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We study the fusion semirings arising from easy quantum groups. We classify all the possible free ones, answering a question of T. Banica and R. Vergnioux : these are exactly the fusion rings of quantum groups without any nontrivial one-dimensional representation. We then classify the possible groups of one-dimensional representations for general easy quantum groups associated to noncrossing partitions. As an application, we give a unied proof of the Haagerup property for a broad class of easy quantum groups, recovering as special cases previous results by M. Brannan and F. Lemeux. We end with some considerations on the description of the full fusion ring in the general case.

Introduction

Let G be a compact group and consider the set IrrG of equivalence classes of irreducible representations of G. Endowing it with the direct sum and tensor product turns N IrrG¥ into a fusion semiring R G which carries important properties of the group G. Note that R G is simply the fusion semiring of the monoidal category RepG of nite-dimensional representations of G, hence its associated Grothendieck group RG can be identied with the rst algebraic Ktheory group K 0 RepG. The monoidal structure of RepG turns the latter group into a ring which is particularly relevant to the study of KK-theory since it is known to be isomorphic to KK G C, C.

On the opposite side, let Γ be a discrete group and consider the category of nite-dimensional corepresentations of the maximal C*-algebra C max Γ. Then, irreducible corepresentations have dimension 1 and are in one-to-one correspondance with elements of Γ, the tensor product being given by the group law. Thus, the associated fusion semiring is isomorphic to the group semiring N Γ¥ and its Grothendieck group is Z Γ¥.

The two objects mentioned above can be gathered into a single picture using the theory of compact quantum groups of S.L. Woronowicz (see for example [START_REF]Compact quantum groups, Symétries quantiques[END_REF]). To any compact quantum group G, one can associate a fusion semiring R G which should be thought of as both the representation semiring of G and the group semiring of the discrete quantum dual  G. It is therefore a central object for the study of these quantum groups. We refer the reader to [START_REF] Banica | Fusion rules for compact quantum groups[END_REF] for a broad overview on the problems linked to fusion semirings and their connections with other subjects. Among compact quantum groups is a very important class dened by T. Banica and R. Speicher in [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF] under the name of easy quantum groups. The denition roughly proceeds as follows (see Section 2 for a rigorous denition) :

(1) Pick up a bunch of partitions of sets of integers with some compatibility conditions between them. (2) Associate to each partition a linear map between some nite-dimensional vector spaces. The aforementioned compatibility conditions ensuring that we can compose, make tensor products or take adjoints of these maps. (3) Because of the compatibility conditions, there is a unique smallest concrete complete monoidal C*-category (see [START_REF]Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups[END_REF] for the denition) such that the spaces of morphisms are spanned by linear maps associated to the partitions. (4) To this category is associated a unique compact quantum group by virtue of S.L. Woronowicz' Tannaka-Krein duality theorem, which is called the easy quantum group associated to the set of partitions.

Examples of easy quantum groups are S. Wang's free quantum groups S N , O N and U N introduced in [START_REF] Wang | Free products of compact quantum groups[END_REF] and [START_REF]Quantum symmetry groups of nite spaces[END_REF].

As we see in the above description, the object to which we have the more direct access is the representation category of G (or rather a "generating" part of it). It is therefore natural to look for a purely combinatorial description of the fusion ring of G in terms of the initial set of partitions. This is what we endeavoured together with M. Weber in [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF]. We gave a general description of the fusion rules (hence of the product in the fusion semiring) for all easy quantum groups. However, the general picture was made quite complicated by the presence of crossing partitions inducing degeneracies in the constructions. When such phenomena cannot occur, i.e. when considering only noncrossing partitions, one can hope for a tractable description of the fusion ring. Some ideas in this direction have been mentioned in the last section of [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF] and are the starting point of the present work.

We will be concerned with the notion of free fusion semiring in the sense of [START_REF] Banica | Fusion rules for quantum reection groups[END_REF].

More precisely, consider a set S together with an involution x @ x and a fusion operation x, y @ x y which may take g as a value. Then, the free monoid F S on S can be endowed with a similar structure in the following way : if w w 1 . . . A semiring R is said to be free if there exists a set S, together with an involution and a fusion operation, such that R ¨R S.

This is very far from the case of compact groups, since the latter always have commutative fusion semirings. It is nevertheless quite close to the case of free groups. In fact, free fusion semirings arose from the following observations :

(1) Several natural classes of "free" quantum groups appear to have free fusion semirings. [START_REF]Representations of compact quantum groups and subfactors[END_REF] The structure of free fusion semirings is well-suited to the generalization of "geometric" techniques used on free groups, for example related to Powers' property.

It was therefore asked in [START_REF] Banica | Fusion rules for quantum reection groups[END_REF] whether there are many easy quantum groups having free fusion semirings. We answer this question in a seemingly disappointing way : the only easy quantum groups having free fusion semirings are those which were already known. More precisely, we prove in Theorem 4.18 that the elementary obstruction to freeness of having a nontrivial one-dimensional representation is the only one.

We therefore turn our attention to a more general situation. Based on Theorem 4.18, we have two parts in the fusion semiring : a "free part" coming from throughpartitions of the category and a group of one-dimensional representations. We therefore endeavour to study the latter. It is in fact possible to completely classify the groups which can occur thanks to the free part. This is done in Theorem 5.6. In particular, this group is always cyclic, a fact which was not obvious.

Knowing the fusion rules (i.e. the fusion semiring) of a quantum group is the rst step in the study of its algebraic/geometric properties. As an example, we can prove the Haagerup property, a weakening of amenability, for many easy quantum groups using our results. The argument is inspired from [START_REF] Lemeux | Haagerup property for quantum reection groups[END_REF] and some elementary considerations on a natural length function for easy quantum groups. This recovers several known results but gives a unied and (in some respects) simpler proof.

We would like to emphasize the fact that even though S.L. Woronowicz' theory of compact quantum groups is a nice and convenient way to state our results, proofs in this paper do not make use of any quantum algebraic or operator algebraic technique. In fact, our aim is to understand some specic categories built from partitions. Since the morphism spaces of these categories are spaces of linear operators between nite-dimensional vector spaces, working with simple objects in this situation amounts to considering minimal projections in some matrix algebras. This is done using only combinatorial tools and some basic linear algebra.

To end this introduction, let us outline the organization of the paper. In Section 2, we briey recall some basic facts concerning (noncrossing) partitions and easy quantum groups. We then give in Section 3 a summary of our work with M. Weber [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF], the results of which will be used all over the present paper. We also solve in the noncrossing case a problem about direct sums of representations which was left open in [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF]. Section 4 is the core of the paper. We rst explain the "capping technique" used in several proofs and then study the notion of block-stability, leading to Theorem 4.18. Building on this, we classify the "free part" of the fusion ring for any category of noncrossing partitions C X,Y and give examples of all the possible cases. This is continued in Section 5 where we carry out a similar study for one-dimensional representations, ending with a similar classication in Theorem 5.6. Eventually, Section 6 contains applications of our results. After giving some results concerning a natural length function on easy quantum groups, we are able to prove in one shot the Haagerup property for a large class of quantum groups, including all the previously known easy examples. We end with some partial results concerning the description of the full fusion ring.

The author whiches to thank the referees for their careful reading of the paper and their comments which helped improve the exposition of this work.

Preliminaries

This section is a reminder of the terminology and notations concerning partitions and easy quantum groups. We refer the reader to [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF], [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF] or other papers on the subject for a more substantial introduction and details. Our setting is more general than in most previous works on easy quantum groups because we deal with colored partitions. A special case of this framework appeared the work of P. Glockner and W. von Waldenfels [START_REF] Glockner | The relations of the noncommutative coecient algebra of the unitary group[END_REF], where the algebra of all two-colored pair partitions is introduced and linked to the Schur-Weyl duality for the unitary group U N . This example shows the necessity of using colored partitions to go beyond the orthogonal case. Let us also mention that T. Banica and A. Skalski introduced partitions with two colors to study the representation theory of two-parameter quantum groups in [START_REF] Banica | Two-parameter families of quantum symmetry groups[END_REF] and of some quantum isometry groups in [START_REF]Quantum isometry groups of duals of free powers of cyclic groups[END_REF]. Their denitions are not the same as ours (in particular concerning vertical concatenation) so that it is not clear whether their works enter our setting or not, even though there are certainly strong connections.

2.1. Colored partitions. Easy quantum groups are based on the combinatorics of partitions and in particular noncrossing ones. A partition consists in two integers k and l and a partition of the set 1, . . . , k l. We think of it as an upper row of k points, a lower row of l points and some strings connecting these points. If the strings may be put such that they do not cross, the partition will be said to be noncrossing. The set of all partitions is denoted by P and the set of all noncrossing partitions is denoted by N C.

A maximal set of points which are all connected in a partition is called a block.

We denote by bp the number of blocks of a partition p, by tp the number of through-blocks, i.e. blocks containing both upper and lower points and by βp bp tp the number of non-through-blocks. This work is concerned with a renement of the notion of partitions : colored partitions. Denition 2.1. A (two-)colored partition is a partition with the additional data of a color (black or white) for each point. The set of all colored partitions is denoted by P X,Y and the set of noncrossing colored partitions is denoted by N C X,Y .

In the example below, p 2 has crossings while p 1 is a noncrossing colored partition.

p 1 p 2
From now on, the word "partition" will always mean "two-colored partition".

Partitions can be combined using the following category operations : If p b P X,Y k, l and q b P X,Y k , l , then p q b P X,Y k k , l l is their horizontal concatenation, i.e. the rst k of the k k upper points are connected by p to the rst l of the l l lower points, whereas q connects the remaining k upper points with the remaining l lower points.

If p b P X,Y k, l and q b P X,Y l, m are such that the coloring of the lower row of p is the same as the coloring of the upper row of q, then qp b P X,Y k, m is their vertical concatenation, i.e. k upper points are connected by p to l middle points and the lines are then continued by q to m lower points. This process may produce loops in the partition. More precisely, consider the set L of elements in 1, . . . , l which are not connected to an upper point of p nor to a lower point of q. The lower row of p and the upper row of q both induce partitions of the set L. The maximum (with respect to inclusion) of these two partitions is the loop partition of L, its blocks are called loops and their number is denoted by rlq, p. To complete the operation, we remove all the loops.

If p b P X,Y k, l, then p b P X,Y l, k is the partition obtained by reecting p with respect to the horizontal axis (without changing the colors).

If p b P X,Y k, l, then we can shift the very left upper point to the left of the lower row (or the converse) and change its color. We do not change the strings connecting the points in this process. This gives rise to a partition in P X,Y k 1, l 1 (or in P X,Y k 1, l 1), called a rotated version of p.

We can also rotate partitions on the right.

Using, the category operations above, one can reverse a partition p by rotating all its upper point to the lower row and all its lower points to the upper row. This gives a new partition p. Note that p is in general dierent from p , because the colors are changed by the rotation. As an example, we give the vertical concatenation of the two partitions p 1 and p 2 dened above.

p 2 p 1
There are four ways of coloring the partition b P X,Y 1, 1. If the two points are white (resp. black), we will call it the white identity (resp. black identity) partition. Note that these two partitions are rotated versions of each other. Denition 2.2. A category of partitions is the data of a set C X,Y k, l of colored partitions for all integers k and l, which is stable under the above category operations and contains the white identity (hence also the black identity).

Remark 2.3. Let C X,Y be a category of partitions containing the partition with dierent colors on the two points. Then, using the category operations we can change the color of any point in any partition of C X,Y . Thus, C X,Y can be treated as a category of non-colored partitions. In the language of quantum groups, an identity partition with dierent colors means that the fundamental representation is equivalent to its contragredient, hence the quantum group is in fact a subgroup of the free orthogonal quantum group O N . The crucial notion for the study of the representation theory of easy quantum groups is that of projective partition. Denition 2.4. A partition p b P X,Y k, k is said to be projective if it satises pp p p .

There are actually many of them, according to the following result (see [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF]Prop 2.12]) : Proposition 2.5. A partition p b P X,Y k, k is projective if and only if there exists a partition r b P X,Y k, k such that r r p.

The other ingredient we need is a specic decomposition of partitions called the through-block decomposition. Let us call a partition p a building partition if it satises the following properties :

(1) All lower points of p are colored in white and belong to dierent blocks.

(2) For any lower point 1 h x h l of p, there exists at least one upper point which is connected to it and we dene min up x to be the smallest upper point 1 h y h k which is connected to x .

(3) For any two lower points 1 h a d b h l of p, we have min up a d min up b .

We can use building partitions to decompose any partition. Here, we only give the noncrossing version of [12, 

Tp ¢ C N ak @ C N al
by the following formula :

Tp e i 1 e i k n j 1 ,...,j l 1 δ p i, je j 1 e j l ,
where δ p i, j 1 if and only if all strings of the partition p connect equal indices of the multi-index i i 1 , . . . , i k in the upper row with equal indices of the multiindex j j 1 , . . . , j l in the lower row. Otherwise, δ p i, j 0.

These maps can be normalized in order to get nicer operator algebraic properties by [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF]Prop 2.18] : Proposition 2.8. Set T p N βp~2 Tp for any partition p b P X,Y . Then, T p is a partial isometry. Moreover, T p is a projection if and only if p is a projective partition.

The interplay between these maps and the category operations are given by the following rules proved in [7, Prop. 1.9] and [12, Prop 2.18] :

T p T p .
T p T q T paq . T pq N γp,q T p T q , where γp, q βp βq βpq~2 rlp, q. It should be stressed that the maps T p are not linearly independent in general. However, restricting to the noncrossing case rules out this problem, see Proposition 2.11.

2.2.2. Tannaka-Krein duality and quantum groups. We refer the reader to the original paper [START_REF]Compact quantum groups, Symétries quantiques[END_REF] for a comprehensive treatment of the notion of compact quantum group. Let us consider a compact quantum group G with a fundamental representation, i.e. a nite-dimensional representation u such that any nite-dimensional representation of G arises as a subrepresentation of some tensor products of u and its contragredient u. Let us associate to any word w w 1 . . . w k in the free monoid F over 1, 1 a representation u aw by setting

u aw u w 1 u w k ,
where by convention u 1 u and u 1 u. Then, the representation category of G is completely determined by the intertwiner spaces Homu aw , u aw for all words w, w b F . Here, we see the need for two colors in order to treat arbitrary tensor products of u and u. If we were using only one color, we would have to assume that u is equivalent to u, i.e. that the quantum groups are orthogonal.

Reciprocally, given a family Homw, w w,w of nite-dimensional vector spaces with suciently nice properties, one can reconstruct the compact quantum group G using S.L. Woronowicz's Tannaka-Krein theorem [START_REF]Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups[END_REF]Thm 1.3]. Let us state this theorem in the particular case which is relevant for us. Note that there is an obvious bijection between colorings and words in F given by @ 1 and @ 1.

If C X,Y is a category of partitions and if w, w b F , we will denote by C X,Y w, w the set of partitions p b C X,Y w, w such that the upper coloring of p is w and the lower coloring of p is w (here w denotes the length of the word w).

Theorem 2.9 (Woronowicz). Let C X,Y be a category of partitions and let N be an integer. Then, there exists a unique (up to isomorphism) pair G, u, where G is a compact quantum group and u is a fundamental representation of G such that Homu aw , u aw is the linear span of the maps T p for p b C X,Y w, w . Such a G will be called a (unitary) easy quantum group or a partition quantum group. Let U X,Y be the smallest category of partitions (i.e. the one generated by the white identity partition). The associated quantum group is the free unitary quantum group U N introduced by S. Wang in [START_REF] Wang | Free products of compact quantum groups[END_REF]. Since inclusion of categories of partitions translates into reversed inclusion of compact quantum groups, we see that any easy quantum group is a quantum subgroup of U N . The other extreme case is the category of all partitions P X,Y , which yields the symmetric group S N . Thus, easy quantum groups form a special class of quantum groups G in the range

S N G U N .
Other examples of easy quantum groups include S. Wang's free symmetric quantum group S N (C X,Y N C X,Y ) and free orthogonal quantum group O N (C X,Y all partitions with blocks of size 2). We refer the reader to [START_REF] Wang | Free products of compact quantum groups[END_REF] and [START_REF]Quantum symmetry groups of nite spaces[END_REF] for the denition of these quantum groups and to [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF] for proofs of these facts.

As mentioned in Remark 2.3, G O

N if and only if C X,Y is stable under any change of coloring. Such orthogonal easy quantum groups have been studied in many details and are now completely classied (see for instance [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF], [START_REF] Banica | Classication results for easy quantum groups[END_REF], [START_REF] Weber | On the classication of easy quantum groups The nonhyperoctahedral and the half-liberated case[END_REF] and [START_REF] Raum | The full classication of orthogonal easy quantum groups[END_REF]). The world of unitary easy quantum groups is much more complicated and we will not study these objects in full generality. We will rather restrict ourselves to noncrossing quantum groups. Denition 2.10. An easy quantum group G is said to be noncrossing if its associated category of partitions is noncrossing.

In other words, G is noncrossing if and only if S N G. In that case, the linear independance problem for the maps T p is completely solved (see e.g. [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF]Lem 4.16] for a proof).

Proposition 2.11. Let C X,Y be a category of noncrossing partitions and x an integer N i 4. Then, for any w, w b F , the maps T p pbC X,Y w,w are linearly independent.

3. Representations associated to partitions 3.1. General structure of the representation theory. From now on, let us x a category of noncrossing partitions C X,Y , an integer N i 4 (so that we can use Proposition 2.11) and let G, u be the associated easy quantum group. We briey recall the description of the representations theory of G given in [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF]Sec 6.2]. For w b F , let Proj C X,Y w denote the set of projective partitions in C X,Y with upper (and thus also lower) coloring w and note that the through-block decomposition of a projective partition has the form p p u p u .

Denition 3.1. Two projective partitions p, q b C X,Y are said to be equivalent if there exists a partition r b C X,Y such that p r r and q rr .

In that case, we write p ¢ q. Note that p ¢ q implies that tp tq. Equivalently, setting r p q q u p u , we have that p ¢ q if and only if r p q b C X,Y . Denition 3.2. A projective partition q b C X,Y is said to be dominated by another projective partition p b C X,Y if pq qp q. This is equivalent to the fact that T p dominates T q as a projection. In that case, we write q j p. If moreover q x p, we write q h p.

For p b Proj C X,Y k, we can dene a projection P p b Homu aw , u aw and a representation u p u aw b C max G BC N aw by P p T p § qhp T q and u p ı P p u ak .

According to [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF]Sec 6.2], the representations u p enjoy the following properties : u p is non-zero and irreducible for all p b Proj C X,Y w.

Any irreducible representation of G is unitarily equivalent to u p for some p. u p is unitarily equivalent to u q if and only if p ¢ q. Remark 3.3. The above description is rather simple because the category of partitions is assumed to be noncrossing. When crossings are allowed, new problems arise, see [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF]Sec 4] Let us now describe the decomposition of the tensor product of u p and u q , i.e. the fusion rules of G. Subrepresentations of u p u q are associated to partitions obtained by "mixing" the structure of p and q. To explain this, we rst need to introduce some specic partitions : we denote by h k j the projective partition in N C X,Y 2k, 2k where the i-th point in each row is connected to the 2k i 1-th point in the same row (i.e. an increasing inclusion of k blocks of size 2) and all the points are white. If moreover we connect the points 1, k, 1 and k , we obtain another projective partition in N C X,Y 2k, 2k denoted h k q .

h 2 j h 2 q
From this, we dene binary operations on projective partitions (using to denote the white identity) :

p j k q p u q u atpk h k j atqk p u q u p q k q p u q u atpk h k q atqk p u q u
for 0 h k h mintp, tq. We can now state the key result [12, Thm 6.8] :

u p u q u paq mintp,tq k 1 u pj k q u pq k q ,
where by convention u r 0 if r ¶ C X,Y . We can in fact strengthen this statement by noticing that the projective partitions appearing in the left-hand side have pairwise dierent number of through-blocks. According to [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF]Prop 4.23], this implies that they are pairwise orthogonal, hence the sum is a direct sum (see [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF]Rmk 5.8]). We therefore have :

u p u q u paq mintp,tq c k 1 u pj k q u pq k q ,
Remark 3.4. In general, tensor products of such representations are given by the more complicated formula of [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF]Thm 4.27], where the representations may not be in direct sum.

3.2. Direct sum of representations. The key feature of the family of representations u p is that they in fact yield all irreducible representations up to unitary equivalence. This is a consequence of the decomposition of u aw given in [12, Thm 6.5] :

(1)

u aw pbProj C X,Y w u p .
However, this decomposition is unsatisfying in the sense that it is not proven that the subrepresentations are in direct sum. More precisely, there could be pairwise equivalent projective partitions p, q 1 , . . . q n , all distinct, such that

P p d § i P q i .
This would mean that u p i u q i , i.e. u p is redundant in Equation ( 1). Making [12, Thm 6.5] more precise means characterizing which projective partitions are redundant. Restricting to the noncrossing case, we can solve this problem.

Let us rst make some observations. For a projective partition p b Proj C X,Y w, we denote by p¥ w the equivalence class of p in Proj C X,Y w and by n w p the cardinality of that class. Taking the supremum of the projections P q over all q b p¥ w yields a projection P p¥w and an associated representation u p¥w u aw . Let E w C X,Y be a system of representatives of the equivalence classes of Proj C X,Y w. By [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF]Prop 4.23] (or rather its straightforward colored generalization), the representations u p¥w and u q¥w are orthogonal as soon as p is not equivalent to q and

(2)

u aw c pbEwC X,Y u p¥w .
By the orthogonality property, any irreducible subrepresentation of u p¥w must be equivalent to u p , hence u p¥w ¢ ν w pu p for some integer 0 h ν w p h n w p. Having redundant projective partitions means that ν w p d n w p.

Lemma 3.5. Let C X,Y be a category of noncrossing partitions and let w b F . Then, C X,Y w, w pbEwC X,Y n w p 2 , where D denotes the cardinality of a set D.

Proof. Consider the surjective map

f ¢ ¢ ¦ ¤ C X,Y k, k Proj C X,Y k r @ r r
For any p b Proj C X,Y w, f r p if and only if there exists q b Proj C X,Y w such that q ¢ p and r r p q . Hence, f 1 p n w p. Adding up, we get C X,Y w,

w pbProj C X,Y w n w p pbEwC X,Y n w p 2 .
Lemma 3.6. Let N i 4 be an integer, let C X,Y be a category of noncrossing partitions and let w b F . Then, ν w p n w p for all p b Proj C X,Y w.

Proof. Let us denote by Autv the set of self-interwiners of a representation v.

Equation (2) yields (3) dimAutu aw pbEwC X,Y dimAutu p¥w .
The space Autu aw is known to be generated by the maps T p for p b C X,Y w, w.

Moreover, the fact that C X,Y is noncrossing and that N i 4 imply that the maps T p are linearly independent by Prop 2.11. Thus, the left-hand side of Equation ( 3) is equal to C X,Y w, w. On the other hand, using the isomorphism

Autu p¥w Autν w pu p ¨Mνwp C,
we see that the right-hand side is equal to pbEwC X,Y ν w p 2 . Combining these facts and Lemma 3.5, we have

pbEwC X,Y n w p 2 pbEwC X,Y ν w p 2 .
Since ν k p h n k p for all p, we must have equality.

This result can be restated in the following way : in the noncrossing case, no projective partition is redundant. This yields the following renement of [12, Thm 6.5]. Proposition 3.7. Let N i 4 be an integer, let C X,Y be a category of noncrossing partitions and let G be the associated easy unitary quantum group. Then, for any w b F , we have 

b C X,Y m, 0 to produce a new partition q b C X,Y k, l m q aj 1 b aj 2 p
if the colorings t (and j 1 j 2 m l). Concretely, this process reduces the partition p by collapsing several neighboring points. Let us express this in another way. Let p be a partition and let k 1 , k 1 1, . . . , k 2 be a sequence of neighboring points in p such that the one-block partition b b N C X,Y 0, k 2 k 1 1, with the same coloring as the corresponding points of p, is in C X,Y . Then, the partition q obtained by removing the points k 1 , k 1 1, . . . , k 2 and linking all the blocks to which they belong is in C X,Y . If the partition p is symmetric, we may do a symmetric capping by capping with the same block on both rows. The following fact is crucial and will be used all over the paper. Lemma 4.1. Let C X,Y be a category of noncrossing partitions and let p b C X,Y be a projective partition. Then, any projective partition q obtained from p by symmetric capping and such that tq tp is equivalent to p.

Proof. Let b be the partition used for the capping and let r be the partition obtained by capping only the lower row of p. By denition, rr q and we have to prove that r r p. Consider two upper points which are not connected in p. If at least one of these points is not connected to a lower point in p, then the two points are not connected in r r. Assume now that both points are connected in p to lower points and that they are connected in r r. Then, b connects these two points so that they are already connected in r. This implies that tr d tp, which is impossible since tr trr tq tp. We have proved that two points which are not connected in p are not connected in rr . It is clear that if two points are connected in p, they are still connected in rr . Since the coloring of rr is the same as that of p, we have rr p and the proof is complete.

Here is an example of equivalence produced by capping two pairs of black and white points : ¢ Note that if p b C X,Y k, l is any partition, then the points k and k 1 of pp have dierent colors. We can therefore cap with a pair partition to cancel them. But then, the points k 1 and k 1 become neighbors and also have dierent colors, so that we can cap them again. Iterating this process, we see that we can cancel any partition of the form p p by repeated capping. We will now apply this to some general decomposition results for noncrossing partitions. Let us x a category of Proof. This is exactly the same proof as for Lemma 4.2.

Using this, we can give a general decomposition result for projective noncrossing partitions.

Lemma 4.4. Let C X,Y be a category of noncrossing partitions and let p b C X,Y be a projective partition. Then, p can be (not uniquely) written as

p B 0 A 1 B 1 A 2 B 2 B tp1 A tp B tp ,

where

(1) A i and B i are projective noncrossing partitions for all i.

(2) tA i 1 for all i.

(3) tB i 0 for all i.

Moreover, A i and B i belong to C X,Y (note that B i may be empty).

Proof. The existence is clear from noncrossingness and we will simply prove that Proof. If A contains the same number of black and white points, it is equivalent (by capping symmetrically all the points but four) to , ¥ or to , ¥ and the result is clear. Otherwise, we can cap neighbouring points of dierent colors in order to get an equivalent projective partition with all points of the same color by Lemma 4.1. The only potential trouble is when capping points of the through-block with singletons since this removes one point of the through-block. It is however clear that in the worst case, there will only be one point left in the through-block and the result is obvious in that case. We will thus assume from now on the points to be white, the case of black points being similar. Note that, again because of singletons, the previous capping may have add non-through-block partitions on the left and on the right of the through-block but that it is of course of no consequence on the result.

Set β b

1 b 1 b Proj C X,Y l (it is in C X,Y by Lemma 4.
2), let denote the white identity partition and set

R β akl A b C X,Y .
Note that R gives an equivalence between A and RR by Lemma 4.2. Let us number the lower points of the partitions by integers starting from the left. Then, two points i, j h l are connected in R l if and only if they are connected in b 1 and two points i, j i l 2 are connected in R l if and only if they are connected in A l .

Moreover, the rst l points cannot be connected to any of the last k l 1 points. We therefore only have to look at the point l 1.

If in the composition dening R, b 1 connects l 1 to 1, then l 1 is connected to l 2 in R and RR β , , b 2 , . . . , ¥.

If in the composition dening R, β does not connect l 1 to 1, then l 1 becomes a singleton in R l , so that RR β β 1 , b 2 , . . . , ¥. We can now prove the result by induction on nA, the integer such that the through-block of A has nA 1 points on each row. If nA 0, then A is already one-block. If nA i 1, we have two possibilities : This is an equivalence between B , , b 2 , . . . , ¥ and , B , , , . . . , ¥. Applying again our construction, we can get B out of the through-block so that A ¢ B B , , . . . , ¥.

A ¢ B ,
Here is an instance of such an equivalence :

¢

Let us give a corollary summarizing the results of this section. with tB i 0 such that

p ¢ B 0 A 1 B 1 A tp B tp .
4.2. Block-stability. Our main concern in this subsection is to understand the operation of passing from a partition to a subpartition and in particular to a block. More precisely, we will see that the possibility of passing to blocks imposes strong conditions on a category of partitions. We sart with a natural denition : Not all categories of partitions are block-stable (even not all categories of noncrossing partitions). In fact, Theorem 4.18 gives a characterization of block-stable categories of noncrossing partitions. For simplicity, let us give a companion denition.

Denition 4.8. Let C X,Y be a xed category of partitions. A partition p b C X,Y is said to be block-stable if any block of p is in C X,Y . Remark 4.9. The notion of block stability makes no sense for a general partition p if a category of partitions is not specied. In the sequel, the category which is referred to will always be clear. Note that a category of partitions C X,Y is blockstable if and only if all its partitions are block-stable.

Let us give an elementary property of block-stable noncrossing partitions. Lemma 4.10. Let C X,Y be a category of partitions and let p b C X,Y be a block-stable noncrossing partition with tp 0. Then, p u and p l both belong to C X,Y .

We end this section with elementary properties of the conjugation and q operations on projective partitions. Lemma 4.13. Let C X,Y be a block-stable category of partitions and let p, q b Proj C X,Y be such that p j tp q b C X,Y and tp tq. Then, q ¢ p.

Proof. Note that p j tp q is a rotated version of r p q r q p , hence r p q b C X,Y by blockstability, concluding the proof. and these two partitions are equivalent.

Proof. We have

r aqb a qb r a a r b b a q b b C X,Y .
This leads to the following denition : Denition 4.15. Let C X,Y be a category of noncrossing partitions and let p and q be projective partitions in C X,Y . Then, we denote by p¥ q¥ the equivalence class of the partition p q q if the latter partition is in C X,Y . According to Lemma 4.14, this is a well-dened equivalence class. If p q q ¶ C X,Y , we set p¥ q¥ g. 4.3. Characterization of free fusion rings. In order to state and prove our main result, let us give some details conerning the construction of the free fusion semiring R C X,Y introduced in [12, Sec 6.4]. Starting with a category of noncrossing partitions C X,Y , we form the set SC X,Y of equivalence classes of one-block projective partitions. This set is endowed with the conjugation map p¥ @ p¥ p¥ (it is clear that p ¢ q if and only if p ¢ q) and with the fusion operation p¥, q¥ @ p¥ q¥ of Denition 4.15. We then build out the free fusion semiring associated to SC X,Y , , as in Denition 1.1 and denote it R C X,Y , , . The goal of this section is to understand the link between this fusion semiring and the fusion semiring of the associated easy quantum group. More precisely, we will be interested in the map

Φ ¢ R C X,Y R G
sending a word p 1 ¥ . . . p n ¥ to u p 1 ...pn ¥ and extended by linearity (note that this map is well-dened). Let us study its set-theoretic properties.

Lemma 4.16. Let C X,Y be a block-stable category of noncrossing partitions. Then, the map Φ is bijective.

4.17. As Φw is an equivalence class of irreducible representations, it is the class of the contragredient of Φw and Φ preserves the conjugation operation. We can now prove that Φ respects tensor products. Let w q 1 ¥ . . . q n ¥ and let k be an integer such that p 1 . . . p n j k q 1 . . . q n b C X,Y . By block stability, we see that p ni j q i1 b C X,Y for every 0 h i h k 1. This has two consequences :

p ni ¥ q i1
¥ by Lemma 4.13. Moreover, setting z p nk1 ¥ . . . p n ¥, we have w az and w zb. u p 1 ...pnj k q 1 ...qn ¥ Φab.

Similarly, if p 1 . . . p n q k q 1 . . . q n b C X,Y then there is a unique z of length k 1 such that w az, w zb and u p 1 ...pnq k q 1 ...qn ¥ Φa b.

3 ¨4 : R C X,Y , , is by denition a free fusion semiring. 4 ¨1 : Let u be a nontrivial one-dimensional representation. Then, uu ε in R G but u x ε, hence the fusion semiring is not free (see [START_REF] Raum | Isomorphisms and fusion rules of orthogonal free quantum groups and their free complexications[END_REF]Rem 4.4]).

As a corollary, we can now give a converse to Lemma 4.16.

Corollary 4.19. Let C X,Y be a category of noncrossing partitions. Then, Φ is surjective if and only if C X,Y is block-stable. Proof. It was proved in Lemma 4.16 that Φ is bijective if C X,Y is block-stable. Assume conversely that C X,Y is not block-stable. Then, Proposition 4.12 provides us with a partition b ¶ C X,Y such that b b b C X,Y and tb b tb 0. In particular, u b b cannot be equivalent to a representation u p if tp i 1. Since any representation in the image of Φ is equivalent to u p for some projective partition p satisfying tp i 1, Φ is not surjective. 4.4. Classication. A possible interpretation of Theorem 4.18 is that R G contains a "free part" R C X,Y , to which it reduces precisely when it is free. We therefore now want to get a better understanding of the set SC X,Y and its fusion operation. This will in particular lead us to a classication of all the free fusion semirings arising from easy quantum groups. To do this, let us rst give an alternative description of R C X,Y . Let k i 1 be an integer, let π k denote the unique one-block partition in N C X,Y k, k with all points colored in white and set π k π k (i.e. all the points are colored in black). We rst consider the objects

¢ ¦ ¤ IC X,Y k b Z , π k b C X,Y k ¢ k π k ¢ π k Lemma 4.20.
Let C X,Y be a category of noncrossing partitions. Then IC X,Y is equal either to Z or to 1, 1.

Proof. First, π 1 b IC X,Y by denition of a category of partitions. Rotating π k upside down yields π k , hence IC X,Y is symmetric. Assume now that π k is in C X,Y .

Then, rotating it on one line and capping in the middle with a block of size 2, we get one block with k 1 white points and k 1 black points, i.e. a rotated version of π k1 . Hence, if k b IC X,Y and k i 2 then k 1 b IC X,Y . Assume now that π 2 b C X,Y and note that

π 2k π 2k π ak 1 π 2k π ak 1 π 2k π 2k π 4k .
Therefore IC X,Y Z as soon as 2 b IC X,Y , concluding the proof.

The set IC X,Y together with its equivalence relation encodes almost the same information as SC X,Y . In fact, if k¥ denotes the equivalence class of k for the relation ¢, we have k¥ k¥ and the fusion operation is given by

k¥ k ¥ ¢ ¦ ¤ k k ¥ if k k b IC X,Y g if k k x 0 and k k x IC X,Y
As we see, the only thing we need to recover SC X,Y is a "0 element". However, there is a subtlety at that point : there are two (a priori) distinct zero elements. More precisely, let π 0

, ¥ be a one-block projective partition in N C X,Y 2, 2 (i.e. of the form e e ) and set π 0 , ¥ in the same way. The following facts are straightforward.

Lemma 4.21. We have

π 0 ¢ π 0 , π 0 ¢ π 0 and π 0 b C X,Y if and only if π 0 b C X,Y . Moreover, π 0 ¢ π 0 if and only if π 2 b C X,Y . If π 0 b C X,Y , then we have, for any k i 0, ¢ ¦ ¤ k¥ k¥ 0 ¥ k¥ k¥ 0 ¥
We can now give another description of R C X,Y . Consider the set

I C X,Y ¢ ¦ ¤ IC X,Y V 0 , 0 if π 0 b C X,Y IC X,Y otherwise
Capping neighboring blocks of dierent colors repeatedly, we see that any oneblock projective partition is equivalent to π x for some x b I C X,Y . Thus, we have

SC X,Y I C X,Y ~¢,
with the involution given by the opposite integer and the fusion given by the addition (with the special rule for 0 ). Using this, we can classify the free fusion rings R C X,Y arising from categories of noncrossing partitions. According to Theorem 4.18, this gives in particular all the possible free fusion semirings R G of easy quantum groups. As will appear, there is one case where the description is a bit intricate. Let us introduce it now to simplify further reference.

Denition 4.22. Let S be the set with four elements α, β, γ, γ endowed with the involution α α, β β and the fusion operations

γ γ α γ γ β α α α β β β γ γ γ γ g α β β α g γ α γ β g γ β α γ γ γ α β γ γ β γ α γ g Theorem 4.
23. Let C X,Y be a category of noncrossing partitions. Then,

(1) If π 0 ¶ C X,Y , then SC X,Y 1¥ or SC X,Y 1¥, 1¥. (2) If π 0 b C X,Y , then SC X,Y S or SC X,Y Z s for some integer ª i s i 1.
Proof. Assume that π 0 ¶ C X,Y . Since capping π 2 π 2 yields π 0 , we must have, by Lemma 4.20, IC X,Y 1, 1. There are then only two possible relations : either 1 is equivalent to 1 (yielding the rst case) or 1 is not equivalent to 1 (yielding the second case).

Assume now that π 0 b C X,Y and that IC X,Y 1, 1. Rotating and capping r π 0 π 1 we get a singleton, which, combined again with π 0 would imply that we can change the colors of any partition and thus that IC X,Y Z (because then π 2 b C X,Y ), a contradiction. In other words, π 0 cannot be equivalent to π 1 . The same happens if we assume π 0 ¢ π 0 (because r π 0 π 0 is a rotated version of π 2 ). Therefore, there are 4 equivalence classes in SC X,Y . It is clear that the conjugation map and the rst six equations giving the fusion operation are that of S under the identication α 0 , β 0 and γ 1. To see that the last four ones are also satised, notice for

instance that π 1 π 0 b C X,Y implies that π 2 b C X,Y , contradicting IC X,Y 1, 1.
The other cases are done similarly.

Assume eventually that π 0 b C X,Y and that IC X,Y Z . Then, π 0 ¢ π 0 by Lemma 4.21 and SC X,Y is a quotient (as an additive group) of Z, i.e. SC X,Y Z s for some s.

As we will see later on, Theorem 4.23 is complete in the sense that there are categories of noncrossing partitions which are block-stable and yield all the possible free fusion semirings. Let us list them now, even though proofs will be postponed to the next section :

SC X,Y G 1¥ O N 1¥, 1¥ U N Z s , 1 h s h ª H s N (note that H 1 N S N )
S Ç H N (see Denition 4.27) We are not claiming that the only block-stable categories of noncrossing partitions are those corresponding to the above quantum groups. In fact, the category of noncrossing partitions B X,Y θ 1 e is obviously block-stable and SB X,Y 1¥, 1¥. However, the associated quantum group cannot be isomorphic to U N since it has an irreducible representation of dimension N 1 (but it can be seen to be isomorphic to U N 1 ). However, the classication of all categories of noncrossing partitions which is currently undergone by P. Tarrago et M. Weber [START_REF] Tarrago | Unitary easy quantum groups : the free case and the group case[END_REF] will straightforwardly yield the list of all block-stable categories of noncrossing partitions. We thank the authors for having kindly communicated to us part of their results. 4.5. Examples. We will now show how Theorem 4.18 applies to the quantum reection groups H s N for ª e s i 1. The fusion rules of these quantum groups were studied in [START_REF] Banica | Fusion rules for quantum reection groups[END_REF] and, as one expects, our technique recovers the results of this paper in a very natural way : the set IC X,Y is equal to Z and the equivalence relation ¢ is equality modulo s. To see this, we rst have to describe the "easy structure" of H s N , i.e. its category of partitions. Let us denote by θ s b N C X,Y k, 0 the one-block partition with all points colored in white. We then dene, for s i 1, a category of partitions C X,Y s π 2 , θ s e. Remark 4.24. When, s i 3, π 2 can be constructed out of θ s using the category operations. The presence of π 2 only ensures that when s 1, we recover the quantum permutation group S N and when s 2, we recover the free hyperoctahedral quantum group H N . This is straightforward to prove.

Proposition 4.25. Let N i 4 be an integer and let s i 1. Then, the easy unitary quantum group G associated to C X,Y

s is the quantum group H s N of [8, Def 1.3].
Proof. In view of Remark 4.24, we can assume s i 3. It is proved in [START_REF] Banica | Fusion rules for quantum reection groups[END_REF]Thm 6.3] that the category of partitions associated with the quantum group H s N is the category of noncrossing partitions satisfying the following property : in each block, the dierence between the number of white and black points on each row is the same modulo s. In particular, it contains θ s and there is a surjective map

C max G Ð C max H s N
sending the fundamental representation onto the fundamental representation. To prove that this map is an isomorphism, let us rst make some manipulations. Capping θ s θ s θ s twice, we get a one-block partition with s 1 white points followed by s 2 black points and s 1 white points again. Using a rotated version of θ s to change the s 2 black points into 2 white points, we see that θ 2s b C X,Y s .

More generally, θ ks b C X,Y s for any integer k. Now, we can again use a rotated version of θ s to change the last s 1 white points of θ 2s in black and obtain a partition p. The fact that T p is an intertwiner exactly means that the coecients u i,j of the fundamental representation u satisfy u s i,j u i,j u i,j . Using similar techniques, one can build out of π 2 a partition which implies that u i,j u i,j is a projection. Applying the denition of H s N [8, Def 1.3], we therefore get a surjective map

C max H s N Ð C max G
sending the fundamental representation onto the fundamental representation. This property implies that this map is the inverse of the previous one, hence the result.

Proposition 4.26. For any ª e s i 1, we have SC X,Y s Z s (with Z 1 1). Proof. The proofs of the cases s 1 and s 2 were done in [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF]Sec 5.2], so that we may assume s i 3. Let us set π 0 π 0 , which is equivalent to π 0 . The proposition follows from the following elementary facts :

The only partitions of the form θ x in C X,Y s are exactly those where x is a multiple of s (use the description of C X,Y s in terms of number of white and black points).

Capping in the middle of θ s θ s yields a rotated version of π s1 . Hence, IC X,Y s Z .

Rotating θ s , we get an equivalence between π k and π ks for any 0 d k d s.

Capping π ks with θ s gives an equivalence with π k for any k e 0. Rotating gives the corresponding statement for negative integers.

Let θ s be the partition obtained by rotating one point of θ s to the lower row. Then, π 0 π 1 θ s gives an equivalence between π 0 and π s .

Reciprocally, π k ¢ π k implies, by rotating r π k π k , that θ kk b C X,Y s , hence k k must be a multiple of s.

Note that this proposition gives an alternative proof of [START_REF] Banica | Fusion rules for quantum reection groups[END_REF]Thm 7.3]. We can also treat the case of H ª N along the same lines : set C X,Y ª π 2 e. The category C X,Y ª can be alternatively described by the following property : this is the category of all noncrossing partitions such that in each block, the dierence between the number of white and black points on each row is the same. According to [START_REF] Banica | Fusion rules for quantum reection groups[END_REF]Thm 6.3], this gives rise to the ininite hyperoctahedral quantum group H ª N for N i 4.

Applying the same reasoning as before proves that IC X,Y ª Z and SC X,Y ª Z, giving back the fusion rules computed in [START_REF] Banica | Fusion rules for quantum reection groups[END_REF]Thm 7.3].

The free fusion semiring associated to S also corresponds to an hyperoctahedral quantum group, though dierent from the previous ones. As we will see, it corresponds to the free complexication Ç

H

N of the free hyperoctahedral quantum group H N .

Denition 4.27. Let C X,Y 0 be the category of partitions generated by π 0 . It is clear that this quantum group has no nontrivial one-dimensional representation and that SC X,Y 0 S. This quantum group can also be described through its maximal C*-algebra. Denition 4.28. Let A 0 h N be the universal C*-algebra generated by the coefcient u ij 1hi,jhN of a matrix u such that :

The matrices u and u are unitary.

For every 1 h k h N , u ki u kj u ik u jk 0 as soon as i x j.

Recall that if G is a compact matrix quantum group, its free complexication Ç G is dened in the following way : C max Ç G is the sub-C*-algebra of C max GCS 1 generated by the elements u ij z, where u is the fundamental representation of G and z is the fundamental representation of S 1 . If G H N , the coecients v ij u ij z satisfy the relations of the proposition above, giving a surjective -homomorphism mapping u ij to v ij . It is proven in [START_REF] Raum | Isomorphisms and fusion rules of orthogonal free quantum groups and their free complexications[END_REF]Cor 2.5.13] N of all unitary monomial matrices (i.e. having exactly one non-zero entry in each line and column) of size N . Moreover, the quotient of A 0 h N by the relations u u is the maximal C*-algebra C max H N of the free hyperoctahedral quantum group H N , as expected.

One-dimensional representations

In the general case (when there are one-dimensional representations), things become more complicated even if one still restricts to noncrossing partitions. One can however try to use the map Φ, though it is ill-behaved with respect to the tensor product, and the nontrivial one-dimensional representations to study the quantum group G. We will rst study the possible one-dimensional representations which may appear for a free easy quantum group and then give some structure results for the group they form. 5.1. Non-through-partitions. One-dimensional representations of a compact quantum group form a group under the tensor product (the inverse being given by the contragredient), which will be denoted GG. We will of course study this group using partitions. Here is a basic but important fact. Proof. The "if" part was proved in Lemma 4.17. To prove the "only if" part, rst note that if u q is equivalent to the trivial representation, then tq 0. Let now u p be a one-dimensional representation and let u p be its contragredient. Then, u p u p contains u pap , which must therefore be equivalent to the trivial representation.

Hence, tp h tp p 0.

We therefore only have to study partitions with no through-block. Let us write, for an integer k i 0, β k θ k θ k . This is a projective partition in N C X,Y k, k consisting of 2 blocks, an upper and a lower one, each having k white points. By convention, β 0 is the empty partition and β k β k . As for through-partitions, we can recover any projective partition with tp 0 from the β k 's up to equivalence. This is not completely obvious and will be the object of Lemma 5.3. We rst need the following fact : Lemma 5.2. Let C X,Y be a category of noncrossing partitions and let B b C X,Y k, k be a projective partition with tB 0 and such that all the points are white. If B x g, then there is an integer 1 h l h k such that β l b C X,Y .

Proof. The proof is by induction on k. If k 1, then B β 1 . Assume that the result holds for all n h k. Up to considering tensor products, we may assume that 1 and k are in the same block and write B w 0 , b 1 , . . . , b n1 , w n ¥ b C X,Y with b i b i b C X,Y for each i by Lemma 4.3. If there is an index i such that b i b i x g, we may apply our induction hypothesis to it to conclude. Otherwise, this precisely means that B β k . Lemma 5.3. Let C X,Y be a category of noncrossing partitions (which is not blockstable) and let l be the smallest strictly positive integer such that β l b C X,Y . Then, any projective partition p b C X,Y k, k with tp 0 is equivalent to β am l or to β am l for some integer m (with the convention that β a0 l β 0 ).

Proof. Up to equivalence, we may assume by capping that all the points of p have the same color (if p has the same number of black and white points on each row, then p u b C X,Y so that p is equivalent to the empty partition and the result holds). If this color is black, we can consider p instead of p to turn all the points into white.

Then, Lemma 5.2 tells us that for k h l, we can only get the empty partition. For k i l, let k m ! l r be the euclidian division of k by l and set x pβ am l π ar 1 and q x x. Then, x implements an equivalence between p and q and q β am l y, where y b C X,Y r, r is a projective partition with ty 0. Since r d l, y g, concluding the proof.

Let us highlight a nontrivial consequence of this fact : Proposition 5.4. Let N i 4 be an integer, let C X,Y be a category of noncrossing partitions and let G be the associated easy quantum group. Then, the group GG of one-dimensional representations of G is cyclic (and in particular abelian). 5.2. Classication. We now want to classify the one-dimensional representations of G. In view of Lemma 5.3, we shall focus on the set

JC X,Y k b Z, β k b C X,Y .
In fact, quotienting out JC X,Y by the equivalence relation k ¢ k β k ¢ β k yields a group GC X,Y (for ) isomorphic to GG. Note that rotating β k on one line and capping in the middle yields a rotated version of π k1 , so that k b JC X,Y ¨k 1 b IC X,Y . This observation will simplify the study of JC X,Y . Lemma 5.5. Let C X,Y be a category of noncrossing partitions. Then, the following hold :

(1) If IC X,Y Z , then there is an integer

n i 0 such that JC X,Y nZ. If moreover SC X,Y Z s , then n divides s. (2) If IC X,Y 1, 1, then JC X,Y 2, 1, 0, 1, 2.
Proof. 1 : Noticing that

β k β k π kk r β kk β k aβ k ,
we see that if IC X,Y Z , then JC X,Y is stable by addition (and

β kk ¢ β k β k ).
It is thus an additive subgroup of Z and is equal to nZ for some n. This n is the smallest positive integer k such that β k b C X,Y , so that in particular n h s as soon as θ s b C X,Y . Assume that SC X,Y Z s , let s n ! m r be the euclidian division of s by n and set x θ s β am n π ar 1 . Then, x x β an n β r and therefore β r b C X,Y .

This implies that r 0, hence n divides s.

2 : This is clear from the fact that k b JC X,Y ¨k 1 b IC X,Y .
Note that in the second case, there are in fact three possibilities : 2, 1, 0, 1, 2, 2, 0, 2 and 1, 0, 1. Deriving the structure of GC X,Y from that of SC X,Y is now straightforward.

Theorem 5.6. Let C X,Y be a category of noncrossing partitions.

(1) If IC X,Y Z and SC X,Y Z s , then GC X,Y Z d with d s~n if JC X,Y nZ.

( This length function is central and proper. However, the structure of free fusion ring gives another length function, inherited from the length function on the underlying free monoid, or equivalently from the through-block structure of the projective partitions.

) If IC X,Y 1, 1 and 1 b JC X,Y , then GC X,Y Z s with s mink b N, β ak 1 ¢ g. (3) If IC X,Y 2 
Proof. If IC X,Y 1, 1, then SC X,Y is nite and is proper as soon as GC X,Y is nite.

If IC X,Y Z and GC X,Y is trivial, then it is clear that is proper as soon as C X,Y x C X,Y ª .

Assume eventually that IC X,Y Z and that GC X,Y is nite and nontrivial. By Corollary 5.7, θ ak s b C X,Y for some integers s and k, implying that θ ks b C X,Y . This means that SC X,Y is nite and thus is proper. 6.2. The Haagerup property. We now turn to approximation properties for free easy quantum groups. More precisely, we will give a unied proof of the Haagerup property for free easy quantum groups such that is proper. This will be achieved using the Haagerup property for S N proved by M. Brannan in [START_REF]Reduced operator algebras of trace-preserving quantum automorphism groups[END_REF] and the properness of the length function studied in the previous subsection.

Let us rst recall some facts concerning the Haagerup property. Because the quantum groups we are studying are of Kac type, we can restrict our attention, as far as approximation properties are concerned, to characters of representations. Denition 6.6. Let G be a compact quantum group and let v b C max G BH be a nite-dimensional representation of G. Its character is dened by

χ v ı Trv b C max G.
It is proved in [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF]Cor 5.9] that two representations are unitarily equivalent if and only if their characters are equal. Moreover, we have by [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF]Thm 5.8] that χ u`v χ u χ v and χ uav χ u χ v .

In other words, the (non-closed) algebra PolG 0 generated in C max G by the characters is isomorphic to the complexied fusion ring RG Z C of G. The Haagerup property admits a simple description at the level of characters. Denition 6.7. A compact quantum group G of Kac type is said to have the Haagerup property if there is a net ϕ i i of states on the algebra of characters PolG 0 such that (1) ϕ i i converges pointwise to the counit (equivalently, for any α b IrrG,

ϕ i χ α i dimα).
(2) For any i and for any e 0, there is a nite subset F IrrG such that for any α ¶ F ,

ϕ i χ α dimα h .
Remark 6.8. Our denition of the Haagerup property looks a bit dierent from that of [START_REF] Brannan | Approximation properties for free orthogonal and free unitary quantum groups[END_REF] but both are shown to be equivalent (as well as several other characterizations) in [START_REF] Daws | The Haagerup property for locally compact quantum groups[END_REF].

Recall that if G is a free easy quantum group, then there is a canonical surjection

Π ¢ C max G C max S N
characterized by the fact that it sends the fundamental representation of G onto the fundamental representation of S N . Following the strategy of F. Lemeux in [START_REF] Lemeux | Haagerup property for quantum reection groups[END_REF], we will use Π to pull back the states giving the Haagerup property on S N . Let us denote by ϕ i i any net of states implementing the Haagerup property on S

N . The natural states to look at for a general free easy quantum group G are ψ i ϕ i Π.

For clarity, we will rst deal with the computational part of the proof. For p b Proj C X,Y , we write

Πχ G p tp k 0 A k pχ S N k
where A k p is a positive integer. Lemma 6.9. Let K 0 e 0 be an integer. If N e 4 sD , where SC X,Y s and any one-dimensional representation has a representative with at most 2D points, then

K 0 k 0 A k pϕ i χ S N k tp k 0 A k p dim u S N k Ð 0 as tp ª.
Proof. First note that all the terms appearing in the quotient are positive. Moreover, we can choose the net ϕ i ib i 0 ,N ¥ such that for all k,

ϕ i χ S N k h C 0 i N k dim u S N k h C 0 dim u S N k
where C 0 is a constant depending only on i 0 e 4 (see the proof of [START_REF]Reduced operator algebras of trace-preserving quantum automorphism groups[END_REF]Thm 4.2]).

As a consequence, it is enough to compute the limit of

K 0 k 0 A k p dim u S N k tp k 0 A k p dim u S N k .
It is clear that A tp p 1, so that the denominator is greater than dim u S N tp which is known to grow as N tp . As for the numerator, it can be bounded by

K 0 ! dimu S N K 0 ! max khK 0 A k p.
Moreover, the number A k p is at least bounded by the total number of partitions on L u G p points, i.e. the Catalan number C Lu G p . Gathering these estimates, the quantity that we are interested in is less than

K 0 dim u S N K 0 C Lu G p N tp .
To conclude, simply use the well-known estimate C n ¢ π 1~2 n 3~2 4 n as well as the fact that Lu G We are now ready for the proof of the Haagerup property.

Theorem 6.11. Let C X,Y be a category of noncrossing partitions such that the length function is proper, let N i 4 sD be an integer and let G be the associated easy quantum group. Then, G has the Haagerup property.

Proof. Let ϕ i i be a net of states implementing the Haagerup property for S N . We claim that the associated net ψ i i does the job. The fact that it converges pointwise to the counit is clear because ϕ i i does and Π is a Hopf -algebra morphism. We therefore only have to check that for a xed i,

ψ i χ p G dim u G p Ð 0
outside nite sets of equivalence classes of irreducible representations. Since is a proper length function on G, it is equivalent to prove that the above quantity tends to 0 as u G p ª. Let e 0 and let K 0 be an integer such that, for all k i K 0 ,

ϕ i χ S N k dim u S N k h ~2,
Then,

ψ i χ G p dim u G p 1 dim u G p K 0 k 0 A k pϕ i χ S N k keK 0 A k pϕ i χ S N tq dim u G p .
Because Π is a Hopf -algebra homomorphism it is dimension-preserving, hence dim u G p Akpdimu S N k . Thus, by Lemma 6.9, there is an integer K 1 such that the rst term is less than ~2 as soon as p tp i K 1 . The second term can be bounded by

2 dim u G p keK 0 A k p dim u S N tq h 2 .

w n and w w 1 .

 1 . . w n are words in F S, then w w n . . . w 1 w w w 1 . . . w n w 1 . . . w Denition 1.1. The fusion semiring of S is the abelian semigroup R S N F S¥ endowed with the "tensor product" :

4 .

 4 Free fusion semirings 4.1. The capping technique. This section contains our main results. The proofs are purely combinatorial and heavily rely on the manipulation of partitions using the category operations. In particular, we will use the so-called capping technique : given a colored partition p b C X,Y k, l, we may use a one-line partition b

  noncrossing partitions C X,Y . Any projective noncrossing partition A b Proj C X,Y k with tA 1 has the following form : there is a word w w 0 . . . w n b Z 2 Z 2 such that the upper part of the only through-block in A has coloring w. Between the points colored by w i and w i1 , there is a (possibly empty) partition b i1 b N C X,Y k i1 , 0. Similarly, there are such partitions b 0 at the left of the point colored by w 0 and b n1 at the right of the point colored by w n . Such a data will be symbolically written A b 0 , w 0 , . . . , w n , b n1 ¥ and completely characterizes the partition. Lemma 4.2. Let A b 0 , w 0 , . . . , w n , b n1 ¥ be a projective partition as above. Then, b i b i b C X,Y for all i.Proof. Rotating A on one line, we can cap b 0 b 0 to cancel it. Let x @ x be the involution on Z 2 exchanging 1 and 1. Then, we get neighboring points with colors w 0 and w 0 , which we can cancel by capping again. Rotating back to get a symmetric partition, we have proven that b 1 , w 1 , . . . , w n , b n ¥ b C X,Y . The same can be done on the right, and iterating this process we end up with b i , w i ¥ b C X,Y or w i1 , b i ¥ b C X,Y . Rotating and capping yields b i b i b C X,Y . A similar description can be given for a projective noncrossing partition B b Proj C X,Y k with tB 0 and such that 1 and k belong to the same block. The coloring of the block containing 1 can be written w w 0 . . . w n and between the points colored by w i and w i1 lies a partition b i1 b N C X,Y k i1 , 0. Such a datum will be symbolically written B w 0 , b 1 , . . . , b n , w n ¥ and completely characterizes the partition. Lemma 4.3. Let B w 0 , b 1 , . . . , b n , w n ¥ be a projective partition as above. Then, b i b i b C X,Y for all i.

  the building blocks belong to C X,Y . Rotating the lower part of B 0 on the left and capping, we see as in the proof of Lemma 4.2 that we can remove B 0 without leaving the category of partitions C X,Y . The same can be done for B tp by rotating it on the right and capping with a pair partition. After canceling such a partition, we can use the same rotating and capping technique to cancel A 1 or A tp . It is now straightforward by induction that we can cancel B 0 , A 1 , . . . , B i2 , A i1 and B tp , A tp , . . . B i1 , A i1 without leaving C X,Y , i.e. A i , B i b C X,Y for all i.Let us say that a projective partition A w 0 , b 1 , . . . , b n , w n ¥ with tA 1 as above is one-block if b i g for all i. One-block projective partitions are in fact enough to describe projective partitions. Proposition 4.5. Let A w 0 , b 1 , . . . , b n , w n ¥ b Proj C X,Y k be a projective partition such that tA 1. Then, there exists a one-block projective partition  A and projective partitions B, B with tB 0 tB such that A ¢ B  A B.

  b 2 , . . . , ¥. Since n , b 2 , . . . , ¥ nA 1, we can apply the induction hypothesis to , b 2 , . . . , ¥, giving the result. A ¢ B , , b 2 , . . . , ¥ with B b Proj C X,Y l. Let C , b 2 , . . . , ¥. By induction, C ¢ B Â C. Let D be the partition implementing this equivalence and consider the partition R al1 DB , , b 2 , . . . , ¥.

Corollary 4 . 6 .

 46 Let p b Proj C X,Y be a projective partition. Then, there are oneblock partitions A 1 , . . . , A tp b C X,Y and projective partitions B 0 , . . . , B tp b C X,Y

Denition 4 . 7 .

 47 A category of partitions C X,Y is said to be block-stable if for any partition p b C X,Y and any block b of p, we have b b C X,Y .

Lemma 4 . 14 .

 414 Let C X,Y be a category of noncrossing partitions. Let a, b, a , b b C X,Y be projective partitions such that a ¢ a and b ¢ b . If a q b b C X,Y , then a q b b C X,Y

Lemma 5 . 1 .

 51 Let p be a projective partition. Then, u p is a one-dimensional representation if and only if tp 0.

θ

  s b C X,Y for some integer s i 3.θ ak 1 b C X,Y for some integer s i 1 (this is equivalent to β ak 1 ¢ g).

θ ak 2

 2 b C X,Y for some integer s i 1 (this is equivalent to β ak 2 ¢ g).Assume that θ ak s b C X,Y for some integer k. Then, π s1 b C X,Y and if ks m!s1 r is the euclidian division of ks by s 1, we have r ,Y . This means that θ s1m1s1r θ ks b C X,Y , concluding the proof. 6. Applications 6.1. Length functions. Length functions on discrete quantum groups were introduced in[START_REF] Vergnioux | The property of rapid decay for discrete quantum groups[END_REF] Def 3.1]. Any compact matrix quantum group is endowed with a natural "word length function" given, for an irreducible representation α, by Lα infk, α u aw with w k.

p

  h s D u G p D s Dtp D. Remark 6.10. For O N and U N , we have Lα α so that the estimates work for all N e 4.

  Let N be an integer and let e 1 , . . . , e N be a basis of C N . For any partition p b P X,Y k, l, we dene a linear map

	Prop 2.9].	
	Proposition 2.6. Let p b N C X,Y be a noncrossing partition. Then, there exists a
	unique pair p l , p u of building partitions such that p p	l p u .
	2.2. Easy quantum groups.	
	2.2.1. Partitions and linear maps. The link between partitions and easy quantum
	groups lies in the following denition [7, Def 1.6]. Note that this denition does
	not involve the coloring of the partitions.	
	Denition 2.7.	

  that the fusion semiring of the free complexication of H N is the same as the one of Ç H N . This, by virtue of [2, Lem 5.3] implies that the above morphism is bijective. Hence we have proved : Corollary 4.29. Let N i 4 be an integer. Then, the easy quantum group associated to C X,Y

	0 is the free complexication Ç H N of H N .
	Remark 4.30. We could also prove directly that C X,Y 0 is the category of partitions
	of Ç H N and then use Theorem 4.23 to recover [15, Cor 2.5.13].
	Remark 4.31. The abelianization of A 0 h N is the algebra CH ª N of functions on the group H ª

  1, 1 and 1 ¶ JC X,Y , then GC X,Y Z s with s mink b The basic remark is that rotating r β k β k and capping yields θ kk . Thus, SC X,Y Z s means that β k ¢ β k if and only if k k s¥, which is precisely the statement. 2 : It is known by Lemma 5.3 that any one-dimensional representation is equivalent to a tensor power of β 1 , hence the result. 3 : This is exactly the same reasoning as above.Important for the sequel will be to know whether GC X,Y is nite or not. Here is what we can deduce from this section. Corollary 5.7. Let C X,Y be a category of noncrossing partitions. Then, GC X,Y is a nite group if and only if it is trivial or there are integers s, k i 1 such thatθ ak s b C X,Y . Proof.From what precedes, we see that if GC X,Y is nontrivial, then it is nite if and only if C X,Y satises one of the following conditions :

	N, β ak 2 ¢ g.
	Proof. 1 :

Proof. First note that intervals of p, i.e. blocks of the form i, i 1, . . . , i l can be removed by capping since they belong to C X,Y by assumption. This creates new intervals, which can also be removed. Because p is noncrossing, iterating this process enables us to remove all of p l or all of p u without leaving C X,Y . Proposition 4.12 will prove crucial in our investigation of the link between blockstability and the representation theory of the associated easy quantum group. Before stating and proving it, we need a preparatory lemma. Lemma 4.11. Let C X,Y be a category of noncrossing partitions and assume that it is not block-stable. Then, there exists a partition p b C X,Y satisfying (1) p is not block-stable.

(2) p is projective.

(3) tp 0. (4) 1 and k belong to the same block of p.

Proof. Let r be a partition which is not block-stable and let  r be the partition obtained by rotating all the points of r on the upper line. Then, p  r  r is projective, is not block-stable and tp 0. Assume that 1 and k do not belong to the same block of p. This means (by noncrossingness) that p can be written as q 1 q 2 , where q 1 and q 2 are projective partition with tq i 0 for i 1, 2. Any block of p being either a block of q 1 or of q 2 , at least one of them, say q 1 , is not blockstable. By rotating q 2 on one line and capping, we see that q 1 b C X,Y . Iterating this process, we end up with a partition satisfying condition 4. Proposition 4.12. Let C X,Y be a category of noncrossing partitions and assume that it is not block-stable. Then, there exists a partition Let us prove that either p u ¶ C X,Y or there exists a partition q b Proj C X,Y l, l d k, satisfying the properties 14 of Lemma 4.11. If p u b C X,Y , there are in fact two possibilities : all the partitions b i are block-stable, or one of them is not.

(1) In the rst case, capping by blocks of these partitions we can remove all of them. We end up with a projective partition, the upper row of which is simply a l-block for some l d k (because p u b C X,Y by assumption, so that this block cannot be all of p u ). This l-block is not in C X,Y because all the other blocks of p are blocks of some b i , hence in C X,Y . Thus, we are done.

(2) In the second case, there is an index i such that b i contains a block which is not in C X,Y . Then, we know by Lemma 4.3 that b i b i b C X,Y . Since b i has by denition strictly less points than p, we are done. Now it is clear by induction that there is a projective partition q b C X,Y such that tq 0 and q u ¶ C X,Y . Setting b q u concludes the proof.

Proof. The proof of the injectivity of Φ was sketched in [START_REF] Freslon | On the representation theory of easy quantum groups[END_REF]Lem 6.13], but we give a more detailed argument. Let w p 1 ¥ . . . p n ¥ and w q 1 ¥ . . . q k ¥ be words on SC X,Y such that Φw Φw . This means that the projective partitions p p 1 p n and q q 1 q k are equivalent. Since tp n and tq k, we must have n k. Setting r i r p i q i , we see that r p q q u p u r 1 r n . By block-stability, r i b C X,Y for all i, i.e. p i ¢ q i for all i. Hence, w w in SC X,Y and Φ is injective.

Let us now prove surjectivity. Block stability means in particular that we can cancel all the non-through-blocks in a the decomposition of Corollary 4.6 without changing its equivalence class. By Corollary 4.6, any projective partition is therefore equivalent to an horizontal concatenation of one-block projective throughpartitions. In other words, Φ is surjective.

The last ingredient we need is some precision about the notion of trivial representation which will be important hereafter. Lemma 4.17. Let p be a projective partition such that tp 0. Then, u p is a onedimensional representation. Moreover, u p is equivalent to the trivial representation of G if and only if p u b C X,Y .

Proof. Because tp 0, T p has rank one so that P p T p and u p is one-dimensional. We are now ready for our main result. Theorem 4.18. Let C X,Y be a category of noncrossing partitions, let N i 4 be an integer and let G be the associated easy quantum group. The following are equivalent :

(1) G has no nontrivial one-dimensional representation.

(2) C X,Y is block-stable.

(3) The map Φ is a semiring isomorphism.

(4) The fusion semiring of G is free.

Proof. 1 ¨2 : Assume that C X,Y is not block-stable. Then, by Proposition is a one-dimensional representation which is not equivalent to the trivial one by Lemma 4.17.

2 ¨3 : If C X,Y is block-stable, then Φ is bijective by Lemma 4.16. Let w p 1 ¥ . . . p n ¥ and set p p 1 p n . By denition of the conjugation on SC X,Y , Φw Φw u p u p ¥. The representation u p u p contains u pj tp p and since p j tp p u is a rotation of p, the latter representation is trivial by Lemma Denition 6.1. Let G be an easy quantum group and let C X,Y be its associated category of partitions. If p b Proj C X,Y , we set u p tp. This denes a central length function on G.

Note that Denition 6.1 makes sense for any easy quantum group but is illbehaved in general. For instance, nontrivial one-dimensional representations have length 0. This problem can easily be overcome by setting u p u p δ p¢g , but the crucial issue is rather whether this length function is proper or not. Let us characterize precisely when this is the case. Proposition 6.2. Let C X,Y be a category of noncrossing partitions. Then, the length function is proper if and only if both SC X,Y and GC X,Y are nite.

Proof. Assume that SC X,Y s. Then, according to Corollary 4.6, to build a projective partition p with tp k we have to chose :

Between A i and A i1 , before A 1 and after A k , an element of GC X,Y : GC X,Y k1 choices. Hence, we have

yielding the "if" part of the statement. Moreover, we obviously have 1 1 i s and 1 0 GC X,Y , giving the "only if" part of the statement. Remark 6.3. The previous reasoning can also be used to obtain a lower bound. In fact, 1 k contains at least all words of length k on SC X,Y multiplied by an element of GC X,Y , hence

Remark 6.4. Assume that SC X,Y s, GC X,Y d ª and that any non-throughblock projective partition is equivalent to a partition with at most 2D points.

Then, and L are equivalent in the following sense : for any α b IrrG,

This comes from the fact that, up to equivalence, a partition p with tp k has at most sk k 1D s Dk D points.

Noticing that if SC X,Y is innite, then GC X,Y is either innite or trivial, we get the following corollary : Corollary 6.5. Let C X,Y be a category of noncrossing partitions which is not C X,Y ª .

Then, is proper if and only if GC X,Y is nite.

Combining the two estimates, we have, for u G p i maxK 0 , K 1 ,

and the result follows. Remark 6.12. For N i 5, the quantum group S N is not amenable by [START_REF]Symmetries of a generic coaction[END_REF]. Since amenability passes to quantum subgroups, we can infer that a free easy quantum group is never amenable when N i 5.

Theorem 6.11 applies in particular to free quantum groups without nontrivial one-dimensional representations. In that case, we know by Proposition 6.2 that is proper provided the quantum group is not H ª N . Hence the following corollary : Corollary 6.13. The following quantum groups have the Haagerup property for

This recovers previous results of M. Brannan [START_REF] Brannan | Approximation properties for free orthogonal and free unitary quantum groups[END_REF] and F. Lemeux [START_REF] Lemeux | Haagerup property for quantum reection groups[END_REF]. In particular, Theorem 6.11 gives explicit multipliers implementing the Haagerup property on

N and Ç H N without resorting to a free product trick.

6.3. Recovering the fusion ring. In this section we adress the question of reconstructing the fusion ring R G from R C X,Y and GC X,Y . Using the map Φ,

we get an additive subsemigroup R C X,Y ΦR C X,Y of R G (even though it is not a subsemiring in general). Similarly, we can see N GC X,Y ¥ as a subsemiring of R G. This data is enough to recover the fusion ring of G.

Proposition 6.14. Let N i 4, let C X,Y be a category of noncrossing partitions and let G be the associated easy quantum group. Then, RG is generated as a ring by R C X,Y and GC X,Y . Proof. Let R denote the subring of RG generated by R C X,Y and GC X,Y and let us prove by induction on tp that u p ¥ is in R. If tp 0 , then u p ¥ b GC X,Y R.

Assume now that tp e 0 and let B 0 A 1 A tp B tp be an equivalent projective partition given by Corollary 4.6. Then, u p is equivalent to a subrepresentation of v u B 0 u A 1 u A tp u B tp , which is in R by denition. Moreover, all the other subrepresentations of v are associated to partitions q with tq d tp.

Therefore, they are in R by the induction hypothesis. We conclude that u p b R.

This proposition does not give an explicit description of the fusion ring. Such a description is probably quite complicated in general, and we will focus on a particular case : when R C X,Y is as a subsemiring of R G. Proposition 6.15. Let N i 4 be an integer, let C X,Y be a category of noncrossing partitions and let G be the associated easy quantum group. If R C X,Y is a subsemiring of R G, then exactly one of the following holds :

(1) GC X,Y is trivial.

(

(3) SC X,Y 1¥, 0 ¥, 0 ¥, 1¥ and JC X,Y 1, 0, 1.

(4) SC X,Y 1¥, 1¥ and JC X,Y 1, 0, 1.

Proof. First note that β k appears as a subpartition of π ak N . We are then in the case 1 or 2 (using for case 2 the classication of all free easy orthogonal quantum groups given in [21, Thm 2.9]).

Summarizing, we have proven that excluding 1 and 2, we must have IC X,Y 1, 1, 1 z 1, β 1 b C X,Y and β 2 ¶ C X,Y . This gives us either SC X,Y 1¥, 1¥ or SC X,Y S.

This result looks rather incomplete since the last two cases are not explicitely described. Such a description, however, will appear quite straightforwardly as a consequence of the classication of all free unitary easy quantum groups in [START_REF] Tarrago | Unitary easy quantum groups : the free case and the group case[END_REF].