N

N
N

HAL

open science

MRI-driven dynamo at very high magnetic Prandtl
numbers

Jérome Guilet, Alexis Reboul-Salze, Raphaél Raynaud, Matteo Bugli, Basile
Gallet

» To cite this version:

Jérome Guilet, Alexis Reboul-Salze, Raphaél Raynaud, Matteo Bugli, Basile Gallet. MRI-driven
dynamo at very high magnetic Prandtl numbers. Monthly Notices of the Royal Astronomical Society,
2022, 516, pp.4346 - 4353. 10.1093/mnras/stac2499 . hal-03811838

HAL Id: hal-03811838
https://hal.science/hal-03811838

Submitted on 12 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03811838
https://hal.archives-ouvertes.fr

of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 516, 43464353 (2022)
Advance Access publication 2022 September 14

https://doi.org/10.1093/mnras/stac2499

MRI-driven dynamo at very high magnetic Prandtl numbers

Jérome Guilet,!* Alexis Reboul-Salze,!? Raphaél Raynaud “',*> Matteo Bugli “'! and Basile Gallet*

Wniversité Faris-Saclay, Université Paris Cité, CEA, CNRS, AIM, F-91191 Gif-sur-Yvette, France

2Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany

3 Université Paris Cité, Université Paris-Saclay, CEA, CNRS, AIM, F-91191 Gif-sur-Yvette, France

4 Université Paris-Saclay, CNRS, CEA, Service de Physique de I’Etat Condensé, F-91191 Gif-sur-Yvette, France

Accepted 2022 August 30. Received 2022 August 30; in original form 2022 February 18

ABSTRACT

The dynamo driven by the magnetorotational instability (MRI) is believed to play an important role in the dynamics of accretion
discs and may also explain the origin of the extreme magnetic fields present in magnetars. Its saturation level is an important
open question known to be particularly sensitive to the diffusive processes through the magnetic Prandtl number Pm (the
ratio of viscosity to resistivity). Despite its relevance to proto-neutron stars and neutron star merger remnants, the numerically
challenging regime of high Pm is still largely unknown. Using zero-net flux shearing box simulations in the incompressible
approximation, we studied MRI-driven dynamos at unprecedentedly high values of Pm reaching 256. The simulations show that
the stress and turbulent energies are proportional to Pm up to moderately high values (Pm ~ 50). At higher Pm, they transition
to a new regime consistent with a plateau independent of Pm for Pm 2 100. This trend is independent of the Reynolds number,
which may suggest an asymptotic regime where the energy injection and dissipation are independent of the diffusive processes.
Interestingly, large values of Pm not only lead to intense small-scale magnetic fields but also to a more efficient dynamo at the
largest scales of the box.

Key words: instabilities — magnetic fields— MHD — stars: magnetars — supernovae: general — (transients:) neutron star mergers.

1 INTRODUCTION

The magnetorotational instability (MRI) is believed to play a crucial
role in a large number of astrophysical objects. This includes
accretion discs around a variety of objects (Balbus & Hawley 1998),
neutron star mergers (e.g. Siegel et al. 2013; Kiuchi et al. 2014,
2018; Guilet et al. 2017), stellar mergers (e.g. Schneider et al. 2019),
and core-collapse supernovae (e.g. Akiyama et al. 2003; Masada,
Sano & Shibata 2007; Obergaulinger et al. 2009; Guilet & Miiller
2015; Mosta et al. 2015; Reboul-Salze et al. 2021a). In neutron
star mergers and core-collapse supernovae, the MRI may generate
extreme magnetic fields reaching up to 10'3-10'° G, potentially
leading to the formation of a magnetar (Reboul-Salze et al. 2021a,b).
In combination with fast rotation, such extreme magnetic fields
can trigger powerful magnetorotational explosions' (e.g. Takiwaki,
Kotake & Sato 2009; Bugli et al. 2020; Kuroda et al. 2020; Bugli,
Guilet & Obergaulinger 2021). This so-called millisecond magnetar
scenario may provide an explanation for outstanding explosions
such as long gamma-ray bursts, hypernovae, and superluminous
supernovae (e.g. Woosley 2010; Metzger et al. 2011). The formation
of a magnetar after a neutron star merger has also been proposed as
a central engine of short gamma-ray bursts (e.g. Mosta et al. 2020).

* E-mail: jerome.guilet@cea.fr

'Note that with magnetorotational explosion we refer to the physical
explosion mechanism of massive magnetized stars in rotation, not to be
confounded with the MRI.

The origin of the extreme magnetic fields of magnetars is still an
important open question as several scenarios have been proposed,
such as a convective dynamo in a fast rotating proto-neutron star
(PNS) (Thompson & Duncan 1993; Raynaud et al. 2020; Raynaud,
Cerdd-Durdn & Guilet 2022), the Tayler-Spruit dynamo following
fallback (Barrere et al. 2022), amplification in main-sequence stellar
mergers (Schneider et al. 2019), or the fossil field scenario (Fer-
rario & Wickramasinghe 2006). To shed light on this question,
it is important to assess the efficiency of each of the dynamo
mechanisms in the conditions specific to a PNS. The impact of
different ingredients on the MRI has been studied in recent years:
the shear parameter (Masada et al. 2012), neutrino viscosity and drag
(Guilet, Miiller & Janka 2015), stable stratification (Guilet & Miiller
2015; Reboul-Salze et al. 2021b), and spherical geometry (Reboul-
Salze et al. 2021a). A remaining open question is the dependence
on diffusion coefficients. Local disc simulations have shown that the
efficiency of the MRI is strongly correlated to the magnetic Prandtl
number Pm (the ratio of viscosity to resistivity) when Pm ~ 0.1—-16
(Fromang et al. 2007; Lesur & Longaretti 2007; Simon & Hawley
2009; Longaretti & Lesur 2010; Shi, Stone & Huang 2016; Potter &
Balbus 2017) and plateaus at Pm < 0.1 with an imposed external
magnetic field (Meheut et al. 2015). Low and high Pm regimes are
computationally challenging because a high numerical resolution is
needed to resolve the small viscous (low Pm) or resistive (high Pm)
scale. The regime of low Pm has attracted particular attention because
it is relevant to most regions of accretion discs as well as to liquid
metals (laboratory experiments and Earth core), but the opposite
regime of large Pm has not been targeted specifically by previous
studies of the MRI. This regime is relevant to PNSs (Thompson &
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Duncan 1993; Guilet et al. 2015; Lander 2021), neutron star merger
remnants (Rossi, Armitage & Menou 2008), which exhibit physical
conditions similar to PNSs (Guilet et al. 2017), interstellar and
intergalactic media (Schekochihin et al. 2004), and to the inner parts
of some accretion discs (Balbus & Henri 2008; Potter & Balbus 2014,
2017). In the latter case, the Pm dependence of the MRI may drive
an instability leading to variability in the accretion rate (Potter &
Balbus 2014, 2017; Kawanaka & Masada 2019).

Simulations of the MRI in a PNS including explicit diffusion
coefficients are able to describe a realistic parameter regime for
the (large) viscosity and thermal diffusion induced by neutrinos
(Guilet et al. 2015; Reboul-Salze et al. 2021a, b). By contrast,
the physical resistivity in a PNS is much smaller than the values
that can be afforded in these simulations. This translates into a
large discrepancy between the huge values of Pm ~ 10'3 relevant
to a PNS and the modest values Pm = 4-16 of these simulations.
The regime of high magnetic Prandtl numbers is very challenging
for numerical simulations because a high resolution is required to
resolve the resistive length scale. Local models are best suited to
tackle this problem owing to their simplicity and comparatively low
computational cost. We probe unprecedentedly large Pm values (up
to 256), using a zero-net flux shearing-box model inspired by a
comparison between local and spherical models of the MRI (Reboul-
Salze et al. 2021a).

2 NUMERICAL SET-UP

Our simulations are designed to represent a small region in the
equatorial plane of a fast rotating PNS. The local dynamics is
described in the framework of a Cartesian shearing box (e.g.
Goldreich & Lynden-Bell 1965). The coordinates x, y, and z represent
the radial, azimuthal, and vertical directions, respectively, and the
corresponding unit vectors are ey, ey, and e;. The angular frequency
vector points in the z-direction 2 = 2 e,, while gravity and shear are
in the x-direction. Neutrinos are assumed to be in the diffusive regime
such that their effects on the dynamics can be described by a viscosity
(Guilet et al. 2015). We used the incompressible approximation for
the following reasons. Soundproof approximations are well justified
for the study of the MRI in a PNS because the fluid velocity and the
Alfvén speed are small compared to the sound speed (v/c; < valcs S
1072, seee. g. Guilet et al. 2015; Reboul-Salze et al. 2021a,b). Limits
to the applicability of the incompressible approximation in a PNS
come mostly from the density gradient and the buoyancy driven by
entropy and composition gradients. Neglecting the density gradient
is an essential part of the local approximation, which is necessary in
order to reach high magnetic Prandl numbers. On the other hand,
while buoyancy could have been included with the Boussinesq
approximation, it was shown by Reboul-Salze et al. (2021b) to have
relatively minor effects on the MRI in a PNS except for a small
region near the equator. For this reason and for the sake of simplicity,
we adopted the incompressible approximation. The incompressible
MHD equations in the shearing box approximation read

1 1
sv+v-Vv=——VII+ —(V x B) x B+ ¢gQxo,v
Lo MoLo ’

+qQuie, — 22 x v+ VA, @€))]
B =V x(xB)+qQxd,B —qQB.ey, +nAB, 2)
V.v=0, (3)
V-B=0, “
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where B is the magnetic field, py is the density, v is the kinematic
viscosity, and 7 is the magnetic diffusivity. The gradient of the
pressure perturbation VII is obtained from the constraint of a
divergence-free flow field (equation 3). v is the velocity fluctuation
with respect to the mean shear profile U = —gQxe,, where the shear
parameter g = —dlog Q2/dlog r is assumed to have a sub-Keplerian
value of ¢ = 0.8 in all simulations (such value is relevant in particular
for PNSs, e.g. Bugli et al. 2020; Reboul-Salze et al. 2021a). The
box dimensions (L, Ly, L;) = (1, 3, 3)L are chosen in light of the
comparison with global simulations performed by Reboul-Salze et al.
(2021a).

The shear rate and the box aspect ratio being fixed, this set-up is
governed by only two dimensionless numbers: the Reynolds number
Re = L*>Q/v and the magnetic Reynolds number Rm = L*Q/n. We
obtained self-sustained MRI-driven turbulence in 30 simulations with
Rm ranging from 8000 to 102400 and with three different values
of the Reynolds number (Re = 400, 800, and 1 600). In this set of
simulations, the magnetic Prandtl number Pm = v/n = Rm/Re lies
in the range Pm = 8—256. Note that for each Reynolds number, we
ran simulations with lower magnetic Reynolds number where the
dynamo was not self-sustained, which are therefore not included in
the present analysis.

Our simulations are initialized with a random superposition of
large-scale magnetic modes, with exactly zero net magnetic flux. We
checked in a few cases that, after a transient phase, the turbulent state
was statistically independent of the initial conditions, provided that
the initial magnetic field was strong enough to initiate an MRI-driven
dynamo. The simulations were run for a duration varying between
1500 and 3000 2!, which is longer than the typical time-scale of
the fluctuations (see the upper panel of Fig. 1). The time-averaged
results shown in this paper are performed at times ¢t > 500 Q™! in
order to exclude any initial transient behaviour.

Throughout the paper, our results are normalized using the radial
size of the domain L, the angular frequency €2, and the density pg.
With parameters typical of a PNS L = 10km, = 10°s~!, and
po =2 x 10" gecm 3, time would therefore be measured in units of
1 ms, velocity in units of 10° cms™!, the magnetic field in units of
1.6 x 10'° G, and the energy density in units of 2 x 103! ergcm ™.
Our range of Reynolds numbers translates into a viscosity ranging
from v = 6 x 10" to 2.5 x 10"2cm?s~!, which is comparable to
estimates of the neutrino viscosity in the outer parts of a PNS (Guilet
et al. 2015).

2.1 Numerical methods and convergence tests

In order to solve the incompressible MHD equations (1)—(4), we use
the pseudo-spectral code SNOOPY (Lesur & Longaretti 2005, 2007),
which has been used in numerous studies of the MRI (e.g. Lesur &
Longaretti 2011; Guilet et al. 2015; Walker & Boldyrev 2017). Our
simulations were performed using a grid resolution varying from
(ny, ny, ny) = (64, 128, 192) to (ny, ny, n;) = (256, 512, 768). In
order to ensure that the resistive scale is resolved, the number of grid
points is increased as Pm is increased. In all simulations presented
in the figures of this paper (except for some of the low resolution
simulations performed for the convergence study), the resistive scale
is resolved by at least 8.5 grid cells (see Table 1).

In order to check the convergence of our results, we ran a
subset of 8 additional simulations at lower resolution for Re =
400, Pm = 24 — 128. We define a convergence criterion /./Ax
as the ratio of the resistive scale (measured such that half of the
resistive dissipation takes place at higher/lower scales) to our grid
scale. The precise threshold needed for convergence is expected to

MNRAS 516, 4346-4353 (2022)
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Figure 1. Top panel: Time evolution of the magnetic energy for a subset of
simulations with Re = 400 and Pm € [24, 256]. Lower panels: Time and
volume averaged magnetic energy (Ema,g = B%/2410), kinetic energy (Ein
= v2/2), and stress (o = PovxVy — ByBy/up) as functions of the magnetic
Prandtl number for three different values of the Reynolds number Re = 400
(red circles), Re = 800 (blue crosses), and Re = 1600 (black triangles).
The error bars show the standard deviation, which probably overestimates
the actual error on the averages. The dotted line shows a linear fit valid at
moderate Pm, while the dashed line shows the fit with equation (5). The stress
and energies are in units of poL*Q? (with L the radial size of the box).

MNRAS 516, 4346-4353 (2022)

depend on the numerical scheme? and potentially on the physical
problem considered through the width of the dissipation peak. As
a consequence, it is necessary to calibrate it through dedicated
convergence tests as it is done here. In all our simulations, the
wavenumber at which the dissipation peak has decreased by a
factor of 2 is roughly twice as large as the wavenumber of the
dissipation maximum independently of Pm. This suggests that a fixed
threshold in /s/Ax can be a meaningful measure of convergence in
the parameter space explored. When comparing the low-resolution
runs with their higher resolution counterparts (Table 1 and Fig. 1), we
observe that the stress and turbulent energies of the low-resolution
simulations have a tendency to be slightly smaller (with the exception
of a few cases), but they are all consistent within the statistical
error bars defined with the standard deviation. Most simulations
show differences of at most a few per cent, while the least resolved
test (Re400Pm128n128 with [.s/Ax = 7.1, which we would deem
slightly under-resolved) has a larger difference of about 10 per cent
in the stress compared to its high resolution counterpart (however,
the difference is smaller for the turbulent energies). We stress that all
our runs are better resolved than this under-resolved test according
to our resolution criterion (/s/Ax > 8.5 for all simulations, and the
three highest Pm runs have [./Ax > 9.6). Our convergence tests
therefore suggest that all the simulations included in the analysis
give reliable results on the average energies and stress with errors
of at most a few per cent due to numerical artefacts. Such errors are
within the statistical errors shown in Fig. 1 and do not compromise
our main conclusions.

In some of the spectra, a numerical artefact can be discerned at
wavenumbers larger than the dissipation peak. We checked that, in
all the simulations included in the analysis, the resistive dissipation
rate at this artefact is smaller than the resistive dissipation peak
by a factor of at least 10 (e.g. 40 and 15 for the simulations at
Pm = 192 and 256, respectively). In four of the low-resolution
tests, this artefact is more pronounced and leads to a breakdown of
this criterion (Re400Pm48n96, Re400Pm64n96, Re400Pm96n128,
Re400Pm128n128 with a ratio of the artefact to peak resistive
dissipation rate of 6, 3, 7, and 4, respectively), which allows to check
the potential influence of such artefact on the overall dynamics and
energetics. Therefore, the convergence tests discussed above give
confidence that the influence of the sub-resistive-scale artefact on
the averaged energies and stress is small (at most a few per cent) in
the simulations included in the analysis.

Finally, note that the resolution in the azimuthal direction is twice
as low as in the radial or vertical direction, because the structures are
more elongated in the azimuthal direction due to the shear (Fig. 2).
We checked in a few cases that our results are not affected by the
lower azimuthal resolution.

3 RESULTS

The time-evolution of the magnetic energy for a subset of our
simulations with varying Pm shows a clear trend of increasing
magnetic energy for larger Pm (Fig. 1, upper panel). This trend
nevertheless stops towards the largest values of Pm, as the two
simulations Pm = 192 and Pm = 256 appear to converge on the
same value. This conclusion is confirmed quantitatively by the lower
panels of Fig. 1, showing the magnetic energy, kinetic energy, and

2Pseudo-spectral methods like the one we use are known for their low
dissipation and for necessitating fewer grid points than non-spectral grid-
based methods (e.g. Fromang et al. 2007).
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Table 1. Overview of the numerical simulations. The second and third columns show the dimensionless control parameters that have been varied in this
study: the Reynolds number Re = L2Q/v and the magnetic Prandtl number Pm = v/5. The time and volume averages of the kinetic (Exj, = v2/2) and
magnetic (Emag = B%/2410) energy densities and the total stress (o = povxvy — BxBy/ii0) are in units of poL*Q?, with L the radial size of the box with
dimensions (Ly, Ly, L;) = (1, 3, 3)L. The resistive length scale /i is defined as the wavelength such that 50% of the resistive dissipation takes place at
shorter/longer scales. The ratio of the resistive scale to the radial size of the grid cells Ax is used to check that the simulation is sufficiently resolved.

k<3m/L

k<m/L

Name Re Pm Exin Emnag Emag Emag o Ny ny n; Lies/ Ax
Re400Pm24n64 400 24 289x 1077 487 x1072 9.14x 1073 358 x 1073 190x 1072 64 96 192 8.4
Re400Pm24n96 400 24 385x 1073 627x1072 142x1072 648 x 1073 245x1072 96 128 256 12.1
Re400Pm32n96 400 32 414x1073 701 x1072 138x 1072 591 x103 275x1072 96 128 256 10.4
Re400Pm32n96hyz 400 32 441 x1073 751 x1072 1.61x1072 727x1073 290x 1072 96 256 512 10.3
Re400Pm32n128 400 32 462x1073 770x 1072 1.64x 1072 777 x 1073 3.01x 1072 128 192 384 13.6
Re400Pm48n96 400 48 557 x1073 1.03x 107! 268x1072 1.79%x 1072 370 x 1072 96 128 256 8.4
Re400Pm48n128 400 48  540x 1073 977x 1072 188 x 1072 957 x 1073 375x1072 128 192 384 11.0
Re400Pm64n96 400 64  6.05x1073 1.10x 107" 246x 1072 130x 1072 4.03x 1072 96 128 256 7.5
Re400Pm64n128 400 64  598x1073 1.17x107! 254 x1072 151 x1072 428x 1072 128 192 384 9.5
Re400Pm80n128 400 80 6.55x 1073 133x107! 287x1072 1.69x 1072 475x 1072 128 192 384 8.5
Re400Pm80n192 400 80 624x 1077 135x 107! 3.00x 1072 170 x 1072 469 x 1072 192 256 512 12.6
Re400Pm96n128 400 9  675x 1073 141 x107! 315x 1072 176 x 1072 493 x 1072 128 192 384 7.9
Re400Pm96n192 400 96  6.69x 1073 145x 107! 258x 1072 1.06x 1072 523 x 1072 192 256 512 11.5
Re400Pm128n128 400 128 676 x 1073 158 x 107! 442 x 1072 294 x 1072 498 x 1072 128 192 384 7.1
Re400Pm128n192 400 128  7.04x 1073 161 x 107! 328 x 1072 214x 1072 556x 1072 192 256 512 10.0
Re400Pm192n256 400 192 756 x 1073 2.03x 107! 3.69x 1072 180x 1072 6.69 x 1072 256 384 768 10.8
Re400Pm256n256 400 256 723 x 1073 213 x 107" 493 x 1072 359 x 1072 657 x 1072 256 384 768 9.6
Re800Pm10n96 800 10 231x1073 287x1072 599x103 274x1073 1.17x1072 96 128 256 13.0
Re800Pm12.5n96 800 12 243x1073 3.10x 1072 526x 1073 228x 1073 130x 1072 96 128 256 11.5
Re800Pm16n128 800 16  346x 1073 435x 1072 7.66x 1073 352x1073 186 x1072 128 192 384 13.0
Re800Pm22.5n128 800 22 479%x 1073 6.06x 1072 1.05x 1072 464 x1073 262x1072 128 192 384 10.5
Re800Pm32n128 800 32 626x 1073 803x 1072 147x1072 745x103 342x1072 128 192 384 8.7
Re800Pm48n192 800 48 718 x 1073 101 x 107" 1.84x 1072 827 x 1073 420x 1072 192 256 512 10.4
Re800PmM64n256 800 64  817x1073 122x107' 226x 1072 135x 1072 498 x 1072 256 384 768 11.8
Re800Pm80n256 800 80 8.10x 1073 125x 107! 135x107%2 382x107% 512x1072 256 384 768 10.5
Re800PmM96n256 800 9 8.69x 1073 147x107! 283x1072 151 x1072 552x1072 256 384 768 9.7
Re1600Pm8n96 1600 8 1.03x 1073 125x 1072 171 x 1073 730x107% 493 x 1073 96 128 256 10.4
Rel1600Pm10n128 1600 10  137x1073 160x 1072 189x 103 7.83x107* 6.74x1073 128 192 384 11.8
Rel600Pm12.5n128 1600 12 326 x 1073 334 x 1072 539x 1073 276x 1073 149x 1072 128 192 384 9.7
Rel1600Pm16n128 1600 16 398 x 1073 4.06x 1072 636x 1073 3.17x 1073 183 x1072 128 192 384 8.5
Rel1600Pm24n192 1600 24  6.14x 1073 639x 1072 1.04x 1072 493x 1073 287x 1072 192 256 512 9.8
Rel1600Pm32n256 1600 32  540x 1073 627 x 1072 747x103 268 x 1073 276 x 1072 256 384 768 112
Re1600Pm48n256 1600 48 884 x 1073 1.10x 107" 250x 1072 151 x 1072 432x1072 256 384 768 8.9

total stress time-averaged over the quasi-stationary turbulent phase.
All three quantities increase approximately linearly with Pm up to
Pm < 50. Interestingly, at still larger values of Pm, they transition to
a less steep dependence and are consistent with a plateau for Pm >
100 (or slightly more for the magnetic energy). It is noteworthy that
all three sets of simulations with different Reynolds numbers fall on
the same universal curves as a function of Pm. This dependence can
be well fitted by a functional form

Pm/Pm,
V1 + (Pm/Pm.?’

as represented by dotted lines in Fig. 1. The best-fitting parameters
give critical magnetic Prandtl numbers for the start of the plateau
of Pm, = 91, 37, and 61 for the magnetic energy, kinetic energy,
and the stress, respectively. The asymptotic values at large Pm are
ES. =021, EF =7.8x 1073, and «® = 6.4 x 1072. Because of
the higher value of Pm, for the magnetic energy, Pm-independent
plateaus are more clearly visible for the stress and kinetic energy. As
a consequence, we cannot rule out a slight increase of the magnetic
energy with Pm at high Pm, either logarithmically or in a very weak
power law (similarly to Alexakis 2011).

A striking feature of Fig. 1 is that, for a given Pm, the stress and
magnetic energy are independent of the Reynolds number and that the

A(Pm) = A® )

kinetic energy has only a weak dependence with Re. This may seem
surprising given the relatively low values of Re considered, which
could have suggested that the viscosity would impact the MRI. The
impact of viscosity on the MRI linear growth is controlled by the
viscous Elsasser number E, = vf‘ /v§2, with strong viscous effects
for E, < 1. Although there is no linear phase of the MRI for the zero-
net flux case, we can try to estimate the impact of viscosity on the
saturated state with the Elsasser number computed with the turbulent
magnetic field. In our simulations, E, is found to range from 40 to
350. Such relatively high values may give a hint as to why the stress
and energies are roughly independent of the Reynolds number.

In MRI-driven turbulence, the turbulent magnetic energy is usually
significantly larger than the kinetic energy, and similarly the Maxwell
stress is larger than the Reynolds stress. In a Keplerian disc, the
magnetic to kinetic ratios are often in the range of 3-6, though they
may depend on the precise set-up. In our simulations, the kinetic
to magnetic ratios are higher (between 10 and 20), which is likely
due to the sub-Keplerian shear (see fig. 4 of Pessah, Chan & Psaltis
2006).

The structures of the velocity and magnetic field are illustrated in
Fig. 2 with snapshots representative of the regimes of moderate Pm
(upper row) and large Pm (lower row). The first striking feature is
the highly entangled small-scale structure of the magnetic field in

MNRAS 516, 4346-4353 (2022)
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Figure 2. 3D rendering of the azimuthal component of the velocity field (left panels) and of the magnetic field (middle panels). The right-hand panels represent
the time-averaged spectra of the force balance. The upper row corresponds to a simulation with a moderate value of Pm = 24, while the lower row corresponds
to a large value of Pm = 256. Both simulations share the same Reynolds number Re = 400. In the force balance spectrum, only the divergence-free part of the

forces is included as it is appropriate in the incompressible approximation.

the high Pm regime. By contrast, in both the moderate and high Pm
regimes the velocity field is dominated by structures at much larger
scales comparable to the radial size of the box. One can none the
less note the appearance of subdominant small-scales structures in
the velocity field in the high-Pm regime.

A more quantitative description of the velocity and magnetic field
structures is provided by their energy and dissipation spectra shown
in Fig. 3 for varying values of Pm at Re = 400. As Pm increases,
both the magnetic and kinetic energy spectra initially increase at all
wavenumbers.®> The kinetic energy peaks at a small wavenumber k
~ 10 independently of Pm, while the peak of the magnetic energy
spectrum increases with Pm from k ~ 30 to k ~ 70. Although the
peak of the kinetic energy does not change with Pm, a significant tail
at higher wavenumbers appears in the high Pm regime. This can be
understood as a result of a balance between the Lorentz and viscous
forces, which drives fluid motions (the right-hand panels of Fig. 2).
The viscous dissipation in this tail broadens significantly the peak
of viscous dissipation across larger wavenumbers (the lower panel
of Fig. 3). Nevertheless, the majority of the dissipation is due to
the resistivity acting at still higher wavenumbers, with a peak of the
dissipation rate ranging from k ~ 60 to k ~ 200 as Pm increases.

Fig. 4 shows the Pm dependence of the characteristic scales
of resistive dissipation (red symbols) and kinetic energy (blue

3The only exception being the intermediate range of wavenumbers for Pm =
256.
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symbols), where the dependence on the Reynolds number has been
approximately scaled out by dividing the wavenumbers by +/Re. The
characteristic resistive wavenumber is proportional to +/Pm, while
the kinetic energy scale is approximately independent of Pm. The
scaling of the resistive wavenumber may be explained by equating
the shearing term that generates magnetic field at a rate g2 and the
resistive decay rate nk?, which leads to an estimate of the resistive
wavenumber kL ~ +/Rm or equivalently kL /+/Re ~ +/Pm.

The analysis of the spectra and characteristic scales may suggest
the following interpretation for the transition to a plateau independent
of Pm. As Pmis increased (with fixed Re), the resistive scale becomes
shorter and shorter as o ~/Pm, while the velocity scale stays constant
(see Figs 3 and 4). At very high Pm > 100, the resistive scale is at
least an order of magnitude shorter than the velocity scale. The
dynamics may then become independent of the resistivity because
the scale separation between the velocity and resistive scales prevents
an efficient feedback of the resistive scales on the much larger scales
of the flow. This situation would then be analogous to hydrodynamic
turbulence, whose large-scale dynamics and overall energy budget
become independent of the Reynolds number when a sufficient scale
separation prevents feedback of the viscous scales on the injection
scales.

We stress again that increasing Pm not only leads to more
intense smaller-scale magnetic fields but also to stronger large-scale
magnetic fields. Fig. 5 shows that the magnetic energy contained in
large-scale structures increases with Pm proportionally to the total
magnetic energy. Structures at some of the largest allowed scales
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of the box with k < /L and k < 3m/L represent, respectively,
about 10 per cent and 20 per cent of the total magnetic energy
independently of Pm.

4 CONCLUSION

We performed direct numerical simulations of MRI-driven dynamos
with explicit viscosity and resistivity reaching unprecedentedly large
values of the magnetic Prandtl number Pm. In the quasi-stationary
state, the magnetic energy, kinetic energy, and the angular momentum
transport are approximately independent of the Reynolds number
and follow a universal curve as a function of Pm. They first increase
linearly with Pm up to moderately large values of this parameter
(for Pm < 50), and smoothly transition to a regime consistent with a
plateau independent of Pm at Pm 2> 100. As Pm is increased, the peak
of the magnetic energy shifts to larger wavenumbers. Interestingly,
however, the energy contained in the largest scales of the magnetic
field increases proportionally to the total magnetic energy, suggesting
the presence of a large-scale dynamo whose efficiency increases with
Pm.

These results are particularly important for the formation of
magnetars in fast rotating proto-neutron stars and in neutron star
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defined such that half of the resistive dissipation takes place at higher/lower
wavenumber) and of the kinetic energy (blue, defined such that half of the
kinetic energy is located at higher/lower wavenumbers). The wavenumbers
have been normalized by +/Re so that the dependence on the Reynolds number
is approximately scaled out. The symbol shapes correspond to different
Reynolds numbers as in Fig. 1: Re = 400 (circles), Re = 800 (crosses), and
Re = 1600 (triangles). The low resolution tests at Re = 400 are represented
with the black plus signs. The dashed line represents a scaling of the resistive
wavenumber as o< +/Pm.

4 08
© o«
% 101 /0‘—""*
g » %
5 He” Y
£ x A +A "*’"
o ’,’ * _.___-
= A A )%‘ ’9— .: % g(‘j(— ’
3 10_2 3 ’f&’
I
5 S X
L XA’Q A ® total
?é” ra ® k<3mlL
-3 ]
S0y 4 ® k<mlL
10! 102
Pm

Figure 5. Magnetic energy contained in the largest scales of the box as a
function of the magnetic Prandtl number. Blue and red symbols correspond
to the energy at wavenumbers smaller than 7/L and 37 /L, respectively, while
black symbols show the total magnetic energy. The symbol shapes correspond
to different Reynolds numbers as in Fig. 1: Re = 400 (circles), Re = 800
(crosses), and Re = 1600 (triangles). The low resolution tests at Re = 400 are
represented with the plus signs. The dashed lines represent the fit of the total
magnetic energy (black), and a fraction of 20 per cent (red) and 10 per cent
(blue) of this fit, respectively.

merger remnants. The increase with Pm of the magnetic energy
contained at large scales would suggest that the dipolar component
of the magnetic field should likewise increase in a spherical model.
With this assumption, we may use our results to extrapolate the
results of Reboul-Salze et al. (2021a) obtained at Pm = 16 to the
asymptotic regime of very high Pm relevant in a PNS. The fitting
formula (equation 5) predicts that the magnetic energy obtained by
Reboul-Salze et al. (2021a) is underestimated due to their moderate
value of Pm by a factor Pm./16 >~ 6.
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In parallel to this work, Held & Mamatsashvili (2022) have
also recently explored the MRI-driven dynamo in the regime of
high magnetic Prandtl numbers. Several aspects of their results are
qualitatively consistent with ours: the stress increases as a power law
with Pm at moderate Pm and transitions to a weaker dependence,
possibly a plateau, at Pm > 50—100. Some differences can none the
less be noted and they may be explained by the different set-up and
parameter space exploration. First, they find a shallower power-law
dependence of the stress with Pm (power-law index 0.5—0.7) than
the linear dependence that we find for moderate Pm. This different
slope is most likely primarily due to their choice of a Keplerian
shear rate (¢ = 1.5), while we studied a sub-Keplerian shear rate
(g = 0.8).* Their slope is consistent with previously published
studies assuming Keplerian shear (see their fig. 17), although one
should note that there is also a dependence on the box aspect
ratio, such that Simon & Hawley (2009) for example is consistent
with a linear dependence. The dependence on the shear rate and
box aspect ratio should therefore be studied in more details in the
future. Another difference lies in the parameter space exploration:
Held & Mamatsashvili (2022) ran series of simulations where Pm
was varied at fixed Rm (by varying Re) while in our series of
simulations Re was kept fixed and Rm varied. This might play
a role in the other main difference with our results: while in our
simulations the stress and magnetic energy are independent of the
Reynolds number (for fixed Pm), Held & Mamatsashvili (2022) find
an additional dependence on the magnetic Reynolds number at fixed
Pm.

The dependence of the MRI saturated state on Pm (rather than
Re or Rm) in our simulations highlights the importance for nu-
merical simulations to describe explicitly the diffusive processes.
The effective Pm of implicit large eddy simulations (e.g. Mosta
et al. 2015; Kiuchi et al. 2018, for the context of core collapse
supernovae and neutron star mergers) is of order unity regardless
of the resolution they may reach. They are therefore very far from
the high-Pm regime described in this paper and our results suggest
that they may underestimate the magnetic energy by a factor up
to 100.

Beyond the clear increase of the turbulent energies and stress with
Pm, our results provide the first evidence that an asymptotic regime
independent of Pm may exist for Pm 2 100 (at least for the stress and
kinetic energy). Such a regime had not been obtained by previously
published MRI simulations, because they were restricted to relatively
low Pm values (Pm < 16). We propose that the plateau at very
high Pm probably originates from the scale separation between the
velocity and resistive scales, which prevents an efficient feedback
of the resistive scales on the much larger scales of the flow. One
should however caution that our simulations did not reach a very
large scale separation between velocity and resistive scales, such
that a weak dependence of the magnetic energy at high Pm cannot
be excluded with the present data. An extrapolation of our results
to the much higher values of Pm relevant to proto-neutron stars
is therefore still uncertain and will require a deeper analysis and
physical understanding. In this perspective, it will be important to
provide a robust physical explanation of the Pm dependence (Riols
et al. 2017; Mamatsashvili et al. 2020) and the asymptotic high-
Pm regime with a detailed analysis of the energy transfers between
different scales.

“the three simulations performed by Held & Mamatsashvili (2022) at ¢ = 0.8
give a steeper Pm dependence with a power-law index >~ 1.4.
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