrial systems, the number
of necessary resources and the maintenance tasks duration
are influenced by uncertain environmental factors and may
not be known exactly before task execution. Consequently,
the available resources and maintenance duration could be
stochastic. Therefore, in this paper, we study the stochastic
maintenance planification and optimization problem when
considering various constraints such as limited available
resources, finite horizon time and maintenance duration.

In this paper, we propose to mathematically formulate the
problem of maintenance optimization under repair time uncer-
tainty using stochastic programming. Hence, our contributions
are summarized as follows:

‚ We provide a deterministic mathematical formulation
of the maintenance optimization problem of complex
industrial systems under a set of given constraints (limited
resources, finite horizon time, tasks duration, etc.)

‚ To consider real life scenarios in manufacturing systems,
we propose a stochastic optimization based on chance
constraints to represent the uncertainty of maintenance
repair time and resources availability.

‚ We provide approximations schemes of the chance con-
strained formulation to efficiently address the deter-
ministic equivalent formulations to attend near optimal
solutions of our constrained maintenance optimization
problem.

The remainder of this paper is organized as follows: Section
II is dedicated to summarize some recent related works in
terms of deterministic and stochastic maintenance optimiza-
tions. In Section III, we provide the deterministic form of our
mathematical maintenance optimization under a set of detailed
constraints. Then, we discuss the stochastic model using
chance constraints and provide efficient approximations to
attend near optimal solutions. Simulation results are provided
in Section IV, and we conclude the paper in Section V.

II. RELATED WORK

In this section, we review recent works to situate our
contributions in this paper. We propose to review deterministic



and non-deterministic maintenance works and we will empha-
size maintenance optimization solution methods in terms of
deterministic and stochastic circumstances.

A. Maintenance Optimization in Complex Manufacturing Sys-
tems

1) Deterministic maintenance problems: Maintenance op-
timization in complex manufacturing systems can also be
combined with different fields allowing to take a global
decision. One mainstream topic is to simultaneously consider
maintenance and spare part ordering. Authors in [1] and [5]
studied corrective maintenance and spare part inventory strate-
gies using prognostic information to minimize failure risk. In
addition, considering maintenance and production jointly is
another important research topic as the maintenance impacts
the productivity in the considered manufacturing systems.
Authors of [6] proposed to investigate the maintenance in a
series system to optimize the production schedule through a
preventive maintenance plan.

2) Stochastic maintenance problems : Stochastic mainte-
nance optimization in complex manufacturing systems are of-
ten presented as optimizations taking into account the stochas-
tic quality, duration, and number of repair person. For instance,
authors of [8] and [10] considered random variables to model
the stochastic quality and duration parameters. Authors of [12]
considered a multi-component maintenance and repair person
assignment problem with stochastic maintenance duration.

B. Optimization Methods for Maintenance Problems

Difference approaches for maintenance problems in com-
plex systems have been proposed, such as analytic, simulation,
optimization (see references [13]-[14], for instance). In the fol-
lowing, we succinctly cite references addressing optimization
techniques for maintenance problems. We clearly indicate our
contributions compared to these approaches.

1) Deterministic optimization methods.: Authors of [15]
considered a continuous production system with unexpected
quality deterioration, with the aim at reducing the occurred
cost with a quality constraint. A non-linear programming
model was formulated and solved. Authors of [16] proposed
an optimal preventive maintenance policy in order to get
operational parameters for a production line. A non-linear
model and a heuristic are provided to minimize the total cost.
Authors of [2] formulated a MILP model for the considered
predictive maintenance optimization problem, with the purpose
to provide optimal maintenance decisions. However, in order
to cope with stochastic maintenance optimization, we need to
investigate chance constraints approaches in this paper.

2) Stochastic optimization methods.: Stochastic
optimization is widely studied and proposed in relevant
references such as (Birge [17], [18] and Prékopa [19]). Many
stochastic optimization methods such as chance constraints
are also used to efficiently model and optimize stochastic
problems. In fact, in [11], authors addressed stochastic
maintenance optimization based on chance constraints.
Authors of [10] and [9] used the scenarios of stochastic

factors for stochastic model approximation.

In our work, we aim at guaranteeing with a confidence
level that although resources availability and tasks duration
are stochastic, the complex system reduce total costs enough
without violating the whole described constraints. We, there-
fore, concentrate on providing chance constraints using linear
approximations, facilitating the problem’s resolution.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

In the following, we consider (see Figure 1: an example
of a complex system with 10 components) a complex man-
ufacturing system composed by various series and parallel
components. Our main purpose consists to optimize the main-
tenance costs of this system when meeting a certain number
of constraints (resource limitation and availability, repair time,
etc.).

Fig. 1: System model illustrating an example of complex
manufacturing system

A. Problem’s complexity

We address in our work the maintenance optimization prob-
lem in complex manufacturing systems. It is already described
in [4] that our mathematical formulations are using a non linear
objective function that will be detailed in the sequel. Moreover,
it is known that addressing non linear optimizations belongs to
NP-Complete class. Hence, the two variants (deterministic and
stochastic) of the considered problem are also NP-Complete
problems.

B. Deterministic Formulation

We consider a complex industrial system with n compo-
nents to be maintained according to a given strategy. Let
I “ to1, o2, . . . , onu be the set of these system’s components.

To each component oi, we associate a number of necessary
repairman noted by ri, and a necessary repair time di. In this
section, we suppose di @i “ 1, . . . , n deterministic (an input
to our mathematical modeling). Next sections are dedicated
to uncertain repair time and total available resources through
stochastic programming.

Let R be the total number (we consider R deterministic
first, and stochastic in next sections) of available repairmen
in a period T of maintenance horizon. Let T be the set
of discrete indices of T : T “ t1, 2, . . . , T u. Futhermore,
for each j P T let Rj the available ressources allocated to
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Fig. 2: Maintenance horizon time and resources releasing

the system at time instant j. We consider a cost function
F pxq representing the total cost of maintenance of a complex
industrial system with n components. xt “ px1, x2, . . . , xnq is
a vector indicating the maintenance time of each component
or object i of the considered system.
For instance, Figure 2 provides an example on the usage
and release of resources according to different maintenance
tasks: in black and red colors, maintenance occurs (resources
occupied), in yellow color, resources are released.

We consider binary variables mij defined by (for all
component i and time step j): mij “ 1 if the maintenance of
object i is planned at time j, and mij “ 0 otherwise.

We use a matrix M to represent the indicated binary
variables. The rows of M represent the different objects or
components of our industrial system, and the columns
represent the different maintenance time slots in a
given horizon time. Thus, if there exists a solution to
j “ argminpF pxqq then mij “ 1.

M “

¨

˚

˚

˝

1 2 ... T

o1 m11 m12 ... m1T

o2 m21 m22 ... m2T

... ... ... ... ...
on mn1 mn2 ... mnT

˛

‹

‹

‚

Our optimization is under a set of linear constraints that
will be described below:

‚ Limited horizon time constraints: Maintenance activ-
ities have predefined periods and must fit in a given
planning horizon. All maintenance actions must not,
therefore, exceed the fixed time window and should
be performed accordingly. These constraints are given
by inequalities (1) which ensure that each maintenance
action with duration di is carried out within the rolling
horizon r1, T s.

jmij ` pdi ´ 1q ď T @i P I @j P T (1)

‚ Constraints on the minimum number of maintenance
actions per component: In our system, all components
must be replaced when maintenance actions are engaged.
Constraints (2) and (3) guarantee that each component i

is maintained at least one time in the allocated horizon
time r1, T s:

T
ÿ

j“1

mij ě 1 @i P I (2)

mij1 ď 1 ´ mij @j1 ą j P T @i P I (3)

‚ Limited number of resources: A maintenance action
requires a set of resources. To successfully schedule a
maintenance activity, a certain number of technicians is
expected. As such, Constraints (4) warrant that the num-
ber of allocated repairmen for all maintenance actions,
initiated at a given period j, does not exceed the Rj

available resources allocated to our system.
n

ÿ

i“1

mijri ď Rj @j P T (4)

‚ Resources release constraints: (see Figure 2) When
technicians accomplish one or several maintenance tasks,
they are released and made available. Constraints (5) are
formulated to express that used resources are restored at
the end of each maintenance action. Hence, several PM
(Preventive Maintenance) actions can be executed simul-
taneously provided that enough repairmen are available
in the system. At the end of each maintenance cycle,
the system is at its full capacity and all resources are
available.

mijri ď Rj´

n
ÿ

k“1
k‰i

T
ÿ

j1
ăj

j1
`dkąj

mkj1rk @i P I @j P T (5)

‚ Upper bounds constraints: To clarify the relationships
between the decision variables x and m, we provide
Constraints (6) illustrating the upper bound of x using
m (ϵ is a negligible positive value):

xi ď mijT ` ϵ @i P I @j P T ϵ ą 0 (6)

Furthermore, the decision variables of the model must be
accurately defined and abide by the various considerations of
the considered problem. Therefore, Constraints (7) and (8)
describe the nature and the ranges of these decision variables.

xi ą 0 @i P I (7)

mij P t0, 1u @i P I @j P J (8)

As it is already described in our previous work (see refer-
ence [4] for more details), we assume for our complex system,
the degradation of each component is following a 2-parameter
Weibull distribution. For each component i, the shape and scale
parameters are αi, βi P R` where αi ą 0, βi ě 1 for all
i P I. We can thus analytically determine the expression of
the expected cost over a given time period. This expression is
derived from the failure rate λiptq of component i P I that is
given by:

λiptq “
βi

αi

ˆ

t

αi

˙βi´1

(9)
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costpxiq “
Cprev

i ` Ccorrec
i p xi

αi
q
βi

xi
, xi ą 0 (10)

where Cprev
i (respect. Ccorrec

i ) is the preventive maintenance
(respect. corrective maintenance) cost of component i.

Using the aforementioned non-linear objective function (10)
under the provided valid inequalities, our optimization is
considered as a Mixed Non Linear Programming (MNLP)
approach. The former is given by the following formulation:

pDET q :

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minx Cpxq “
řn

i“1 costpxiq

S.T. :

jmij ` pdi ´ 1q ď T,@i P I,@j P T
řT

j“1 mij ě 1,@i P I
řn

i“1 mijri ď Rj ,@j P T
mijri ď Rj ´

řn
k“1;k‰i

řT
j1ăjj1`dkąj

mkj1rk;

@i P I,@j P T
mij1 ď 1 ´ mij ,@i P I;@j1

ą j P T
xi ď mijT ` ϵ,@i P I @j P T , ϵ ą 0

xi ą 0,@i P I
mij P t0, 1u,@i P I,@j P T

Our model (DET) is a deterministic optimization with a
non-linear objective function under linear constraints. We
propose to use GEKKO solver [7] to obtain a solution x
satisfying the whole described constraints.

When considering uncertainty of total available resources
(noted by R) and maintenance tasks duration (noted by d)
then we propose stochastic optimization approaches to cope
with this problem.

C. Stochastic Optimization

As indicated in the previous section, the repair time for a
maintenance operation and the necessary available resources
can be unknown in advance due to different factors. Hence,
we propose to consider these parameters as random variables
with a Gaussian distribution that will be detailed in the
sequel. Then, our mathematical formulation which consists to
optimize (10) under the constraints (1) to (8) is a non-linear
stochastic optimization problem to be solved.

Before investigating stochastic modeling and addressing
different approaches, and for sake of clarity, we propose to
define chance constraints programming and how to use them
efficiently to cope with stochastic optimization in a non-linear
constrained program.

Definition III.1. We assume the underlying problem (P1) with
an objective function that does not contain a random variable:

minhpxq

subject to:

pP1q :

#

P pg1px, ζq ě 0, g2px, ζq ě 0, . . . , grpx, ζq ě 0q ě p

x P D

where p is a prescribed probability, and ζ a random variable.

Problem (P1) is called chance constraints stochastic
programming problem. The probability p may reflect the
reliability of the system and ensures that the state of this
system remains within a subset of all possible states, where
its functioning is undisturbed by major failures.

In our stochastic approach, we suppose the repair time of
each component of our complex system, is unknown and can
be represented by a random variable. Moreover, and W.L.O.G.
we suppose that:

‚ Each random variable di has a Gaussian probabilistic
distribution with two parameters µi (the mean value) and
σ2
i (the variance value): @oi P O, di „ N pµipdiq, σ

2
i pdiqq

‚ At each time step j, we assume Rj as a random variable
following a Gaussian distribution with two parameters:
@j P T,Rj „ N pµjpRjq, σ2

j pRjqq

We now introduce the chance constraints in our mathemat-
ical formulation to cope with the uncertainty of the repair
time and resources of each considered component or object of
the complex system. We propose the following mathematical
stochastic formulation for the chance constraints that depend
on the random variable di and Rj .

P pjmij ` pdi ´ 1q ď T q ě αi,@i P I,@j P T (11)

P

˜

n
ÿ

i“1

mijri ď Rj

¸

ě βi,@j P T (12)

P

¨

˚

˚

˝

mijri ď R ´

n
ÿ

k“1,k‰i

T
ÿ

j1
ăj

j1
`dkąj

mkj1rk

˛

‹

‹

‚

ě γi (13)

Using these chance constraints ((11), (12)) and (III-D) in
our formulation, we obtain the following non-linear stochastic
problem:

pPStoq :

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minx Cpxq “
řn

i“1 costpxiq

S.T. :

P pjmij ` pdi ´ 1q ď T q ě αi,@i P I
P p

řn
i“1 mi,j ˆ ri ď Rjq ě βi,@j P T

P

˜

mijri ď Rj ´
řn

k“0,k‰i

řT
j1

ăj
j1

`dkąj

mkj1rk

¸

ě γi

xi ď mi,j ˆ T,@i P I
řT

j“1 mij ě 1 @i P I
mij1 ď 1 ´ mij ,@i P I @j1 ą j P T
mij “ t0, 1un, xi ą 0,@i P I

Note here αi, βi and γi are fixed probabilities of success
(confidence levels) to satisfy chance constraints (given here
by (11), (12 and III-D) and one usually chooses αi, βi and γi
close to .95 or .99.
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D. Approximations of Chance Constraints

(PSto) problem is generally non-convex, and a standard ap-
proach is to give safe approximations to the chance constraints,
that is, to find (convex) functions so that (PSto) guarantees
a solution. Hence, we propose the following approximations
schemes of the aforementioned chance constraints.

Proposition III.1. Chance constraint (11) has a Deterministic
Equivalent Constraint (DEC) given by:

jmij ď T ` 1 ´ µipdq ` ϕ´1pαiqσipdq (14)

Where ϕp.q is the distribution function of the standard
normal distribution, and αi is the confidence probability/level.
ϕp.q is tabulated widely as standard normal tables.

Proof. W.L.O.G. we assume that, @i P I : αi “ α. We have:

Ppjmij ` di ´ 1 ď T q ě α ðñ Ppdi ď T ´ jmij ` 1q ě α
(15)

As di „ N pµi, σ
2
i q, then we use the standardized variable

di ´ µi
a

V arpdiq
“

di ´ µi

σi

Then, (15) is equivalent to:

P
ˆ

di ´ µipdq

σipdq
ď

T ´ jmij ` 1 ´ µipdq

σipdq

˙

ě αi

Which is equivalent to:

ϕ

ˆ

T ´ jmij ` 1 ´ µipdq

σipdq

˙

ě αi

where ϕ is the standard distribution of the Gaussian distribu-
tion.
Then, we obtain:

T ´ jmij ` 1 ´ µipdq

σipdq
ě ϕ´1pαq

which leads to the expected result:

jmij ď T ` 1 ´ µipdq ` ϕ´1pαqσipdq

Proposition III.2. Chance constraint (12) has a Deterministic
Equivalent Constraint (DEC) given by:

n
ÿ

i“1

mi,j ˆ ri ď µpRjq ` ϕ´1 p1 ´ βqσpRjq (16)

Proof. For sake of simplicity, we assume @i, βi “ β.
Inequality (12) is equivalent to:

P
ˆ

Rj ´ µpRjq

σpRjq
ď

řn
i“1 mi,jri ´ µpRjq

σpRjq

˙

ď 1´β,@j “ 1, . . . , T

Using the distribution function of a standard Gaussian
variable noted by ϕ, we obtain:

ϕ

ˆřn
i“1 mi,jri ´ µpRjq

σpRjq

˙

ď 1 ´ β (17)

From (17), we deduce:

n
ÿ

i“1

mi,j ˆ ri ď µpRjq ` ϕ´1 p1 ´ βqσpRjq

Proposition III.3. Chance constraint (III-D) has a Determin-
istic Equivalent Constraint (DEC) given by:

mijri´

n
ÿ

k“1,k‰i

T
ÿ

j1
ăj

j1
`dkąj

mkj1rk ď µpRjq`ϕ´1 p1 ´ γqσpRjq

(18)

Proof. For sake of simplicity, we assume @i, γi “ γ.
Starting from

P

¨

˚

˚

˝

mijri ď Rj ´

n
ÿ

k“1,k‰i

T
ÿ

j1
ăj

j1
`dkąj

mkj1rk

˛

‹

‹

‚

ě γ

We obtain:

P

¨

˚

˚

˝

Rj ě mijri ´

n
ÿ

k“1,k‰i

T
ÿ

j1
ăj

j1
`dkąj

mkj1rk

˛

‹

‹

‚

ě γ

which is equivalent to:

P

¨

˚

˚

˝

Rj ď mijri ´

n
ÿ

k“1,k‰i

T
ÿ

j1
ăj

j1
`dkąj

mkj1rk

˛

‹

‹

‚

ď p1 ´ γq

Using the normal distribution properties, we obtain the fol-
lowing:

ϕ

¨

˚

˝

mijri ´
řn

k“1,k‰i

řT
j1

ăj
j1

`dkąj

mkj1rk ´ µpRjq

σpRjq

˛

‹

‚

ď p1´γq

(19)
Then, from 19, we deduce the following DEC:

mijri´

n
ÿ

k“1,k‰i

T
ÿ

j1
ăj

j1
`dkąj

mkj1rk ď µpRjq`ϕ´1 p1 ´ γqσpRjq

Using the results of the three previous propositions, will
lead to construct a Deterministic Equivalent Program (DEP)
of the stochastic program (PSto). This is provided by:
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pPDET q :

$
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minx Cpxq “
řn

i“1 costpxiq

S.T. :

jmij ď T ` 1 ´ µipdq ` ϕ´1pαiqσipdq,@i P I
řn

i“1 mi,j ˆ ri ď µpRjq ` ϕ´1 p1 ´ βqσpRjq;

@i P I
mijri ´

řn
k“1,k‰i

řT
j1

ăj
j1

`dkąj

mkj1rk ď µpRjq`

`ϕ´1 p1 ´ γqσpRjq
řT

xi“1 mixi ď θσi ` µi,@i P I
xi ď mi,j ˆ T,@i P I
řT

j“1 mij ě 1 @i P I
mij1 ď 1 ´ mij ,@i P I @j1 ą j P T
mij “ t0, 1un, xi ą 0,@i P I

(20)
The obtained model (20) is a deterministic optimization with

linearized constraints.

IV. NUMERICAL RESULTS

We assess and evaluate the performance of (DET) algorithm
using GEKKO solver (see [7]) to solve the non linear mathe-
matical model. We summarized in Table I the set of simulation
parameters invoking the Weibull distribution’s parameters s
and t, and the preventive and corrective costs. Tasks duration
and total number of available resources are also generated
randomly in Table I. Note that these two last parameters are
considered as random variables in our stochastic optimization.

TABLE I: Simulation parameters

Parameters si ti CPrev
i Ccorrec

i ri di Rj

Values r10, 40s r1.25, 2.75s r40, 150s r140, 350s r1, 10s r2, 8s r0, 20s

We assessed the performance of the deterministic algorithm
for different horizon time values as illustrated in Table II. For
a system with 5 components, one can remark the necessary
convergence time of our non linear mathematical model to
attend a solution in few seconds (2.89 seconds as the worst
case of simulations in Table II).
In Table II), we remark the evolution of the total cost
function (Cpxq) which is higher for small values of T
(Cpxq “ 1126.24) and reaches its minimum value for an
average horizon time of T “ 55. This costs is then increasing
for higher values of T .

In the following we provide comparisons of the stochastic
and deterministic approaches, for different values of
confidence levels (α, β, and γ). Indeed, we provide three
main values of these parameters in the set t0, 0.5, 1u to be
used during the following analysis.

Given the following deterministic equivalent constraint of
chance constraint (11):

jmij ď T ` 1 ´ µipdq ` ϕ´1pαiqσipdq,@i P I (21)

For σipdq “ 1, we discuss the following three cases:
‚ α “ 0: Then we have ϕ´1pαq “ ´8. Hence, (21) is in-

dicating that no maintenance is possible with confidence
levels very low or close to 0. Theoretically speaking, this
is interpreted by the fact that the system will be infeasible
for confidence levels close to 0.

‚ α “ 0.5: Then we have ϕ´1pαq “ 0. Hence, (21)
is converging totally to the original deterministic valid
inequality provided in (1) for di values close to the
average value µipdq.

‚ α “ 1: Then we have ϕ´1pαq “ `8. Hence, (21) is
indicating that maintenance operations are totally relaxed
and can be done according to the availability of the
repair man. Theoretically, this case indicates that for large
values (close to 1) of the considered confidence level, then
maintenance operations can occur without limitations in
time.

For the next deterministic equivalent constraint of chance
constraint (12):

n
ÿ

i“1

mi,j ˆ ri ď µpRjq ` ϕ´1 p1 ´ βqσpRjq;@j P T (22)

we propose to assess three cases as follows:
‚ β “ 0: Then we have ϕ´1p1´ βq “ `8. Hence, (22) is

indicating that for low values of confidence levels (close
to zero), the resources available become theoretically
large (infinity). This is due to the confidence we put in our
theoretical model, as we are considering low confidence
levels. Hence, our optimization in providing comfortable
conditions in terms of available resources for maintenance
operations.

‚ β “ 0.5: Then we have ϕ´1p1 ´ βq “ 0. Hence,
(22) is converging to the original and deterministic valid
inequality provided by (4) for Rj close to the average
value µpRjq.

‚ β “ 1: Then we have ϕ´1p1´ βq “ ´8. Hence, (22) is
indicating that maintenance could not occur and this due
to lack of resources (repair man). This result comes from
the high confidence level we used in our optimization
causing the lack of available resources in our model.

The same analysis and deductions can be derived for dif-
ferent confidence levels values (γ) concerning the following
inequality:

mijri´

n
ÿ

k“1,k‰i

T
ÿ

j1
ăj

j1
`dkąj

mkj1rk ď µpRjq`ϕ´1 p1 ´ γqσpRjq

(23)

V. CONCLUSION AND FUTURE WORK

In this paper, we discussed the constrained maintenance
problem of a complex industrial system using a non
linear objective function to be optimized. A deterministic
mathematical formulation is provided for the scenarios in
which resources and maintenance tasks duration are known
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TABLE II: Deterministic algorithm performance for complex systems

Planning Horizon
T “ 25 T “ 35 T “ 45 T “ 55 T “ 65 T “ 75 T “ 100

(DET)
Cpxq 1126.24 653.28 626.50 487.51 494.34 814.06 652.95

Time (s) 0.628 1.178 1.085 1.829 2.289 2.292 3.177

in advance. However in many complex industrial systems,
the number of necessary resources and the maintenance
tasks duration are influenced by uncertain environmental
factors and may not be known exactly before task execution.
Consequently, we considered the available resources
and maintenance duration as random variables following
Gaussian distributions. Therefore, we proposed a stochastic
maintenance optimization problem under various constraints.
To cope with the stochastic optimization, we provided
efficient approximations based on deterministic equivalent
formulations leading to obtain cost efficient solutions of the
stochastic variant of our maintenance optimization problem.

For future work, we will consider stochastic maintenance
optimization for distributed multi-sites of a plenty of complex
systems. Routing and logistic constraints will then be jointly
optimized.
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