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Consistent discretization of a homogeneous finite-time control for a
double integrator

Andrey Polyakov1, Denis Efimov1, Xubin Ping2

Abstract— A discretization of a homogeneous controller for
a double integrator is developed. It preserves the finite-time
stability property even in the case of the sampled-time imple-
mentation of the control law. Theoretical results are supported
by numerical simulations.

I. INTRODUCTION

By definition, the homogeneity is a dilation symmetry
known since 18th century, when Leonhard Euler studied a
symmetry of functions with respect to the uniform dilation of
its argument x 7→ λx. The weighted dilation was introduced
in 1950s. For instance, in 1958 Vladimir Zubov intro-
duced weighted homogeneous Ordinary Differential Equa-
tions (ODEs) [1]. Some extensions of the homogeneity the-
ory of finite-dimensional and infinite-dimensional dynamical
models can be found in [2], [3], [4], [5]. Homogeneous
differential equations/inclusions form an important class of
control system models [6], [7], [8], [9], [10]. They appear
as local approximations [11] or set-valued extensions [12]
of nonlinear systems and include models of process control
[13], mechanical models with frictions [14], etc. Stability and
stabilizability problems were studied for both standard [15],
[16] and weighted homogeneous [17], [18], [19], [20], [21],
[22], [23] systems which are the most popular today [14],
[12], [7], [8], [10]. The homogeneous MPC design is studied
in [24]. An introduction to homogeneous optimal control can
be found in [5, Chapter 12] and an energentically optimal
homogeneous stabilization is studied in [25].

An asymptotically stable homogeneous system is finite-
time stable in the case of negative homogeneity degree
and nearly fixed-time stable in the case of the positive
homogeneity degree (see, e.g. [26], [27], [8]). However, the
finite/fixed-time stability is a fragile property in the sense
that an improper discretization of a finite-time or a fixed-
time stable ordinary differential equation (ODE) may result
in a chattering [28], [29] or even in a finite-time blow
up [30]. Moreover, the explicit discretization (sampled-time
implementation) of a finite-time control yields a chattering
even if this control law is a continuous function of state
[31], [32]. That is why the discretization issues are very
important for practical implementation of finite/fixed-time
control/estimation algorithms [28], [33], [34], [35], [36],
[37], [38], [39].
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The concept of consistent discretization introduced in
[40] postulates that stability properties of a continuous-
time system are preserved in its discrete-time counterpart
(approximation). Consistent discretizations for stable gen-
eralized homogeneous ODEs were developed in [40], [41]
based on Lyapunov function theory. Some schemes with
state dependent discretization step were given in [42]. Being
efficient for numerical simulations, the mentioned schemes
do not allow a consistent discretization (sampled-time im-
plementation) of finite-time controllers in the general case.
To the best of authors’ knowledge, such implementations are
developed only for the conventional (first order) sliding mode
algorithms [28], [43] as well as for the twisting algorithm
[36] and super-twisting algorithm [44] based on the implicit
method. This paper presents a consistent discretization for
a homogeneous controller studied in [45] for the case of a
linear plant modeled by the double integrator. It is shown that
the sampled-time implementation of the controller according
to the developed scheme preserves the finite-time stability
property of the original closed-loop continuous-time system
in the disturbance-free case. We also prove the robust-
ness (Input-to-State Stability) of the obtained sampled-time
controller with respect to bounded additive perturbations.
Numerical simulations show the efficiency of this scheme
for rejection of the chattering caused by sampled-time im-
plementation of the continuous-time control algorithm.

Notation: N is the set of natural numbers including 0; R
is the field of real numbers; R+ = {α ∈ R : α > 0};
C is the field of complex numbers; 0 is the zero of a
vector space (e.g., the zero vector in Rn or the zero matrix
in Rn×m); In ∈ Rn×n is the identity matrix; P � 0
denotes positive definiteness of a matrix P = P> ∈ Rn×n;
λmax(P ) is a maximum eigenvalue of a symmetric matrix P ;
‖x‖ =

√
x>Px with P � 0 denotes the weighted Euclidean

norm in Rn; K denotes a class of strictly increasing positive
definite functions [0,+∞) 7→ [0,+∞); a function σ ∈ K
of the class K∞ if σ(s) → +∞ as s → +∞; a function
σ : [0,+∞) × [0,+∞) 7→ [0,+∞) belongs to the class
KL if the function s 7→ σ(s, τ) belongs to the class K for
any fixed τ ∈ [0,+∞) and the function τ 7→ σ(s, τ) is
monotonically decreasing to zero for any fixed s ∈ [0,+∞);
the set of continuous maps X 7→ Y is denoted by C(X,Y ),
where X,Y are subsets of normed vector spaces; L∞(R,Rn)
- the space of the essential bounded function R 7→ Rn;
‖q‖L∞((a,b),Rn) = ess supt∈(a,b) ‖q(t)‖ for q ∈ L∞(R,Rn).



II. PROBLEM STATEMENT

Let us consider a linear control system

ẋ(t) = Ax(t) +Bu(t), t ∈ R+, x(0) = x0 ∈ Rn, (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is control
input and A ∈ Rn×n, B ∈ Rn×m are known matrices.

Recall [46] that a system ẋ = f(t, x), t ∈ R+, x(0) =
x0 is globally uniformly finite-time stable if it is Lyapunov
stable and there exists a locally bounded function T : Rn 7→
[0,+∞) such that any trajectory of the system vanishes to
zero in a finite time: x(t, x0) = 0,∀t ≥ T (x0),∀x0 ∈ Rn.

Definition 1: Let the system (1) with a feedback u ∈
C(Rn\{0},Rm) be globally uniformly finite-time stable. A
family of functions ũh : Rn 7→ Rm parameterized by a scalar
h > 0 is said to be a consistent discretization of u if
• Finite-time stability: the closed-loop system (1) with

u(t)= ũh(x(ti)), t∈ [ti, ti+1), ti= ih, i=0, 1, ... (2)

is globally uniformly finite-time stable;
• Approximation: ∀r2>∀r1>0 : ∃ωr1,r2 ∈ K such that

sup
r1≤‖x‖≤r2

‖ũh(x)− u(x)‖ ≤ ωr1,r2(h). (3)

The first condition of Definition 1 asks the sampled-time
control system to be finite-time stable for any fixed sampling
period h > 0. The second condition guarantees that the
control uh is indeed an approximation of u, i.e. uh → u
as h→ 0+ uniformly on compacts from Rn\{0}.

In this paper we deal with the controlled double integrator.
Assumption 1: A = [ 0 1

0 0 ] and B = [ 01 ] .
The aim of this paper is to develop a consistent (in the

sense of the above definition) discretization for a class of
homogeneous finite-time controllers (given below).

III. PRELIMINARIES: HOMOGENEOUS SYSTEMS

A. Linear dilation and homogeneous norm

The so-called linear (geometric) dilation [5, Chapter 6] in
Rn is given by

d(s) = esGd =

∞∑
i=0

(sGd)
i

i! , s ∈ R, (4)

where Gd ∈ Rn×n is an anti-Hurwitz matrix1 known as
the generator of linear dilation. The latter guarantees that d
satisfies the limit property, ‖d(s)x‖ → 0 as s → −∞ and
‖d(s)x‖ → +∞ as s→ +∞, required for a group d to be a
dilation in Rn (see, e.g., [3]). The linear dilation introduces
an alternative norm topology in Rn by means the so-called
canonical homogeneous norm.

Definition 2: [5] The functional ‖ · ‖d : Rn 7→ R+ given
by ‖x‖d = 0 for x = 0 and

‖x‖d=esx , where sx ∈ R : ‖d(−sx)x‖ =1, x 6= 0 (5)

is called the canonical homogeneous norm in Rn, where d
is a monotone dilation2.

1A matrix Gd ∈ Rn×n is called aniti-Hurwitz if −Gd is Hurwitz.
2A dilation in Rn is monotone if and only if for any x ∈ Rn the function

s 7→ ‖d(s)x‖, s ∈ R is monotone.

Notice that ‖x‖ = 1 (resp. ‖x‖ ≤ 1) is equivalent to
‖x‖d = 1 (resp. ‖x‖d ≤ 1). For the uniform dilation d(s) =
esIn, s ∈ R we have ‖ · ‖ = ‖ · ‖d.

Theorem 1: [47] If d is a monotone dilation then the
canonical homogeneous norm ‖ · ‖d is

• continuous on Rn, locally Lipschitz continuous on
Rn\{0} and there exist σ, σ ∈ K∞ such that

σ(‖x‖) ≤ ‖x‖d ≤ σ(‖x‖), ∀x ∈ Rn;

• differentiable on Rn\{0} provided that ‖ · ‖ is differ-
entiable on Rn\{0}.

Moreover, for ‖x‖ =
√
x>Px with the symmetric matrix

P ∈ Rn×n satisfying

P � 0, PGd +G>dP � 0

we have

∂‖x‖d
∂x =‖x‖d x>d>(− ln ‖x‖d)Pd(− ln ‖x‖d)

x>d>(− ln ‖x‖d)PGdd(− ln ‖x‖d)x , ∀x 6=0. (6)

and∣∣∣‖x1‖βd−‖x2‖βd∣∣∣≤‖x1 − x2‖, ∀xi∈Rn : ‖xi‖≥1, i=1, 2,

(7)
where β = 0.5λmin

(
P 1/2GdP

−1/2 + P−1/2G>dP
1/2
)
> 0.

Below the canonical homogeneous norm is used as a
Lyapunov function for analysis and control design.

B. Homogeneous continuous-time systems

Definition 3: [3] A vector field f : Rn 7→ Rn (resp. a
function h : Rn 7→ R) is said to be d-homogeneous of
degree µ ∈ R if f(d(s)x) = eµsd(s)f(x) (resp. h(d(s)x) =
eµsh(x)), for all x ∈ Rn, s ∈ R.

Homogeneity of a function (operator) is inherited by any
other object induced by this function. For example, the Euler
homogeneous function theorem implies that the derivative
of the homogeneous function is homogeneous as well. If a
vector field f is d-homogeneous of degree µ then solutions
of the ODE

ẋ = f(x) (8)

are symmetric [3]: x(e−µst,d(s)x0) = d(s)x(t, x0), where
x(t, z) denotes a solution of (8) with x(0) = z.

Example 1: [48] The linear vector field x 7→ Ax, A ∈
Rn×n is d-homogeneous of the degree µ 6= 0 ⇔ A is
nilpotent ⇔ AGd = (µIn +Gd)A.

The homogeneity degree specifies the convergence rate.
Theorem 2: [27] Let the vector field f : Rn → Rn be

continuous and d-homogeneous of a degree µ ∈ R. If the
system (8) is asymptotically stable then it is globally finite-
time stable for µ < 0.

The homogeneous control systems are robust (input-to-
state stable) with respect to a rather large class of perturba-
tions [49], [8].



C. Homogeneous stabilization of linear plant

The following theorem combines the results of [45], [5].
Theorem 3: Let the pair {A,B} be controllable. Then

1) the linear algebraic equation

AG0 −G0A+BY0 = A, G0B = 0 (9)

has a solution with respect to the pair Y0 ∈ Rm×n,
G0 ∈ Rn×n, and G0−In is invertible, Gd = In+µG0 is
anti-Hurwitz for any µ ∈ [−1, 1/k], where k is minimal
natural number such that rank[B,AB, ..., Ak−1B] = n,
the matrix A0 = A+BY0(G0 − In)−1 satisfies

A0Gd = (Gd + µIn)A0, GdB = B; (10)

2) the system of linear matrix inequalities (LMIs) with the
linear matrix equation

A0X+XA>0+BY +Y >B>+ρ(GdX+XG>d )=0,
GdX +XG>d � 0, X = X> � 0

(11)

has a solution X ∈ Rn×n, Y ∈ Rm×n for any ρ ∈ R+;
3) the canonical homogeneous norm ‖ · ‖d induced by the

weighted Euclidean norm ‖x‖ =
√
x>Px with P =

X−1 is a Lyapunov function of the system (1) with

u(x) = K0x+ ‖x‖1+µd Kd(− ln ‖x‖d)x, (12)

K0 = Y0(G0 − In)−1, K = Y X−1, (13)

where d is a dilation generated by Gd; moreover,
d
dt‖x‖d = −ρ‖x‖1+µd , x 6= 0; (14)

4) the feedback law u given by (12) is continuously
differentiable on Rn\{0}, u is continuous at zero if
µ > −1 and u is discontinuous at zero but locally
bounded if µ = −1;

5) the closed-loop system (1), (12) is d-homogeneous of
the degree µ.

Obviously, the closed-loop system (1),(12) is finite-time
stable if µ < 0 and it is nearly fixed-time stable if µ > 0.
For µ = 0 the control (12) becomes the linear exponentially
stabilizing feedback u = K0x+Kx.

Such a control law (under some variation and/or sim-
plifications) is well-known in the literature as a solution
to a finite-time stabilization problem for linear plants [50],
[19], [45]. Using the topological equivalence of any stable
d-homogeneous system to a standard homogeneous one
we prove the following corollary which allows the explicit
formula for solutions of the closed-loop system (1), (12) to
be presented.

Corollary 1: Under conditions of Theorem 3 with µ 6= 0,
the solution of the closed-loop system (1), (12) is unique and
satisfies the identity

x(t+ τ) = Qτ (‖x(t)‖d)x(t), (15)

where τ, t ≥ 0 and Qτ (0) = 0,

Qτ (r)=
{
eGdln rQ̂τ (r)e

−Gdln r if 1
rµ>−µρτ,

0 if 1
rµ≤−µρτ,

r > 0, (16)

Q̂τ (r) = e
Gd
µ ln 1

1+µρτrµ e
(A+B(K0+K)+ρGd) ln(1+µρτrµ)

ρµ .

Moreover, for x 6= 0 one holds

d
dτQτ (‖x‖d)x = AQτ (‖x‖d)x+Bu(Qτ (‖x‖d)x). (17)

Proof. Denoting y = ‖x‖dd(− ln ‖x‖d)x, we derive ‖y‖ =
‖x‖d‖d(− ln ‖x‖d)x‖ = ‖x‖d and

ẏ =
d‖x‖d
dt

(In −Gd)d(− ln ‖x‖d)x+ ‖x‖dd(− ln ‖x‖d)ẋ

=ρ‖y‖µ(Gd − In)y
+‖x‖dd(− ln ‖x‖d)(A0x+‖x‖1+µd BKd(− ln ‖x‖d)x).

Since d(s)A0 = e−µsA0d(s) and d(s)B = esB for all
s ∈ R then ẏ = ‖y‖µ(A0 +BK + ρ(Gd − In))y.
In this case, using (11) we conclude

d
dt‖y(t)‖=

y>P ẏ(t)
‖y(t)‖ =‖y‖µ−1y>P (A0+BK+ρ(Gd − In))y

=‖y‖µ−1
(
y>{P (A0+BK+ρGd)+(A0+BK+ρGd)

>P}y
2 –ρy>Py

)
= −ρ‖y(t)‖µ+1

and ‖y(t+τ)‖−µ = ‖y(t)‖−µ+µρτ, for ‖y(t)‖−µ+µρτ ≥
0. Obviously, ‖y(t + τ)‖ = 0 if ‖y(t)‖−µ + µρτ ≤ 0. The
latter corresponds to the negative homogeneity degree µ < 0
and the finite-time stability of the closed-loop system. Hence,
denoting Klin = K0 +K we obtain

y(t+ τ) =e(A+BKlin+ρ(Gd−In))
∫ τ
0
‖y(t+σ)‖µdσy(t)

=e
(A+BKlin+ρ(Gd−In))

∫ τ
0

1

‖y(t)‖−µ+µρσ
dσ
y(t)

=e
(A+BKlin+ρ(Gd−In)) 1

µρ ln
‖y(t)‖−µ+µρτ

‖y(t)‖−µ y(t)

=e(A+BKlin+ρ(Gd−In)) 1
µρ ln(1+µρτ‖y(t)‖µ)y(t).

Returning to the original coordinates we derive

x(t+ τ) =d(ln ‖y(t+ τ‖) y(t+τ)
‖y(t+τ)‖

=d(ln(‖y(t)‖−µ + µρτ)
1
−µ )

· e(A+BKlin+ρ(Gd−In)) 1
ρµ ln(1+µρτ‖y(t)‖µ)

· y(t)

(‖y(t)‖−µ+µρτ)
1
−µ

=d(ln(‖x(t)‖−µd + µρτ)
1
−µ )

· e(A+BKlin+ρGd)
1
ρµ ln(1+µρτ‖x(t)‖µd)

· d(− ln ‖x(t)‖d)x(t)
=Qτ (‖x(t)‖d)x(t)

for all t ≥ 0 and all τ ≥ 0. The identity (17) follows
immediately from the fact that τ 7→ x(τ) is a solution of
(1), (12).

The latter corollary presents an important result for a class
of nonlinear homogeneous system under consideration, since
this is a very rare case that a solution of an essentially
nonlinear system in Rn can be found explicitly (see the
formula (15)). Such a property may be very useful for various
analysis.

Remark 1: Under Assumption 1 we have

K0=0, A0=A, Gd=
[
1−µ 0
0 1

]
, µ∈ [−1, 0.5].



In this case, the condition (11) with X = [ x11 x12
x12 x22

] ∈ R2×2

and Y = [y1, y2] ∈ R1×2 becomes

x11>0, x12=–ρ(1–µ)x11, x22>
(2–µ)2ρ2(1–µ)x11

4 ,
y1 = ρ2(2− µ)(1− µ)x11 − x22, y2 = −ρx22.

(18)

and the control (12) has the form

u(x) = k1‖x‖2µd x1 + k2‖x‖µdx2, K = [k1, k2] = Y P,
(19)

where x = [x1, x2]
> ∈ R2, P = [ p11 p12p12 p22 ] = X−1 and

the canonical homogeneous ‖x‖d is induced by the norm
‖x‖ =

√
x>Px. From (5) we derive

x>
[
‖x‖−1+µ

d 0

0 ‖x‖−1
d

]
[ p11 p12p12 p22 ]

[
‖x‖−1+µ

d 0

0 ‖x‖−1
d

]
x = 1.

Hence, if µ = p
q ≥ 0, where p, q are integers and q ≥ 1 then

‖x‖d = rq , where r ∈ R is a unique positive root of the
following polynomial equation

r2q = ar2p + brp + c (20)

where a = p11x
2
1, b = 2p12x1x2 and c = p22x

2
2. In

particular, for q = −p = 1 we have µ = −1 and (20)
becomes a quartic equation, which can be solved using
Ferrari formulas (see. e.g. [51]).

IV. CONSISTENT DISCRETIZATION OF HOMOGENEOUS
CONTROL FOR DOUBLE INTEGRATOR

Let us consider the discrete-time version of the system (1)
with the sample-time control implementation. Obviously, if
u(t) = u(tk) for t ∈ [tk, tk+1) then

xk+1 = Ahxk +Bhu(tk), k = 0, 1, ..., (21)

where xk=x(tk), tk= kh, Ah= ehA, Bh=
(∫ h

0
esAds

)
B.

Using (21) we derive

xk+2 = Bhu(tk+1) +AhBhu(tk) +A2
hxk. (22)

For the double integrator (see Assumption 1) we have Ah =

I2 + hA, Bh =
(
hI2 +

h2

2 A
)
B and, obviously, the matrix

Wh = [Bh, AhBh] (23)

is invertible. Since by Corollary 1 for any solution of the
closed-loop continuous-time system (1) with the homoge-
neous control (12) we have

x(t+ 2h) = Q2h(‖x(t)‖d)x(t)

then to guarantee xk+2 = Q2h(‖xk‖d)xk we may select[
u(tk+1)
u(tk)

]
=W−1h

(
Q2h(‖xk‖d)−A2

h

)
xk, (24)

where Qτ is given by (16). By construction, the discrete-
time system (21), (24) tracks the states of the closed-loop
continuous-time system (1), (12) at discrete time instances
t2k. This means that the discretization (24) preserves the
convergence rate of the original system. However, the control
(24) is not a conventional feedback law, since u(tk+1)

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

Fig. 1. The minimal eigenvalue of the matrix W (h̃) for µ=−1/2, ρ=2

depends on xk = x(tk) but not on xk+1. Inspired by (24),
we can also consider the control law:

ũh(xk) := K̃h(‖xk‖d)xk, (25)

where K̃h(r) = [ 0 1 ]W−1h

(
Q2h(r)−A2

h

)
for any r ≥ 0.

To show that the static nonlinear feedback (25) is a con-
sistent discretization of the finite-time stabilizing feedback
(12), the discrete-time closed-loop system (21), (25) has to
be globally finite-time stable for µ < 0 and the feedback
(25) must tend to the control law (12) as h→ 0+.

Theorem 4: Let µ ∈ [−1, 0) and the control u be defined
by (12) using Theorem 3. The feedback ũh given by (25) is
a consistent discretization of u if

F (h)X−1F>(h) < X−1, ∀h ∈
(
0,

1

−2µρ

]
, (26)

where

F =I2+hA+(B+
h
2AB) [ 1

h −
1
2 ] (Q2h(1)−I2−2hA) . (27)

To design a consistent discretization (25) for (12), the
matrix inequality (11) has to be fulfilled together with (26).

Remark 2 (On feasibility of matrix inequalities): In the
view of Remark 1 the matrices

X = x11X̃, x11 > 0, X̃ =

[
1 −ρ(1− µ)

−ρ(1− µ) 7(2–µ)2ρ2(1–µ)
8

]

Y =
ρ2(2− µ)(1− µ)x11

8

[
8− 7(2–µ) −7ρ(2–µ))

]
satisfy (11).

Let us consider the matrix-valued function W : (0, 1/2]→
R2 given by W (h̃) = X̃−1 − F (h̃)>X̃−1F (h̃). If the
minimal eigenvalue of W (h̃) is positive for all h̃ ∈ (0, 1/2]
then the condition (26) is fulfilled provided that µρ = −1. It
has been checked numerically that such a selection of X the
fulfillment of (26) for any µ ∈ [−1,−1/3] and ρ = −1/µ.
For example, the Fig. 1 depicts the evolution of λmin(W (h̃))
for the case µ = −1/2, ρ = 2.

It is well known [49], [8] that homogeneous systems are
Input-to-State Stable (ISS) with respect to sufficiently large
class of perturbations. Recall [52] that a system

ẋ = f(t, x, q), t > t0 (28)
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Fig. 2. The evelution of the system (1), (29) for h = 0.05

is ISS with respect to q ∈ L∞(R,Rm) if there exists β ∈ KL
and γ ∈ K such that

‖x(t, x0)‖ ≤ β(‖x0‖, t− t0) + γ(‖q‖L∞((t0,t),Rm)).

Local ISS restricts additionally the set of initial conditions
and/or the maximal magnitude of the perturbation q. The
input q in the above system can be treated as a perturbation.

Corollary 2: Under conditions of Theorem 4, the system
(1) with the sampled-time control (2), (25) and additive
perturbations :

ẋ = Ax+Bu+ q

is ISS provided that β>−µ with β given by Theorem 1.

V. NUMERICAL SIMULATIONS

The homogeneous control u(x) is designed using Theorem
3 and Remarks 1, 2 for µ = −0.5, ρ = 2, x11 = 1 under
Assumption 1. The evolution of the system (1) with the
explicit discretization

u(t) = u(x(ti)), t ∈ [ti, ti+1), (29)

of the controller u is shown on Fig. 2. The consistent
discretization of u is given by

u(t) = ũh(x(ti)), t ∈ [ti, ti+1), (30)

where ũh is a consistent discretization of u defined by (25).
Fig. 3 shows the evolution of the system (1) with the control
(30) and confirms the convergence of the trajectory of the
closed-loop system with the control (30) to zero in a finite
time.
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Fig. 3. The evolution of the system (1), (30) for h = 0.05

VI. CONCLUSIONS AND DISCUSSIONS

A consistent discretization of a homogeneous controller
for double integrator is developed based on the explicit repre-
sentation of a solution for the continuous time homogeneous
control system (in the unperturbed case). It is shown that
such a discretization preserves finite-time stability of the
original control system as well as Input-to-State Stability
with respect to additive exogenous perturbations.

The closed-loop system with the consistently discretized
controller has the following discrete-time representation

xk+1 = F̃ (‖xk‖d)xk,

with

F̃ (‖x‖d) = Ah +BhK(‖x‖d), x ∈ Rn.

The key feature of the consistent discretization is the nilpo-
tence of the matrix F̃ (‖x‖d) for a sufficiently small ‖x‖d.
Indeed, if ‖x‖d ≤ 1

−2µρ then

F̃ (‖x‖d) = Ah − [ 0 1 ]W−1h A2
h.

It is easy to check that this matrix is nilpotent, so
F̃ (‖xk+1‖d)F̃ (‖xk‖d) = 0 if ‖xk+1‖d ≤ 1

−2µρ and
‖xk‖d ≤ 1

−2µρ . This feature guarantees the finite-time
convergence of the system (1) with the sampled-time con-
troller (2), (25) to zero. The same feature can be utilized
for a consistent discretization of some fixed-time stabilizing
controllers.
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