Andrey Polyakov 
  
Denis Efimov 
  
Xubin Ping 
  
Consistent discretization of a homogeneous finite-time control for a double integrator

A discretization of a homogeneous controller for a double integrator is developed. It preserves the finite-time stability property even in the case of the sampled-time implementation of the control law. Theoretical results are supported by numerical simulations.

I. INTRODUCTION

By definition, the homogeneity is a dilation symmetry known since 18th century, when Leonhard Euler studied a symmetry of functions with respect to the uniform dilation of its argument x → λx. The weighted dilation was introduced in 1950s. For instance, in 1958 Vladimir Zubov introduced weighted homogeneous Ordinary Differential Equations (ODEs) [START_REF] Zubov | On systems of ordinary differential equations with generalized homogeneous right-hand sides[END_REF]. Some extensions of the homogeneity theory of finite-dimensional and infinite-dimensional dynamical models can be found in [START_REF] Khomenuk | On systems of ordinary differential equations with generalized homogenous right-hand sides[END_REF], [START_REF] Kawski | Families of dilations and asymptotic stability[END_REF], [START_REF] Folland | Subelliptic estimates and function spaces on nilpotent Lie groups[END_REF], [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF]. Homogeneous differential equations/inclusions form an important class of control system models [START_REF] Rosier | Homogeneous Lyapunov function for homogeneous continuous vector field[END_REF], [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF], [START_REF] Andrieu | Homogeneous Approximation, Recursive Observer Design, and Output Feedback[END_REF], [START_REF] Efimov | Oscillations conditions in homogenous systems[END_REF], [START_REF] Polyakov | Robust stabilization of MIMO systems in finite/fixed time[END_REF]. They appear as local approximations [START_REF] Hermes | Nilpotent approximations of control systems and distributions[END_REF] or set-valued extensions [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF] of nonlinear systems and include models of process control [START_REF] Zimenko | A note on delay robustness for homogeneous systems with negative degree[END_REF], mechanical models with frictions [START_REF] Orlov | Finite time stability and robust control synthesis of uncertain switched systems[END_REF], etc. Stability and stabilizability problems were studied for both standard [START_REF] Zubov | Methods of A.M. Lyapunov and Their Applications[END_REF], [START_REF] Andreini | Global stabilizability of homogenenous vector fields of odd degree[END_REF] and weighted homogeneous [START_REF] Coron | Adding an integrator for the stabilization problem[END_REF], [START_REF] Hermes | Homogeneous feedback controls for homogeneous systems[END_REF], [START_REF] Praly | Generalized weighted homogeneity and state dependent time scale for linear controllable systems[END_REF], [START_REF] Sepulchre | Homogeneous Lyapunov Functions and Necessary Conditions for Stabilization[END_REF], [START_REF]Stabilizability does not imply homogeneous stabilizability for controllable homogeneous systems[END_REF], [START_REF] Grüne | Homogeneous state feedback stabilization of homogeneous systems[END_REF], [START_REF] Nakamura | Homogeneous stabilization for input-affine homogeneous systems[END_REF] systems which are the most popular today [START_REF] Orlov | Finite time stability and robust control synthesis of uncertain switched systems[END_REF], [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF], [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF], [START_REF] Andrieu | Homogeneous Approximation, Recursive Observer Design, and Output Feedback[END_REF], [START_REF] Polyakov | Robust stabilization of MIMO systems in finite/fixed time[END_REF]. The homogeneous MPC design is studied in [START_REF] Coron | Model predictive control, cost controllability, and homogeneity[END_REF]. An introduction to homogeneous optimal control can be found in [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF]Chapter 12] and an energentically optimal homogeneous stabilization is studied in [START_REF] Polyakov | On energetically optimal finitetime stabilization[END_REF].

An asymptotically stable homogeneous system is finitetime stable in the case of negative homogeneity degree and nearly fixed-time stable in the case of the positive homogeneity degree (see, e.g. [START_REF] Nakamura | Smooth Lyapunov functions for homogeneous differential inclusions[END_REF], [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF], [START_REF] Andrieu | Homogeneous Approximation, Recursive Observer Design, and Output Feedback[END_REF]). However, the finite/fixed-time stability is a fragile property in the sense that an improper discretization of a finite-time or a fixedtime stable ordinary differential equation (ODE) may result in a chattering [START_REF] Acary | Implicit euler numerical scheme and chattering-free implementation of sliding mode systems[END_REF], [START_REF] Levant | Chattering analysis[END_REF] or even in a finite-time blow up [START_REF]On fixed and finite time stability in sliding mode control[END_REF]. Moreover, the explicit discretization (sampled-time implementation) of a finite-time control yields a chattering even if this control law is a continuous function of state [START_REF] Efimov | Realization and discretization of asymptotically stable homogeneous systems[END_REF], [START_REF] Josse | Robustness of sampled-data homogeneous systems[END_REF]. That is why the discretization issues are very important for practical implementation of finite/fixed-time control/estimation algorithms [START_REF] Acary | Implicit euler numerical scheme and chattering-free implementation of sliding mode systems[END_REF], [START_REF] Kikuuwe | Proxybased sliding mode control: A safer extension of pid position control[END_REF], [START_REF] Livne | Proper discretization of homogeneous differentiators[END_REF], [START_REF] Koch | Discrete-time implementation of homogeneous differentiators[END_REF], [START_REF] Huber | Lyapunov stability analysis of the implicit discrete-time twisting control algorithm[END_REF], [START_REF] Brogliato | Digital implementation of slidingmode control via the implicit method: A tutorial[END_REF], [START_REF] Michel | A noise less-sensing semi-implicit discretization of a homogeneous differentiator : principle and application[END_REF], [START_REF] Hanan | Low-chattering discretization of sliding mode control[END_REF]. *This work was partially supported by the National Natural Science Foundation of China under Grant 62050410352
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The concept of consistent discretization introduced in [START_REF] Polyakov | Consistent discretization of finite-time and fixed-time stable systems[END_REF] postulates that stability properties of a continuoustime system are preserved in its discrete-time counterpart (approximation). Consistent discretizations for stable generalized homogeneous ODEs were developed in [START_REF] Polyakov | Consistent discretization of finite-time and fixed-time stable systems[END_REF], [START_REF] Sanchez | Lyapunov-based consistent discretisation of stable homogeneous systems[END_REF] based on Lyapunov function theory. Some schemes with state dependent discretization step were given in [START_REF] Efimov | Discretization of homogeneous systems using euler method with a state-dependent step[END_REF]. Being efficient for numerical simulations, the mentioned schemes do not allow a consistent discretization (sampled-time implementation) of finite-time controllers in the general case. To the best of authors' knowledge, such implementations are developed only for the conventional (first order) sliding mode algorithms [START_REF] Acary | Implicit euler numerical scheme and chattering-free implementation of sliding mode systems[END_REF], [START_REF] Huber | Lyapunov stability and performance analysis of the implicit discrete sliding mode control[END_REF] as well as for the twisting algorithm [START_REF] Huber | Lyapunov stability analysis of the implicit discrete-time twisting control algorithm[END_REF] and super-twisting algorithm [START_REF] Brogliato | The implicit discretization of the super-twisting sliding-mode control algorithm[END_REF] based on the implicit method. This paper presents a consistent discretization for a homogeneous controller studied in [START_REF] Polyakov | Finite-time and fixedtime stabilization: Implicit Lyapunov function approach[END_REF] for the case of a linear plant modeled by the double integrator. It is shown that the sampled-time implementation of the controller according to the developed scheme preserves the finite-time stability property of the original closed-loop continuous-time system in the disturbance-free case. We also prove the robustness (Input-to-State Stability) of the obtained sampled-time controller with respect to bounded additive perturbations. Numerical simulations show the efficiency of this scheme for rejection of the chattering caused by sampled-time implementation of the continuous-time control algorithm. Notation: N is the set of natural numbers including 0; R is the field of real numbers; R + = {α ∈ R : α > 0}; C is the field of complex numbers; 0 is the zero of a vector space (e.g., the zero vector in R n or the zero matrix in R n×m ); I n ∈ R n×n is the identity matrix; P 0 denotes positive definiteness of a matrix P = P ∈ R n×n ; λ max (P ) is a maximum eigenvalue of a symmetric matrix P ; x =

√

x P x with P 0 denotes the weighted Euclidean norm in R n ; K denotes a class of strictly increasing positive definite functions [0, +∞) → [0, +∞); a function σ ∈ K of the class K ∞ if σ(s) → +∞ as s → +∞; a function σ : [0, +∞) × [0, +∞) → [0, +∞) belongs to the class KL if the function s → σ(s, τ ) belongs to the class K for any fixed τ ∈ [0, +∞) and the function τ → σ(s, τ ) is monotonically decreasing to zero for any fixed s ∈ [0, +∞); the set of continuous maps X → Y is denoted by C(X, Y ), where X, Y are subsets of normed vector spaces;

L ∞ (R, R n ) -the space of the essential bounded function R → R n ; q L ∞ ((a,b),R n ) = ess sup t∈(a,b) q(t) for q ∈ L ∞ (R, R n ).

II. PROBLEM STATEMENT

Let us consider a linear control system

ẋ(t) = Ax(t) + Bu(t), t ∈ R + , x(0) = x 0 ∈ R n , (1) 
where

x(t) ∈ R n is the system state, u(t) ∈ R m is control input and A ∈ R n×n , B ∈ R n×m are known matrices.
Recall [START_REF] Bhat | Finite time stability of continuous autonomous systems[END_REF] that a system ẋ = f (t, x), t ∈ R + , x(0) = x 0 is globally uniformly finite-time stable if it is Lyapunov stable and there exists a locally bounded function T : R n → [0, +∞) such that any trajectory of the system vanishes to zero in a finite time:

x(t, x 0 ) = 0, ∀t ≥ T (x 0 ), ∀x 0 ∈ R n .
Definition 1: Let the system (1) with a feedback u ∈ C(R n \{0}, R m ) be globally uniformly finite-time stable. A family of functions ũh : R n → R m parameterized by a scalar h > 0 is said to be a consistent discretization of u if

• Finite-time stability: the closed-loop system (1) with

u(t) = ũh (x(t i )), t ∈ [t i , t i+1 ), t i = ih, i = 0, 1, ... (2)
is globally uniformly finite-time stable;

• Approximation: ∀r 2 > ∀r 1 > 0 : ∃ω r1,r2 ∈ K such that sup r1≤ x ≤r2 ũh (x) -u(x) ≤ ω r1,r2 (h). (3) 
The first condition of Definition 1 asks the sampled-time control system to be finite-time stable for any fixed sampling period h > 0. The second condition guarantees that the control u h is indeed an approximation of u, i.e. u h → u as h → 0 + uniformly on compacts from R n \{0}.

In this paper we deal with the controlled double integrator.

Assumption 1: A = [ 0 1 0 0 ] and B = [ 0 1 ]
. The aim of this paper is to develop a consistent (in the sense of the above definition) discretization for a class of homogeneous finite-time controllers (given below).

III. PRELIMINARIES: HOMOGENEOUS SYSTEMS A. Linear dilation and homogeneous norm

The so-called linear (geometric) dilation [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF]Chapter 6] in R n is given by

d(s) = e sG d = ∞ i=0 (sG d ) i i! , s ∈ R, (4) 
where G d ∈ R n×n is an anti-Hurwitz matrix1 known as the generator of linear dilation. The latter guarantees that d satisfies the limit property, d(s)x → 0 as s → -∞ and d(s)x → +∞ as s → +∞, required for a group d to be a dilation in R n (see, e.g., [START_REF] Kawski | Families of dilations and asymptotic stability[END_REF]). The linear dilation introduces an alternative norm topology in R n by means the so-called canonical homogeneous norm.

Definition 2: [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF] The functional • d : R n → R + given by x d = 0 for x = 0 and

x d = e sx , where s x ∈ R : d(-s x )x = 1, x = 0 (5) is called the canonical homogeneous norm in R n , where d is a monotone dilation 2 . Notice that x = 1 (resp. x ≤ 1) is equivalent to x d = 1 (resp. x d ≤ 1). For the uniform dilation d(s) = e s I n , s ∈ R we have • = • d . Theorem 1: [47] If d is a monotone dilation then the canonical homogeneous norm • d is • continuous on R n , locally Lipschitz continuous on R n \{0} and there exist σ, σ ∈ K ∞ such that σ( x ) ≤ x d ≤ σ( x ), ∀x ∈ R n ; • differentiable on R n \{0} provided that • is differ- entiable on R n \{0}.
Moreover, for x = √ x P x with the symmetric matrix P ∈ R n×n satisfying

P 0, P G d + G d P 0 we have ∂ x d ∂x = x d x d (-ln x d )P d(-ln x d ) x d (-ln x d )P G d d(-ln x d )x , ∀x = 0. (6)
and

x 1 β d -x 2 β d ≤ x 1 -x 2 , ∀x i ∈ R n : x i ≥ 1, i = 1, 2, (7) where 
β = 0.5λ min P 1/2 G d P -1/2 + P -1/2 G d P 1/2 > 0.
Below the canonical homogeneous norm is used as a Lyapunov function for analysis and control design.

B. Homogeneous continuous-time systems

Definition 3: [3] A vector field f : R n → R n (resp. a function h : R n → R) is said to be d-homogeneous of degree µ ∈ R if f (d(s)x) = e µs d(s)f (x) (resp. h(d(s)x) = e µs h(x)), for all x ∈ R n , s ∈ R.
Homogeneity of a function (operator) is inherited by any other object induced by this function. For example, the Euler homogeneous function theorem implies that the derivative of the homogeneous function is homogeneous as well. If a vector field f is d-homogeneous of degree µ then solutions of the ODE

ẋ = f (x) (8) 
are symmetric [START_REF] Kawski | Families of dilations and asymptotic stability[END_REF]: x(e -µs t, d(s)x 0 ) = d(s)x(t, x 0 ), where x(t, z) denotes a solution of (8) with x(0) = z. Example 1: [START_REF] Zimenko | Robust feedback stabilization of linear mimo systems using generalized homogenization[END_REF] The linear vector field

x → Ax, A ∈ R n×n is d-homogeneous of the degree µ = 0 ⇔ A is nilpotent ⇔ AG d = (µI n + G d )A.
The homogeneity degree specifies the convergence rate. Theorem 2: [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF] Let the vector field f : R n → R n be continuous and d-homogeneous of a degree µ ∈ R. If the system (8) is asymptotically stable then it is globally finitetime stable for µ < 0.

The homogeneous control systems are robust (input-tostate stable) with respect to a rather large class of perturbations [START_REF] Hong | H∞ control, stabilization, and input-output stability of nonlinear systems with homogeneous properties[END_REF], [START_REF] Andrieu | Homogeneous Approximation, Recursive Observer Design, and Output Feedback[END_REF].

C. Homogeneous stabilization of linear plant

The following theorem combines the results of [START_REF] Polyakov | Finite-time and fixedtime stabilization: Implicit Lyapunov function approach[END_REF], [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF]. Theorem 3: Let the pair {A, B} be controllable. Then 1) the linear algebraic equation

AG 0 -G 0 A + BY 0 = A, G 0 B = 0 (9)
has a solution with respect to the pair

Y 0 ∈ R m×n , G 0 ∈ R n×n , and G 0 -I n is invertible, G d = I n +µG 0 is anti-Hurwitz for any µ ∈ [-1, 1/k],
where k is minimal natural number such that rank[B, AB, ..., A k-1 B] = n, the matrix

A 0 = A + BY 0 (G 0 -I n ) -1 satisfies A 0 G d = (G d + µI n )A 0 , G d B = B; (10) 
2) the system of linear matrix inequalities (LMIs) with the linear matrix equation

A 0 X +XA 0 +BY +Y B +ρ(G d X +XG d ) = 0, G d X + XG d 0, X = X 0 ( 11 
)
has a solution X ∈ R n×n , Y ∈ R m×n for any ρ ∈ R + ; 3) the canonical homogeneous norm • d induced by the weighted Euclidean norm x = √ x P x with P = X -1 is a Lyapunov function of the system (1) with

u(x) = K 0 x + x 1+µ d Kd(-ln x d )x, (12) 
K 0 = Y 0 (G 0 -I n ) -1 , K = Y X -1 , (13) 
where d is a dilation generated by G d ; moreover,

d dt x d = -ρ x 1+µ d , x = 0; (14) 4 
) the feedback law u given by ( 12) is continuously differentiable on R n \{0}, u is continuous at zero if µ > -1 and u is discontinuous at zero but locally bounded if µ = -1; 5) the closed-loop system (1), ( 12) is d-homogeneous of the degree µ. Obviously, the closed-loop system (1),( 12) is finite-time stable if µ < 0 and it is nearly fixed-time stable if µ > 0. For µ = 0 the control (12) becomes the linear exponentially stabilizing feedback u = K 0 x + Kx.

Such a control law (under some variation and/or simplifications) is well-known in the literature as a solution to a finite-time stabilization problem for linear plants [START_REF] Korobov | A solution of the synthesis problem using controlability function[END_REF], [START_REF] Praly | Generalized weighted homogeneity and state dependent time scale for linear controllable systems[END_REF], [START_REF] Polyakov | Finite-time and fixedtime stabilization: Implicit Lyapunov function approach[END_REF]. Using the topological equivalence of any stable d-homogeneous system to a standard homogeneous one we prove the following corollary which allows the explicit formula for solutions of the closed-loop system (1), ( 12) to be presented.

Corollary 1: Under conditions of Theorem 3 with µ = 0, the solution of the closed-loop system (1), ( 12) is unique and satisfies the identity

x(t + τ ) = Q τ ( x(t) d )x(t), (15) 
where τ, t ≥ 0 and Q τ (0) = 0, .

Q τ (r) = e G d ln r Qτ (r)e -G d ln r if 1 r µ >-µρτ, 0 if 1 r µ ≤-µρτ, r > 0, (16) 
Moreover, for x = 0 one holds

d dτ Q τ ( x d )x = AQ τ ( x d )x + Bu(Q τ ( x d )x). (17) Proof. Denoting y = x d d(-ln x d )x, we derive y = x d d(-ln x d )x = x d and ẏ = d x d dt (I n -G d )d(-ln x d )x + x d d(-ln x d ) ẋ =ρ y µ (G d -I n )y + x d d(-ln x d )(A 0 x+ x 1+µ d BKd(-ln x d )x). Since d(s)A 0 = e -µs A 0 d(s) and d(s)B = e s B for all s ∈ R then ẏ = y µ (A 0 + BK + ρ(G d -I n ))y.
In this case, using [START_REF] Hermes | Nilpotent approximations of control systems and distributions[END_REF] we conclude

d dt y(t) = y P ẏ(t) y(t) = y µ-1 y P (A 0 +BK +ρ(G d -I n ))y = y µ-1 y {P (A0+BK+ρG d )+(A0+BK+ρG d ) P}y 2 -ρy P y = -ρ y(t) µ+1
and y(t + τ ) -µ = y(t) -µ + µρτ, for y(t) -µ + µρτ ≥ 0. Obviously, y(t + τ ) = 0 if y(t) -µ + µρτ ≤ 0. The latter corresponds to the negative homogeneity degree µ < 0 and the finite-time stability of the closed-loop system. Hence, denoting K lin = K 0 + K we obtain

y(t + τ ) =e (A+BK lin +ρ(G d -In)) τ 0 y(t+σ) µ dσ y(t) =e (A+BK lin +ρ(G d -In)) τ 0 1 y(t) -µ +µρσ dσ y(t) =e (A+BK lin +ρ(G d -In)) 1 µρ ln y(t) -µ +µρτ y(t) -µ y(t)
=e (A+BK lin +ρ(G d -In)) 1 µρ ln(1+µρτ y(t) µ ) y(t).

Returning to the original coordinates we derive

x(t + τ ) =d(ln y(t + τ ) y(t+τ )

y(t+τ ) =d(ln( y(t) -µ + µρτ ) 1 -µ ) • e (A+BK lin +ρ(G d -In)) 1 ρµ ln(1+µρτ y(t) µ ) • y(t) ( y(t) -µ +µρτ ) 1 -µ =d(ln( x(t) -µ d + µρτ ) 1 -µ ) • e (A+BK lin +ρG d ) 1 ρµ ln(1+µρτ x(t) µ d ) • d(-ln x(t) d )x(t) =Q τ ( x(t) d )x(t)
for all t ≥ 0 and all τ ≥ 0. The identity [START_REF] Coron | Adding an integrator for the stabilization problem[END_REF] follows immediately from the fact that τ → x(τ ) is a solution of (1), [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF]. The latter corollary presents an important result for a class of nonlinear homogeneous system under consideration, since this is a very rare case that a solution of an essentially nonlinear system in R n can be found explicitly (see the formula [START_REF] Zubov | Methods of A.M. Lyapunov and Their Applications[END_REF]). Such a property may be very useful for various analysis.

Remark 1: Under Assumption 1 we have

K 0 = 0, A 0 = A, G d = 1-µ 0 0 1 , µ ∈ [-1, 0.5].
In this case, the condition [START_REF] Hermes | Nilpotent approximations of control systems and distributions[END_REF] with

X = [ x11 x12 x12 x22 ] ∈ R 2×2 and Y = [y 1 , y 2 ] ∈ R 1×2 becomes x 11 > 0, x 12 = -ρ(1-µ)x 11 , x 22 > (2-µ) 2 ρ 2 (1-µ)x11 4 , y 1 = ρ 2 (2 -µ)(1 -µ)x 11 -x 22 , y 2 = -ρx 22 . (18) 
and the control (12) has the form

u(x) = k 1 x 2µ d x 1 + k 2 x µ d x 2 , K = [k 1 , k 2 ] = Y P, (19) where 
x = [x 1 , x 2 ] ∈ R 2 , P = [ p11 p12
p12 p22 ] = X -1 and the canonical homogeneous x d is induced by the norm x =

√

x P x. From (5) we derive

x x -1+µ d 0 0 x -1 d [ p11 p12 p12 p22 ] x -1+µ d 0 0 x -1 d x = 1.
Hence, if µ = p q ≥ 0, where p, q are integers and q ≥ 1 then x d = r q , where r ∈ R is a unique positive root of the following polynomial equation

r 2q = ar 2p + br p + c (20) 
where a = p 11 x 2 1 , b = 2p 12 x 1 x 2 and c = p 22 x 2 2 . In particular, for q = -p = 1 we have µ = -1 and (20) becomes a quartic equation, which can be solved using Ferrari formulas (see. e.g. [START_REF] Polyakov | A new homogeneous quasi-continuous second order sliding mode control[END_REF]).

IV. CONSISTENT DISCRETIZATION OF HOMOGENEOUS CONTROL FOR DOUBLE INTEGRATOR

Let us consider the discrete-time version of the system (1) with the sample-time control implementation. Obviously, if

u(t) = u(t k ) for t ∈ [t k , t k+1 ) then x k+1 = A h x k + B h u(t k ), k = 0, 1, ..., (21) 
where

x k = x(t k ), t k = kh, A h = e hA , B h =
h 0 e sA ds B. Using (21) we derive

x k+2 = B h u(t k+1 ) + A h B h u(t k ) + A 2 h x k . (22) 
For the double integrator (see Assumption 1) we have

A h = I 2 + hA, B h = hI 2 + h 2 2
A B and, obviously, the matrix

W h = [B h , A h B h ] (23) 
is invertible. Since by Corollary 1 for any solution of the closed-loop continuous-time system (1) with the homogeneous control [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF] we have

x(t + 2h) = Q 2h ( x(t) d )x(t)
then to guarantee

x k+2 = Q 2h ( x k d )x k we may select u(t k+1 ) u(t k ) = W -1 h Q 2h ( x k d ) -A 2 h x k , (24) 
where Q τ is given by [START_REF] Andreini | Global stabilizability of homogenenous vector fields of odd degree[END_REF]. By construction, the discretetime system [START_REF]Stabilizability does not imply homogeneous stabilizability for controllable homogeneous systems[END_REF], [START_REF] Coron | Model predictive control, cost controllability, and homogeneity[END_REF] tracks the states of the closed-loop continuous-time system (1), ( 12) at discrete time instances t 2k . This means that the discretization [START_REF] Coron | Model predictive control, cost controllability, and homogeneity[END_REF] preserves the convergence rate of the original system. However, the control [START_REF] Coron | Model predictive control, cost controllability, and homogeneity[END_REF] is not a conventional feedback law, since u(t k+1 ) depends on x k = x(t k ) but not on x k+1 . Inspired by [START_REF] Coron | Model predictive control, cost controllability, and homogeneity[END_REF], we can also consider the control law:

ũh (x k ) := Kh ( x k d )x k , (25) 
where

Kh (r) = [ 0 1 ] W -1 h Q 2h (r) -A 2
h for any r ≥ 0. To show that the static nonlinear feedback ( 25) is a consistent discretization of the finite-time stabilizing feedback [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF], the discrete-time closed-loop system ( 21), [START_REF] Polyakov | On energetically optimal finitetime stabilization[END_REF] has to be globally finite-time stable for µ < 0 and the feedback (25) must tend to the control law [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF] as h → 0 + . Theorem 4: Let µ ∈ [-1, 0) and the control u be defined by ( 12) using Theorem 3. The feedback ũh given by ( 25) is a consistent discretization of u if

F (h)X -1 F (h) < X -1 , ∀h ∈ 0, 1 -2µρ , (26) 
where

F = I 2 +hA+(B+ h 2 AB) [ 1 h -1 2 ] (Q 2h (1)-I 2 -2hA) . ( 27 
)
To design a consistent discretization [START_REF] Polyakov | On energetically optimal finitetime stabilization[END_REF] for [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF], the matrix inequality [START_REF] Hermes | Nilpotent approximations of control systems and distributions[END_REF] has to be fulfilled together with [START_REF] Nakamura | Smooth Lyapunov functions for homogeneous differential inclusions[END_REF].

Remark 2 (On feasibility of matrix inequalities): In the view of Remark 1 the matrices

X = x 11 X, x 11 > 0, X = 1 -ρ(1 -µ) -ρ(1 -µ) 7(2-µ) 2 ρ 2 (1-µ) 8 Y = ρ 2 (2 -µ)(1 -µ)x 11 8 8 -7(2-µ) -7ρ(2-µ))
satisfy [START_REF] Hermes | Nilpotent approximations of control systems and distributions[END_REF].

Let us consider the matrix-valued function W : (0, 1/2] → R 2 given by W ( h) = X-1 -F ( h) X-1 F ( h). If the minimal eigenvalue of W ( h) is positive for all h ∈ (0, 1/2] then the condition ( 26) is fulfilled provided that µρ = -1. It has been checked numerically that such a selection of X the fulfillment of (26) for any µ ∈ [-1, -1/3] and ρ = -1/µ. For example, the Fig. 1 depicts the evolution of λ min (W ( h)) for the case µ = -1/2, ρ = 2.

It is well known [START_REF] Hong | H∞ control, stabilization, and input-output stability of nonlinear systems with homogeneous properties[END_REF], [START_REF] Andrieu | Homogeneous Approximation, Recursive Observer Design, and Output Feedback[END_REF] that homogeneous systems are Input-to-State Stable (ISS) with respect to sufficiently large class of perturbations. Recall [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF] that a system ẋ = f (t, x, q), t > t 0 (28) 

is ISS with respect to q ∈ L ∞ (R, R m ) if there exists β ∈ KL and γ ∈ K such that x(t, x 0 ) ≤ β( x 0 , t -t 0 ) + γ( q L ∞ ((t0,t),R m ) ).
Local ISS restricts additionally the set of initial conditions and/or the maximal magnitude of the perturbation q. The input q in the above system can be treated as a perturbation.

Corollary 2: Under conditions of Theorem 4, the system (1) with the sampled-time control (2), [START_REF] Polyakov | On energetically optimal finitetime stabilization[END_REF] and additive perturbations :

ẋ = Ax + Bu + q
is ISS provided that β > -µ with β given by Theorem 1.

V. NUMERICAL SIMULATIONS

The homogeneous control u(x) is designed using Theorem 3 and Remarks 1, 2 for µ = -0.5, ρ = 2, x 11 = 1 under Assumption 1. The evolution of the system (1) with the explicit discretization

u(t) = u(x(t i )), t ∈ [t i , t i+1 ), (29) 
of the controller u is shown on Fig. 2. The consistent discretization of u is given by

u(t) = ũh (x(t i )), t ∈ [t i , t i+1 ), (30) 
where ũh is a consistent discretization of u defined by [START_REF] Polyakov | On energetically optimal finitetime stabilization[END_REF]. Fig. 3 shows the evolution of the system (1) with the control [START_REF]On fixed and finite time stability in sliding mode control[END_REF] and confirms the convergence of the trajectory of the closed-loop system with the control [START_REF]On fixed and finite time stability in sliding mode control[END_REF] to zero in a finite time. 

VI. CONCLUSIONS AND DISCUSSIONS

A consistent discretization of a homogeneous controller for double integrator is developed based on the explicit representation of a solution for the continuous time homogeneous control system (in the unperturbed case). It is shown that such a discretization preserves finite-time stability of the original control system as well as Input-to-State Stability with respect to additive exogenous perturbations.

The closed-loop system with the consistently discretized controller has the following discrete-time representation

x k+1 = F ( x k d )x k , with F ( x d ) = A h + B h K( x d ), x ∈ R n .
The key feature of the consistent discretization is the nilpotence of the matrix F ( x d ) for a sufficiently small x d . Indeed, if

x d ≤ 1 -2µρ then F ( x d ) = A h -[ 0 1 ] W -1 h A 2 h .
It is easy to check that this matrix is nilpotent, so

F ( x k+1 d ) F ( x k d ) = 0 if x k+1 d ≤ 1 -2µρ and x k d ≤ 1 -2µρ
. This feature guarantees the finite-time convergence of the system (1) with the sampled-time controller (2), [START_REF] Polyakov | On energetically optimal finitetime stabilization[END_REF] to zero. The same feature can be utilized for a consistent discretization of some fixed-time stabilizing controllers.

Qτ (r) = e G d µ ln 1 1+µρτ

 1 r µ e (A+B(K 0 +K)+ρG d ) ln(1+µρτ r µ ) ρµ

Fig. 1 .

 1 Fig. 1. The minimal eigenvalue of the matrix W ( h) for µ = -1/2, ρ = 2

Fig. 2 .

 2 Fig.2. The evelution of the system (1), (29) for h = 0.05

Fig. 3 .

 3 Fig.3. The evolution of the system (1),[START_REF]On fixed and finite time stability in sliding mode control[END_REF] for h = 0.05

A matrix G d ∈ R n×n is called aniti-Hurwitz if -G d is Hurwitz.

A dilation in R n is monotone if and only if for any x ∈ R n the function s → d(s)x , s ∈ R is monotone.