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1LAMSADE, Université Paris Dauphine
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Abstract
The article focuses on a subset comparison model
introduced by Fishburn and LaValle [1996], called
ordinal dominance (with binary interactions). Af-
ter giving an axiomatic analysis pointing out sev-
eral differences between the studied model and one
without interactions, we investigate the problem of
determining non-dominated subsets from an algo-
rithmic point of view, with a complexity result (de-
termining if a given subset is non-dominated is co-
NP-complete), and present an algorithm to deter-
mine a non-dominated subset in polynomial time.

1 Introduction
Subset selection problems are very common in situations
where, given a population of individuals or alternatives and
preferences between them, one aims at determining the
best possible subset of that reference set [Fishburn, 1974;
van Rooij et al., 2005]. The applications are diverse, rang-
ing from setting up a working group, to selecting attributes
for a machine learning procedure, or picking a set of movies
to put on a plane’s entertainment system, etc.

An intuitive way to solve such a problem is to use the sum
of the utilities of the elements of a subset as its global utility.
However, such a representation supposes the independence
between the elements of the subset, which is violated in many
contexts (two individuals may have positive or negative syn-
ergies, two elements may be complementary or redundant,
etc.). Different models, handling dependencies between el-
ements, have been proposed in the literature. For instance,
Choquet integrals can be used in order to model in a car-
dinal way dependencies between elements [Choquet, 1954;
Grabisch, 1996; Grabisch and Labreuche, 2010], and Sug-
ueno integrals can be used in a similar context if data are or-
dinal [Dubois et al., 2013]). CP-nets [Boutilier et al., 2004]
or CI-nets [Bouveret et al., 2009] can also be used in qualita-
tive contexts, however the dependencies they represent are
different from Choquet and Sugeno integrals since instead
of synergies, conditional preference dependencies are mod-
eled. But another way, in CP-nets, the dependencies are han-
dled lexicographically, which yields non-compensatory pref-
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erence models, unlike the compensatory models such as the
Choquet integral.

In many applications, providing numerical data can be very
difficult. Hence, we are interested in models where positive
and negative synergies between pairs of elements can be han-
dled ordinally. The model we study here was proposed by
Fishburn and LaValle [1996], who generalized in an intuitive
way the compensatory model of additive utility and designed
an ordinal counterpart by reasoning on all numerical utility
functions consistent with known preferences on singletons
and pairs of elements. This model has the advantage of being
simple and close to the additive utility model frequently used
by decision makers.

The present work provides an axiomatic as well as an al-
gorithmic analysis of this model. Section 2 starts by intro-
ducing the model as presented by Fishburn and LaValle. Sec-
tion 3 then presents an axiomatic study of the model which
stresses differences w.r.t. the ordinal counterpart of the ad-
ditive utility model. Sections 4 and 5 introduce the notion
of non-dominated subsets, analyse the complexity of proving
that a subset is non-dominated, propose a polynomial time
algorithm to find a non-dominated subset and concludes with
some results of numerical tests showing the relations between
non-dominated subsets and potentially optimal ones.

2 Preliminaries
We denote by X the reference set of alternatives. Given a
set A ⊆ X , we denote by A(t) = {B ⊆ A : |B| = t} the
set of subsets of size t within A. The empty set, singletons
and pairs will prove useful to our study, and we therefore note
A∗ = ∅ ∪ A ∪ A(2). The insertion of an external element j
in a set A creates new pairs in A∪{j}, which we denote by
Aj

(2) ={{a, j}∈X(2) : a ∈ A}. To lighten the notations, we
may write aj instead of {a, j} and a instead of {a}. Symbol
R refers to the preference relation expressed over X∗. It is
assumed thatR is a strict complete order, andRi refers to the
i-th best element according to this preference relation.

2.1 The binary interaction model
As early as 1972, Fishburn [1972] studied the degree of inter-
dependence of a preference relation defined on a finite subset
of a product set. Later on,Fishburn and LaValle [1996] pro-
posed a model allowing for the comparison of subsets, tak-



ing into account binary interactions between elements. This
model is based on a cardinal approach, which supposes the
existence of numerical value associated to each subset of X .
From this cardinal model, however, the authors then propose
an ordinal approach, which allows for a study of less rigid
preferences, in more realistic conditions, where one cannot
necessarily quantify numerically and precisely one’s prefer-
ence over the elements.

In order to present the ordinal setting on which we focus,
we start by presenting the cardinal model on which it is based.

Utility of a subset with binary interactions. The model
proposed by Fishburn and LaValle [1996] is a simple gener-
alization of additive utilities where the utility of a subset of
elements is the sum of values of singletons plus positive or
negative interaction terms between pairs of elements (inter-
actions between more than two elements are supposed to be
zero). In order to differentiate between positive and negative
values (i.e., “good” and “bad” outcomes), the value of the
empty set is fixed to zero: u(∅) = 0. The utility of any other
subset A of X is given by:

u(A) =
∑
a∈A

u(a) +
∑

C∈A(2)

∆(C), (1)

where ∆(ij) represents the interaction value between i and j.
Note that by Equation 1:

∆(ij) = u(ij)− u(i)− u(j). (2)

Using Equation 2, we can express the utility of a subset
using only the utility of elements of X∗:

u(A) =
∑

C∈A(2)

u(C)− (|A| − 2)
∑
a∈A

u(a). (3)

Example 1. Let X = {a, b, c} andR be such that:

ab � bc � b � c � ∅ � a � ac.

Let u be a utility function respecting the order of R, with
u(ab) = 4, u(bc) = 3, u(b) = 2, u(c) = 1, u(∅) = 0,
u(a) = −1 and u(ac) = −4. Hence, the interactions between
pairs are worth:

∆(ab) = u(ab)− u(a)− u(b) = 4 + 1− 2 = 3,

∆(ac) = u(ac)− u(a)− u(c) = −4 + 1− 1 = −4,

∆(bc) = u(bc)− u(b)− u(c) = 3− 2− 1 = 0,

and:

u(abc) = u(a) + u(b) + u(c) + ∆(ab) + ∆(ac) + ∆(bc)

= u(ab) + u(ac) + u(bc)− u(a)− u(b)− u(c)

= 1.

We see that, for this given utility function u, elements a and
b have a positive interaction, a and c a negative interaction,
while b and c have no interaction. The utility of the complete
set {a, b, c} is 1 (better than the empty set). �

Sensitivity to small changes in the numerical values. In
many applications, the precise knowledge of numerical val-
ues may not be available. Let us imagine that there was a
mistake or ambiguity on the value of u(ac), while all the
other values remain correct. Assume that u(ac) = −6 in-
stead of −4. We still have the same order on X∗ (R re-
mains the same) but the set {a, b, c} has now a negative utility
(u(abc) = −1), thus the empty set would be preferred to abc.
It is easy to find many examples showing that small modi-
fications in the values of utilities may drastically change the
comparisons on subsets or the sign of interactions. In order to
deal with this problem, Fishburn and LaValle have proposed
an ordinal counterpart of Equation 1. The subsequent ordinal
model leads to an ordinal dominance relation.

2.2 Ordinal dominance with binary interactions
The ordinal dominance relation [Fishburn and LaValle,
1996], denoted by ≥RD , expresses a dominance which should
hold according to any utility function u compatible with R.
More formally, for any A,B ⊆ X:

A ≥RD B ⇔∀u ∈ UR, u(A) ≥ u(B), (4)

A ≥RD B ⇔∀u ∈ UR,
∑

C∈A(2)

u(C) + (|B| − 2)
∑
b∈B

u(b)

≥
∑

C∈B(2)

u(C) + (|A| − 2)
∑
a∈A

u(a). (5)

where UR denotes the set of all utility functions compatible
withR.
Remark 1. In a cardinal framework, if there is no interaction
between items (∀i, j ∈ X,∆(ij) = 0) then we obtain a spe-
cial case where ∀A ∈ X,u(A) =

∑
a∈A u(a) which is the

basic additive utility model. We call the ordinal version of this
model ordinal dominance without interactions and denote it
by ≥RD0

:

A ≥RD0
B ⇔ ∀u ∈ UR,

∑
a∈A

u(a) ≥
∑
b∈B

u(b). (6)

Note that ≥RD0
amounts to a preference relation between sub-

sets considered by Bartee [1971]
There may exist some R for which the set UR is empty if

we want to use the basic additive utility model and not empty
with the one with binary interactions. For instance, coming
back to Example 1, it is easy to check that if b � c � ∅ � a
it is not possible to have ab � bc with a basic additive utility
function 1. In the following, when using ≥RD0

, we always
assume that UR 6=∅ for additive utilities. �

For a given linear order relation R on X∗, Fishburn
and LaValle have proposed an efficient method to evalu-
ate whether the ordinal dominance as defined in Equation 5
holds between two subsets of X . To this end, they define
a monotonic dominance relation, denoted by ≥RM . Testing
whetherAmonotonically dominatesB can be done by a sim-
ple polynomial-time three-step method that can be outlined as

1Naturally, there may also exist some R with empty UR even
within the model with binary interactions, for instance if we imper-
atively need to introduce interactions between more than two items



follows: 1) Take the utilities on the right hand side of Equa-
tion 5, and order them (w.r.t. R) into a vector; 2) Do the same
for the left hand side; 3) Check if the right-hand vector com-
ponentwise dominates the left-hand vector.
In steps 1 and 2, we start by creating a vector vBA (resp. vAB),
composed of the elements of A(2) (resp. B(2)) and of |B| − 2
occurrences of each element of B (resp. |A| − 2 occurrences
of each element of A). If vBA and vAB are of different sizes, we
modify the shortest vector by adding as many occurrences of
∅ as necessary for vectors vBA and vAB to be of the same size t.
We then proceed to remove elements that are both in vBA and
vAB , and sort the remaining components by order of decreas-
ing preference according to R . The vectors resulting from
these modifications are called respectively V B

A and V A
B .

In step 3, we proceed to the monotonic comparison of V B
A

and V A
B , by confronting the component (V B

A )i with the com-
ponent (V A

B )i, for i∈{0, . . . , t}. We say that V B
A monotoni-

cally dominates V A
B (denoted by V B

A ≥M V A
B ) if:

∀i ∈ {1, . . . , t}, (V B
A )i � (V A

B )i (7)

where x � y iff x � y or x = y.
Remark 2. Since we consider R to be a strict order relation,
note that A≥RDB iff A>RDB for A,B⊆X such that A 6=B.
The asymmetric part >RM of ≥RM is written as follows:

A>RM B ⇔

{
∀i ∈ {1, . . . , t}, (V B

A )i � (V A
B )i,

∃j ∈ {1, . . . , t}, (V B
A )j � (V A

B )j .
(8)

Example 2. Let X = {a, b, c, d, e}, A = {a, b, c, d}, B =
{b, c, e} andR be such that:

ac � bd � de � c � ae � bc � ab � a � ∅ �
cd � ad � be � d � ce � e � b.

We have vBA = (ab ac ad bc bd cd b c e ∅ ∅), vAB = (bc be ce a
a b b c c d d), V B

A = (ac bd ab ∅ ∅ cd ad e) and V A
B = (c a a be

d d ce b). As ac � c, bd � a, ab � a, ∅ � be, ∅ � d, cd � d,
ad � ce and e � b, it holds that V B

A ≥RM V A
B . �

The interest of this method stems from the fact that ordinal
and monotonic dominance have been proved to be equivalent:
Proposition 1 (Fishburn and LaValle, 1996). The following
equivalence holds for all A and B:

V B
A ≥RM V A

B ⇔ A ≥RD B.

The three-step method can therefore be used to test ordinal
dominance in polynomial time.

3 Axiomatic examination
We now investigate some mathematical properties relative
to the monotonic dominance relation (equivalent to ordinal
dominance ≥RD , Equation 5), so as to discern its limits and
particularities, and to study its differences with the ordinal
dominance without interactions (≥RD0

, Equation 6). In the re-
mainder of the paper, each time we mention only the ordinal
dominance relation, we mean with binary interactions.

Firstly, the reader can easily convince themselves that the
ordinal dominance relation defines a partial order:

Proposition 2. Let X be a set of items and R a strict or-
der on X∗. The ordinal dominance based on R (as defined
in Equation 4) defines a partial order on 2X , i.e., a reflex-
ive, transitive and anti-symmetric binary relation that is not
necessarily complete.

Hence, ordinal dominance does not allow us to determine a
complete ranking over the subsets ofX , and there usually ex-
ists a large number of incomparable subsets, which generally
increases the number of non-dominated ones.

Axioms 1 to 3 described below seem appealing for any lift-
ing rule that extends a binary relation on X∗ to a binary rela-
tion on 2X . The first axiom states that, when two subsets A
and B are comparable, only the relative positions inR of the
elements ofX∗ matter in the comparison ofA andB, and not
the names of the elements of X .
Axiom 1 (Neutrality (N)). Let X be a set of items, R and
R′ be two preference relations defined on X∗, corresponding
to the binary relations � and �′. Let > and >′ be binary
relations on 2X obtained by lifting relations � and �′ from
X∗ to 2X . Let ϕ :X→X be a bijection defined on X , and
ϕ̄ :2X→2X be a bijection on 2X defined from ϕ as follows:

ϕ̄(A) = {ϕ(a1), . . . , ϕ(ap)} if A={a1, . . . , ap} 6=∅,
ϕ̄(∅) = ∅.

A lifting rule satisfies the neutrality axiom if

A � B ⇔ ϕ̄(A) �′ ϕ̄(B) ∀A,B ∈ X∗

implies that

S > T ⇔ ϕ̄(S) >′ ϕ̄(T ) ∀S, T ∈ 2X .

The second axiom states that, regarding the pairs, only the
ones within the symmetric difference A	B should play a
determining role when comparing A and B.
Axiom 2 (Independence to Common pairs (IC)). Let X be a
set of items. Let A,B ⊆ X . Any pair ij ∈ A(2) ∩ B(2) may
be ignored when comparing A and B using �.

Finally, the third axiom states that the preference over two
sets A and B should not depend on elements which are not
directly present in either set.
Axiom 3 (Independence to Third-party Alternatives (ITA)).
Let X be a set of items,R binary relation on X∗. Let A,B⊆
X . Let S ∈X∗\(A∗ ∪ B∗). No modification of the position
of S inR can impact the comparison between A and B.

The three axioms above obviously hold for the ordinal
dominance relation as defined in Equation 5:
Proposition 3. The ordinal dominance relation satisfies ax-
ioms N, IC and ITA.

In contrast, the following weak independence axiom
clearly holds in the case without interactions, but not in the
case where the binary interactions are taken into account2.
Axiom 4 (Weak independence (WI)). LetX be a set of items.
Let A,B ⊆ X be such that A>B, then there exists no x ∈
X\(A ∪B) such that B ∪ {x} > A ∪ {x}.

2The proof of results that are marked with a * are deferred to the
appendix.



Proposition 4 (*). The ordinal dominance relation does not
satisfy WI.

The binary interaction model therefore does not allow us
to infer dominance between two sets from the dominance be-
tween their subsets. Moreover, the model doesn’t ensure that
the extension of a set can never be dominated by the same ex-
tension applied to a set it dominates. This result is of course
a direct consequence of binary interactions, as the addition of
an element has consequences linked to the pairs it can form.

Following Brams et al. [2003], Brams and King [2005]
and Bouveret et al. [2010], we say that a subset A pairwise
dominates a subset B of same size if there exists a bijection
ϕ :A \B→B \A such that a�ϕ(a) for all a∈A\B. Let us
then consider the following axiom expressing compatibility
with pairwise dominance:

Axiom 5 (Compatibility with Pairwise dominance (ComP)).
Let X be a set of items. Let A,B ⊆X . If A pairwise domi-
nates B, then A > B.

This axiom is obviously satisfied by ≥RD0
. Nevertheless, it

does not hold for ≥RD , as illustrated by Example 1. Consider
indeedA = bc andB = ab, and the bijection ϕ :A\B→B\A
defined by ϕ(c)=a. We have c�ϕ(c)=a and yet B�A.

In order to adapt this axiom to the case where binary inter-
actions are taken into account, we say that a subset A binary
pairwise dominates a subsetB of same size if there exists two
bijections ϕ1 :B\A→A\B and ϕ2 :A(2)\B(2)→B(2)\A(2)

such that b � ϕ(b) for all b ∈ B \A and ab � ϕ(ab) for all
ab∈A(2)\B(2).

Axiom 6 (Compatibility with Binary Pairwise dominance
(ComBP)). Let X be a set of items. Let A,B ⊆ X . If A
binary pairwise dominates B, then A > B.

Proposition 5 (*). The ordinal dominance relation satisfies
axiom ComBP.

Thus, when comparing two sets A and B, if it is possible
to compare on the one hand all the singletons, and all the
pairs on the other hand, we know that the set which dominates
over the pairs but is dominated over the singletons will always
be the best. This is due to the role that singletons’ utilities
play in the computation of interactions. We now investigate
axioms where the role played by pairs and the role played by
singletons are considered separately.

Axiom 7 (Upward Monotonicity w.r.t. Pairs (UMP)). Let X
be a set of items and R the relation on X∗. Let A,B⊆X be
such that A>B and let P ∈A(2)\B(2). If the preference for
P increases (i.e., if P gets closer to the best elements in R)
ceteris paribus, then A>B is maintained.

Proposition 6 (*). The ordinal dominance relation satisfies
UMP.

Here again, this result seems natural in the context of the
study of binary interactions, as the valorisation of a pair ce-
teris paribus implies an improvement of the interaction be-
tween its two components. Therefore, the set containing this
pair becomes more attractive.

We now focus on the consequence of improving the posi-
tion of a singleton inR.

Axiom 8 (Upward Monotonicity w.r.t. Singletons (UMS)).
Let X be a set of items andR the relation on X∗. Let A,B⊆
X be such that A > B, and let a ∈ A\B. If the preference
for a increases (i.e., if a gets closer to the best elements inR)
ceteris paribus, then A>B is maintained.

Proposition 7 (*). The ordinal dominance relation does not
satisfy UMS.

Actually, improving the position of a singleton in R has
the opposite effect to that of a pair. The reason is that, in the
model of utility with binary interactions, a singleton’s util-
ity also impacts the appeal of the pairs it may form. Thus,
improving the position of a singleton ceteris paribus in R
implies the deterioration of its interactions with the other el-
ements in X , in accordance with the definition of interaction
provided in Equation 2. Conversely, deteriorating the posi-
tion of a singleton improves its interactions with the other
elements inX , thus the following axiom holds for the ordinal
dominance relation:

Axiom 9 (Downward Monotonicity w.r.t. Singletons (DMS)).
Let X be a set of items andR the relation on X∗. Let A,B⊆
X be such that |A|= |B|≥2 and A>B, and let x∈A\B. If
the preference for x decreases (i.e., x gets closer to the worst
elements inR) ceteris paribus, then A>B is maintained.

Proposition 8 (*). The ordinal dominance relation satisfies
DMS.

Table 1: Axioms satisfied by ≥RD0
and ≥RD .

Axioms ≥RD0
≥RD

(1) [N] 3 3
(2) [IC] N/A 3
(3) [ITA] 3 3
(4) [WI] 3 7
(5) [ComP] 3 7
(6) [ComBP] N/A 3
(7) [UMP] N/A 3
(8) [UMS] 3 7
(9) [DMS] 7 3

Table 1 summarizes the differences between≥RD0
and≥RD .

We observe that, although accounting for interactions within
pairs leads to a loss of fundamental properties such as weak
independence or upward monotonicity w.r.t. singletons, the
ordinal dominance relation ≥RD does satisfy new mathemati-
cal properties, which are not always meaningful (applicable)
for ≥RD0

(which is denoted by N/A in the table)3.

4 Finding non-dominated subsets
We now use the ordinal dominance relation (with binary in-
teractions) in order to define and find non-dominated subsets.

3Note that, when ordinal dominance without interactions is used,
if UR 6= ∅ then IC holds. Axiom UMP is not meaningful for ≥RD0

because increasing the preference for P = ij independently of i and
j may yield UR = ∅, and neither is ComBP because, if UR = ∅ for
additive utilities, then no binary pairwise dominance can occur.



Notation ND≤k (resp. ND=
k ) refers to the set of non ordi-

nally dominated subsets of cardinality at most k (resp. equal
to k):

ND./
k = {A ⊆ X | |A| ./ k,@B ⊆ X,B 6= A, |B| ./ k,

∀u, u(B) ≥ u(A)}
= {A ⊆ X | |A| ./ k,∀B ⊆ X,B 6= A, |B| ./ k,

∃u, u(A) > u(B)}.

with ./∈ {≤,=}.

4.1 Complexity of finding a non ordinally
dominated subset

We study two different problems, ./-InOrdND (In the set of
Ordinaly Non-Dominated solutions) for ./ ∈ {≤,=}. These
problems are defined as follows:

./-InOrdND
Input: X = {x1, . . . , xn}, an integer k,

Y ⊆ X such that |Y | ./ k
R a preference relation over X∗

Question: Does Y belong to ND./ ?

We now study the complexity of these decision problems.
Theorem 9 (*). ./-InOrdND is co-NP-complete.

Determining whether a given set is non-dominated
amongst sets of same or smaller size is thus co-NP-complete.

4.2 Determining a non-dominated subset
Even though we have shown these problems to be NP-
complete and, if P 6=NP, it is impossible to design an algo-
rithm to determine in polynomial time the entirety of non-
dominated subsets, we still try to determine one of these sub-
sets, using algorithms running in polynomial time.

We present such an algorithm to find a solution in ND=.
There exist different approaches to generate a subset that isn’t
dominated amongst all subsets of size k. To build the simplest
possible algorithm, we choose an iterative approach, based on
the monotonic dominance presented in Section 2.2.

4.2.1 k-Selectable pairs
Section 2.2 tells us that, as long as the i-th element of V B

S

is strictly better than that of V S
B , then B cannot dominate S.

This holds regardless of comparisons between the other ele-
ments of the vectors.

Since we wish to determine a subset S which could not be
dominated by any subset B of same size k, we try to obtain
a vector V B

S composed of at least one element which cannot
be dominated in R, keeping in mind that if the selected el-
ement is a singleton, its selection is not advantageous, as its
utility is useful to the adversary subset (see Equation 5). For
the same reason, if the first pair in R is such that one of its
components precedes it, then its selection may not be advan-
tageous. These observations can be extended to the notion of
k-selectable pairs.
Definition 1. A pair P is said to be k-selectable w.r.t. a set
S iff it holds that |P ∪ S| ≤ k and that, for any element
x ∈ P \ S, P � x.

Example 3. Let X ={1, 2, 3, 4, 5}, k = 4 andR such that

13 � 4 � 3 � 12 � 23 � 34 � 45 � 1 �
24 � 5 � 15 � ∅ � 14 � 25 � 2 � 35

P = {1, 2} is 3-selectable w.r.t. S = {1, 3} since 12 � 2
(P \S = {2}), however P ′ = {3, 4} is not 3-selectable w.r.t.
S′ = {1, 2, 3} since 4 � 34 (P ′ \ S′ = {4}).
Proposition 10 (*). Let S be the set obtained by incremen-
tally adding the best k-selectable pair w.r.t. itself starting
from S = ∅. Let S′ be any subset of size |S| such that S′ 6= S.
Then S′ cannot dominate S.

A subset composed only of the best k-selectable pairs can
therefore never be dominated by a subset of same size. How-
ever, this incremental construction of S can only go on as
long as there are k-selectable pairs w.r.t. S, and as such it
may stop before S has reached size k. In this case, we com-
plete S by selecting the worst singletons, since we know from
Equation 3 that a singleton’s utility serves the adversary sub-
set’s utility.
Proposition 11 (*). Let S be the set obtained by incremen-
tally adding the best k-selectable pair w.r.t. itself starting
from S = ∅. Let W be the set of the k − |S| worst single-
tons in R such that S ∩W = ∅. Then there exist no set S′
such that |S′| = k and S′ ≥RD S ∪W .

From all these elements, it is now possible to build a pro-
cedure to determine a non-dominated subset.

4.2.2 Determining a non-dominated subset in ND=

The procedure unfolds over several steps:
1) Treatment of “easy” cases : We start the procedure by
considering 4 “easy cases” :
� if k = |X|, then we return X directly,
� if |X| < k or k ≤ 0, there exists no solution of size k,

therefore we return the empty set,
� if k = 1, we return the best singleton inR,
� if k = 2, we return the best pair inR.

2) Selection of pairs: Build a set S, using the greedy strategy
over k-selectable pairs explained in Proposition 10.
3) Completion: If |S| < k, complete S with the worst
singletons as explained in Proposition 11.

In Example 3, the selectable pairs chosen to build S (step
2) are 13, then 12 and lastly 23 . Hence, at the end of step
2, S = {1, 2, 3}. As |S| < k, step 3 completes S with the
worst singleton outside of S, namely 5. Therefore, at the end
of step 3, we obtain the solution S = {1, 2, 3, 5}. One can
easily check that {1, 2, 3, 5} is not dominated among same-
sized subsets (a formal proof is provided in the Appendix).
Complexity analysis of the procedure. We assume thatR
andX are given exhaustively, as they were presented in every
example. Moreover, we know that k ≤ n < |R|.

Step 1 of the procedure is carried out in linear time, as it
only focuses on k and n.

Steps 2 and 3 only needs to browse R once (checking if a
pair is k admissible or if a singleton is in S can be done in
constant time), and is therefore performed in O(|R|) time.

We conclude that the procedure is indeed carried out in
polynomial time, more precisely in O(|R|) time.



4.3 Solving by linear programming
The formulation of ordinal dominance using a universal quan-
tifier naturally allows for another formulation using an exis-
tential quantifier:

A ≥RD B ⇔ @u ∈ UR, u(B) > u(A).

Therefore, determining a single function u may suffice to
rule on the dominance between A and B. We can there-
fore draw up a linear program to determine if there exists
such a utility function contradicting dominance of A over B.
The linear program contains a variable ux for each element
x ∈ X∗, as well as u(A) and u(B). Each of these variables
represents a utility which can be associated with the subset
under the following constraints:

• Respect R: For each pair of elements of X∗ consecu-
tively placed in R, we add a constraint to verify that the
strict order of preferences is satisfied. As such, if for
instanceRi = a andRi+1 = cd, we add the constraint

u(a) > u(cd).

• Impose the value of ∅: By definition, ∅ is of null utility,
therefore we add a constraint

u(∅) = 0.

• Implement utility with binary interactions: If A (resp.
B) is of size greater or equal to 3, we specify that its util-
ity must be computed using the binary interaction model
by adding the associated constraint

u(A) =
∑

C∈A(2)

uC − (|A| − 2)×
∑
a∈A

u(a)

(resp. u(B) =
∑

C∈B(2)

uC − (|B| − 2)×
∑
b∈B

u(b)).

• Implement the test: By adding the constraint
u(B) > u(A).

It is not necessary to specify a target function: if there ex-
ists any feasible solution, there exists an affectation of val-
ues to the variables such that all the different constraints are
satisfied. This means that there exists a utility function u1
such that u1(B) > u1(A), and therefore A �RD B. If,
conversely, the program is infeasible, then the polyhedron is
empty, which makes it impossible for such a function u to
exist, and ensures the dominance of A over B.

4.4 Study of the polyhedron associated withR
It is possible to directly exploit the polyhedron of utilities
compatible with both utility with binary interactions andR.

To do this, we use a program containing a variable for each
element x ∈ X∗. These variables are subject to the afore-
mentioned constraints, to ensure the respect of the relationR
as well as the imposed value of ∅. There is still no need to
specify a target function to obtain the polyhedron we want to
study. For the sake of polyhedron compacity, however, we
can impose that u(x) ∈ [−1; 1], ∀x ∈ X∗.

Each vertex i of this polyhedron will have a corresponding
vector of size

(
n
2

)
+ n + 1, which indicates the utility ui as-

sociated with each element ofR. We note nbv the number of
vertices of the obtained polyhedron.

Definition 2. The utility vector s(A) of size nbv is such that
each of its components s(A)i corresponds to the utility of the
subset A ⊆ X , computed with the utility function ui associ-
ated with the i-th vertex:

s(A)i = ui(A) =
∑

C∈A(2)

ui(C)− (|A| − 2)
∑
a∈A

ui(a).

Proposition 12. (*) The ordinal dominance (with binary in-
teractions) between two subsetsA,B ⊆ X can be determined
by simple comparison of s(A) and s(B) according to Pareto-
dominance:

A ≥RD B ⇐⇒ ∀i ∈ {1, . . . , nbv}, s(A)i ≥ s(B)i

Using this method, it is possible to consider only a finite
number of utility functions to determine the dominance of a
subset over another. It also allows for the conversion of the
problem of dominance with binary interactions into a multi-
criteria maximisation problem.

However, the complexity of this approach depends on the
number of vertices on the polyhedron, thus of its shape (de-
termined by the configuration ofR), as well as on the size of
X and the value of k.

5 Potential Optimality and its relation with
non-dominated subsets

Optimality allows for a wider-scale study of dominance.
While monotonic dominance only allows for pairwise com-
parisons of subsets, an optimal subset is defined in relation to
every other subset it can be compared to.

Definition 3. Let X be a set of objects andR a total order on
X∗ = ∅ ∪X ∪X(2), a subset S ⊆ X is said to be optimal if,
for any utility function u ∈ UR and for any subset A ⊆ X , it
holds that u(S) ≥ u(A).

Just like the ordinal dominance presented in Equation 4,
the optimality of a subset is expressed in relation to any func-
tion u in UR. To simplify its study, however, we choose to
focus on an alternative notion: that of a potentially optimal
subset.

Definition 4. Let X be a set of objects andR a total order on
X∗ = ∅ ∪X ∪X(2), a subset S ⊆ X is said to be potentially
optimal (resp. uniquely potentially optimal) if there exists a
utility function u ∈ UR such that, for any subset A ⊆ X , it
holds that u(S) ≥ u(A) (resp. u(S) > u(A)).

The sets UPO≤k and PO≤k (resp. UPO=
k and PO=

k ) of
potentially optimal and uniquely potentially optimal solutions
of size equal or inferior to k (resp. equal to k) are defined by:

UPO./
k = {A ⊆ X | |A| ./ k,∃u,∀B ⊆ X,B 6= A, |B| ./ k,

u(A) > u(B)}

PO./
k = {A ⊆ X | |A| ≤ k, ∃u,∀B ⊆ X,B 6= A, |B| ./ k,

u(A) ≥ u(B)}

with ./∈ {≤,=}.



Proposition 13. UPO./
k ⊆ PO./

k , for ./ ∈ {≤,=}.4

Proof. Trivial.

The intersection of PO=
k and PO≤k or of UPO=

k and
UPO≤k may not be empty, yet we cannot determine any re-
lation of inclusion between PO=

k and PO≤k , nor between
UPO=

k and UPO≤k . However, we can inspect the relation
between these sets and ND=

k or ND≤k .
Proposition 14 (*). If S is a potentially optimal subset (i.e.
S ∈ PO=

k ∪PO
≤
k ), then S can only be dominated by subsets

that are optimal according to the utility S is optimal for.
Remark 3. Every element of PO./

k does not necessarily be-
long to ND./

k . However, we observe experimentally that
PO./

k is more often contained entirely within ND./
k .

Proposition 15 (*). UPO./
k ⊆ND./

k , for ./ ∈ {≤,=}.
Proposition 16 (*). ND./

k *UPO./
k , for ./ ∈ {≤,=}.

Figure 1 synthesises relations of inclusion between the
non-dominated, potentially optimal and uniquely potentially
optimal solutions.

PO./ ND./

UPO./

Figure 1: Inclusion relationships between ND./, PO./ and UPO./

with ./∈ {≤,=}.

Remark 4. ND./
k and PO./

k always contain at least one ele-
ment, however UPO./

k may be empty.

5.1 Numerical tests on ND and PO sets
All results presented in Figures 2 and 3 were obtained over
2000 runs, from ordersR generated u.a.r.

The figures only focus on cases where k > 2, as there
exists only one non-dominated or (uniquely) potentially op-
timal solution amongst the pairs and singletons. Similarly,
the figures studying PO=

k , UPO=
k and ND=

k (Figure 2) do
not focus on the case where k = n, as we know there exists
only one subset of size n: X itself. It is therefore the only
non-dominated and (uniquely) potentially optimal subset.

Figures 2 and 3 show that while on average the number
of non-dominated subsets and of (uniquely) potentially opti-
mal subsets is relatively low, there exist worst case scenar-
ios in which there is a great number of non-dominated or

4We assume that ./ takes on the same value every time it is used
in a given formulation (i.e. here, it means that either UPO≤k ⊆
PO≤k or UPO=

k ⊆ PO=
k ).
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Figure 2: Number of subsets contained in PO=
k , UPO=

k and ND=
k

for n = 9 and values of k varying in {3, 4, 5, 6, 7, 8}.
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Figure 3: Number of subsets contained in PO≤k , UPO≤k and ND≤k
for n = 9 and values of k varying in {3, 4, 5, 6, 7, 9}.

(uniquely) potentially optimal subsets. Sometimes, they can
represent nearly half of all possible solutions: in Figure 2,
there exist 126 subsets of size exactly 5, and we can see that
around 65 are (uniquely) potentially optimal and over 70 are
non-dominated. Similarly, in Figure 3, there exist 511 pos-
sible subsets of size smaller than or equal to 5, and we can
see that around 220 are (uniquely) potentially optimal, and
around 275 are non-dominated.

As these large differences in the number of non-dominated
and (uniquely) potentially optimal subsets occur even when
n and k are fixed, it becomes evident that the source of com-
plexity isR, the expressed preference order.

Additionally, these two figures reveal a phenomenon we
have also observed for other values of n: in most cases,
UPO./

k and PO./
k are of very similar - if not identical - sizes.

6 Conclusion
We have studied subset selection using an ordinal dominance
relation with binary interactions. The originality of the ap-
proach is its robustness, by the use of an ordinal model, and
its expressiveness, by the consideration of interactions.

For future works, we could go further in the axiomatic
analysis and give a characterization of ordinal dominance.
The algorithmic study also leaves room for more develop-
ments, such as a furthering of the study of optimal subsets de-
termination, or an investigation into more expressive models
handling interactions between more than two items, as well
as methods for preference elicitation in such a setting.
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Appendix
Omitted Proofs

3 - Axiomatic examination

Axiom 4 (Weak independence (WI)). Let A,B ⊆ X be such
that A > B, then there exists no x ∈X \(A ∪ B) such that
B ∪ {x} > A ∪ {x}.
Proposition 4. The ordinal dominance relation does not sat-
isfy WI.

Proof. Let X={1, 2, 3, 4, 5, 6, 7}, A=123, B=456 and R be
a preference order such that

47 � 12 � 1 � 15 � 13 � 24 � ∅ � 23 � 2 � 3 � 35 �
16 � 4 � 25 � 14 � 45 � 7 � 67 � 6 � 57 � 17 � 46 �

27 � 36 � 37 � 34 � 26

We start by comparing A and B from their vectors: V B
A =(12

13 23 4 5 6) and V A
B =(1 2 3 45 46 56). As 12�1, 13�2,

23�3, 4�45, 5�46 and 6�56, we determine that V B
A ≥RM

V A
B , which means that A ≥RD B.

Let A′=1237 and B′=4567, we now study V B′

A′ =(12 13 23 4
4 5 5 6 6 17 27 37) and V A′

B′ =(47 1 1 2 2 3 3 45 67 57 46 56).
Since 47�12, 1�13, 1�23, 2�4, 3�5, 45�6, 67�6, 57�17,
46�27 and 56� 37, it holds that V B′

A′ ≤RM V A′

B′ , which means
that B′ ≥RD A′.
Therefore, by adding the same element to both subsets, we
have managed to reverse the dominance relation.

Axiom 6 (Compatibility with Binary Pairwise dominance
(ComBP)). Let A,B ⊆ X . If A binary pairwise dominates
B, then A>B.

Proposition 5. The ordinal dominance relation satisfies ax-
iom ComBP.

Proof. Let A,B ⊂ X be of same size k. From (4), we com-
pute the utility of A when compared to B

u(A) =
∑

C∈A(2)

u(C) + (k − 2)
∑
x∈B

u(x)

Similarly, we compute the utility of B when compared to A

u(B) =
∑

C∈B(2)

u(C) + (k − 2)
∑
x∈A

u(x)

If A binary pairwise dominates B, it is trivial that∑
C∈A(2)

u(C) >
∑

C∈B(2)

u(C) and
∑
x∈B

u(x) >
∑
x∈A

u(x).

Hence, A ≥RD B holds.

Axiom 7 (Upward Monotonicity w.r.t. Pairs (UMP)). Let
A,B ⊆ X be such that A > B and let P ∈ A(2) \B(2). If
the preference for P increases (i.e., if P gets closer to the
best element inR) ceteris paribus, then A>B is maintained.

Proposition 6. The ordinal dominance relation satisfies
UMP.

Proof. SinceA dominatesB, we know from (4) that any util-
ity function verifies that u(A) ≥ u(B). However, according
to (3), increasing the utility of a pair (i.e. placing it earlier in
R) increases the utility of the set that contains it.
Thus, if P belongs to A and not B, then only the utility of
A increases. Let ε be this increase of utility, we obtain that
u(A) + ε ≥ u(A) ≥ u(B), which ensures the preservation of
the dominance of A over B.

Axiom 8 (Upward Monotonicity w.r.t. Singletons (UMS)).
Let A,B ⊆ X be such that A > B, and let a ∈ A\B. If
the preference for a increases (i.e., if a gets closer to the best
elements inR) ceteris paribus, then A>B is maintained.

Proposition 7. The ordinal dominance relation does not sat-
isfy UMS.

Proof. Let X = {1, 2, 3, 4} andR be a preference order such
that

12 � 34 � 2 � 14 � 13 � 1 � 23 � 3 � ∅ � 4 � 24

LetA = {1, 2, 3} andB = {2, 3, 4}. We determine the follow-
ing comparison vectors: V B

A = (12 13 4) and V A
B = (34 1 24).

Since 12�34, 13�1 and 4�24, it holds that V B
A ≥RM V A

B ,
hence A ≥RD B.
However, if the preference for the element 1 increases, all
other utilities being equal (i.e. only the ∆ are modified, more
precisely decreased), andR is modified such that

12 � 34 � 2 � 14 � 1 � 13 � 23 � 3 � ∅ � 4 � 24

Then the monotonic dominance of V B
A over V A

B no longer
applies, since 1�13, and the dominance of A over B is lost.

Axiom 9 (Downward Monotonicity w.r.t. Singletons (DMS)).
Let A,B⊆X be such that |A|= |B| ≥ 2 and A>B, and let
x ∈ A\B. If the preference for x decreases (i.e., if x gets
closer to the worst element in R) ceteris paribus, then A>B
is maintained.

Proposition 8. The ordinal dominance relation satisfies
DMS.

Proof. From (5), we know that the value of u(x), x ∈ A \B,
impacts the utility of the set B when compared to A. There-
fore if u(x) decreases, A remains of identical utility (which is
still greater than that of B), while the utility of B decreases,
regardless of which utility function u is applied. Conse-
quently, it still holds that A ≥RD B.



4 - Finding non-dominated subsets
Theorem 9. ./-InOrdND is co-NP-complete.

Proof. To prove that ./-InOrdND is co-NP-complete, we
show that its complementary problem is NP-complete. Its
complementary problem, ./-OrdDominated, has as input:

Input: X = {x1, . . . , xn}, an integer k,
Y ⊆ X such that |Y |./k
R a preference relation over X∗

Depending on the value of ./, the question associated to
./-OrdDominated is either:

• ./ is = : Is Y dominated inX(k) according to the binary
interaction model?

• ./ is ≤ : Is Y dominated in
k⋃

i=0

X(i) according to the

binary interaction model?

We shall use the k-clique problem, which has been proven
by [Karp, 2010] to be NP-complete, defined as such:

Input: G = (S,E)
k ∈ N

Question: Is there a clique of size k in G ?

• ./-OrdDominated ∈ NP
Let T = {t1, . . . , tk} be a better solution than Y . We can ver-
ify that T ≥RD Y in polynomial time using monotonic domi-
nance between the two vectors V Y

T and V T
Y . We know it can

be checked in polynomial time that V Y
T ≥RM V T

Y .

• k-CLIQUE ≤P ./-OrdDominated
We transform in polynomial time an instance (G=(S,E),
k) of k-CLIQUE into a new instance (X , Y , R) of ./-
OrdDominated such that:

- X = S ∪ Y , i.e., there is one element per vertex plus k
additional elements Y = {y1, . . . , yk}.

- R is a strict order over X∗ such that E � Y(2) � C1 �
C2 � ∅ � Y � S with

C1 = {(i, j) ∈ X(2) | i ∈ Y and j ∈ S}
C2 = {(i, j) ∈ S(2) | (i, j) /∈ E}

Note that by construction, adding any element to any set
(except ∅) will necessarily increase its utility. Hence, Y will
be ordinally dominated iff it is ordinally dominated by a set
of size k. Thus, in the rest of the reduction we focus on =-
OrdDominated, while keeping in mind that the reduction also
applies to ≤-OrdDominated.
B k-CLIQUE⇒ =-OrdDominated.
Let Z be a set of k vertices constituting a clique in G. By
definition of R, Z is of size k and such that every element in
Z(2) is preferred to every element in Y(2), and every element
in Y is preferred to every element in X . We conclude that
V Y
Z ≥RM V Z

Y , i.e. that Z ≥RD Y .
B =-OrdDominated⇒ k-CLIQUE
Let Z ∈ X(k) be a set dominating Y . We know that V Y

Z ≥RM
V Z
Y , and it therefore holds that Z(2) � Y(2) and Y � Z

(all relations are strict because R is a strict order). If Z
contains an element of Y as well as an element of S, Z(2)

will contain a pair of C1. Yet we know that every element
in C1 is dominated by every element in Y(2), which prevents
us from verifying that Z(2) � Y(2). Z must therefore contain
either only elements of Y or only elements of S. In the former
case, if Z = Y , Z cannot dominate Y , which contradicts our
initial hypothesis.
We therefore know that Z must contain only elements of S to
verify that Y � Z. However, we know that the only elements
of S forming pairs which dominate any pair of Y(2) are the
vertices of G linked by an edge. Z must therefore contain
only elements of S linked in G in order for Z(2) � Y(2) to
hold. Such a Z represents a set of k vertices of G connected
two by two, i.e., a clique of size k in G.

Proposition 10. Let S be the set obtained by incrementally
adding the best k-selectable pair w.r.t. itself starting from
S = ∅. Let S′ be any subset of size |S| such that S′ 6= S.
Then S′ cannot dominate S.

Proof. We study the dominance relation between S and S′ by
comparing the associated vectors V S′

S and V S
S′ . Four scenar-

ios may arise :
1) Let the first element of V S′

S be a pair PS and the first
element of V S

S′ be another pair PS′ . By construction, V S′

S ∩
V S
S′ = ∅, therefore PS′ /∈ S, which means that it is not k-

selectable with regards to S. This can mean one of two things:
either PS′ is not k-selectable w.r.t. S because selecting it
made S a set of size greater than k, or because ∃x ∈ PS′

such that x � PS′ and x /∈ S.
Let us first assume PS′ is not k-selectable w.r.t. S because

selecting it makes S a set of size greater than k. Since S and
S′ are of same size, the presence of PS′ in S′, when PS′ /∈
S, implies that at least one element x ∈ S is not present in
S′. Yet x can only be present in S if it is associated to a k-
selectable pair w.r.t. S. Let P ∗ be that pair: if x /∈ S′, then
P ∗ /∈ S′, and it holds that P ∗ ∈ V S′

S . Since we proceed by
successively selecting the best k-selectable pairs w.r.t. S, it
holds that P ∗ � PS′ , otherwise PS′ would have been selected
in place of PS′ . Since the best element in V S′

S is PS , it holds
that PS � P ∗ � PS′ , and PS′ cannot be preferred to PS ,
which means that V S

S′ cannot dominate V S′

S , i.e. S′ cannot
dominate S.

Let us now assume PS′ is not k-selectable w.r.t. S because
∃x ∈ PS′ such that x � PS′ and x /∈ S, then we know by
construction that x ∈ V S′

S , and since the best element in V S′

S
is PS , it holds that PS � x � PS′ . Therefore, PS′ cannot be
preferred to PS , which means that V S

S′ cannot dominate V S′

S ,
i.e. S′ cannot dominate S.

2) Let the first element of V S′

S be a pair P and the first
element of V S

S′ be a singleton x. By construction, P ∈ S \
S′ and x ∈ S \ S′. Yet x can only be present in S if it is
associated to a k-selectable pair w.r.t. S. Let P ∗ be that pair,
hence P ∗ � x: if x /∈ S′, then P ∗ /∈ S′, and it holds that
P ∗ ∈ V S′

S . Then PS � P ∗ � x which means that V S
S′ cannot

dominate V S′

S , i.e. S′ cannot dominate S.

3) Let the first element of V S′

S be a singleton x and the first
element of V S

S′ be a pair P . By construction, P ∈ S′ \ S and



x ∈ S′ \ S. As P /∈ S, we know that it is not k-selectable
w.r.t. S. This can mean one of two things: either P is not
k-selectable w.r.t. S because selecting it made S a set of size
greater than k, or because ∃y ∈ P such that y � P and
y /∈ S.

Let us first assume that P is not k-selectable w.r.t. S be-
cause selecting it makes S of size greater than k. Since S and
S′ are of same size, the presence of P in S′, when P /∈ S,
implies that at least one element z ∈ S is not present in S′.
Yet z can only be present in S if it is in one of the k-selectable
pair that was added in the incremental process building S. Let
P ∗ be that pair: if z /∈ S′, then P ∗ /∈ S′, and it holds that
P ∗ ∈ V S′

S . Since we proceed by successively selecting the
best k-selectable pairs w.r.t. S, it holds that P ∗ � P (other-
wise P would have been added instead5). As the best element
in V S′

S is x, it holds that x � P ∗ � P . Therefore, P can-
not be preferred to x, which means that V S

S′ cannot dominate
V S′

S , i.e. S′ cannot dominate S.
If P is not k-selectable w.r.t. S because ∃y ∈ P such that

y � P and y /∈ S, then we know by construction that y ∈
V S′

S , and since the best element in V S′

S is x, it holds that x �
y � P . Consequently, P cannot be preferred to x, meaning
that V S

S′ cannot dominate V S′

S , i.e. S′ cannot dominate S.

4) Let the first element of V S′

S be a singleton x and the
first element of V S

S′ be another singleton y. By construction,
x ∈ S′ \S and y ∈ S \S′, which means that y is in one of the
k-selectable pair P that was added in the incremental process
building S with P � y. However, since, by construction, the
first element of V S′

S is x, then it must hold that x � P � y.
Therefore, V S

S′ cannot dominate V S′

S , i.e. S′ cannot dominate
S.

Thus, regardless of the configuration of V S′

S and V S
S′ , it is

impossible for S′ to dominate S.

Proposition 11. Let S be the set obtained by incrementally
adding the best k-selectable pair w.r.t. itself starting from
S = ∅. Let W be the set of the k − |S| worst singletons in
R such that S ∩W = ∅. Then there exist no set S′ such that
|S′| = k and S′ ≥RD S ∪W .

Proof. Once again, we study the dominance relation between
S∪W and S′ by comparing the associated vectors V S′

S∪W and
V S∪W
S′ . Four scenarios may arise :
1) Let the first element of V S′

S∪W be a pair P1 and the first
element of V S∪W

S′ be a pair P2. By construction, we know
that P1 ∈ (S ∪W ) \ S′ and P2 ∈ S′ \ (S ∪W ). While P1

may or may not be k-selectable w.r.t. S, we know for certain
that P2 is not. This can mean one of two things: either P2 is
not k-selectable w.r.t. S because selecting it made S a set of
size greater than k, or because ∃x ∈ P2 such that x � P2 and
x /∈ S.

5Note that adding P ∗ can only make P become selectable if
P ∗ � P .

If P2 is not k-selectable w.r.t. S because selecting it made
S a set of size greater than k, then necessarily, S is of size
k−1 and S∩P2 = ∅. As a consequence, at least one element
x ∈ S is not present in S′. Yet x can only be present in S
if it is in one of the k-selectable pair that was added in the
incremental process building S. Let P ∗ be that pair: if x /∈
S′, then P ∗ /∈ S′, and it holds that P ∗ ∈ V S′

S∪W . Since we
proceed by successively selecting the best k-selectable pairs
w.r.t. S, it holds that P ∗ � P (otherwise P would have been
added instead). In turn, and since the best element in V S′

S∪W is
P1, it holds that P1 � P ∗ � P2, and P2 cannot be preferred
to P1, which means that V S∪W

S′ cannot dominate V S′

S∪W , i.e.
S′ cannot dominate S ∪W .

If P2 is not k-selectable w.r.t. S because ∃x ∈ P2 such
that x � P2 and x /∈ S, let x∗ be the component of P2 \ S
that is most preferred. If x∗ were to belong to W , then by
construction of W , it would hold that both elements of P2

belong to W , in which case P2 would belong to both S′ and
S ∪ W , and it could not be the first element of V S∪W

S′ . It
therefore holds that x∗ /∈ W and x∗ � P2. By construction,
this means that x∗ ∈ V S′

S∪W , and since the best element in
V S′

S∪W is P1, it holds that P1 � x∗ � P2. Therefore, P2

cannot be preferred to P1, which means that V S∪W
S′ cannot

dominate V S′

S∪W , i.e. S′ cannot dominate S ∪W .

2) Let the first element of V S′

S∪W be a pair P and the first el-
ement of V S∪W

S′ be a singleton x. By construction, we know
that P ∈ (S ∪W ) \ S′ and x ∈ (S ∪W ) \ S′. There can
be two explanations for x belonging to S ∪W : either x ∈ S
and is therefore part of a k-selectable pair Px ∈ S that was
added in the incremental process building S, or x ∈ W and
has been added to S as one of the worst singletons inR.

If x ∈ S and since the best element in V S′

S∪W is P , then it
holds that P � Px � x, in which case V S∪W

S′ cannot domi-
nate V S′

S∪W , i.e. S′ cannot dominate S ∪W .
If x ∈ W and has been added to S as one of the worst

singletons inR, then we know that ∀y ∈ X \(S∪W ), y � x.
Since x /∈ S′ but |S′| = |S ∪W |, there must exist z ∈ S′ \
(S ∪W ), which means z � x. By construction, z ∈ V S′

S∪W ,
yet the first element of V S′

S∪W is a pair, therefore it must hold
that P � z � x. Consequently, V S∪W

S′ cannot dominate
V S′

S∪W , i.e. S′ cannot dominate S ∪W .

3) Let the first element of V S′

S∪W be a singleton x and the
first element of V S∪W

S′ be a pair P . By construction, we know
that P ∈ S′ \ (S ∪W ) and x ∈ S′ \ (S ∪W ). Since P /∈
S ∪W , we know that it is non k-selectable w.r.t. S. This can
mean one of two things: either P is not k-selectable w.r.t. S
because selecting it made S a set of size greater than k, or
because ∃y ∈ P such that y � P and y /∈ S.

If P is not k-selectable w.r.t. S because selecting it made S
of size greater than k, then necessarily, S is of size k − 1 and
S ∩ P2 = ∅. As a consequence, at least one element z ∈ S
is not present in S′. Yet z can only be present in S if it is in
one of the k-selectable pair that was added in the incremental
process building S. Let P ∗ be that pair: if z /∈ S′, then
P ∗ /∈ S′, and it holds that P ∗ ∈ V S′

S∪W . Since we proceed



by successively selecting the best k-selectable pairs w.r.t. S,
it holds that P ∗ � P (otherwise P would have been added
instead). In turn, and since the best element in V S′

S∪W is x, it
holds that x � P ∗ � P . Therefore, P cannot be preferred to
x, which means that V S∪W

S′ cannot dominate V S′

S∪W , i.e. S′
cannot dominate S ∪W .

If P is not k-selectable w.r.t. S because ∃y ∈ P such that
y � P and y /∈ S, let y∗ be the component of P \ S that is
most preferred. If y∗ were to belong to W , then by construc-
tion of W , it would hold that both elements of P belong to
W , in which case P would belong to both S′ and S ∪W , and
it could not be the first element of V S∪W

S′ . It therefore holds
that y∗ /∈ W and y∗ � P . By construction, this means that
y∗ ∈ V S′

S∪W , and since the best element in V S′

S∪W is x, it holds
that x � y∗ � P . Consequently, P cannot be preferred to x,
meaning that V S∪W

S′ cannot dominate V S′

S∪W , i.e. S′ cannot
dominate S ∪W .

4) Let the first element of V S′

S∪W be a singleton x and the
first element of V S∪W

S′ be another singleton y. By construc-
tion, we know that x ∈ S′ \ (S ∪W ) and y ∈ (S ∪W ) \ S′.
If y is in (S ∪W ) \ S′ because it was a part of a k-selectable
pair Py such that Py � y, and Py ∈ V S′

S∪W . Yet since
the first element of VS∪W is a singleton, it must hold that
x � Py � y, in which case V S∪W

S′ cannot dominate V S′

S∪W ,
i.e. S′ cannot dominate S ∪W .
If y has been added to S as one of the worst singletons in R,
then we know that ∀z ∈ X \ (S ∪W ), y � z. Since y /∈ S′
but |S′| = |S∪W |, there must exist s ∈ S′ \ (S∪W ), which
means s � y. By construction, s ∈ V S′

S∪W , therefore it must
hold that x � s � y. Consequently, V S∪W

S′ cannot dominate
V S′

S∪W , i.e. S′ cannot dominate S ∪W .

Thus, regardless of the configuration of V S′

S∪W and V S∪W
S′ ,

it is impossible for S′ to dominate S ∪W .

Proposition 12. The relation of dominance with binary in-
teractions between two subsets A,B ⊆ X can be determined
by simple comparison of s(A) and s(B) according to Pareto-
dominance:

A ≥RD B ⇐⇒ ∀i ∈ {1, . . . , nbv}, s(A)i ≥ s(B)i

Proof. � s(A) �P s(B)⇒ A ≥RD B
If s(A) �P s(B), we know that A is of higher utility than B
over every vertex of the polyhedron. By definition, any point
of the polyhedron (here, any utility verifying R) can be writ-
ten as a linear combination of its extreme points. Therefore,
let ui be the utility defined on vertex i, we know that, for any
utility function u verifyingR, there exists a set of weights pi

such that
nbs∑
i=1

pi = 1, from which we can express u(A) by

u(A) =

nbs∑
i=1

pi × ui(A).

Since, by construction, s(A) �P s(B) means that ∀i ∈
{0, . . . , nbv}, ui(A) ≥ ui(B), it holds that

nbs∑
i=1

ui(A) ≥
nbs∑
i=1

ui(B)

which implies that, for any function u verifying R,
u(A) ≥ u(B).
Using (4), we then obtain that s(A) �P s(B)⇒ A ≥RD B.

� A ≥RD B ⇒ s(A) �P s(B)
Trivial: from (4), we know that if A ≥D B, then let ui be the
utility function fixed on vertex i, ∀i ∈ {1, . . . , nbs}, it holds
that ui(A) ≥ ui(B). As A is of higher utility than B on
every vertex, it holds that s(A)i ≥ s(B)i,∀i ∈ {1, . . . , nbs},
i.e. s(A) �P s(B).

Pareto dominance over the vertices of the polyhedron de-
termined fromR is therefore equivalent to the dominance re-
lation ≥RD .

Example 3 (Complete version). LetX ={1, 2, 3, 4, 5}, k = 4
andR such that

13 � 4 � 3 � 12 � 23 � 34 � 45 � 1 �
24 � 5 � 15 � ∅ � 14 � 25 � 2 � 35

The selectable pairs chosen to build S (step 2.) are 13, then
12 and lastly 23 . Hence, at the end of step 2, S = {1, 2, 3}.
As |S| < k, step 3 completes S with the worst singleton out-
side of S, namely 5. Therefore, at the end of step 3, we obtain
the solution S = {1, 2, 3, 5}. We check that {1, 2, 3, 5} is not
dominated among same-sized subsets.
V 1234
1235 = (4 4 15 25 35) and V 1235

1234 =(34 24 5 5 14): since 4�34,
1234 does not dominate 1235,
V 1245
1235 = (13 4 4 23 35) and V 1235

1245 = (3 3 45 24 14): since
13�3, 1245 does not dominate 1235,
V 1345
1235 = (4 4 12 23 25) and V 1235

1345 = (34 45 14 2 2): since
4�34, 1345 does not dominate 1235,
V 2345
1235 = (13 4 4 12 15) and V 1235

2345 = (34 45 1 1 24): since
13�34, 2345 does not dominate 1235.
Consequently, 1235 is not dominated amongst same-sized
sets.

5 - Potential Optimality and its relation with
non-dominated subsets

Proposition 14. If S is a potentially optimal subset (i.e. S ∈
PO=

k ∪PO
≤
k ), then S can only be dominated by subsets that

are optimal according to the utility S is optimal for.

Proof. Let S ∈ POk (without loss of generality). Then,
by definition, there exists a utility function u1 such that
u1(S) ≥ u1(A), ∀A ∈ X(k). We also know that, in order for
A to be dominated by a subset B, the latter needs to be such
that, for any utility function u, it holds that u(B) ≥ u(S).
However, for u1, no subset is of higher utility than S. To
ensure the dominance relation, B must therefore be of utility
equal to that of S according to u1, i.e. u1(B) = u1(S) ≥



u1(A), ∀A ∈ X(k). By definition, this means B also belongs
to POk. More precisely, it means that B, like S, is optimal
for u1.

Proposition 15. UPO./
k ⊆ND./

k , for ./ ∈ {≤,=}.

Proof. Let A ∈ UPO./
k . By definition, there exists u1 such

that ∀B ⊆ X different from A and of size ./k, u1(A) >
u1(B). This means that for any subset B ⊆ X different
from A and of size ./k, we have at least one utility func-
tion such that u(A) > u(B), which allows us to deduce that
A ∈ ND./

k .

Proposition 16. ND./
k *UPO./

k , for ./ ∈ {≤,=}.

Proof. Figures 2 and 3 provide computational proofs for the
proposition. Additionally, we provide a counter-example for
the case ./=≤. Let X = {1, 2, 3, 4, 5}, k = 4 and R be a
preference order such that

∅ � 2 � 12 � 3 � 34 � 23 � 14 � 5 �
4 � 24 � 13 � 35 � 1 � 15 � 45 � 25,

it is determined that 145 is non-dominated (i.e. 145 ∈ ND≤4 )
but not potentially optimal (i.e. 145 /∈ PO≤4 ).

Indeed, if on the one hand we compare 145 with the set
124, we obtain the following comparison vectors: V 124

145 = (2
15 45) and V 145

124 = (12 5 24). Since 2�12 but 15≺5 and
45≺24, for a utility function u to verify u(145) ≥ u(124)
would require for

u(2)− u(12) ≥ (u(5)− u(15)) + (u(24)− u(45))

to hold.
On the other hand, if we compare 145 with the set 1345,

we obtain the following comparison vectors: V 1345
145 = (3 3 5

4 1) and V 145
1345 = (∅ ∅ 34 13 35). As 4�13, but 3≺ ∅, 5≺34

and 1≺35, for a utility function u to verify u(145) ≥ u(1345)
would require for

u(4)−u(13) ≥ 2×(u(∅)−u(3))+(u(34)−u(5))+(u(35)−u(1))

to hold.
Yet we observe that the gap between u(4) and u(13) is

included in the gap between u(5) and u(15) ; similarly, the
gap between u(2) and u(12) is included in the gap between
u(∅) and u(3). Consequently, the increase of the gap between
one of the two equations u must satisfy to make 145 the best
coalition, has the opposite effect on the other equation, and it
is therefore impossible to determine a utility function u that
would verify both that u(145) ≥ u(124) and that u(145) ≥
u(1345).

Thus, there exists no utility function u for which 145 is
potentially optimal, even though we know 145 is not domi-
nated.
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