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Abstract

Some pests and vectors of many vector-borne diseases (like mosquitoes for malaria and dengue)
are known to invade any homogeneous and favorable territory, following a traveling wave type
dynamic. The density of individuals in the field is commonly modeled as the solution of a bistable
reaction-diffusion equation on an unbounded domain. In this work, we are interested in finding
an optimal strategy to block such a solution by means of a population elimination action in a
prescribed subdomain (modeling, for instance the effect of a mechanical action or an insecticide
applied in a certain region to reduce the number of individuals in the population). We propose a
complete description of the solutions of this problem, based on the precise analysis of the optimality
conditions and on arguments for comparison between the possible strategies.

Keywords: traveling waves, optimal control, bistable reaction-diffusion equations, population dynam-
ics, pest control

AMS classification: 35K57, 35C07, 49K15, 92D25.

1 Introduction

Protecting crops against pests or human populations against the vectors of diseases (like malaria or
dengue) is one of the main concerns of farmer’s and of public health authorities. Many new and more
environment-friendly population reduction methods have been tested in the last decades among which
the sterile insect technique which has recently attracted a considerable amount of attention among
the mathematical community (see, for instance, [2, 3, 5, 9] and the references therein). Nevertheless,
for the moment, the most widespread technique is a direct killing action, often using insecticides or
phytosanitary products. When such a choice is made, one can at least try to optimize the killing effort
(for instance, minimize the quantity of killing product needed for attaining the prescribed objectives)
in order to reduce the environmental impact of the intervention - this is the object of the present study.
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The method presented here is applicable to more general pests or disease vectors whose spatial
movement can be modeled by diffusion and to more general population reduction actions that can be
modelled by an additional death rate of the population at the places where the intervention takes place.
Nevertheless, to make the presentation simpler, we will mainly do it in the setting of the important case
of using insecticide against mosquitoes - nowadays, this strategy is the main one that is systematically
applied against mosquitoes during epidemic outbreaks worldwide. The alternative techniques are mostly
used, when possible, in a preventive manner to keep the mosquito population under control hoping that
this will prevent the outbreaks from happening.

Many dangerous diseases (such as dengue fever and malaria) are transmitted by certain species of
mosquitoes such as Aedes albopictus and Aedes aegypti among others (see [1]). Since there is no efficient
vaccine that can be widely deployed, in order to prevent the emergence of epidemics, health authorities
usually act by killing mosquitoes, thus reducing the vector population. This is mainly done through
the use of insecticides. This work is devoted to the mathematical study of the use of an insecticide (or
any other similar destructive action) in order to block a natural invasion phenomenon.

The main problem with the use of an insecticide is that it does not specifically target one mosquito
species but kills (or seriously affects) many other animal species directly or indirectly (including many
predators and humans) and has a wide negative impact on the ecosystem. It is therefore ecologically
relevant to try to use as little insecticide as possible. Nevertheless, it is necessary to use enough
insecticide to prevent invasion phenomena. In this work, we attempt to provide a mathematical answer
to this problem in a simple theoretical framework. We model the search for this trade-off using an
optimal control problem whose unknown is the action taken to kill the mosquitoes (for example the use
of an insecticide).

1.1 Model and main results

Let us consider a population of pests whose density u obeys the simple reaction-diffusion dynamics:{
−u′′(x) = g(u(x))− µ(x)u(x)1{0<x<L}(x), x ∈ R,
u(−∞) = 1, u(+∞) = 0, 0 ≤ u ≤ 1 in R. (1)

In this equation, g(u) stands for the reaction term in the absence of intervention whereas the killing
term in the model is −µ(x)u1{0<x<L} which stands for the use of insecticide in some bounded area
(0, L). Let us provide some explanations on the choice of each term:

We assume that the natural dynamics of the pests is described by a reaction term g which is
bistable, meaning that g satisfies

g(0) = g(θ) = g(1) = 0, g′(0) < 0, g′(1) < 0, (s− θ)g(s) > 0 for s ∈ (0, θ) ∪ (θ, 1). (Hbis)

This means that they are subject to a certain Allee effect: at each point where the population is below
the threshold θ ∈ (0, 1), the contribution of the reaction term makes it decrease towards 0. Furthermore,
we assume that when there is no killing agent (µ = 0), the population invades the environment, meaning
that ∫ 1

0
g(u)du > 0. (Hinv)

Mathematically, when µ = 0, there exist stable traveling wave solutions to (1) where the stable state 1
invades the stable state 0 (see [6]).

The term −u′′ represents the diffusion of the species through the field.
The function µ is the control function that is determined by the instantaneous amount of insec-

ticide applied at each point - to simplify, we assume here that the death rate due to the insecticide
is proportional to the quantity of insecticide and suppose even suppose that µ(x) is the quantity of
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insecticide used at point x. We remark that a more general relation between the quantity of insecticide
and the death term can also be considered when needed.

Finally, the conditions at −∞ and +∞ model that we are looking for a wave with a speed equal to
0 : we look for a control µ such that we are able to block an invasive wave.

The objective is to determine a solution of the reaction-diffusion system introduced above. Nev-
ertheless, we want to act, through the control term µ, in order to use as little insecticide as possible.
This translates into the fact that we want to minimize the quantity of insecticide N (µ) given by:

N (µ) =

∫ L

0
µ(x)dx.

Moreover, in particular in the case of an insecticide, it is relevant to assume that the quantity used
is subject to some restriction (which can be due to ecological and/or logistic reasons), leading to
introduce C > 0 such that the control µ satisfies the pointwise constraint: 0 ≤ µ ≤ C, a.e. in [0, L].
This corresponds to having a maximum insecticide spread rate at any point in space. Therefore, we
define the admissible set of controls as being

AL,C := {µ ∈ L∞(R), (1) has a solution and 0 ≤ µ ≤ C a.e. in R} .

Notice that AL,C depends also implicitly on the parameter L through (1). We investigate the optimal
control problem

inf
µ∈AL,C

N (µ) . (PL,C)

We now state the main result of this paper, dedicated to the almost complete and explicit character-
ization of the solutions of the above problem. This statement takes the form of a discussion because
the form of the minimizers is strongly dependent on the parameter regimes considered for L and C.

To this aim, it is convenient to introduce the functions G and F given by

G(u) =

∫ u

0
g(s) ds and F (s) = 2G(s) + sg(s). (2)

We now define two real numbers denoted γ0 and γ1 using the following result, whose proof will be
postponed to Appendix A for the sake of readability.

Lemma 1. Under (Hbis) and (Hinv), each of the equations F (u) = 0 and F (u) = F (1) have at least
one solution in (θ, 1).

Moreover, we will assume the following technical assumptions relied on the concavity of g after θ.

The equation F (u) = 0 (resp. F (u) = F (1)) has a unique solution
γ0 (resp. γ1) in (θ, 1). Moreover γ0 < γ1.

(Hγ)

In what follows, we will be led to consider additional assumptions on the functions g through G
and F , which we are now introducing to state them all together in one place.

For every α ∈ R, the equation F (s) = α has at most two solutions. (Heq)

the mapping s 7→ F ′(s)

s
is strictly concave. (Hconcave)

Note that the first assumption above will be specifically used in Proposition 15. The validity of these
assumptions for a standard choice of function g will be discussed at the end of this section.

Theorem 1. Let us assume that
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• g satisfies (Hbis)-(Hinv)-(Hγ)-(Heq)-(Hconcave),

• the constant C is such that

C > max

{
max
u∈[θ,1]

g(u)u+ g′(u)u2 + 4[G(1)−G(θ)]

2θ2
, max
u∈[0,1]

g′(u), max
u∈[0,1]

|g(u)|
u

, max
u∈[0,1]

|g(u)|
θ

}
Then, there exist two constants L∗, L∗ with L∗ < L∗ such that:

1. If L < L∗ then AL,C = ∅.

2. If L = L∗ then AL,C = {C1[0,L]}. Furthermore, the function u solving (1) with µ = C1[0,L]

satisfies (u(L∗), u
′(L∗)) = (β, 0), where β denotes the unique real number in (0, 1) such that

G(β) = 0.

3. If L ∈ (L∗, L
∗) then AL,C 6= ∅. Furthermore, Problem (PL,C) has a solution µ. There exist two

constants a, b > 0 such that µ = C in [0, a) ∪ (b, L] and µ is a singular arc in (a, b) given by

µ(x) =

(
3g(v(x))

2v(x)
+
g′(v(x))

2
− h

)
1[a,b](x)

where h is a positive constant and v is the solution of the ODEv′′ =
g(v) + vg′(v)

2
− hv,

v(a) < γ1, v(b) > γ0.

4. If L ≥ L∗ then AL,C 6= ∅, there exists a family of solutions to Problem (PL,C). Moreover, all the
solutions are singular. They are all equal, up to a translation, to the function µ defined by

µ(x) =

(
3g(v(x))

2v(x)
+
g′(v(x))

2

)
1[0,L0](x)

where v is the solution of the following ODEv′′ =
g(v) + vg′(v)

2
,

v(0) = γ1, v′(0) = −
√

2[G(1)−G(γ1)],

and L0 is such that v(L0) = γ0, v
′(L0) = −

√
−2G(γ0).

This theorem is proved in Section 4. Let us conclude this section by discussing the assumptions
above on the functions F and G. We claim that the class of functions g satisfying all the assumptions
above is nonempty.

Lemma 2. Let θ ∈ (0, 1/2) and gθ denote the bistable polynomial function given by gθ(s) = s(1−s)(s−
θ). Then, gθ satisfies the assumptions (Hbis)-(Hinv)-(Hγ)-(Heq)-(Hconcave).

We have performed some numerical investigation using an optimal interior method through the
software IpOpt (implementing an interior point method, see [15]) using the interface of CasADi ([4]).
In Figure 1.1, we recover the three cases 2, 3, 4 stated in Theorem 1 (we do not illustrate case 1 since
AL,C 6= ∅ in that case). We also have shower numerically a continuous dependence of the solution µ
with respect to the size L. If this numerical observation is true theoretically, then the same holds for
u.
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Figure 1: The optimal solution µ computed by the software IpOpt for three sizes of L with g(u) =
u(1 − u)(u − 1

4), C = 3
2 and three different sizes of L: (from the left to the right) L = 0.44, L = 1,

L = 3.5.

1.2 Method and comparison with the existing literature

The first step of our approach is to define an equivalent optimal problem in a compact set. After proving
the existence of a solution for this auxiliary optimal control problem (PL,C) by standard arguments, we
use the so-called Pontryagin Maximum Principle to obtain a characterization of the minimizers. The
second step consists in performing an accurate analysis of this characterization, and we thus recover
the three kinds of output that we have showed in Figure 1.1. The last step is to exhibit the relationship
between the size of the support of the optimal solution µ and the qualitative properties obtained at the
second step. This is mostly done through a refined study involving standard arguments in reaction-
diffusion such as the comparison principle.

This method is robust enough to be employed in other mathematical frameworks. Indeed, in a
forthcoming paper, we will employ this method for a non-affine optimization problem related to pest
control by acting on the birth rate: we reduce the birth rate by releasing sterile males or we reduce
mechanically the number of egg-laying sites instead of increasing the death rate by spreading insecticide
as it is studied here. We also underline that our method allows to take into account L∞ bounds on the
control and the size of its support.

The study of equations similar to (1) with µ(x) = C was initially performed in [7]. In this first
article, the authors assume that the effect of the control is strong enough so that the natural dynamics
g(u) can be assumed to be neglectible compared with the death term −Cu. Therefore, the authors
investigate the existence of a blocking wave with speed c = 0, namely a solution of

−u′′ =

{
g(u) for x /∈ [0, L]

− Cu for x ∈ [0, L]
, u(−∞) = 1, u(+∞) = 0.

Using mostly reaction-diffusion arguments, they prove the existence of a solution to the above equation
if L ≥ Lcrit for some Lcrit > 0. They also characterize the optimal solution for L = Lcrit. Finally, they
investigate the stability of the wave. Notice that the assumption that g(u) − Cu ∼ −Cu is relevant
in their case but not in the present one since we find out that the optimal solution µ∗ may be equal
to 0 in some regions. Some articles extended the result of [7] to different settings such as systems or
other type of controls (see [2, 12, 3]). We only single out here the work [3] where the authors extend
the result of [7] by assuming that the interval [0, L] is moving with a speed c ≤ 0.

Let us also mention the closely related study [8], where the authors investigate the existence of an
optimal death term µ generating a traveling wave with a prescribed speed c for the equation{

− cu′ − u′′ = g(u)− µ(x)u,

u(−∞) = 0, u(+∞) = 1

while minimizing the L1 norm
∫
R µ. One difference with our model is that the authors do not want

to only block the invasive wave but either reduce the speed of propagation or reverse the speed of
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propagation, this last case corresponding to a local eradication of the pests. Another difference is that
we impose L∞ pointwise constraints on µ and a constraint on the size of the support. The authors of
[8] use a very powerful technique based on an analysis of the phase portrait and the use of a Stokes
formulae introduced first in [10]. In our opinion, it is not possible to adapt their technique to the case
of L∞ constraints on the control, since these are difficult to take into account in the phase portrait
approach. From the mathematical point of view, the main difficulty of this study comes from the fact
that the µ-dependence of the admissible set AL,C is very implicit, through the existence assumption of
solution of the system (1). This poses unusual difficulties and makes the study of the resulting optimal
control problem non-standard.

In the only case where C > supµ and L > L∗ (case 4 of Theorem 1), our result is similar to the main
result of [8] (Theorem 3.2) since in that case, none of the constrains are activated. Therefore, in this
set of parameters, the question becomes equivalent to the question without imposing any constraint.
Eventually, we finish this comparison by stating that the question of the robustness of our method for
a moving pesticide intervention with a prescribed speed c and imposing constraints on the support and
the L∞ bounds in the spirit of [3] is still open. The main difficulty seems to be at the first step of the
method since it is not clear to us how to find an equivalent optimization problem in some compact set.

1.3 Outline of the paper

In Section 2, we introduce an optimal control problem, equivalent to Problem (PL,C) in the sense
that both problems share the same solutions. This new optimal control problem has the advantage
of involving an ODE on the compact set [0, L] and not anymore on R as in Problem (PL,C). This is
more adapted to the use of the Pontryagin Maximum Principle. First order optimality conditions are
then derived. Next, in Section 3, we analyse such conditions, and lead a discussion on the emergence
of singular arcs for minimizers. Finally, in Section 4, we prove Theorem 1 using the analysis developed
in Section 3.

Throughout this article, the notation | · | will denote the one-dimensional Lebesgue measure.

2 Existence of a solution and reformulation of Problem (PL,C)

First, according to [13], we define u being a solution of (1) as

u(x) = sup {φ : φ is a sub-solution of (1)} .

Before providing a new equivalent problem, we state that the set AL,C is nonempty.

Proposition 1. For C > maxu∈[0,1]
g(u)
u , one has AL,C 6= ∅ whenever L > 0 is large enough.

Proof. We just provide the main steps of the proof and we refer to [7] (or [3]) for more details. The
idea is to construct sub and super-solutions that are ordered. One easily checks that a sub-solution is
simply given by

u(x) =

{
w(x) for x < 0,

0 for x ≥ 0
with

{
− w′′ = g(w),

w(0) = 0, w′(0) = −
√

2G(1).

Regarding the construction of a super-solution, we underline that since g(u) − Cu < −εu for some
well-chosen parameter ε > 0, we can apply [7, Theorem 4]: for L large enough, there exists a solution
to the problem

−u′′ =

{
g(u) for x /∈ (0, L),

−εu for x ∈ (0, L)
, u(−∞) = 1, u(+∞) = 0.
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Next, using [7, Lemma 2], the sub-solution u and the super-solution u are ordered (u < u) and the
existence of a solution u with u < u < u follows from the maximum principle. We conclude that C1[0,L]

belongs to AL,C .

We remark that, C > 0 being given, if AL,C 6= ∅ for a size L > 0, then for any size L′ > L, there
holds AL,C ⊂ AL′,C .

2.1 Towards a compactly supported problem

Recall that β denotes the unique zero of G in (0, 1). First, we prove that Problem (PL,C) is equivalent
to another one involving an ODE on a compact set.

Proposition 2. If L > L∗, then (1) has a nontrivial solution if, and only if the equation
− u′′ = g(u)− µ(x)u1{0<x<L},

u′(0) = −

√
2

∫ 1

u(0)
g(v)dv, u′(L) = −

√
−2

∫ u(L)

0
g(v)dv

(3)

has a solution such that 0 ≤ u ≤ 1 in (0, L). Moreover, there holds u(L) ≤ β.
Lastly, such a solution necessarily satisfies u′ < 0 in (−∞, 0) ∪ (L,∞).

Proof. Assume first that (3) admits a solution u. Let us extend u to (L,∞) by taking u = v where v
denotes the solution of −v′′ = g(v) in (L,∞), with v(L) = u(L), v′(L) = u′(L), where we have extended
g linearly outside of (0, 1). Multiplying this equation by u and integrating, we get that (u′)2

2 +G(u) is

constant on (L,∞). Moreover, as u′(L) = −
√

2
∫ u(L)

0 g(v)dv, this constant is equal to 0.
Let us now prove that u′ < 0 in the complement set of [0, L]. Let us assume by contradiction that

u admits a local minimum at x ∈ (L,∞). Then u′(x) = 0 and thus G(u(x)) = 0, which implies that
u(x) ∈ {0, β}.Assume by contradiction that u(x) = β, then u does not admit any local maximizer
x > x, otherwise the same arguments would yield G(u(x)) = 0, a contradiction since u(x) > β. Hence
u would be increasing in (x,∞), and as −u′′ = g(u), one would get u(∞) = 1. On the other hand,
one has G(u(∞)) = 0, a contradiction. Hence u(x) 6= β and thus u(x) = 0. But, according to the
Cauchy-Lipschitz theorem, one would get u(·) = 0 on R, a contradiction with the boundary conditions
at x = 0. It follows that if u′(L) < 0, then u′ < 0 on (L,∞).
Now, if u′(L) = 0, then one has u(L) = β. Assume by contradiction that u admits a local maximum
at x ∈ (L,∞). Then, one has u′(x) = 0 and thus G(u(x)) = 0, which implies that u(x) = β. Hence,
either u admits a local minimum in (L, x), which has been shown impossible, or u(·) = β in (L, x). In
this second case, one would have −u′′ = 0 = g(β) on (L, x), a contradiction. Hence, u is nonincreasing
on (L,∞) in this case, and applying the strong maximum principle to u′, we even get that u′ < 0 in
(L,+∞) and u′(L) = 0.

We conclude that u′ < 0 over (L,∞) in all cases. Hence, u(+∞) is well-defined and since (u′)2

2 +
G(u) = 0 in (L,∞), one gets that u(+∞) = 0.

We could prove that u′ < 0 on (−∞, 0) and that u(−∞) = 1 with similar arguments.

Assume next that u satisfies (1). Then, (u′)2

2 + G(u) is constant in (−∞, 0) and (L,∞), and due
to the boundary conditions and elliptic regularity, these constants are respectively G(1) and G(0) = 0.
It immediately follows that u(L) ≤ β. Moreover, one can prove as in the previous step that u′ < 0
outside [0, L]. Hence, the boundary conditions in (3) immediately follows by taking the square root of
(u′)2

2 = −G(u) in (L,∞) and (u′)2

2 = G(1)−G(u) in (−∞, 0).
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At this step, using Proposition 2 enables us to recast Problem (PL,C) as

inf
µ∈ÂL,C

N (u) . (P2)

where

ÂL,C := {µ ∈ L∞(R) : (3) has a solution, 0 ≤ µ ≤ C a.e. in R and supp(µ) ⊂ [0, L]} .

Let us conclude this section by showing the existence of an optimal control µ∗ by taking advantage
of the equivalence between the two problems we have just shown.

Proposition 3. Let L > 0 be given such that AL,C 6= ∅ (or, equivalently, such that ÂL,C 6= ∅). Then,
Problem (P2) has a solution µ∗.

For the sake of clarity, the proof of this result is postponed to Appendix B.

2.2 Definition of L∗ and solution of Problem (PL,C) in the case L = L∗

Let µL = C1[0,L] denote the family of constant controls indexed by the size of the support L. We define
L∗ as the smallest L > 0 such that (1) admits a solution, that is:

L∗ := min{L > 0 such that µL ∈ AL,C} (4)

First, the infimum exists according to Proposition 1, and we can easily prove using the compactly
supported formulation (Proposition 2) that L∗ is a minimum. Let u∗ be the solution associated with
µL∗ = C1(0,L∗).

Proposition 4. If AL,C 6= ∅, then L ≥ L∗. Moreover, AL∗,C = {C1(0,L∗)}.

Proof. Let L be such that AL,C 6= ∅, take µ ∈ AL,C and u be the optimal solution associated to (1).
Next, consider v the solution of the ODE{

− v′′ = g(v)− Cv for x > 0,

v(0) = u(0), v′(0) = u′(0).

The maximum principle implies that v(x) ≤ u(x) for all x ∈ [0, L]. We claim that

v′(L)2 + 2G(v(L)) ≤ 0. (5)

If (5) holds true, we can conclude. Indeed, it would follow that there exists ` ∈ (0, L) such that
v′(`)2 + 2G(v(`)) = 0. Thus, if we consider the function, ṽ defined as the solution of{

− ṽ′′ = g(ṽ) for x > `,

ṽ(`) = v(`), ṽ′(`) = v′(`)

we deduce that ṽ → 0 as x→ +∞. Next, we define

φ(x) =


u(x) for x ≤ 0,

v(x) for x ∈ [0, `],

ṽ for x ≥ `.

We obviously have that φ is solution of (1) for a size ` < L and µ = C1(0,`). We conclude that
L∗ ≤ ` < L.
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It remains to prove (5). A direct computation yields

v′(L)2 + 2G(v(L)) = 2G(v(0)) + C[v(L)2 − v(0)2] + v′(0)2

= 2G(u(0)) + u′(0)2 + C[v(L)2 − u(0)2]

= 2G(1) + C[v(L)2 − u(0)2].

By multiplying (1) by u′ and integrating over (−∞, L), we deduce that

u′(L)2 = 2G(1)− 2G(u(L)) + 2

∫ L

0
µ(x)u(x)u′(x)dx

≥ 2G(1)− 2G(u(L)) + 2C

∫ u(L)

u(0)
udu

= 2G(1)− 2G(u(L)) + C[u(L)2 − u(0)2].

Recalling that u(L) ∈M0, we deduce that

v′(L)2 + 2G(v(L)) ≤ u′(L)2 + 2G(u(L)) = 0.

Lastly, the reader can notice that this proof also shows that v′(L)2+2G(v(L)) < 0 when µ 6≡ C1(0,L).
Hence, in that case, L∗ ≤ ` < L. This proves that AL∗,C = {C1(0,L∗)}.

Proposition 5. The function µ = C1(0,L) minimizes N if and only if L = L∗.

Proof. If L = L∗, then AL∗,C = {C1(0,L∗)} and the result immediately follows. Assume now that
µ = C1(0,L) is optimal, with L > L∗ and let uL be the associated solution. Since u∗ is solution of
the problem with a size L associated to µL∗ , we have N (µL∗) = CL∗ < CL = N (µ). Therefore, this
contradicts the optimality of µL.

Proposition 6. If L = L∗ and C > 1
β supu∈(0,1) |g(u)| then we have u(L) = β.

Proof. Let µL = C1[0,L] denote the family of constant controls indexed by the size of the support L.
Let us first determine the minimal size L0 such that (1) admits a solution for µ = µL0 . According to
the maximum principle (see [7, 3] for details), one has:

If there exists a solution uL1 for L = L1, then for every L2 > L1, the associated solution uL2 satisfies
uL2 < uL1.

Let us introduce the initial and target manifoldsM0 andM1 defined by

M1 = {(x1, x2) ∈ R2 | x2
2 − 2

∫ 1

x1

g(v) dv = 0} (6)

M0 = {(x1, x2) ∈ R2 | x2
2 + 2

∫ x1

0
g(v) dv = 0}. (7)

Let Λ > 0 be such that the solution uΛ satisfies
− u′′Λ = g(uΛ)− CuΛ for x ∈ [0,Λ],

(uΛ(0), u′Λ(0)) ∈M1,

uΛ(Λ) = β, u′Λ(Λ) = 0.

Existence of a such size Λ is shown hereafter. Since β = sup {u : (u, v) ∈M0}, we deduce that there
does not exists any solution uL for L < Λ (otherwise, we would have β = uΛ(Λ) < uL(Λ) < uL(L)
and (uL(L), u′L(L)) ∈ M0, which is impossible since (β, 0) is an extreme point ofM1). Therefore, we
deduce L∗ = Λ and the conclusion follows.
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It remains to show the existence of Λ. It is enough to prove that the phase portrait of the solution
w of {

− w′′ = g(w)− Cw, for x > 0,

w(0) = β, w′(0) = 0

crosses the manifold M1 whenever L is large enough. To this aim, notice that for some small ε > 0,
w′′ > 0 on [0, ε) thanks to the assumption on C. We deduce that w′ > 0 on (0, ε) and w > β on (0, ε).
Using one more time the assumption on C, we have that w′′ > 0 for every x ≥ 0 and, as above, w > β
for all x > 0. It follows for any x ≥ 0

w′(x) ≥

(
Cβ − sup

u∈(0,1)
|g(u)|

)
x and w(x) ≥ β +

(
Cβ − supu∈(0,1) |g(u)|

)
x2

2
.

We immediately get that (w,w′) → (+∞,+∞) as x → +∞. By remarking thatM1 is the boundary
of a compact set in {u ≥ 0}×{u′ ≥ 0} in the phase portrait plane, we infer that the graph of the phase
portrait of (w,w′) crossesM1. The first antecedent of this cross-point defines Λ.

2.3 Monotonicity of the optimal state

We now show that if u is the solution to (1) associated to an optimal solution µ∗ of Problem (PL,C),
then u is monotone. This property will be used all along this work.

Proposition 7. For any optimal solution µ∗ of Problem (PL,C), the associated solution u∗ to (1) is
nonincreasing.

Proof. Let µ be an optimal solution and uµ be the associated solution to (1). According to Proposition 2,
it remains only to prove that uµ is nonincreasing on [0, L]. Assume uµ is not nonincreasing, then we
define

x1 its first local minimizer and x2 = sup {x ∈ R : u(x) = u(x1)} .

Existence of x2 directly comes from the fact that u(∞) = 0. Next, we introduce the operator τx1,x2
defined by

τx1,x2 : L∞(R) 3 f 7→

{
f(x) for x < x1,

f(x+ x2 − x1) for x ≥ x1.

as well as µ1 = τx1,x2µ and u = τx1,x2uµ. It is clear that

− u′′ = g(u)− µ∗u for x ∈ R\ {x1} , u ∈ C0(R)

u′(x−1 ) = 0 ≥ u′(x+
1 ), lim

x→−∞
u(x) = 1, and lim

x→+∞
u(x) = 0.

According to [7], it follows that u is a super solution of (1) and
∫
µ∗ ≤

∫
µ. Considering the sub-solution

u satisfying −u′′ = g(u) in (−∞, 0), u(−∞) = 1, u(0) = 0 as in the proof of Proposition 1, we deduce
that (1) has a solution u1. Moreover, since µ is assumed to be optimal, we deduce that

∫
µ∗ =

∫
µ.

But, we claim that
∫

[x1,x2] µ(x)dx 6= 0. Otherwise, by multiplying (1) by u′µ and integrating (1) between
x1 and x2, it would follow that

(u′(x2))2/2 = (u′(x2))2/2− (u′(x1))2/2 = G(u(x1))−G(u(x2)) = 0.

As x1 is the local minimizer, one has 0 ≥ −u′′(x1) = g(u(x1)) and thus u(x1) = u(x2) ≤ θ. As
u(x) < u(x2) for all x > x2, one has g(u(x)) < 0 for all x > x2. Moreover, as µ ≥ 0, we get from (1)
that −u′′ < 0 on (x2,∞). Using u′(x2) = 0, this gives u′ > 0 on (x2,∞) and thus u(x) > u(x2) on
(x2,∞), a contradiction with u(+∞) = 0.
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2.4 First properties of any optimal solution

Let us state the first order optimality conditions for Problem (P2). To this aim, we consider a solution µ
to Problem (P2) and its associated optimal trajectory X = [u, u̇]>. Let us use the so-called Pontryagin
Maximum Principle (see [14, Theorem 1.4.1] and [11]). We introduce the notations X = [u v]>,
P = [pu pv]

> as well as the Hamiltonian of Problem (P2) given by

H : R2 × R2 × {0,−1} × R 3 (X,P, p0, µ) 7→ puv + pv(µu− g(u)) + p0µ.

According to the Pontryagin Maximum Principle (PMP), there exists an absolutely continuous mapping
P : [0, T ]→ R2 called adjoint vector such that the so-called extremal (X,P, µ) satisfies a.e. in [0, L]:

Adjoint equations:

dP

dx
(x) = −∂H

∂X
(X(x), P (x), p0, µ(x)) =

(
−µ(x)pv(x) + g′(u(x))pv(x)

−pu(x)

)
.

Maximization condition: for a.e. x in [0, L], µ(x) solves the problem

max
µ∈[0,C]

µ(p0 + pv(x)u(x)).

Transversality conditions: let us recall that the initial and target manifoldsM0 andM1 are defined
by (7)-(6). The transversality conditions read P (0) ⊥ TX(0)M1 and P (L) ⊥ TX(L)M0, where TXMi

denotes the tangent hyperplane toMi (i = 0, 1) at X, and can be written as

pu(0)v(0)− g(u(0))pv(0) = 0, pu(L)v(L)− g(u(L))pv(L) = 0.

Notice that, since the optimal control problem is autonomous (neither the cost functional nor the
right-hand side of the system solved by the state depend directly on x), it follows that

for a.e. x ∈ [0, L], max
µ∈[0,C]

puv + pv(µu− g(u)) + p0µ =: h is constant. (8)

Before, providing the main results of this section we introduce some notations that will be used all
along this work. A function that will play an important role is the so-called switching function, given
by

ψ(x) = upv(x). (9)

Indeed, the sets {µ = 0}, {µ ∈ [0, C]} and {µ = C} are characterized in terms of the the level sets of
ψ, namely up to a set of zero Lebesgue measure, one has

{ψ < −p0} ⊂ {µ = 0} ⊂ {ψ ≤ −p0}, {ψ > −p0} ⊂ {µ = C} ⊂ {ψ ≥ −p0}

and moreover {0 < µ < C} ⊂ {ψ = −p0}. Furthermore, it is notable that ψ satisfies a simple equation
that is stated in the next Lemma.

Lemma 3. The function ψ solves the equation

− ψ′′ =
(

3g(u)

u
+ g′(u)− 2µ

)
ψ + 2µ(−p0 − ψ) + 2h. (10)

Proof. A direct computation yields

ψ′′ = u′′pv + 2u′p′v + up′′v = (−g(u) + µu)pv − 2vpu + u(−g′(u) + µ)pv.

Recalling that h = puv + pv(µu− g(u)) + p0µ, it follows

ψ′′ =

(
−g(u)

u
− g′(u) + 2µ

)
ψ − 2

(
h− µψ +

g(u)

u
ψ − p0µ

)
.

By ordering the above terms, we obtain (10).
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Next, it is convenient to introduce the maximal interval (l0, L0) on which ψ is above −p0. Namely

l0 = min
{
x ∈ [0, L] : ψ(x) ≥ −p0

}
and L0 = max

{
x ∈ [0, L] : ψ(x) ≥ −p0

}
. (11)

Note that this quantity is well-defined since, if ψ < −p0 everywhere on [0, L], then µ = 0, which is
impossible since

∫ 1
0 g > 0 ensures that (1) does not admit any solution when µ ≡ 0. We underline that

the transversality conditions hold true up to the boundary of the support of µ.

Proposition 8. There holds:

pu(l0)v(l0)− g(u(l0))pv(l0) = 0, and pu(L0)v(L0)− g(u(L0))pv(L0) = 0. (12)

Proof. We recall the transversality conditions that read

pu(0)v(0)− g(u(0))pv(0) = 0 and pu(L)v(L)− g(u(L))pv(L) = 0.

By integrating (respectively) over (0, l0) and (L0, L) the equations

p′uu
′ = (g(u))′ pv and p′uu

′ = (g(u))′ pv,

it follows that the transversality conditions above also hold true at l0 and L0, whence the result.

3 Analysis of the optimality conditions provided by the PMP

In this section, we analyze each of the cases provided by the Pontryagin principle introduced in Section 2.
Specifically, our approach is divided into the analysis of the following three particular cases:

(1) p0 = 0 (2) p0 = −1 and h = 0 (3) p0 = −1 and h > 0.

3.1 The case p0 = 0 : the bang-bang case

First, one proves that the solution is bang-bang. Next, we prove that the set {µ = C} is non-empty
and must be equal to the whole domain [0, L]. We separate these statements into several propositions
and our conclusion is summarized by Corollary 2.

Proposition 9. If p0 = 0 then any optimal solution is bang-bang and moreover |{ψ = 0}| = 0.

Proof. To prove the bang-bang character of the solutions, let us argue by contradiction, assuming the
existence of a measurable set I of positive measure on which 0 < µ < C. If p0 = 0, then one has
pvu = 0 a.e. on I. Hence, pv(·) = 0 on I since u > 0. It follows that p′v(·) = 0 a.e. on I. According to
the Pontryagin Maximum Principle stated in Section 2.4, pv solves a linear ODE. We derive from this
equation pu(·) = 0 a.e. on I. By using the Cauchy-Lipschitz theorem, we get that pv(·) = 0 on [0, L]
and pu(·) = 0 in [0, L]. However, according to the Pontryagin Maximum Principle, the pair (p0, P )
cannot be trivial. We have thus reached a contradiction.

Proposition 10. If p0 = 0 then any connected component of the set {ψ < 0} must include 0 or L.

Proof. We prove it by contradiction. We first notice that, as u and pv belong to W 2,∞(0, L), they are
continuous and so is ψ. Hence, {ψ < 0} is an open set.

Assume there exists an interval (a, b) such that 0 < a < b < L with ψ(a) = ψ(b) = 0 and ψ < 0 in
(a, b). From this inequality, we deduce two facts (we only provide the justification for x = a, similar
arguments implying the same results for b):

1. pv(a) = pv(b) = 0 (indeed 0 = ψ(a) = u(a)pv(a) and u(a) 6= 0 implies the assertion),
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2. p′v(a) < 0 and p′v(b) > 0 (indeed, this follows by using that the Cauchy-Lipschitz theorem together
with pv(a) = 0 and (pv, p

′
v) 6= (0, 0)).

Recalling that h = puv − p(µu− g(u)) + p0µ and evaluating this expression at a+ and b−, we deduce

0 > p′v(a
+)v(a+) = p′v(a

+)v(a+)− p(a+)g(u(a+)) = h

and h = p′v(b
−)v(b−)− p(b−)g(u(b−)) = p′v(b

−)v(b−) > 0.

Indeed, the sign of ψ changes at a and b, and ψ < 0 on (a, b). We have thus reached a contradiction.

Corollary 1. If p0 = 0 then there exists a single interval (a, b+ l1) such that µ = C1(a,b+l1).

Next, we prove that this can happen if and only if a = b = 0 and L = l1.

Proposition 11. If p0 = 0 then the following assertions are equivalent

(1) ψ(0) > 0, (2) ψ(L) > 0, (3) h > 0.

Proof. Recall that −p′vu′ + pv(µu− g(u)) = h according to (8). Evaluating this equality at x = 0 and
x = L, and using the transversality conditions provided by Proposition 8, one gets h = ψ(0)µ(0+) =
ψ(L)µ(L−). Recall that, as emphasized in the proof of Proposition 10, one has {ψ > 0} = {µ = C}
and {ψ < 0} = {µ = 0}. As µ(x)ψ(x) = 0 if ψ(x) < 0 and ψ(x)µ(x) = Cψ(x) > 0 if ψ(x) > 0, the
conclusion follows.

Proposition 12. Assume that C > max
(

3g(u)
2u + g′(u)

2

)
. If p0 = 0 then we have h > 0.

Proof. Assume that h ≤ 0. It follows from Proposition 11 that ψ(0) = ψ(L) = 0. Since µ is bang-bang
and µ = 0 is not an admissible solution (since

∫ 1
0 g(s)ds > 0), we deduce the existence of an interval

(a, b) such that ψ > 0 and thus µ = C in (a, b) with 0 ≤ a < b ≤ L and ψ(a) = ψ(b) = 0. Hence ψ
takes its maximum in (a, b) at some interior point x0. On one hand, we have −ψ′′(x0) ≥ 0. On the
other hand, since ψ > 0 in (a, b), h ≤ 0 and 3g(u)

u + g′(u)− 2C < 0, it follows(
3g(u)

u
+ g′(u)− 2µ

)
ψ − 2µψ + 2h < 0 in (a, b).

This contradicts (10).

Corollary 2. Assume that C > max
(

3g(u)
2u + g′(u)

2

)
. The following assertions are equivalent:

(1) There exists a solution of the adjoint problem such that p0 = 0,

(2) µ = C1(0,L),

(3) L = L∗.

Proof. We prove that (1) implies (2), (2) implies (3) and (3) implies (1).

• (1) implies (2). From Proposition 12, we deduce that h > 0. From Proposition 11, it follows
that µ = C in a neighborhood of 0 and L. Finally, from Corollary 1, we conclude that µ = C in
[0, L].

• (2) implies (3). Proposition 5 provides the result.

• (3) implies (1). We have two cases: either p0 = 0 or p0 = −1. The first case corresponds to the
desired conclusion. Therefore, we treat only the second case, we prove that we can construct an
equivalent adjoint solution that satisfies p0 = 0. In this order, we define X̃ = [u u′]>, P̃ = [pu pv]

>,
p̃0 = 0, µ̃ = C1(0,L∗) and one has H(X̃, P̃ , X̃, p̃0, µ̃) = h+C a constant. Moreover, it also satisfies
the adjoint equations, the maximization condition and the transversality conditions. Since N (µ)
is the same for both solutions, the conclusion follows.
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3.2 The case (p0, h) = (−1, 0) : the singular arc case

We first determine an implicit expression of the singular control µ in the set {µ > 0}. Then, we prove
that the values of µ at the boundary of this set are prescribed. Finally, we prove that if L0 − l0 is less
than L then we automatically have (p0, h) = (−1, 0). We gather all these results in several propositions
and we sum-up them into Corollary 3.

Proposition 13. If p0 = −1 then the following assertions are equivalent

(1) ψ(0) ≤ 1, (2) ψ(L) ≤ 1, (3) h = 0.

Proof. According to (8), one has −p′vu′ + pv(µu− g(u)) + p0µ = h. It follows that µ(ψ− 1) belongs to
H1(0, L), which enables us to evaluate these expressions pointwise. Taking this last equality at x = 0
and x = L, and using the transversality conditions provided by Proposition 8 yields

h =
(
ψ(0)− 1

)
µ(0+) =

(
ψ(L)− 1

)
µ(L−).

As µ(x)
(
1−ψ(x)

)
= 0 if ψ(x) ≤ 1 and

(
1−ψ(L)

)
µ(L) = C

(
1−ψ(L)

)
< 0 if ψ(x) > 1, the conclusion

follows.

Proposition 14. If (p0, h) = (−1, 0) then we have

µ =
3g(u)

2u
+
g′(u)

2
a.e. in {ψ = 1}. (13)

Proof. It is a direct application of Lemma 3. Indeed, as ψ isH2(0, L), one has ψ′′ = 0 almost everywhere
in the set {ψ = 1}. Since h = 0, from (10) it follows that

0 =
3g(u)

u
+ g′(u)− 2µ a.e. in this set.

Proposition 15. Assume that C > max
(

3g(u)
2u + g′(u)

2

)
. If (p0, h) = (−1, 0) then |{ψ > 1}| = 0.

Proof. We prove it by contradiction. As ψ is continuous, we can assume that there exists (a, b) such
that ψ > 1 in (a, b). Thanks to Proposition 13, we have a > 0 and b < L. Moreover, a, b can be
chosen such that ψ(a) = ψ(b) = 1. We deduce that ψ takes its maximum in (a, b) at some interior
point x0. On one hand, we have −ψ′′(x0) ≥ 0. On the other hand, since ψ(x0) > 1, h = 0 and
3g(u(x0)
u(x0

+ g′(u(x0)− 2C < 0, we have((
3g(u)

u
+ g′(u)− 2µ

)
ψ + 2µ(1− ψ) + 2h

)
(x0) < 0

according to Lemma 3, leading to a contradiction. We deduce that ψ > 1 cannot occur.

Proposition 16. Assume that C > max
(

3g(u)
2u + g′(u)

2

)
and that g satisfies (Heq). Let F (s) = sg(s)+

2G(s). If (p0, h) = (−1, 0) then the set {ψ = 1} is connected.

Proof. Notice first that {ψ = 1} is nonempty, otherwise by Proposition 15, ψ < 1 everywhere and thus
µ(·) = 0, a contradiction with

∫ 1
0 g > 0. We prove the result by contradiction. Assume that {ψ = 1} is

disconnected. Then, there exists an interval (a, b) such that ψ < 1 in (a, b) with ψ(a) = ψ(b) = 1 and
a > 0, b < L (the case ψ > 1 cannot occur according to Proposition 15).

It follows that µ = 0 in (a, b) and by multiplying (1) by u′ and integrating between (a, x) (for x < b)
it follows

u′(a)2 + 2G(u(a)) = u′(x)2 + 2G(u(x)). (14)
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As ψ ≤ 1 by Proposition 15, we know that ψ reaches local maxima at a and b and since these are
interior points, one has ψ′(a) = ψ′(b) = 0. The same holds true for some interior point x0 where ψ
reaches its minimum. We deduce that for z ∈ {a, x0, b}, we have p′v(z) = −u′(z)pv(z)/u(z). Recalling
h = −p′vu′ + [µu− g(u)]pv + p0µ, it follows

pv(z)
[
u′(z)2 − g(u(z))u(z)

]
= 0.

Notice that pv(z) = 0 is impossible since it would imply that p′v(z) = 0. Indeed, in that case, we would
also have pu(z) = 0 and therefore P (·) = 0 so that the pair (p0, P ) would be trivial. We infer that
u′(z)2 = g(u(z))u(z) for every z ∈ {a, x0, b}.

According to (14), it is clear that F (u(a)) = F (u(b)) = F (u(x0)). Since, u(b) < u(x0) < u(a), we
end up with a contradiction with (Heq).

We have seen that, provided that C be large enough, µ < C in (l0, L0). We will now fully determine
µ by specifying u(l0). Indeed, u will be given as a solution of a second order ODE whose initial
conditions u(l0), u′(l0) are known.

Proposition 17. If (p0, h) = (−1, 0), then one has u(l0) = γ1 and u(L0) = γ0.

Proof. By multiplying (1) by u′ and integrating between (−∞, l0) and (L0,+∞), we obtain

u′(l0)2 = 2[G(1)−G(u(l0)] and u′(L0)2 = −2G(u(L0)). (15)

Moreover, according to Propositions 14 and 16, we know that the support of µ is connected and for
x ∈ (l0, L0), one has µ(x) = 3g(u(x))

2u(x) + g′(u(x))
2 . It follows that u satisfies

u′′ =
1

2

(
g(u) + ug′(u)

)
in (l0, L0). (16)

Multiplying (1) by u′ and integrating between (l0, x) for some x ∈ (l0, L0), we deduce thanks to (15)
that

u′(x)2 = g(u(x))u(x)− F (u(l0)) + 2G(1). (17)

Moreover, since p = 1
u on (l0, L0), we also have p′ = − u′

u2
and p′′ = −u′′

u2
+ 2(u′)2

u3
. On the one hand,

using the equations (16)) and (17) on u, we deduce that for a.e. x ∈ (l0, L0)

p′′ = p

(
−g(u)

2u
− g′(u)

2
+ 2

g(u)

u
+

2(2G(1)− F (u(l0)))

u2

)
= p

(
3g(u)

2u
− g′(u)

2
+

2(2G(1)− F (u(l0)))

u2

)
. (18)

On the other hand, using the equation provided by the Pontryagin Maximum Principle and Proposi-
tion 14, we have

p′′ = p
(
µ− g′(u)

)
= p

(
3g(u)

2u
− g′(u)

2

)
a.e. in (l0, L0). (19)

Combining (18) and (19), we deduce that F (u(l0)) = 2G(1). Next, we set x = L0 in (17) and we use
(15) to obtain F (u(L0)) = 0. The conclusion follows.

To finish, we prove that if L0 − l0 < L then we can be in the above case thanks to the following
Proposition.

Proposition 18. If there exists an optimal µ such that L0 − l0 < L, then p0 = −1 and h = 0.
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Proof. Let µ be an optimal solution such that L0 − l0 < L and u be the associated solution of
(1). Let us assume by contradiction that p0 = 0. Notice that up to a translation, there is no
loss of generality to assume 0 < l0 < L0 < L. According to Proposition 8, by evaluating (8) at
(u(L0), v(L0), pu(L0), pv(L0), µ(L0)), we have

h = pu(L0)v(L0)− g(u(L0))pv(L0) = 0.

But we know from Proposition 12 that p0 = 0 implies h > 0, leading to a contradiction. Hence p0 = −1
and h = pu(l0)v(l0)− g(u(l0))pv(l0) = 0.

In the next result, we sum-up all the results obtained in the case (p0, h) = (−1, 0).

Corollary 3. If we know that (p0, h) = (−1, 0) then we have a complete procedure to compute explicitly
the function µ:

1. We solve the equation

u′′ =
g(u) + ug′(u)

2
,

u(0) = γ1, u′(0) = −
√

2(G(1)−G(γ1)),

2. We can define L′0 = inf{x ∈ (0, L) : u(x) = γ0},

3. We keep the solution u only on the interval [0, L′0],

4. We define µ as

µ(x) =

(
3g(u(x))

2u(x)
+
g′(u(x))

2

)
1[0,L′0](x).

Furthermore, any translation µ(·+ a), with a ∈ [0, L−L′0], is still a maximizer. Lastly, if L0 − l0 < L,
we deduce that (p0, h) = (−1, 0) and µ is defined as above.

3.3 The case p0 = −1, h > 0 : an intermediate case

As in the two previous sections, we split the properties of any optimal solutions that satisfy p0 = −1,
h > 0 in several Propositions that we sum up into Corollary 4.

Proposition 19. If p0 = −1 then the following assertions are equivalent

(1) ψ(0) > 1, (2) ψ(L) > 1, (3) h > 0.

The proof of this proposition is exactly similar to the one of Proposition 13 and is therefore left to
the reader.

In this case, thanks to Proposition 19 and the optimality conditions provided by the Pontryagin
Maximum principle, we know that µ = C in a neighborhood of 0 and L. Numerically, one has observed
the emergence of a singular arc in the "middle" of (l0, L0). The aim of this section is to prove that it
is the only type of optimal solutions that can emerge.

Proposition 20. If p0 = −1, h > 0 and C > max[0,1] g
′ then u(L) ≥ θ.

Proof. We know that ψ(L) > 1 according to Proposition 19. We consider two cases: ψ > 1 on (0, L)
or ψ − 1 changes sign.

Case 1: ψ > 1 on (0, L). In this case, we have µ(·) = C on (0, L) and u(L) = β by Proposition 6.
The conclusion follows.
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Case 2: ψ − 1 changes its sign. We define l = sup{x < L : ψ(x) ≤ 1}. One has µ = C in [l, L],
ψ(l) = 1 and ψ′(l) ≥ 0. We deduce that pv(l) = 1

u(l) > 0 and

pu(l) ≤ v(l)pv(l)

u(l)
< 0. (20)

One has ψ ≥ 1 and thus pv ≥ 1
u > 0 in [l, L]. By noticing that p′u = [g′(u)− C]pv < 0 (by assumption

on C), we deduce that pu < 0 in the whole interval [l, L].
Next, let us assume by contradiction that the conclusion does not hold: u(L) < θ, then the following

inequalities hold:
pu(L) < 0, v(L) < 0, g(u(L)) < 0 and pv(L) > 0.

The transversality conditions lead to (puv − g(u)pv)(L) = 0, whence a contradiction.

Before getting into the qualitative properties of the optimal solution µ, we also prove that ψ > 0
which will be useful all along this part.

Lemma 4. If p0 = −1 and h > 0 then there holds ψ > 0.

Proof. Assume by contradiction that |{ψ ≤ 0}| > 0. Hence, there exists an interval [a, b] such that
ψ < 1 in [a, b] and ψ(a) = ψ(b) = 1 since ψ(0) > 1 and ψ(L) > 1 by Proposition 19. First, we remark
that, in the set [a, b], h rewrites

h =
−u′ψ′

u
+
u′2

u2
ψ − g(u)

u
ψ.

Indeed, in [a, b], h = −p′vu′ − ψ
g(u)
u and ψ′ = p′vu + u′pv. Next, let x1 = inf{x > a : ψ(x) = 0}. We

deduce that a < x1 < b and ψ > 0 in [a, x1[. On the one hand we have ψ′(x1) ≤ 0. On the other hand,
we have

0 < h =
−u′(x1)ψ′(x1)

u(x1)
.

Since −u
′(x1)

u(x1) > 0, we deduce that ψ′(x1) > 0 and a contradiction follows.

Next, we state that |{ψ < 1}| = 0.

Proposition 21. If p0 = −1, h > 0 and (u 7→ F ′(u)
u ) is concave then we have |{ψ < 1}| = 0.

Proof. Let us recall that h = −p′vu′−g(u)pv+µ[ψ+p0]. According to Proposition 19, one has ψ(0) > 1
and ψ(L) > 1. Let us hence argue by contradiction, assuming that ψ < 1 in some interval (a, b). It
follows ψ(a) = ψ(b) = 1 and we deduce the existence of x0 ∈ (a, b) such that ψ(x0) = minx∈(a,b) ψ(x).
Hence, we deduce ψ′(x0) = 0. A direct computation yields

−p′v(x0) =

(
u′pv
u

)
(x0).

Recalling the formula for h, we deduce

0 < hu(x0) = pv(x0)[u′(x0)2 − g(u)u(x0)].

Next, by multiplying (1) by u′ and integrating over (0, x0), we obtain

u′(x0)2 ≤ u′(0)2 + 2[G(u(0)−G(u(x0))] + 2

∫ x0

0
µu′u

≤ 2[G(1)−G(u(x0))] + C[u(a)2 − u(0)2].
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Next, we argue that 0 < u(a) < u(0) and we obtain

0 < hu(x0) + Cpv(x0)[u(0)2 − u(a)2] ≤ pv(x0)[2G(1)− F (u(x0))].

Since pv(x0) > 0, it follows F (u(x0)) < 2G(1). We conclude that θ < u(x0) < γ1. We claim that it
implies F ′(u(x0)) > 0. From this claim, noticing that −ψ′′(x0) ≤ 0, we deduce thanks to (10) that
−ψ′′(x0) = F ′(u(x0))

u(x0) ψ(x0) + 2h > 0 which is a contradiction.

It remains to prove the claim F ′(u(x0)) > 0. We simply remark that F ′(θ)/θ = 0 and according
to (Hγ), we have F ′(γ1)/γ1 ≥ 0. Then, the hypothesis (Hconcave) implies that F ′(u)/u > 0 for any
u ∈ (θ, γ1) and F ′(u(x0)) > 0 follows.

Proposition 22. Let us assume that g satisfies (Hconcave) and

C > max
u∈[θ,1]

g(u)u+ g′(u)u2 + 4[G(1)−G(u)]

2u2
.

If p0 = −1, h > 0, then ψ does not have a maximum point inside the set (0, L).

Proof. Assume by contradiction that the conclusion does not hold. Thanks to Proposition 19, we know
that min(ψ(0), ψ(L)) > 1. Therefore, if ψ takes a maximum point at some x0 ∈ (0, L), we deduce that
ψ(x0) > 1. In that case µ = C on some interval (a, b) such that x0 ∈ (a, b). Notice first that we have
−ψ′′(x0) ≥ 0. We will now evaluate the right-hand side in (10) to reach a contradiction. On the other
hand, we have ψ′(x0) = 0. It follows (u′pv + up′v)(x0) = 0. Recalling that

h =
(
−u′p′v + C(ψ − 1)− pvg(u)

)
(x0)

=

([
u′(x0)

u(x0)

]2

− g(u(x0))

u(x0)

)
ψ(x0) + C(ψ(x0)− 1)

leads to(
F ′(u(x0))

u(x0)
− 2C

)
ψ(x0) + 2h+ 2C(1− ψ(x0)) =

(
g(u(x0))

u(x0)
+ g′(u(x0)) + 2

[
u′(x0)

u(x0)

]2

− 2C

)
ψ(x0).

Next, by multiplying (1) by u′ and integrating over (0, x0), we deduce that

u′(x0)2 ≤ u′(0)2 + 2[G(u(0))−G(u(x0))] + C[u(x0)2 − u(0)2].

Recalling Proposition 7, it follows u(x0)2 − u(0)2 < 0 and

u′(x0)2 ≤ u′(0)2 + 2[G(u(0)−G(u(x0))] = 2[G(1)−G(u(x0))].

From Proposition 20 and the above inequality, we deduce(
F ′(u(x0))

u(x0)
− 2C

)
ψ(x0) + 2h+ 2C(1− ψ(x0))

=

(
g(u(x0))

u(x0)
+ g′(u(x0) + 2

[
u′(x0)

u(x0)

]2

− 2C

)
ψ(x0)

≤
(
g(u(x0))u(x0) + g′(u(x0))u(x0)2 + 4[G(1)−G(u(x0))]

u(x0)2
− 2C

)
ψ(x0) < 0

which contradicts (10).
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From Proposition 22, we immediately deduce

Proposition 23. Let us assume that g satisfies (Hconcave) and

C > max
u∈[θ,1]

g(u)u+ g′(u)u2 + 4[G(1)−G(u)]

2u2
.

If p0 = −1, h > 0, then the set {ψ = 1} is connected.

We close this section with

Corollary 4. Under the above assumptions, the following properties hold true for µ: there exist a, b > 0
such that µ = C on ]0, a[∪]b, L[ and µ is a singular arc on (a, b). Moreover, µ verifies

µ =
3g(u)

2u
+
g′(u)

2
+ h

with u the optimal solution associated to µ which satisfies u(a), u(b) ∈ (γ0, γ1).

Proof. The shape of the optimal solution is a direct consequence of Propositions 19, 23 and 21. The
equation of the singular arc follows directly from Lemma 3. It remains to prove γ0 < u(b) < u(a) < γ1.
First, we prove that u(a) < γ1. Next, we prove u(b) > γ0. Since u(a) > u(b) the conclusion will follow.

We first focus on u(a) < γ1. From the above equation, we deduce that u satisfies in (a, b):

u′′ =
g(u)

2
+
ug′(u)

2
+ uh.

It follows u′(x)2 = (g(u)u)(x) − (g(u)u)(a) + h[u(x)2 − u(a)2] + u′(a)2. Moreover by integrating (1)
over (−∞, a), we obtain u′(a)2 = 2[G(1)−G(u(a))] + C[u(a)2 − u(0)2]. It follows

u′(x)2 = (g(u)u)(x)− F (u(a)) + h[u(x)2 − u(a)2] + 2G(1) + C[u(a)2 − u(0)2].

Moreover, on one hand, noticing that p = 1
u on (a, b), we have

p′′ = −u
′′

u2
+

2u′2

u3

= p

(
3g(u)

2u
− g′(u)

2
+ h+

2(2G(1) + C[u(a)2 − u(0)2]− hu(a)2 − F (u(a)))

u2

)
.

On the other hand, we have

p′′ = p(µ− g′(u)) = p

(
3g(u)

2u
− g′(u)

2
+ h

)
.

We deduce that 2G(1)+C[u(a)2−u(0)2]−hu(a)2−F (u(a)) = 0. Since, C[u(a)2−u(0)2]−hu(a)2 ≤ 0,
we deduce that u(a) ≤ γ1.

Next, we focus on u(b) > γ0. From the previous computations, we deduce that u′(x)2 = g(u)u(x)−
hu(x)2 for x ∈ [a, b]. A direct integration provides u′(b)2 = −2G(u(b)) + C[u(b)2 − u(L)2]. We deduce
that G(u(b)) = C[u(b)2 − u(L)2] + hu(b)2 ≥ 0 and we conclude that u(b) ≥ γ0.
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4 Proof of Theorem 1

Proof of Theorem 1. According to the above analysis (Corollaries 2, 3 and 4), the optimal problem
(PL,C) may have three types of solution

• Type A : µ = C1[0,L] which corresponds to the case h > 0, p0 = 0,

• Type B : µ = C1[0,a[+µ̃1(a,b)+C1]b,L[ (for 0 < a < b < L and µ̃ a singular arc) which corresponds
to the case h > 0, p0 = −1,

• Type C : µ = µ̃1]l0,L0[ (for some 0 < l0 < L0 < L and µ̃ a singular arc) which corresponds to the
case h = 0, p0 = −1.

Notice that the optimal solution is of Type A if and only if L = L∗ by Proposition 5. Such solutions
are investigated in details at section 2.2 which, by the same token contains the proof of the first point
of Theorem 1. In what follows, we hence only consider the cases L > L∗. Notice also that the optimal
solution is of Type C for all L ≥ L∗ where L∗ = inf{L > 0 : h = 0}. Note also that the case where
L > L∗ is completely covered by Proposition 5.

Step 1: proof that L∗ < +∞.
Assume that the claim is false. It follows that for all L > L∗, we have that the optimal solution µ is of
Type B and

∫ L
0 µ(x)dx is bounded by

∫ L0

l0
µC(x)dx (where µC designed the unique optimal solution of

type C described in Corollary 3). We recall that thanks to Corollary 4, we have γ0 ≤ u(b) < u(a) ≤ γ1.
It follows ∫ L

0
µ(x)dx ≥ L

(
min

u∈(γ0,γ1)

3g(u)

2u
+
g′(u)

2
+ h

)
> L

(
min

u∈(γ0,γ1)

3g(u)

2u
+
g′(u)

2
+ h

)
.

Since 3g(u)
u + g′(u) = F ′(u)

u , one has min
u∈(γ0,γ1)

3g(u)
2u + g′(u)

2 > 0. This is in contradiction with the upper

bound stated above. The conclusion follows.

Step 2: investigation of the special case L = L∗.
First, we remark that min

µ∈AL,C

N (µ) = N (µL+ε) for any ε > 0 where µL+ε is any solution of type C in

a domain of size L + ε described in Corollary 3. Let uε the associated solution, letting ε → 0, using
similar argument than in Proposition 1, we deduce that there exists an unique optimal solution for
L = L∗ which is fully described in Corollary 3 (we omit here the technical details).

A Proofs of the Lemmas 1 and 2

Proof of Lemma 1 Let us assume that g satisfies (Hbis) and (Hinv). Since F ′(s) = 3g(s) + sg′(s),
one has F ′(1) < 0. Since F (θ) = 2G(θ) < 0 and F (1) = 2G(1) > 0, we conclude by Bolzano’s theorem.

Proof of Lemma 2. Assumption (Hbis) is obviously satisfied. Let us assume that θ ∈ (0, 1/2). An
easy computation yields

∫ 1
0 gθ = 1

12−
θ
6 > 0, whence the trueness of (Hinv). Furthermore, one computes

F (s) = −3
2s

4 + 5
3(1 + θ)s3 − 2θs2 and thus, F ′′(s) = −18s2 + 10(1 + θ)s − 4θ. It follows that F ′′ is

increasing on (0, 5(1 + θ)/18) and decreasing on (5(1 + θ)/18, 1). The maximal value of F ′′ on [0, 1] is

F ′′
(

5(1 + θ)

18

)
=

25(1 + θ)2

36
− 2θ.

A straightforward study yields that F ′′
(

5(1+θ)
18

)
> 0 for all θ ∈ (0, 1/2) Using that F ′′(0) < 0 and

F ′′(1) < 0, it follows that F ′ decreases on (0, z−), increases in (z−, z+) and decreases on (z+, 1), with

z± =
5(1 + θ)±

√
25(1 + θ)2 − 72θ

18
.
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A lengthly but easy computation enables us to show that for every θ ∈ (0, 1/2), F ′(z−) < 0 and
F ′(z+) > 0. Since F ′(0) = 0 and F ′(1) = −1 + θ < 0, we infer that F is successively decreasing, and
then increasing on (0, 1). Since F ′(θ) = θ2(1− θ) > 0, we get that F is increasing and then decreasing
on (θ, 1). By observing that F (θ) < 0, we get at the same time from this whole reasoning that (Hγ)
and (Heq) are true.

Finally, (Hconcave) is clearly true since d2/ds2[F ′(s)/s] = −6.

B Proof of Proposition 3

According to Proposition 1, ÂL,C is nonempty which allows us to consider a minimizing subsequence
(µn)n∈N for Problem (P2). Then, according to the Banach-Alaoglu-Bourbaki theorem, it converges
weakly star in L∞(0, L), up to a subsequence, towards some element µ∗ in ÂL,C . For the sake of
simplicity, in what follows, we will denote similarly any sequence and its subsequence.

According to Proposition 2, one has 0 ≤ un ≤ 1 a.e. in [0, L]. Using this estimate and noting
furthermore that one has

u′n(x) = −

√
2

∫ 1

un(0)
g +

∫ x

0
(−g(un) + µnun)

for every x ∈ [0, L], we infer that (u′n)n∈N is bounded in L2(0, L) and that (un)n∈N is bounded in
W 1,∞(0, L). By using the Arzela-Ascoli theorem, we infer that (un)n∈N converges towards some element
u∗ ∈W 1,∞(0, L), weakly in H1(0, L) and strongly in C0([0, L]). Now, let us observe that equation (3)
can be equivalently rewritten under the variational form: find un ∈ H1(0, L) such that∫ L

0
u′nϕ

′ −
∫ L

0
g(un)ϕ =

∫ L

0
µnunϕ+

√
2

∫ 0

un(L)
g ϕ(L)−

√
2

∫ 1

un(0)
g ϕ(0)

for every ϕ in H1(0, L). Let us fix ϕ in H1(0, L). According to the convergence results above, by letting
n tend to +∞, we obtain that u∗ solves the problem∫ L

0
(u∗)′ϕ′ −

∫ L

0
g(u∗) ϕ =

∫ L

0
µ∗u∗ϕ+

√
2

∫ 0

u∗(L)
g ϕ(L)−

√
2

∫ 1

u∗(0)
g ϕ(0),

It follows that u∗ is the solution of (3) associated to the control function µ = µ∗. Finally, we conclude
by noting that

lim
n→+∞

N (µn) = lim
n→+∞

〈µn, 1〉L∞,L1 = 〈µ∗, 1〉L∞,L1 = N (µ∗).
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