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Abstract The scattering of guided waves through a coupling region is a crucial information
when studying waveguides. In this paper, the second strain gradient theory (SSG) is used to
describe wave transmission and reflection in a three-dimensional micro-sized medium. First, the
constitutive relation of 3D SSG model is derived while six quintic Hermite polynomial shape
functions are used for the displacement field. Then Hamilton’s principle is used for the weak
formulation of the unit-cell’s stiffness matrix finite element stiffness, mass matrices and force
vector. Eventually the wave diffusion (i.e. including reflection and transmission coefficients) are
computed and discussed for various coupling conditions.

Keywords Second strain gradient theory · Wave finite element method · Wave transmission ·
Wave reflection.

1 Introduction

The dynamical properties of guided waves such as wave transmission and reflection have been widely
studied over the past decade especially in the field of acoustics, earthquake and electromagnetic.
Initially, studies focused on the guided waves interaction at interfaces between different macro-medias.
But for the micro-sized structure with size effects, the micro-particles such as atoms with associated
energy on the free surface of the structure has a significant influence on the structure’s behavior.
This energy related to surface atoms is called surface free energy which produces surface tension. The
surface tension can not be ignored due to the very large ratio between the surface and the volume of
structure. On the other hand, long-range or non-local interaction between micro-particles has also an
indispensable effect on the micro-sized structure’s dynamical behaviors [1,2,20]. The wave propagation
and diffusion in micro-medias can no longer be reasonably predicted by Classical Theory (CT) of
continuum mechanics[3].

Therefore, the non-classical continuum theories of elasticity that can interpret the properties of
micro-sized structures have been proposed. Generally, these non-classical theories can be categorized
into non-local elasticity theory [4], micro-continuum theory [5,6], surface elasticity theory [7] and strain
gradient family [8]. The strain gradient family is composed of the couple stress theory, the first and
second strain gradient theories and the modified couple stress theory. Mindlin established one of the
strain gradient family called First Strain Gradient (SG) theory [9] in which the constitutive relations
is composed of strain and the first gradient of strain. The atomic structure with the nearest and next
nearest interactions between different particles is used to describe the SG theory in the framework of
lattice spring model, but only in noncentro-symmetric materials [10]. In order to explore the properties
of centro-symmetric materials, the Second Strain Gradient (SSG) theory [11] was put forward, which
offers a reasonable description of the strain and surface tension properties on the micro-structure’s
surface by introducing the high-order parameters. The constitutive relations in SSG theory is a function
of strain, first gradient of strain and second gradient of strain. The connections between the SSG theory
and lattice spring model with the nearest, next nearest and next-next nearest neighbor interactions
for 1D structures can be confirmed through the Fourier series transform [3,22].

On the other hand, in order to study the wave diffusion in complex structures, the numerical
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methods such as Spectral Finite Mlement (SFE) method [12] and Semi-Analytical Finite Element
(SAFE) [13] can be used. In the past decade, the Wave Finte Element Method (WFEM) [14,15,23]
has attracted many works. The advantage of WFEM is the convenient application in engineering field.
Since it can be developed from the Finte Element Method (FEM) packages which allows the current
element library and grid generation procedures to be applied for the modelling of different waveguide
structures. In addition, WFEM can reduce a global periodic structure into a single substructure or unit
cell based on the periodic structures theory [16,24]. The resulting stiffness and mass matrices are post
processed to offer the dynamic stiffness matrix. The dynamical properties of the periodic structure
can be reflected through the spectral analysis of the unit cell [17,21]. The main objective of this work
is, firstly, to calculate the multi mode propagation in a 3D periodic waveguide by SSG theory, and,
secondly, to confirm the wave diffusion under a complex coupling condition.

The article’s structure is the following: in section 2, the constitutive relations of 3D micro-sized
model are introduced in the SSG theory framework and the weak formulations including element
stiffness, mass matrices and force vector are calculated. Afterwards, in section 3, free wave propagation
characteristics are expressed by solving eigenvalue problems in the direct WFEM framework, diffusion
matrix for a complex coupling condition are confirmed. In section 4, wave diffusion is introduced.
Ultimately, some useful conclusions are presented in section 5.

2 A brief of second strain gradient elasticity

2.1 3D constitutive relations calculation

The strain energy density U composed of strain ε=sym(∇W), first gradient of strain ξ=∇∇W and
second gradient of strain ζ=∇∇∇W in the SSG theory framework was put forward by Mindlin [11],
as below:

U =
1

2
λεiiεjj + µεijεij + a1ξijjξikk + a2ξiikξkjj + a3ξiikξjjk + a4ξijkξijk + a5ξijkξjki + b1ζiijjζkkll

+ b2ζijkkζijll + b3ζiijkζjkll + b4ζiijkζllkj + b5ζiijkζlljk + b6ζijklζijkl + b7ζijklζjkli + c1εiiζjjkk

+ c2εijζijkk + c3εijζkkij ,
(1)

where W is the displacement vector, symbol ∇ means the gradient operator, λ and µ represent the
Lamé parameters which are related to the Young’s modulus E, the Poisson’s ratio ν and the shear
modulus G [3]. ai, bi and ci denote the higher order parameters [10] in SSG theory. The higher order
parameters for Al and Cu are shown in Table 1. Based on the 3D elasticity theory, the vector of

Table 1. Higher order material parameters ai (eV /Å), bi (eV ·Å), ci (eV /Å).

Material a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 b6 b7 c1 c2 c3
Al 0.140 0.002 -0.008 0.096 0.258 0.792 0.064 -0.194 -0.001 0.001 16.156 48.529 0.504 0.357 0.178
Cu 0.183 0.010 0.001 0.072 0.189 0.661 0.066 0.206 0.002 0.002 12.625 37.940 0.845 0.573 0.347

displacement field defined in the Cartesian coordinate system (x, y, z) is given as:

W(x, y, z, t) =
(
u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)

)T
, (2)

where u, v and w are the the displacements along x, y and z direction.
The relations between strains and displacement components can be defined by introducing the

vectors of first, second and third order derivatives of displacement components:

ε = Q1W, ξ = Q2W, ζ = Q3W, (3)

where

Q1 =

∂1 0 0 0 ∂3 0
0 ∂2 0 ∂3 0 ∂2
0 0 ∂3 ∂2 ∂1 ∂1

T

, Q2 =

 t1 0 0
0 t1 0
0 0 t1

 ⊗
(
∂11 ∂22 ∂33 2∂12 2∂13 2∂23

)T
, Q3 =

 t2 0 0
0 t2 0
0 0 t2

 ⊗
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(
∂111 ∂222 ∂333 3∂112 3∂113 3∂221 3∂223 3∂331 3∂332 6∂123

)T
, symbol ⊗ stands for the Kronecker prod-

uct, t1 with size 6× 1 and t2 with size 10× 1 are the matrices whose element value is 1.
Then, the constitutive relations for 3D model by SSG theory can be defined as:

τ 1 = Lε+ Cζ, τ 2 = Aξ, τ 3 = Bζ + CTε, (4)

in which L is matrix including classical parameters, A, B and C are matrices including higher order
parameters [18]. Finally, the strain energy density for SSG theory can be rewritten as the matrix form:

U =
1

2

(
εTLε+ ξTAξ + ζTBζ + 2ζTCTε

)
. (5)

Here should be noted that, Eq. 5 is the basic form of building a 3D model using partial differential
equations (PDE) weak form in some commercial numerical simulation software (e.g., COMSOL).

2.2 Finite element discretization

After obtaining the strain energy density, the next step is to calculate the weak form including stiffness
and mass matrices and force vector. The definition of node degree of freedoms (DOFs) for 1D and 3D
Hermite elements. Firstly, in order to ensure the continuity of higher derivatives up to the second
order between 1D elements, the six-term polynomial function is considered to interpolate the scalar
field W1=u(x, t) inside a 1D element, as follows:

W1 =
[
1 x x2 x3 x4 x5

] [
s0 s1 s2 s3 s4 s5

]T
= xs. (6)

The evaluation of the nodal displacement vector w
(e)
1 of 1D element gives:

w
(e)
1 =

(
d1 d2 d3 d4 d5 d6

)T
s = ds, (7)

where d1=(1 − le l2e − l3e l4e − l5e), d2=(0 1 − 2le 3l2e − 4l3e 5l4e), d3=(0 0 2 − 6le 12l2e − 20l3e),
d4=(1 le l2e l3e l4e l5e), d5=(0 1 2le 3l2e 4l3e 5l4e), d6=(0 0 2 6le 12l2e 20l3e). Then, submitting Eq.7 into
Eq.6, the displacement vector within the 1D element can be derived by employing the six quin-tic
Hermite polynomial shape function and nodal displacement vector, as follows:

W1 = xd−1w
(e)
1 = S(x)w

(e)
1 , (8)

in which the shape function S(x) is written as:

S(x) =
(
S01(x), S

1
1(x), S

2
1(x), S

0
2(x), S

1
2(x), S

2
2(x)

)
, (9)

where S01(x)=
5x3

8l3e
−

15x

16le
−

3x5

16l5e
+

1

2
, S11(x)=

5le

16
−

7x

16
−

3x2

8le
+

5x3

8l2e
+

x4

16l3e
−

3x5

16l4e
, S21(x)=

l2e
16

−
lex

16
−

x2

8
+

x3

8le
+

x4

16l2e
−

x5

16l3e
, S02(x)=

15x

16le
−

5x3

8l3e
+

3x5

16l5e
+

1

2
, S12(x)=

3x2

8le
−

7x

16
−

5le

16
+

5x3

8l2e
−

x4

16l3e
−

3x5

16l4e
,

S22(x)=
lex

16
+

l2e
16

−
x2

8
−

x3

8le
+

x4

16l2e
+

x5

16l3e
. S(y) = S(x)|x=y = [N0

1(y), S
1
1(y), S

2
1(y), S

0
2(y), S

1
2(y), S

2
2(y)],

S(z) = S(x)|x=z = [S01(z), S
1
1(z), S

2
1(z), S

0
2(z), S

1
2(z), S

2
2(z)]. The shape function of hexahedral element:

S(x, y, z) =
(
S1(x, y, z)⊗ e1, S2(x, y, z)⊗ e2, S3(x, y, z)⊗ e3

)T
. (10)

The element in Sp(x, y, z) and ep (p = 1, 2, 3) are defined as:

Si(j,k,l)p (x, y, z) = Sji′(x)S
k
i′′(y)S

l
i′′′(z), ep =

(
ϵp1 ϵp2 ϵp3

)
, (11)

where i = 1, ..., 8. j, k, l = 0, 1, 2. S
i(j,k,l)
p (x, y, z) is associated with the DOFs ∂j+k+lui

1/(∂x
j∂yk∂zl) of

node i of the hexahedron element. i′, i′′, i′′′ = 1, 2 relate to the node number in the corresponding 1D
element and they take values of 1 or 2 if the coordinate value of node i is −le or le. The displacement
vector W(x, y, z) within 3D element can be expressed as:

W(x, y, z, t) =S(x, y, z)w(e)(t), (12)
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where w(e)=[(w
(e)
1 )T, (w

(e)
2 )T, (w

(e)
3 )T]T, (w

(e)
p )T=[(w

1(e)
p )T, (w

2(e)
p )T, ..., (w

8(e)
p )T]T (p = 1, 2, 3).

Then, integrating the strain energy density over its volume to obtain the strain potential energy U as:

U =

∫
V

UdV =
1

2
w(e)T

∫
V

(
STQT

1 LQ1S+ STQT
2 AQ2S+ STQT

3 BQ3S+ 2STQT
3 CQ1S

)
dVw(e).

(13)
On the other hand, the beam kinetic energy is expressed as:

T =
1

2

∫
V

(
∂W

∂t

)T

ρ

(
∂W

∂t

)
dV =

1

2

(
∂w(e)

∂t

)T ∫
V

(
STρS

)
dV

(
∂w(e)

∂t

)
, (14)

where ρ denotes the linear mass density, l1 and l2 are higher-order length-scale parameters. Meanwhile,
the work done δW by external force can be expressed as:

δW =

∫
V

δWTfV dV +

∫
S

δWTfSdS = δw(e)T

(∫
V

(
STfV

)
dV +

∫
S

(
STfS

)
dS

)
, (15)

where fV is the volume force, fS means the face force. The 3D element stiffness, mass matrices and
force vector can be confirmed as:

K(e) =

∫
V

(
STQT

1 LQ1S+ STQT
2 AQ2S+ STQT

3 BQ3S+ 2STQT
3 CQ1S

)
dV,

M(e) =

∫
V

(
STρS

)
dV, F(e) =

∫
V

(
STfV

)
dV +

∫
S

(
STfS

)
dS.

(16)

3 Diffusion analysis through wave finite element method

Lk Lc Lk+1

^ ^
w
(k) ^

w
(c)

L2L1

^w
(c)
R1

1 2

Coupling element c

Unit cell k

x

Waveguide 1 Waveguide 2

Unit cell k+1

x x

P
(k)+

P
(k)-

w
(k+1)
R2

P
(k+1)+

Fig. 1. Two coupled waveguides through a coupling element (x is the local coordinate).

This section is concerned with the characterization of coupling conditions between two semi-infinite
periodic waveguides which are connected through an elastic coupling element at surfaces 1 and 2 as
shown in Fig.1. The reflection coefficients (R) and transmission coefficients (T) are confirmed through
a complex coupling condition: the wave modes calculation in waveguides is based on the CT but SSG
theory in coupling element (CT-SSG). The propagation constants Λ and eigenvectors Ψu in a unit cell
can be solved by direct Bloch formulation [17,3,15] as:[

DRL(ω)Λ
−1 + (DRR(ω) + (DLL(ω)) +DLR(ω)Λ

]
Ψu = 0, (17)

where Λ=diag {λj}j=1,...,2p, Ψu = {ϕj}j=1,...,2p which can be divided into Ψ+
u =

{
ϕ+
j

}
j=1,...,p

and Ψ−
u

=
{
ϕ−
j

}
j=p+1,...,2p

, in which p=m for SSG, p=n for CT. The waves propagate to positive when |1/λj |
<1. The waves propagate to negative when |λj | >1. Here, λj take the form λj=exp(−iκjL(q)), subscript
q=c for coupling element, q=k, k+1 for unit cells. It should be noted that the spectral analysis method
of the coupling element and unit cell k+1 is the same as that of unit cell k. The displacement field of
coupling element (c) and unit cells (k, k+1) can be represented by the superposition of the eigenmodes:

ŵ(q)± = Ψ(q)±
u υ(q)±P(q)±, (18)
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where P(q)± is the amplitudes of wave modes. υ(q)±=diag
{
exp

(
∓iκ

(q)
j x

)}
(0 ≤ x ≤ L(q)), symbol

q=c for coupling element, q=k, k+1 for unit cells. On the other hand, the force components of coupling
element (c) and unit cells (k, k+1) can be expressed as:

F̂(q)± = Ψ
(q)±
F υ(q)±P(q)±, (19)

in which Ψ
(q)±
F =D

(q)
LLΨ

(q)±
u +D

(q)
LRΨ

(q)±
u diag

{
exp

(
∓iκ

(q)
j L(q)

)}
, symbol q=c for coupling element,

q=k, k+1 for unit cells. The eigensolutions will be the same when waveguides 1 and 2 have the
same cross-section and material. The state vector on the right side of surface 1, represented by R1:(

ŵ
(c)
R1

F̂
(c)
R1

)
=

[
Ψ

(c)+
u P(c)+ +Ψ

(c)−
u P(c)−

Ψ
(c)+
F P(c)+ +Ψ

(c)−
F P(c)−

]
. (20)

In addition, the state vector on the left side of surface 2, represented by L2, is written as:(
ŵ

(c)
L2

F̂
(c)
L2

)
=

[
Ψ

(c)+
u υ(c)+|x=LcP

(c)+ +Ψ
(c)−
u υ(c)−|x=LcP

(c)−

Ψ
(c)+
F υ(c)+|x=LcP

(c)+ +Ψ
(c)−
F υ(c)−|x=LcP

(c)−

]
. (21)

Combining Eq.20 and Eq.21, the relation between state vector on left and right side of coupling
element will be conformed: (

ŵ
(c)
L2

, F̂
(c)
L2

)T
= X(c)

(
ŵ

(c)
R1

, F̂
(c)
R1

)T
, (22)

with

X(c) =

[
Ψ

(c)+
u υ(c)+|x=Lc

, Ψ
(c)−
u υ(c)−|x=Lc

Ψ
(c)+
F υ(c)+|x=Lc

, Ψ
(c)−
F υ(c)−|x=Lc

][
Ψ

(c)+
u Ψ

(c)−
u

Ψ
(c)+
F Ψ

(c)−
F

]−1

. (23)

Next, assuming that the incident waves come from the infinity of waveguide 1 and there is no
reflection from the end of waveguide 2. The initial boundary of waveguide 1 is also non-reflecting. The
state vector on the left side of surface 1, represented by L1, is expressed as:(

ŵ
(k)
L1

F̂
(k)
L1

)
=

[
Ψ

(k)+
u υ(k)+|x=Lk

P(k)+ +Ψ
(k)−
u υ(k)−|x=Lk

P(k)−

Ψ
(k)+
F υ(k)+|x=Lk

P(k)+ +Ψ
(k)−
F υ(k)−|x=Lk

P(k)−

]
. (24)

The state vector on the right side of surface 2, represented by R2, is written as:(
ŵ

(k+1)
R2

F̂
(k+1)
R2

)
=

[
Ψ

(k+1)+
u υ(k+1)+|x=0P

(k+1)+

Ψ
(k+1)+
F υ(k+1)+|x=0P

(k+1)+

]
. (25)

Here should be noted that the size of state vector for coupling element is 2m × 1, but 2n × 1 for
unit cells k and k+1. The higher order parts in state vector for coupling element is 2(m − n) × 1. In
order to ensure the continuity on surfaces 1 and 2, defining new state vectors including higher order
parts (2(m− n)× 1) for unit cells k and k+1:(

ŵ
∗(k)
L1

, F̂
∗(k)
L1

)T
=
(
ŵ

(k)
L1

, ŵ
′(k)
L1

, F̂
(k)
L1

, F̂
′(k)
L1

)T
,(

ŵ
∗(k+1)
R2

, F̂
∗(k+1)
R2

)T
=
(
ŵ

(k+1)
R2

, ŵ
′(k+1)
R2

, F̂
(k+1)
R2

, F̂
′(k+1)
R2

)T
,

(26)

where ŵ
′(k)
L1

, F̂
′(k)
L1

and ŵ
′(k+1)
L1

, F̂
′(k+1)
L1

are unknown higher order displacements and forces vectors for
unit cell k and k+1 respectively. The continuity on surfaces 1 and 2 is:(

ŵ
(c)
R1

, F̂
(c)
R1

)T
=
(
ŵ

∗(k)
L1

, F̂
∗(k)
L1

)T
,
(
ŵ

(c)
L2

, F̂
(c)
L2

)T
=
(
ŵ

∗(k+1)
R2

, F̂
∗(k+1)
R2

)T
. (27)

Combining Eq.22, Eq.26 and Eq.27, assume that higher order parts for k and k+1 are 0. Define
P(k)+=I, P(k)−=R, P(k+1)+=T, the R and T can be conformed as:

G = X(c)H, (28)

where G=[Ψ
(k+1)+
u υ(k+1)+|x=0T, ŵ

(k+1)
R2

, Ψ
(k+1)+
F υ(k+1)+|x=0T, 0]T, H=[Ψ

(k)+
u υ(k)+|x=Lk

I+Ψ
(k)−
u

υ(k)−|x=Lk
R, ŵ

(k)
L1

, Ψ
(k)+
F υ(k)+|x=Lk

I+Ψ
(k)−
F υ(k)−|x=Lk

R, 0]T.
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4 Numerical applications

Coupling element c

Waveguide 1

Waveguide 2

Unit cell k

Unit cell k+1

Lz

Lk
Lk+1Lc

Ly

y
0

z

Fig. 2. Finite element model of two waveguides coupled by a coupling element.

In this part, the WFEM is applied to analyze the multi-mode diffusion. The unit cells k and k+1
with Lk/k+1 = 50a0, Ly = 300a0 and Lz = 300a0 (a0 is the lattice parameter) as presented in Fig.2.
The coupling element with Lc = 100a0 as shown in Fig.2. Materials Aluminum (Al) and Copper (Cu)
are used here. The Young’s modulus E is 70 GPa for Al and 110 GPa for Cu, linear mass density ρ
is 2.7 g/cm3 for Al and 8.96 g/cm3 for Cu. he damping lose factor η=1e−4. Unit cells k and k+1 are
meshed into 16 3D elements, coupling element is meshed 64 3D elements.

In order to study the wave diffusion under a complex coupling condition, as shown in Fig.2, first

0 5 10 15 20 25 30 35 40 45
ω/ω

0

0

0.1

0.2

0.3

0.4

R

WFEM-bending

WFEM-tension

WFEM-torsion

Analytical tension

Analytical bending

(a) Reflection coefficients (R).

0 5 10 15 20 25 30 35 40 45
ω/ω

0

0.96

0.97

0.98

0.99

1

T

WFEM-bending

WFEM-tension

WFEM-torsion

Analytical tension

Analytical bending

(b) Transmission coefficients (T).

Fig. 3. Absolute values of diffusion coefficients (the materials of coupling element, unit cell k and k+1 are Al).

of all, defining the the materials of coupling element, unit cell k and k+1 are Al, the diffusion model of
coupling element is built by SSG theory with higher-order parameters, the diffusion models of unit cell
k and k+1 are built by CT. The R and T coefficients can be calculated from Eq. 28 including bending,
tension and torsion modes. As shown in Fig.3, the black lines denote the WFEM results. The value



Wave Transmission and Reflection Analysis... 7

of R representing the non-classical part of reflection is no longer 0, and the value of T representing
the non-classical part of transmission is no longer 1. The influence of non-local interactions caused by
higher-order parameters can be reflected by this model. On the other hand, an analytical method [19],
shown by the red lines, is used to valid the WFEM results for bending and tension. As we can see, for
the reflection coefficient, the result obtained by WFEM is very close to the one by the analytical method
at low frequency, but the results are different at high frequencies. For the transmission coefficient, the
results by WFEM matches the results by analytical method well.

0 5 10 15 20 25 30 35 40 45
ω/ω

0

0

0.2

0.4

0.6

0.8

1

R

WFEM-bending WFEM-tension WFEM-torsion Analytical tensionAnalytical bending

(a) Reflection coefficients (R).

0 5 10 15 20 25 30 35 40 45
ω/ω

0

0.5

0.6

0.7

0.8

0.9

1

T

WFEM-bending WFEM-tension WFEM-torsion Analytical tensionAnalytical bending

(b) Transmission coefficients (T).

Fig. 4. Absolute values of diffusion coefficients (the material of coupling element is Cu, unit cell k and k+1
are Al).

In addition, the joint influence of classical parameters (i. g., Young’s modulus, Poisson’s ratio and
mass density) and higher-order parameters of material on diffusion is also a very meaningful study.
Defining the material of coupling element is Cu, unit cell k and k+1 are Al, the diffusion model of
coupling element is built by SSG theory with higher-order parameters, the diffusion models of unit cell
k and k+1 are built by CT. The R and T coefficients including bending, tension and torsion modes
can be illustrated by Eq. 28 as well. As shown in Fig.4, the black lines denote the WFEM results
and the red lines represent the results from an analytical method [19]. The diffusion is different from
the case presented in Fig.3, this shows that the impedance mismatch is not only due to the non-local
interactions caused by higher order parameters in the SSG theory model but also the local interactions
caused by classical parameters.

5 Conclusions

In this paper, SSG theory is used for the multi-mode diffusion analysis within the WFEM framework.
The diffusion is confirmed through two different cases. For the first case, the value of R representing the
non-classical part of reflection is no longer 0, and the value of T representing the non-classical part of
transmission is no longer 1. The influence of non-local interactions caused by higher-order parameters
can be reflected by this model. The second case shows that the impedance mismatch is not only due
to the non-local interactions caused by higher order parameters in the SSG theory model but also the
local interactions caused by classical parameters such as Young’s modulus, Poisson’s ratio and mass
density.



8 Bo Yang et al.

Acknowledgements

This work is supported by LabEx CeLyA (Centre Lyonnais d’Acoustique, ANR-10-LABX-0060) of
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