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On Generalized Homogeneous Leader-Following Consensus

Min Li, Andrey Polyakov and Gang Zheng

Abstract— The Multi-agent System (MAS) with agents being
linear single input plants is considered. The problem of a design
of a leader-following (generalized homogeneous) consensus
control protocol is studied under the assumption that a control
of the leader is unknown but possibly bounded by a known
constant. It is shown that the required control protocol can
be obtained as an “upgrade” of the existing linear consensus
control protocol.

I. INTRODUCTION

With the rapid development of intelligent sensing and
wireless communication techniques, collective behaviors of
the multi-agent system (MAS) have attracted significant
interest of the control academy, which has wide potential
applications in many industrial scenarios, such as the control
and optimization of unmanned aerial systems [1], network
security [2], smart grids [3], etc.

Consensus is one of the most typical collective behaviors
of MAS, which requires the states of agents reach an
agreement. This term is firstly introduced by Olfati-Saber and
Murray [4]. After that, recent two decades have witnessed
the launch of many classical results on this issue (e.g. [5],
[6], [7], [8]).

Homogeneity is a symmetry of an object with respect to a
class of transformations called dilation. All linear and many
nonlinear systems are homogeneous in a certain sense. It is
known [9], [10], [11] that local properties of homogeneous
systems, such as local stability, can always be expanded into
global sense. The homogeneous system is robust (Input-to-
State) stable with respect to a large class of perturbations
[12]. Moreover, the homogeneity degree of an asymptoti-
cally stable system specifies its convergence rate [13], [14],
[15]. For more details about properties of the homogeneous
systems we refer the reader to the recent survey [16] and to
the book [17].

Early in 2008, homogeneity control strategies have been
utilized for consensus control. The pioneer work is carried
out by Wang and Hong [18], where the authors designed a
homogeneous consensus protocol adapting the well-known
controller of Bhat and Bernstein [15] for this purpose.
Homogeneous consensus protocols for MAS under directed
topologies are developed in [19], [20]. The case of the
switching topology is studied in [21], [22]. All mentioned
papers deal with agents modeled by double integrators and
the weighted homogeneity. Nonlinear control protocols for
MAS with high order integrator dynamics are proposed,
for example, in [23], [24]. The main difficulty of their
applicability is the absence of an efficient procedure for
control parameters tuning. The mentioned algorithms (as
well as most of algorithms of homogeneous stabilization,

see e.g. [15], [25]) just guarantee the existence of appropriate
control parameters but do not explain how to select them.

This paper develops a generalized homogeneous control
protocol for MAS, where each agent is modeled by a linear
single input plant. We follow the idea of an “upgrade” of
an existing linear control to a homogeneous one developed
in [17, Chapter 9], [26], [27]. In this paper we showed that
such an upgrade is possible under the assumption that MAS
has a supervisor, which can observe whole system, but it
cannot be utilized as a centralized controller due to com-
munication constraints. The supervisor may just broadcast a
small amount of information to all agents simultaneously. A
nonlinear consensus protocol is designed for MAS in such a
way that the error equation is generalized homogeneous of
a desired degree.

The paper is organized as follows. Section II gives some
basic knowledge about graph theory and generalized homo-
geneity. The problem to be studied is formulated in Section
III. The basic idea for updating the classical consensus
protocol to a homogeneous one is shown in Section IV. The
supervisor-based homogeneous control protocol is proposed
and convergence results are obtained in Section V. Finally,
in Section VI, some simulation examples are presented to
illustrate the obtained theoretical results.

Notation. R is the set of real numbers; Rn and Rn×n denote
the n×1 real vector and the n×n real matrix, respectively;
‖·‖ is a norm in Rn; IN is the N×N identity matrix; e is the
Euler number; diag{σi}N

i=1 is the N×N diagonal matrix with
elements σi; 1N is the N-dimensional vector whose elements
are all ones; λmax(·) and λmin(·) denote the maximum and
minimum eigenvalue of a matrix, respectively; P � 0(≺
0) for P ∈ Rn×n means that the matrix P is symmetric
and positive (negative) definite; ⊗ represents the Kronecker
product; C(X ,Y ) denotes the space of continuous functions
X → Y , where X , Y are subsets of normed vector spaces;
Cp(X ,Y ) is the space of functions continuously differentiable
at least up to the order p.

II. PRELIMINARIES: GRAPH THEORY AND GENERALIZED
HOMOGENEITY

A. Graph Theory

The fixed directed graph can be denoted by G =
{V ,E ,A }, where V = {1,2, . . . ,N} is the set of nodes
(agents); E = {(i, j)|i, j ∈ V } is the edge set, (i, j) ∈ E if
i can receive the information from j; ni denotes the number
of incoming edges of i; A = {ai j} is the adjacency matrix,
ai j > 0 if (i, j)∈ E , and ai j = 0 otherwise. In this paper, self-
loop situation is not taken into consideration, i.e. aii = 0. The



element li j, i, j ∈ V of the Laplacian Matrix L associated
graph G is defined as

li j =

{
−ai j, i 6= j
∑

N
k=1 aik, i = j,

which implies ∑
N
k=1 lik = 0.

B. Dilation in Rn

Homogeneity is an invariance of an object with respect
to a class of transformations called dilations. Choosing a
proper dilation group d(s), s ∈ R is an essential part of the
homogeneity-based analysis, d(s) is supposed to satisfy the
limit property: lims→±∞ ‖d(s)x‖= e±∞ for ∀x 6= 0. Examples
of dilations are as follows:
• Standard dilation (L. Euler 18th century): d(s) = esI, s∈

R;
•Weighted dilation [9]: d(s) = diag{er1s, . . . ,erns} ∈Rn×n,

where r1, . . . ,rn > 0.
• Linear dilation [28]: d(s) = eGds, s ∈ Rn where Gd ∈

Rn×n is an anti-Hurwitz matrix known as the generator of
dilation.
• Geometric dilation [29], [30]: a flow generated by an

unstable C1 vector field.

C. Canonical Homogeneous Norm

Definition 1: The functional ‖·‖d : Rn 7→ [0,+∞) defined
as ‖0‖d = 0 and

‖x‖d = esx , where sx ∈ R : ‖d(−sx)x‖= 1, (1)

is called the canonical homogeneous norm in Rn, where d
is a linear monotone dilation1.

The canonical homogeneous norm has the following prop-
erties [28]
• ‖d(s)x‖d = esd(s), for x ∈ Rn and s ∈ R;
• ‖x‖d = ‖− x‖d, ‖x‖= 1⇔‖x‖d = 1;
• ‖·‖d∈C(Rn) is locally Lipschitz continuous on Rn\{0};
• if ‖ · ‖ ∈C1(Rn\{0}), then ‖ · ‖d ∈C1(Rn\{0});
• if ‖x‖= ‖x‖P :=

√
xT Px, where P satisfies

P� 0, PGd +G>d P� 0, (2)

then the linear dilation d(s) = esGd is monotone and

∂‖x‖d
∂x = ‖x‖dx>d>(− ln‖x‖d)Pd(− ln‖x‖d)

x>d>(− ln‖x‖d)(PGd+G>d P)d(− ln‖x‖d)x
, x 6=0. (3)

D. Homogeneous Systems

Definition 2: A vector field f : Rn 7→Rn (resp. a function
h : Rn 7→ R) is said to be d-homogeneous if there exist a
µ ∈ R such that

f (d(s)x) = eµsd(s) f (x), ∀s ∈ R, ∀x ∈ Rn,

(resp. h(d(s)x) = eµsh(x), ∀s ∈ R, ∀x ∈ Rn.)
where d is a dilation and the scalar µ ∈ R is known as the
homogeneous degree of f (resp. of h).

1A dilation d is monotone if the function s 7→ ‖d(s)x‖d is monotone ∀x.

Lemma 1: [17] Let the vector field f̃ : Rn+m → Rn+m

given by

f̃ (x,q) =
(

f (x,q)
0

)
, x ∈ Rn, q ∈ Rm

be continuous and d-homogeneous of a degree µ with respect
to a continuous strictly monotone dilation

d =

(
dx 0
0 dq

)
in Rn+m. If the origin of the system

ẋ(t) = f (x(t),0), x(t) ∈ Rn

is asymptotically stable then the system

ẋ = f (x,q(t)), q ∈ L∞(R,Rm)

is Input-to-State Stable (ISS)2

Lemma 2: [32] Let f be a continuous d-homogeneous
vector field of degree µ ∈R. The evolution system ẋ = f (x)
is globally asymptotically stable if and only if there exists a
positive definite d-homogeneous function V : Rn→ [0,+∞)
of the degree 1 such that

V̇ (x)≤−ρV 1+µ(x), ∀x 6= 0, ρ > 0.
The latter Lemma immediately implies that asymptotically
stable homogeneous evolution system ẋ = f (x) is
• globally uniformly finite-time stable3 for µ < 0 with

time estimate
T (x0)≤

V (x0)
−µ ;

(−µ)ρ

• globally uniformly exponentially stable for µ = 0;
• globally uniformly nearly fixed-time stable4 for µ > 0,

and
Tr =

1
ρµrµ

.

III. PROBLEM FORMULATIONS

Consider a MAS consisting of N agents, with a topol-
ogy described by a fixed digraph G = {V ,E ,A } and the
dynamics of the agent given by

ξ̇i(t) = Aξi(t)+Bui(t), t > 0, i ∈ V = {1, . . . ,N} (4)

where ξi(t) ∈ Rn is the state of the i-th agent, ui ∈ R is the
control input of the i-th agent, A ∈ Rn×n, B ∈ Rn.

Assumption 1: The pair {A,B} is assumed to be control-
lable and the matrix A is nilpotent.

The condition that the matrix A is nilpotent, means that
the linear vector field ξ 7→ Aξ is generalized homogeneous.

2The system ẋ = f (x,q), t > 0, x(0) = x0 is said to be Input-to-State
Stable if [31] there exists β ∈K L and γ ∈K such that

‖x(t)‖ ≤ β (‖x0‖, t)+ γ(‖q‖L∞(0,t))

for any x0 ∈ Rn and for any q ∈ L∞.
3The system ẋ = f (x) is said to be globally uniformly finite-time stable

[33] if it is Lyapunov stable and there exists a locally bounded settling-time
function T (x0) :Rn→R+

⋃
{0}, such that ‖x(t)‖= 0 for t ≥ T (x0), x0 ∈Rn.

4The system ẋ = f (x) is said to be globally uniformly nearly fixed-time
stable [16] if it is Lyapunov stable and ∀r > 0, ∃Tr > 0 : ‖x(t)‖< r, ∀t ≥ Tr
independently of x0 ∈ Rn.



This condition is not conservative in our case, since the
controllability of {A,B} implies that (see, e.g. [34]) there
exists K0 ∈R1×n such that A+BK0 is nilpotent, and selecting
ui =K0ξi+unew

i we derive that our assumption is fulfilled for
the matrix Anew = A+BK0.

Assumption 2: Assume that (1, j) /∈ E , ∀ j = 2, ...,N (i.e.,
the first agent is a leader) and the control input u1 of the
first agent is unknown, u1 ∈ L∞(R,R).

In this paper, we assume that MAS has an external
supervisor which can measure the states of all agents and
it can broadcast (send) a scalar signal to all agents. A
concrete scenario of such a MAS is a swarm of drones
observed by a cameras of a supervisor. Positions of all drones
can be detected/estimated by the supervisor which however
cannot realize a centralized control due to communication
constraints. Nevertheless, a broadcast of a common signal
to all agents (e.g. asking all of them to boost or slow down
the motion) is allowable. Mathematically such an assumption
can be formalized as follows.

Assumption 3: All agents can receive a scalar signal
ug(t)∈R, which may depend on the state of the whole MAS
and can be utilized for the control purpose.

Notice that we cannot just select ui = ug and design a
purely centralized control protocol, since the obtained system
is not controllable. To achieve the consensus, it is necessary
to use as well the communication graph and local interactions
of the agents. Such a combination, i.e. a common centralized
scalar signal and the distributed information of local agents,
leads to a ”hybrid” consensus protocol, named as quasi-
decentralized consensus protocol.

Our first goal is to develop the generalized homogeneous
consensus control protocol for the considered MAS. By
definition, this means that, given µ ∈ R, we need to design
a supervisor’s signal ug and agent’s control laws

ui = ũi(ug,ξi,ξ j1 , ....,ξ jni
),

where jk ∈ V : (i, jk) ∈ E , k = 1, ...,ni, i = 2, ...,N such that
• ∃ f : R(N−1)n×R→ R(N−1)n such that for

e = [(ξ2−ξ1)
>, . . . ,(ξN−ξ1)

>]>

the error equation of the closed-loop system has the
form

ė = f (e,u1); (5)

• the vector field e 7→ f (e,0) is d̃-homogeneous of degree
µ;

• the system (5) is globally asymptotically stable for u1 =
0 and ISS with respect to u1 ∈ L∞(R,R).

Notice that the asymptotic stability of the error equation
(5) with u1 = 0 implies its finite-time stability for µ < 0 and
nearly fixed-time stability for µ > 0.

Our second goal is to design a generalized homogeneous
consensus control protocol such that the error equation (5)
is globally uniformly finite-time stable for any

u1 ∈ U= {u1 ∈ L∞(R,R) : ‖u1‖L∞ ≤Umax}

provided that 0 <Umax <+∞ is known.

IV. BASIC IDEA OF CONTROL PROTOCOL DESIGN

Let us employ the well-known linear consensus control
protocol proposed in [35] to demonstrate our basic idea.

Lemma 3: Let (X ,Y ) ∈ Rn×n×R1×n be a solution of the
linear matrix inequality

X�0, IN−1⊗ (AX +XA>)+(L̃ ⊗BY + L̃ >⊗Y>B>)≺ 0,
(6)

then the error equation (5) with linear control protocol

ui = K
N

∑
j=1

ai j(ξ j−ξi), i = 2, ...,N (7)

with K = Y X−1 is ISS with respect to u1.
The linear control protocol (the error equation) is ho-

mogeneous of the zero degree. An algorithm for upgrad-
ing of a linear (centralized) control to a generalized ho-
mogeneous one is developed in [36]. It suggests to re-
place the linear feedback Ke with the homogeneous one
‖e‖1+µ

d Kd(− ln‖e‖d)e, where d is a properly defined linear
monotone dilation and ‖ · ‖d is the canonical homogeneous
norm. Below we follow this idea in order to design a d-
homogeneous (quasi-decentralized) controller of homoge-
neous degree µ 6= 0.

V. SUPERVISOR-BASED HOMOGENEOUS CONTROL
PROTOCOL

Given µ 6= 0 and let Gd ∈Rn×n be an anti-Hurwitz matrix
satisfying the identities

AGd = (µIn +Gd)A, GdB = B. (8)

In [37] it is shown that such matrix Gd can always be found
provided that A is a nilpotent matrix.

Theorem 1: Let (X ,Y )∈Rn×n×R1×n be a solution of the
linear matrix inequality

IN−1⊗ (AX +XA>)+(L̃ ⊗BY + L̃ >⊗Y>B>)≺ 0,
GdX +XG>d � 0, X � 0,

(9)
where Gd satisfies (8). Let ‖ · ‖d̃ be the canonical homo-
geneous norm induced by the norm ‖e‖p =

√
e>Pe, P =

IN−1⊗{X−1}� 0. Then the error equation (5) with ug = ‖e‖d̃
and

ui = uµ+1
g Kd(− lnug)

N

∑
j=1

ai j(ξ j−ξi), i = 2, . . . ,N (10)

is
• d̃-homogeneous of degree µ , where

d̃(s) = IN−1⊗d(s) ∈ R((N−1)×n)×((N−1)×n)

and d(s) = esGd ∈ Rn×n, s ∈ R are linear dilations in
R(N−1)×n and Rn, respectively;

• globally asymptotically stable for u1 = 0;
• ISS with respect to u1 ∈ L∞(R,R) for µ >−1;
• globally uniformly finite-time stable if µ = −1 and
‖u1‖L∞ ≤Umax, where

Umax <
λmin(Π2)λmin(Π1)

λmax(Π2)
√

(N−1)B>X−1B
, (11)



with

Π1=−P
1
2 (IN−1⊗(AX+XA>)+(L̃ ⊗BY+L̃ >⊗Y>B>))P

1
2 ,

Π2 = P
1
2 IN−1⊗ (GdX +XG>d )P

1
2 .

The proof is based on stability analysis of the closed-loop
error equation for u1 = 0:

ė = IN−1⊗Ae+‖e‖µ+1
d̃ L̃ ⊗BKd(− ln‖e‖d̃)e. (12)

It can be shown that, under the condition (9), the canonical
homogeneous norm ‖e‖d̃ is a Lyapunov function of the
system. Robustness with respect to the input u1 can be proven
using the results of [12].

The following corollary follows from the asymptotic sta-
bility and d̃-homogeneity of the error equation (12).

Corollary 1: Let all conditions of Theorem 1 are fulfilled.
Let u1 = 0, then the error equation (12) is
• globally uniformly finite-time stable for µ < 0;
• globally exponentially stable for µ = 0;
• globally uniformly nearly fixed-time stable for µ > 0.

VI. SIMULATION RESULTS

We consider the MAS (4) with N = 4. System matrices in
(4) are declared as follows:

A =

(
0 1
0 0

)
, B =

(
0
1

)
.

The state vector and the consensus error vector are ξ =
[ξ>1 ,ξ>2 ,ξ>3 ,ξ>4 ]> and e = [e>1 ,e

>
2 ,e
>
3 ]
>, respectively. We

denote ξ
(k)
i (resp. e(k)i ) as the kth, k = 1,2 component of

ξi (resp. ei).
The communication topology, as Fig.1 shows, is fixed. The

designed parameters for homogeneous control protocol (10)
are µ = −1, ai j = 1, (i, j) ∈ E , Gd = diag{2,1} according
to (8),

X =

(
4.7799 −3.0305
−3.0305 5.3890

)
, Y =

(
3.0066 4.1689

)
are specified by solving LMI (9) with Matlab tools and ug =
‖e‖d̃ is obtained from

‖d̃(− ln(‖e‖d̃))e‖P = 1,

which is induced by ‖ · ‖P with P = I3⊗{X−1}, and d̃(·)
is generated by Gd̃ = I3⊗Gd. In addition, ‖u1‖L∞ < 0.2000
according to (11), and let u1 =−[1 2]ξ1 +0.24sin(t).

1

2 3

4

Fig. 1. The topology of the MAS with N = 4.

Let µ = −1 and the initial state of the considered MAS
be

ξ (0) = [0,0,0.70,0.75,0.55,0.40,0.64,0.15]>.

We use MATLAB and employ the Euler method with step
h = 0.001s to solve the closed-loop error equation (5), (10),
and the agent dynamic equation (4), (10). Meanwhile, we
employ the linear control protocol (7) as a reference. The
comparison simulation results on e and ξ are presented in
Fig.2-4. The evolution trajectory of u1 is as Fig.5. It is clear
to see that with a bounded u1, the linear control protocol
makes consensus errors and followers’ trajectories converge
to corresponding zones. However, with the homogeneous
control protocol, they can converge to their destination in
a finite time.
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Fig. 2. Evolution of e(1)i for i = 1,2,3 with (a) linear control protocol (7);
(b) homogeneous control protocol (10).
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Fig. 3. Evolution of e(2)i for i = 1,2,3 with (a) linear control protocol (7);
(b) homogeneous control protocol (10).



Fig. 4. Evolution of ξ
(k)
i for i ∈ V with (a) linear control protocol (7);

(b) homogeneous control protocol (10).
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Fig. 5. Evolution of u1.

VII. CONCLUSION

In this paper, a leader-following consensus problem for
MAS with agents being linear single input plants is ad-
dressed. A novel nonlinear control protocol is proposed by
upgrading the classical linear consensus control protocol
with the concept of generalized homogeneity. For bounded
control input of the leader, ISS and finite-time stability of
error equations are guaranteed by non-zero homogeneity
degrees. The possibility of such an ”upgrade” is proven
under assumption that MAS has a super-visor, which may
broadcast simultaneously to all agents a small amount of
information (a scalar signal). The efficiency of the proposed
scheme is demonstrated on numerical simulations. Extension
of the obtained results to the multi-input case as well as
robustness analysis with respect to measurement noises,
delays and sampling effects is the interesting problem for
the future research.
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