Jaime Arias

Michał Knapik

Wojciech Penczek

Laure Petrucci

Modular Analysis of Tree-Topology Models

Keywords: Model Checking, Networks of Synchronising Automata, State Space Reduction, Tree-Like Synchronisation Topologies

Networks of automata that synchronise over shared actions are organised according to a graph synchronisation topology. In this topology two automata are connected if they can jointly execute some action. We present a very effective reduction for networks with tree-like synchronisation topologies such that all automata after synchronising with their parents can execute only local (non-synchronising) actions: forever or until resetting, i.e. entering the initial state. We show that the reduction preserves reachability, but not liveness. This construction is extended to tree-like topologies of arbitrary automata and investigated experimentally.

Introduction

Networks of various types of finite automata (or labelled transition systems, LTSs for short) [START_REF] Baier | Principles of model checking[END_REF][START_REF] Knapik | Action synthesis for branching time logic: Theory and applications[END_REF] are a popular choice of formalism when modelling complex systems such as protocols. In this approach, the components of the system under investigation are abstracted as state machines and the behaviour of the entire system is captured by their synchronised product. However, the cost of computing the synchronised product can be prohibitive: in practice the size of the state space grows exponentially with the number of the sub-modules. This observation led to an extensive research into how to analyse and represent models that consist of interacting components without building the entire state space.

In this paper, we tackle the problem of computing a compact representation of the state space of the entire product of networks of LTSs that exhibit treelike synchronisation topologies. Intuitively, this means a graph, whose edges depict synchronisation between LTSs over common actions of a system, is a tree. Examples of systems having such a synchronisation topology are e.g. attackdefense trees (ADT) [START_REF] Petrucci | Squeezing state spaces of (attack-defence) trees[END_REF][START_REF] Arias | Hackers vs. security: Attack-defence trees as asynchronous multi-agent systems[END_REF][START_REF] André | Parametric analyses of attackfault trees[END_REF][START_REF] Arias | Minimal schedule with minimal number of agents in attack-defence trees[END_REF], hierarchical [START_REF] Aminof | Improved model checking of hierarchical systems[END_REF], broadcast [START_REF] Belardinelli | Verification of broadcasting multi-agent systems against an epistemic strategy logic[END_REF], multimedia [START_REF] Arias | Authoring and automatic verification of interactive multimedia scores[END_REF], and workflow models [START_REF] Van Der Aalst | Workflow Management: Models, Methods, and Systems[END_REF].

This structure of communication is quite natural also in the system design where circular dependencies are sometimes treated as anti-patterns and cause problems such as deadlocks.

We design algorithms that compute a compact representation of the synchronised product bottom-up, focusing at each level only on the synchronisations between the pairs consisting of a parent and one of its children. As it turns out, the notion of memory is crucial to the size of the constructed LTS (called here the sum-of-squares product). Namely, if every component resets (i.e. returns to its initial state) after synchronising with its parent or enters a deadlock, then no information about its post-synchronisation states needs to be preserved. In this case, the sum-of-squares product is quite small and can be computed efficiently. In case some LTSs do not reset after synchronising with their parents, an additional memory gadget is needed. Then, the general sum-of-squares product also preserves reachability, but a reduction or good performance is not guaranteed. The burden of recording the post-synchronisation state of the components can even lead to substantial blowup of the state space.

Outline of the Paper

In Section 2 we provide the basic definitions of synchronising LTSs, live-reset and sync-deadlock LTSs, and synchronisation topologies. A bottom-up reduction for the networks of live-reset and sync-deadlock LTSs is presented in Section 3. We show how to transform these networks in a reachability-preserving way into a new, smaller model called the sum-of-squares product. The key idea is that the new model traces the interactions between the components and their parents, followed by upstream synchronisations. This bottom-up reduction is extended in Section 4 to a wider case of tree-like synchronisation topologies with general LTSs. Section 5 investigates experimentally the effectiveness of the reductions on several scalable examples and many random cases using a novel open-source tool [START_REF] Ltr | [END_REF]. Section 6 draws conclusions and discusses future work.

Tree Synchronisation Systems

In this section we recall the notions of networks of Labelled Transition Systems and their synchronisation topologies. We also introduce and explain the restrictions on the models assumed in the next section. In what follows PV denotes the set of propositions.

Definition 1 (Labelled Transition System). A Labelled Transition System

(LT S) is a tuple M = S, s I , Acts, →, L where:

1. S is a finite set of states and s I ∈ S the initial state; 2. Acts is a finite set of action names; 3. → ⊆ S × Acts × S is a transition relation; 4. L : S → 2 PV is a labelling function.

We usually write s act --→ s instead of (s, act, s) ∈→. We also denote acts(M) = Acts and states(M) = S. A run in LT S M is an infinite sequence of states and actions ρ = s 0 act 0 s 1 act 1 . . . s.t. s i act i --→ s i+1 for all i ≥ 0. By Runs(M, s) we denote the set of all the runs starting from state s ∈ S. If s is the initial state, we write Runs(M) instead of Runs(M, s I).

LT S Networks and Synchronisation Topologies

Model checkers such as spin [START_REF] Holzmann | The SPIN Model Checker -primer and reference manual[END_REF], Uppaal [START_REF] Behrmann | UPPAAL 4.0[END_REF], and IMITATOR [START_REF] André | IMITATOR 3: Synthesis of timing parameters beyond decidability[END_REF] usually expect the systems to be described in a form of interacting modules. Synchronisation over common actions [START_REF] Baier | Principles of model checking[END_REF] (or channels) is a popular primitive that enables such an interaction.

Definition 2 (Asynchronous Product). Let M i = S i , s I i , Acts i , → i , L i be LT S, for i ∈ {1, 2}. The asynchronous product of M 1 and M 2 is the LT S M 1 ||M 2 = S 1 ×S 2 , (s I 1 , s I 2), Acts 1 ∪Acts 2 , →, L 1,2 s.t. L 1,2 ((s 1 , s 2)) = L 1 (s 1)∪ L 2 (s 2) for all (s 1 , s 2) ∈ S 1 × S 2
and the transition rule is defined as follows:

act ∈ Acts 1 \ Acts 2 ∧ s 1 act --→ 1 s 1 (s 1 , s 2) act --→ (s 1 , s 2) act ∈ Acts 2 \ Acts 1 ∧ s 2 act --→ 2 s 2 (s 1 , s 2) act --→ (s 1 , s 2) act ∈ Acts 1 ∩ Acts 2 ∧ s 1 act --→ 1 s 1 ∧ s 2 act --→ 2 s 2 (s 1 , s 2) act --→ (s 1 , s 2)
The above definition is naturally extended to an arbitrary number of components. We sometimes write

|| n i=1 M i instead of M 1 || . . . ||M n . If s is a state of M 1 || . . . ||M n , then by s Mi we denote its component corresponding to M i .
The synchronisation topology [START_REF] Petrucci | Squeezing state spaces of (attack-defence) trees[END_REF] is an undirected graph that records how LTSs synchronise with one another.

Definition 3 (Synchronisation Topology

). A synchronisation topology (ST) is a tuple G = Net, T , where Net = {M i } n i=1 is a set of LT Ss for 1 ≤ i ≤ n, and T ⊆ Net × Net is s.t. (M i , M j) ∈ T iff i = j and Acts i ∩ Acts j = ∅.
Note that T is induced by Net. Thus, with a slight notational abuse we sometimes treat G as Net. Moreover, we write acts(G) = n i=1 acts(M i).

Definition 4 (Tree Synchronisation Topology).

A synchronisation topology G s.t. T is a tree rooted in root(G) is called tree synchronisation topology.

It should be noted that root(G) is not always uniquely induced by G, the root is thus a part of the signature of tree synchronisation topology. Let us fix a tree synchronisation topology G = Net, T , root(G) . For each M ∈ Net by parent(M) we denote the parent of M in T (we assume that parent(root(G)) = ∅). By children(M) we mean the set of the children of M. By upacts(M) (resp. downacts(M)) we denote the set of actions via which M synchronises with its parent (resp. children). For each act ∈ downacts(M), snd (M, act) denotes the component M ∈ children(M) s.t. act ∈ upacts(M). Thus, snd (M, act) is the child of M that synchronises with M over act. If M is clear from the context, we simply write snd (act). The local unsynchronised actions of M are defined as locacts(M) = acts(M) \ (downacts(M) ∪ upacts(M)).

For brevity, whenever we refer to a state, action label, transition, or state space of G we mean a state, action label, transition, or state space of || n i=1 M i . We also extend the notion of runs to synchronisation topologies: Runs(G, s) = Runs(|| n i=1 M i , s) for each s ∈ states(|| n i=1 M i). Moreover, for each F ⊆ acts(G) we introduce the notion of one-shot F runs, Runs F (G, s), as the set of all the runs in Runs(G, s) along which each action from F appears at most once.

Example 1. Figure 1 presents a small tree ST G x with the root R and two children M 1 and M 2 . The auxiliary symbols !/? are syntactic sugar, used to distinguish between upacts and downacts. Here, upacts(R) = ∅, downacts(R) = {open, chooseL, chooseR}, and locacts(R) = {beep}. Similarly, upacts(M 1) = {open}, upacts(M 2) = {chooseL, chooseR}, downacts(M 1) = locacts(M 1) = downacts(M 2) = ∅, and locacts(M 2) = τ .

We start by dealing with networks whose components all share a similar, simple structure.

Definition 5 (Live-Reset LTS). A LTS M with initial state s I

M is live-reset if for each run ρ = s 0 act 0 s 1 act 1 . . .: ∀i ∈ N if act i ∈ upacts(M), then s i+1 = s I M .

Definition 6 (Sync-Deadlock LTS). A LTS M is sync-deadlock if for each run ρ = s 0 act 0 s 1 act 1 . . .: ∀i ∈ N if act i ∈ upacts(M), then for each j > i, act j ∈ locacts(M).

LTSs that are either live-reset or sync-deadlock are said to be sync-memoryless 3 . Intuitively, after synchronising with its parent a sync-memoryless LTS either immediately enters its initial state (if live-reset) or executes only local actions (if sync-deadlock).

If every LTS of ST G is live-reset (resp. sync-deadlock), then we say that G is live-reset (resp. sync-deadlock). It is easy to see that the tree ST in Figure 1 is live-reset.

Definition 7 (Reachability and liveness). For each p ∈ PV we write G |= EF p (resp. G |= EGp) iff there exists ρ ∈ Runs(G) s.t. ρ = s 0 act 0 s 1 act 1 . . . and p ∈ L(s i) for some (resp. for all) i ∈ N.

By replacing |= with |= F and Runs with Runs F in Definition 7 we obtain the notion of one-shot F -reachability and the dual of liveness. Both EF and EG are Computation Tree Logic (CTL) modalities [START_REF] Baier | Principles of model checking[END_REF]. If G |= EF p, then we say that p is reachable in G from the initial state. Definition 8. Let N ⊆ Net and ρ * be a prefix of some ρ ∈ Runs(G) s.t. ρ * = s 0 act 0 s 1 act 1 . . . By ρ * ↓ (N) we denote the projection of ρ * to the asynchronous product of LTSs in N , i.e. the result of transforming ρ * by (1) firstly, projecting each s i on the LTSs in N ; (2) secondly, removing the actions that do not belong to M∈N acts(M), together with their destinations.

Intuitively, ρ * ↓ (N) contains the parts of the global states of ρ * that belong to || M∈N M and actions executed by some M ∈ N . It is not difficult to show that ρ * ↓ (N) does not need to be a valid run of || M∈N M.

Example 2. Consider a sequence: η = (r 0 , s 0 , t 0) τ (r 0 , s 0 , t 1) τ (r 0 , s 0 , t 2) open (r 1 , s 0 , t 2) chooseR (r 4 , s 0 , t 0) τ (r 4 , s 0 , t 1) chooseL (r 0 , s 0 , t 0). Here, we have η ↓ ({R, M 1 }) = (r 0 , s 0)open(r 1 , s 0)chooseR(r 4 , s 0)chooseL(r 0 , s 0).

Compact Representations of State Spaces of Live-Reset and Sync-Deadlock Trees

In this section we show how to generate compact representations of state spaces of sync-memoryless tree topologies preserving reachability. The procedure is presented in two steps. We start with the case of two-level trees. Then, we modify the construction to deal with trees of arbitrary height in a bottom-up manner.

Constructions for Two-level Trees

Throughout this subsection let G be a sync-memoryless tree ST with components

Net = {R, M 1 , . . . , M n } s.t. root(G) = R and children(R) = {M 1 , . . . , M n }. Moreover, let R = S R , s I R , Acts R , → R , L R and M i = S i , s I i , Acts i , → i , L i , for i ∈ {1, . . . , n}.
We employ the observations on the nature of synchronisations with sync-memoryless components in the following definition.

Definition 9 (Sum-of-squares Product). Define SQ u (G) = S u sq , s I sq , Acts sq , → sq , L sq as an LT S s.t.:

1. S u sq = n i=1 (S i × S R) ∪ {s I sq }. 2. s I sq ∈ S u sq is a fresh initial state. 3. Acts sq = acts(G) ∪ { }, where ∈ acts(G) is a fresh, silent action. 4. The transition relation → sq is defined as follows: (a) s I sq - → sq (s I i , s I R), for all i ∈ {1, . . . , n}; (b) if (s i , s R) act --→ (s i , s R) is a transition in M i ||R, then also (s i , s R) act --→ sq (s i , s R), for all i ∈ {1, . . . , n}; (c) if G is live-reset and (s i , s R) act --→ (s I i , s R) is a transition in M i ||R, then (s i , s R) act --→ sq (s I j , s R) for all j ∈ {1, . . . , n} \ {i}; (d) if G is sync-deadlock and (s i , s R) act --→ (s i , s R) is a synchronised transi- tion in M i ||R, then (s i , s R) act --→ sq (s I j , s R), for all j ∈ {1, . . . , n} \ {i}. 5. L sq (s i , s R) = L i (s i) ∪ L R (s R) ∪ j =i L j (s I j), for each (s i , s R) ∈ S u sq . We call SQ u (G) the Sum-of-squares Product of G.
Intuitively, SQ u (G) at any given moment traces only the interactions between the root and one of its children. Item 4a of Definition 9 introduces the new initial state connected via -transitions with the initial states of each square product M i ||R. Item 4b ensures that the square product preserves the local and synchronised actions of the root and each child. Item 4c means that after resetting each component M i can release control to another module, for livereset topologies. Item 4d serves a similar purpose for sync-deadlock topologies.

Example 3. Fig. 2 presents the sum-of-squares product SQ u (G x) for the small tree ST of Example 1. The fresh initial state s I sq is coloured green, the yellow box surrounds the square product M 1 ||R, and the pink box surrounds the square product M 2 ||R. The red colour of some states is explained in Section 3.2. The arcs that correspond to the transitions synchronised between a child and the root are coloured red if the control switches between components (according to Item 4c of Definition 9) and blue otherwise. The local transitions are black.

Theorem 1 (Sum-of-squares Product Preserves Reachability). Let G be a sync-memoryless two-level tree ST with root R and p Proof. We only deal with the case of live-reset topology; the case of syncdeadlock follows similarly.

∈ PV. If G is live-reset, then G |= EF p iff SQ u (G) |= EF p. If G is sync-deadlock and F = downacts(R), then G |= F EF p iff SQ u (G) |= F EF p.
Recall that we assume Net = {R, M 1 , . . . , M n } with root R and children {M i } n i=1 . Let G |= EF p and ρ = s 0 act 0 s 1 act 1 . . . be a run of G s.t. p ∈ L(s i) for some i ∈ N. If ρ contains only local actions, then for any of the components C ∈ Net each of its local states visited along ρ can be reached by executing in SQ u (G) firstly the -action (cf. Item 4a of Definition 9) and then local actions of C found in ρ (cf. Item 4b of of Definition 9). Moreover, consider a situation where a non-root component C synchronises with the root only a finite number of times. Now, each local state s of C that is reachable along ρ only after executing the final synchronising action of C can be reached in SQ u (G) using onlyand local actions. Such a run in SQ u (G) reaching s can be built as described previously due to the fact that the final synchronisation resets the component. Also, let ρ be the result of iterative removal from ρ of all the local actions of any non-root component C that appear after its last synchronising action together with their targets, and replacing along the run all the further local states of C with s I C . It is not difficult to see that ρ visits the same local states of the root that are visited along ρ and all the local states of each non-root component C visited before the final synchronising action of C is executed.

We can therefore further assume () that ρ contains at least one synchronising action and can be represented as ρ = α 1 F 1 α 2 F 2 . . ., where for each i ∈ N there exist j, k ∈ N such that α i = s j act j . . . s k act k s k+1 and act j , . . . , act k ∈ locacts(R) ∪ n i=1 locacts(M i), F i ∈ downacts(R), and each local action of any component is eventually followed by some of its synchronising actions.

Actions are never synchronised between children, thus it can be proven by induction on the length of the run that the actions in ρ can be reordered to obtain a run ρ ∈ Runs(G, s 0) that can be represented as ρ = α 1 F 1 α 2 F 2 . . ., such that:

1. For any i ∈ N there exist j, k ∈ N such that α i = s j act j . . . s k act k s k+1 and act j , . . . , act k ∈ locacts(R) ∪ locacts(snd

(F i)). 2. For each i ∈ N we have α i ↓ ({R, snd (F i)}) = α i ↓ ({R, snd (F i)}). 3. For each s j in α i , if 0 is the coordinate of root and k is the coordinate of snd (F i), then s j = (s 0 , s I 1 , . . . , s I k-1 , s k , s I k+1 , . . .) for some s 0 ∈ states(R), s k ∈ states(snd (F i)).
Intuitively, ρ is built from ρ in such a way that firstly only the root and the component that synchronises with the root over F 1 are allowed to execute their local actions while all the other components stay in their initial states; then F 1 is fired; and then this scheme is repeated for F 2 , F 3 , etc. We can now project ρ on spaces of squares of the root and components active in a given interval, to obtain

ρ = α 1 ↓ ({R, snd (F 1)})F 1 α 2 ↓ ({R, snd (F 2)})F 2 . . . Notice that ρ ∈ SQ u (G).
We now show that ρ visits all the local states that appear along ρ. To this end firstly observe that ρ and ρ contain the same local states. Moreover, if a local state of the root is visited in ρ then it is also visited in ρ , as we always project on squares of the root and some other component. If a local state of a non-root component is visited along ρ before executing some synchronising action F i then it will also be present before executing F i along ρ . This follows from the construction of ρ from ρ and our assumption () of the structure of ρ. As we have shown that ρ visits each local state that appears along ρ, this part of the proof is concluded.

Let SQ u (G) |= EF p and ρ ∈ Runs(SQ u (G)) visits a state labelled with p. Now, it suffices to replace in ρ each state (s k , s 0) that belongs to the square M k × R with the global state (s 0 , s I 1 , . . . , s I k-1 , s k , s I k+1 , . . .) of G. The result of this substitution is a run of G that visits p.

The next proposition shows that the sum-of-squares does not preserve EG.

Proposition 1 (Sum-of-squares Does Not Preserve EG).

There is a livereset two-level tree ST G s.t. for some p ∈ PV, G |= EGp and SQ u (G) |= EGp.

Proof. Consider the tree ST G y in Fig. 3. Here, we have G y |= EGp, but each path ρ along which p holds globally starts with M y 1 executing τ followed by M y 2 executing τ and, consecutively, chooseR. Thus, it is not possible to partition ρ into intervals where one child and the root fire local actions until they synchronise and possibly release the control to another child. Hence, SQ u (G y) |= EGp.

As illustrated in Example 3, the size of the state space of the sum-of-squares product of a sync-memoryless ST G can be equal to or greater than the size of the state space of G. On the other hand, the size of a representation of a state will be smaller in the sum-of-squares product, as it records only local states of at most two components of the network. However, in less degenerate cases than our toy model we can expect significant reductions. Let us consider a tree with a root and n children, each with a state space of size m. The number of states in the asynchronous product is m n+1 . In contrast, the size of the sum-of-squares product of such a topology is n • m 2 + 1. Indeed we record pairs of states from a child and its root, i.e. m 2 possible states. This is done for all n children, and there is an added fresh initial state. To summarise, the sum-of-squares product has a size in O(n • m 2).

Reduced Sum-of-Squares for Any Tree Height

We now adapt the sum-of-squares product of two-level live-reset tree topologies to the general case. To this end we introduce the auxiliary operation cmpl that transforms SQ u (G) into a live-reset LTS. Intuitively, cmpl redirects each transition that enters the initial state of the root to the fresh initial state s I sq . No additional operations are needed for sync-deadlock topologies.

Definition 10. Let G be a live-reset two-level tree ST with components Net = {R, M 1 , . . . , M n }. By cmpl (SQ u (G)) we denote the result of replacing in SQ u (G) every transition ((s Mi , s R), act, (s Mi , s I R)) with ((s Mi , s R), act, s I sq).

Algorithm 1 recursively performs reduction for two-level trees in a bottom-up manner. If the topology is live-reset, then each reduction is followed by applying cmpl (SQ u (•)) to the computed sum-of-squares to ensure that the output is also live-reset. Note that G chld denotes the subtree of G rooted in chld . The next theorem states soundness and correctness of Algorithm 1.

Theorem 2 (reduceNet(G) Preserves Reachability). Let G = Net, T , be a sync-memoryless tree ST , F = M∈Net downacts(M), and

p ∈ PV. If G is live-reset, then G |= EF p iff reduceNet(G) |= EF p. If G is sync-deadlock, then G |= F EF p iff reduceNet(G) |= F EF p.
Proof. (Sketch) The proof follows via induction on the height of the tree G. As we have Theorem 1, it suffices to prove that cmpl (SQ u (G)) preserves reachability for any two-level live-reset ST G. This, however, can be done in a way very similar to the proof of Theorem 1 and is omitted.

Algorithm 1 reduceNet(G)

Input: sync-memoryless tree sync. topology G Output: LT S M that preserves reachability of each proposition p in G. In certain hierarchical systems such as attack-defense trees [START_REF] Petrucci | Squeezing state spaces of (attack-defence) trees[END_REF] we are interested only in the reachability of the root's locations. This enables for additional optimisations related to removing deadlocks and livelocks that halt the root's evolution.

Definition 11 (Root-deadlock). Let G be a ST with Net = {R, M 1 , . . . , M n }, root(G) = R and children(R) = {M 1 , . . . , M n }. We say that a state s of M i ∈ children(R) is in a root-deadlock iff there is no run ρ ∈ Runs(M i , s) s.t. ρ = s 0 act 0 s 1 act 1 . . . with act i ∈ acts(R), where s 0 = s, for some i ∈ N.

The set of root-deadlocked states of an LT S can be computed in polynomial time using either a model checker or conventional graph algorithms. These states can be removed without affecting the reachability of a location of the root.

Example 4. Let us consider the LTS SQ u (G x) in Fig. 2. If it is a child of another LTS parent(SQ u (G x)) in a live-reset topology and beep ∈ upacts(SQ u (G x)), then all the states coloured red are root-deadlocked. Fig. 4 displays the reduced sumof-squares product of the topology.

Let us now evaluate the size of the state spaces for a tree of height h, considering each node has n children, each with a state space of size m. Such a tree has h i=0 n i nodes. Hence, the number of states in the asynchronous product is m h i=0 n i . The size of the sum-of-squares product of such a topology is n h • m h+1 + h-1 i=0 n i • m i . Indeed, for h = 1, this is exactly the size obtained for two-level trees in the previous section. The proof for any arbitrary height is easily done by induction. To compute the increase from height h to height h + 1, the same arguments as for the computation in a two-level tree hold. This leads to the following maximal number of states for height h + 1 :

1 + n • (n h • m h+1 + h-1 i=0 n i • m i) • m = n h+1 .m h+2 + h i=0 n i • m i . To summarise, the sum-of-squares product has a size in O(n h • m h+1).

The General Case and Local Products

The case of live-reset LTS tree networks entails substantial state space reductions due to the fact that children reset after synchronising with their root. Before resetting, only the local states of the root and one of its children need to be recorded; it can be assumed that all the children wait in their initial states. After single-level synchronisation, only the information about the root's state is relevant, as the synchronising child resets. In the general case of tree-like networks of synchronising LTSs, both the root's state and post-synchronisation state of its children have to be preserved.

In what follows let G be a two-level tree ST s.t.

Net = {R, M 1 , . . . , M n }, where root(G) = R and children(R) = {M 1 , . . . , M n }. Let R = S R , s I R , Acts R , → R , L R and M i = S i , s I i , Acts i , → i , L i , for i ∈ {1, . . . , n}.
For each i ∈ {1, . . . , n} let postSync(M i) denote the set of all the local states of M i visited immediately after synchronising with R. Formally:

postSync(M i) = {s ∈ S i | ∃act ∈ Acts R ∩Acts i s.t. (s , r) act --→ (s, r) in S i ×S R }.
The memory unit, defined as follows, is a collection of all the vectors of states of the components preserved after synchronisation.

Definition 12 (Memory Unit). The post-synchronisation memory unit of G is defined as:

mem(M 1 , . . . , M n) = n i=1 ({s I i } ∪ postSync(M i))
. Intuitively, Definition 13 generalises Definition 9 by extending the states of square products with the memory unit that is updated and consulted whenever a synchronisation takes place. This memory gadget can be implemented efficiently, but here we present it in an explicit way for the sake of readability.

Let i ∈ {1, . . . , n}, s i ∈ S i , and m ∈ mem(M 1 , . . . , M n). By m[i/s i] we denote the memory update of m defined as follows: m[j] = m[j] for all i = j and m[i] = s i .

Definition 13 (General Sum-of-squares Product). Let GSQ(G) = S gsq , s I gsq , Acts gsq , → gsq , L gsq be an LT S s.t.:

1. S gsq = n i=1 (S i × S R) × mem(M 1 , . . . , M n) ∪
[i] = s I i . (b) If s i act --→ i s i and act ∈ locacts(M i), then (s i , s R , m) act --→ sq (s i , s R , m), for each s R ∈ S R and m ∈ mem(M 1 , . . . , M n); similarly, if s R act --→ R s R and act ∈ locacts(R), then (s i , s R , m) act --→ sq (s i , s R , m), for each s i ∈ S i and m ∈ mem(M 1 , . . . , M n). (c) If act ∈ upacts(M i), s i act --→ i s i , and s R act --→ R s R , then (s i , s R , m) act --→ sq (s j , s R , m), where m = m[i/s i] and s j = m[j] for some j ∈ {1, . . . , n}. 5. L gsq (s i , s R , m) = L i (s i)∪L R (s R)∪ j =i L j (m[j]), for each (s i , s R , m) ∈ S gsq .
We call GSQ(G) the General Sum-of-squares Product of G.

Item 4a of Definition 13 expresses that the new initial state enables -transitions to the initial state of any square product M i ||R with the memory unit set to the starting values. Similarly to the corresponding case in Definition 9, Item 4b ensures that the local actions are fully asynchronous and do not affect memory unit. The idea behind Item 4c is that in a state (s i , s R , m) executing a synchronised action act will require updating the outcome states, saving them into memory, and then moving all the values from memory to the current state tracker. The latter may mean switching to another component. The transition rule, as defined here, concatenates these three steps into one.

Example 5. Fig. 5 presents a three-component ST G z . Note that the child M z 2 is not live-reset, as it does not reset after synchronising with R z via chooseF . Fig. 6 presents the general sum-of-squares product of G z .

The following analogues of Theorem 1 and Theorem 2 show that the general sum-of-squares preserves reachability. We omit the proofs of Theorem 3 and Theorem 4, as they follow via almost exactly the same techniques. A two-level general sum-of-squares can be adapted to deal with tree topologies G of any height by using recursive construction. The appropriate algorithm, denoted by reduceGenNet(G), is a slight modification of Algorithm 1 with recursive call in Line 6 replaced with reduceGenNet(G chld) and the if-else conditional in Line 9 substituted with return GSQ(G). It can be also easily observed that GSQ(.) does not preserve EG, by the same argument as in Proposition 1 and Fig. 3. Moreover, as previously, rootdeadlocked states (e.g. the red location in Fig. 6) can be removed if only the reachability of a location in the root is to be preserved.

The general sum-of-squares does not guarantee a reduction of the statespace size. If G is a two-level tree ST with Net = {R, M 1 , . . . , M n }, then the size of the statespace of reduceGenNet(G) can reach

n i=1 |S i | • |S R | • n i=1 |S i |, thus it
crucially depends on the size of the memory unit. On the other hand, we conjecture that the memory needed to preserve the general sum-of-squares product is often much smaller than the memory needed to hold the asynchronous product of the entire network. This conjecture is based on the observation that the states of GSQ(G) are composed of two parts: the pair of local states of two interacting modules and the memory unit which can be shared when implemented efficiently.

Experiments

In this section we evaluate the implementation of reductions for sync-memoryless tree topologies. The files to reproduce our tests and figures can be found at https://depot.lipn.univ-paris13.fr/parties/publications/live-trees.

The theory presented in Section 3 has been implemented in the open-source tool LTR [START_REF] Ltr | [END_REF], written in C. LTR accepts LTSs networks in a modgraph format [START_REF] Lakos | Modular analysis of systems composed of semiautonomous subsystems[END_REF]. The size of the fully synchronised product is computed using a Binary Decision Diagrams-based open-source Python tool DD-Net-Checker [START_REF]DD-Net-Checker[END_REF].

Model Generators: Attack-Defence Trees Attack-Defence Trees (ADT s) [START_REF] Kordy | Attack-defense trees[END_REF] are graphical models for representing possible scenarios of incoming risks and methods for their mitigation for complex systems. While descending from informal models, ADT s have been extended with various semantics. Here, we re-use the semantics based on translating the ADT s to networks of communicating LTSs [START_REF] Petrucci | Squeezing state spaces of (attack-defence) trees[END_REF][START_REF] Arias | Hackers vs. security: Attack-defence trees as asynchronous multi-agent systems[END_REF]. These networks form tree-like synchronisation topologies with all the LTSs being sync-deadlock. An attack is deemed a success if a special location in the root of a network is reachable. For the purpose of this paper we implemented a simple translator from ADT s to modgraph format.

Comparing with ADT Reductions In [START_REF] Petrucci | Squeezing state spaces of (attack-defence) trees[END_REF] we presented techniques for simplifying tree-like networks using pattern-and layered reductions. The former are similar to partial order reductions and the crux of latter is in the observation that it is sufficient to consider only runs where each level of a tree fully synchronises with its children before the execution proceeds to a higher level. In [START_REF] Petrucci | Squeezing state spaces of (attack-defence) trees[END_REF] these techniques are implemented using time parameter injection into LTSs networks and translation to timed LTSs networks.

The comparison with the results of reductions from [START_REF] Petrucci | Squeezing state spaces of (attack-defence) trees[END_REF] is included for reference, as the cited work is aimed at the full timed LTS-based semantics of ADT s which involves numeric attributes such as the time and cost of attack. Under this semantics the networks produce considerably larger fully synchronised models. Therefore, the comparison may be slightly unfair, favouring our approach.

ADT Experiments Table 1 shows the evaluation of the experiments on scalable models from [START_REF] Petrucci | Squeezing state spaces of (attack-defence) trees[END_REF]. Table 2 presents the results of running the experiments on security case studies, also taken from [START_REF] Petrucci | Squeezing state spaces of (attack-defence) trees[END_REF]. It should be noted that for the latter we used slightly simpler models than in [START_REF] Petrucci | Squeezing state spaces of (attack-defence) trees[END_REF], as contrary to the former paper our tool does not handle data variables such as cost, etc. The goal in each of these scenarios is reachability of a certain location in the root node and all the networks are sync-deadlock. The timeout was set to 30 minutes (displayed as TO in the tables).

The model signature in the first column of Table 1 consists of the branching factor per an ADT node, the total number of nodes, the depth and the width of an ADT [START_REF] Petrucci | Squeezing state spaces of (attack-defence) trees[END_REF]. In both tables the second pair of columns collects the details of unreduced models, the third collects the results of applying the sum-of-squares (here, abbreviated to sos) construction to the unreduced models, the fourth of applying only pattern reduction, the fifth of pipelining the pattern and layer reductions, and the sixth of pipelining the pattern reduction and the sum-ofsquares. The remaining columns collect the relative reduction/blowup rates.

The experimental data suggests that the reductions for sync-memoryless networks, proposed in this paper, are often comparable or exceeding [START_REF] Petrucci | Squeezing state spaces of (attack-defence) trees[END_REF]. This is especially evident when the sum-of-squares is applied to pattern-reduced models. The nature of the sum-of-squares construction can lead to statespace blowup, but this seems observable only for smaller networks. Moreover, larger networks enable more relative reductions.

To assess this further we conducted an independent series of scalable experiments on random live-reset tree networks. We generated 210 live-reset tree networks of depths 1-3 and computed their (reduced) sum-of-squares products. Fig. 7 presents the scatterplot of the results. The red line denotes no reduction.

The same phenomenon as for sync-deadlock trees can be observed: the degree of reduction increases with the size of the network.

Conclusion

In this paper we outlined how to simplify large tree networks of LTSs in which the components reset or deadlock after synchronising with their parents. We also proposed and investigated a similar construction for the general tree-like synchronisation topologies. It is shown that the constructions preserve a certain form of reachability, but do not preserve liveness. An experimental evaluation shows that the method yields extremely effective reductions for sync-memoryless networks.

We raise several questions to be explored as future work. Firstly, we only have a very rough theoretical estimate of the size of reductions for sync-memoryless networks. Stronger estimations can be obtained. Secondly, for general networks we only put a hypothesis that the state space of the general sum-of-squares may substantially grow as compared to the full asynchronous product (albeit with possibly smaller memory usage). This can be investigated experimentally. Moreover, the "vanilla" technique of general sum-of-squares is straightforward, thus surely enables many optimisations. Thirdly, the class of live-reset tree networks is probably one of many that do not need tracing what happens after synchronisation (sync-deadlock networks are slightly different, as one-shot transitions still need to be traced). Other such classes and topologies could probably be identified. Finally, the sum-of-squares for sync-deadlock LTS networks guarantees that a state is reachable before reduction iff it is one-shot F -reachable after (see Definition 7 and Theorem 1). We however do not know the complexity of verifying one-shot F -reachability; here we conjecture that it is NP-hard, which may make the reductions for this class of models less impressive than suggested by experimental results. All of these concerns can be addressed in further research.

Fig. 1 .

 1 Fig. 1. A simple tree synchronisation topology Gx.

Fig. 2 .

 2 Fig. 2. The sum-of-squares product of the tree ST of Example 1.

2 Fig. 3 .

 23 Fig.3. The sum-of-squares does not preserve EG.

Fig. 4 .

 4 Fig. 4. The reduced sum-of-squares product of the tree ST of Example 4.

Theorem 3 (

 3 General sum-of-squares Preserves Reachability). Let G be a two-level tree ST . For each p ∈ PV we have G |= EF p iff GSQ(G) |= EF p.

2 Fig. 5 .Fig. 6 .

 256 Fig. 5. A simple non live-reset tree synchronisation topology Gz

Theorem 4 (

 4 reduceGenNet(G) Preserves Reachability). Let G be a tree ST . For each p ∈ PV, we have G |= EF p iff reduceGenNet(G) |= EF p.

Fig. 7 .

 7 Fig. 7. Statespace sizes of sum-of-squares for live-reset tree networks.

 {s I gsq }. 2. s I gsq ∈ S gsq is a fresh initial state. 3. Acts gsq = acts(G) ∪ { }, where ∈ acts(G) is a fresh, silent action. 4. The transition relation → gsq is defined as follows:

	(a) For each i ∈ {1, . . . , n}, s I gsq -→ gsq (s I i , s I R , m 0), where ∀ n i=1 m 0

Table 1 .

 1 Results for scalable models from[START_REF] Petrucci | Squeezing state spaces of (attack-defence) trees[END_REF].

	reduced/original model size (%)	sos reduction pattern pattern+layer pattern+sos	68.233 % 31.605 % 19.935 % 17.342 %	104.551 % 35.755 % 24.639 % 13.085 %	8.241 % 22.485 % 6.044 % 1.085 %	2.437 % 15.351 % 2.697 % 0.337 %	163.16 % 40.432 % 28.589 % 9.121 %	13.464 % 25.726 % 8.204 % 0.831 %	4.037 % 17.629 % 3.705 % 0.267 %	0.079 % 11.828 % 0.722 % 0.005 %	258.34 % 45.784 % 32.829 % 6.206 %	22.074 % 29.446 % 9.818 % 0.596 %	6.693 % 20.276 % 4.504 % 0.194 %	0.133 % 13.423 % 1.006 % 0.004 %	51.903 % 37.588 % 4.178 %	33.674 % 11.494 % 0.415 %	23.287 % 5.344 % 0.137 %	15.356 % 0.003 %	58.89 % 42.976 % 2.799 %	38.477 % 13.36 % 0.285 %	26.706 % 6.281 % 0.095 %	66.855 % 49.089 % 1.871 %	43.937 % 15.467 % 0.194 %	75.931 % 56.036 % 1.25 %	86.268 % 0.834 %	9.438 % 4.861 % 4.056 % 1.005 %	0.99 % 1.732 % 0.679 % 0.106 %	6.438 % 2.83 % 2.443 % 0.257 %	0.703 % 1.003 % 0.489 % 0.029 %	4.532 % 1.676 % 1.455 % 0.061 %	0.509 % 0.601 % 0.304 % 0.007 %	0.999 % 0.869 % 0.014 %	0.362 % 0.186 % 0.002 %	0.597 % 0.521 % 0.003 %	0.218 % 0.0 %	0.358 % 0.001 %
	no reductions sos reduction pattern pattern+layer pattern+sos	|S| |T | |S| |T | |S| |T | |S| |T | |S| |T |	185 432 111 310 72 123 54 69 45 62	587 1,698 561 1,828 246 571 190 373 107 192	8,823 35,602 861 2,800 2,405 7,584 883 1,802 176 306	34,481 160,096 1,111 3,630 6,734 23,135 1,808 3,439 239 417	1,825 6,332 2,811 10,498 840 2,458 652 1,680 231 513	26,725 124,708 4,311 16,078 8,184 30,773 3,256 9,167 393 866	103,955 549,762 5,561 20,828 22,854 92,393 6,606 17,615 541 1,203	5,417,613 37,414,404 7,111 26,550 783,271 4,282,992 71,965 237,154 709 1,536	5,603 22,774 14,061 59,248 2,868 10,124 2,228 7,088 480 1,281	80,687 428,086 21,561 90,748 27,926 121,887 11,258 38,693 827 2,203	312,889 1,858,220 27,811 117,498 77,948 362,276 22,808 74,986 1,144 3,075	16,261,031 123,086,630 35,561 149,828 2,645,472 16,058,689 273,484 1,128,571 1,537 4,060	17,065 79,784 TO TO 9,792 40,476 7,608 28,796 979 3,067	243,085 1,446,656 TO TO 95,336 473,670 38,520 155,698 1,696 5,313	940,715 6,202,486 TO TO 266,084 1,397,360 78,020 303,724 2,351 7,425	48,799,477 401,798,336 TO TO 9,015,346 60,176,445 TO TO 3,193 9,937	51,707 273,994 TO TO 33,432 158,372 25,976 113,996 1,978 7,139	731,303 4,828,186 TO TO 325,492 1,813,652 131,564 611,188 3,435 12,403	2,826,241 20,492,984 TO TO 908,440 5,319,108 266,464 1,198,156 4,766 17,333	156,145 926,420 TO TO 114,144 609,608 88,688 442,736 3,977 16,283	2,198,005 15,951,260 TO TO 1,111,296 6,862,916 449,216 2,357,964 6,914 28,323	470,483 3,093,598 TO TO 389,712 2,316,544 302,800 1,694,352 7,976 36,571	1,415,545 10,225,856 TO TO 1,330,560 8,712,240 TO TO 15,975 81,147	3,803 15,598 316 1,515 289 654 250 537 71 124	43,387 228,362 463 2,226 1,283 3,424 653 1,192 104 183	34,739 186,530 2,227 12,018 1,563 4,700 1,380 4,025 168 400	392,531 2,577,950 3,256 17,625 6,771 23,024 3,846 10,667 246 602	314,699 2,097,686 15,604 93,729 8,511 31,912 7,530 27,559 364 1,102	3,540,971 27,920,114 22,807 137,388 36,777 152,390 21,117 74,504 531 1,655	2,840,483 22,663,754 TO TO 46,377 208,290 41,040 180,639 758 2,803	31,901,507 293,805,446 TO TO 200,349 978,834 115,164 491,799 1,103 4,193	25,597,115 238,092,350 TO TO 252,729 1,322,490 223,650 1,150,257 1,548 6,799	287,244,635 3,027,198,170 TO TO 1,091,763 6,143,676 TO TO 2,249 10,130	230,505,107 2,450,127,602 TO TO 1,377,243 8,228,232 TO TO 3,130 15,979
	model	(2, 7, 2, 4)	(2, 9, 3, 4)	(2, 13, 3, 6)	(2, 15, 3, 8)	(2, 11, 4, 4)	(2, 15, 4, 6)	(2, 17, 4, 8)	(2, 23, 4, 10)	(2, 13, 5, 4)	(2, 17, 5, 6)	(2, 19, 5, 8)	(2, 25, 5, 10)	(2, 15, 6, 4)	(2, 19, 6, 6)	(2, 21, 6, 8)	(2, 27, 6, 10)	(2, 17, 7, 4)	(2, 21, 7, 6)	(2, 23, 7, 8)	(2, 19, 8, 4)	(2, 23, 8, 6)	(2, 21, 9, 4)	(2, 23, 10, 4)	(3, 10, 2, 6)	(3, 13, 2, 9)	(3, 13, 3, 6)	(3, 16, 3, 9)	(3, 16, 4, 6)	(3, 19, 4, 9)	(3, 19, 5, 6)	(3, 22, 5, 9)	(3, 22, 6, 6)	(3, 25, 6, 9)	(3, 25, 7, 6)

Table 2 .

 2 Results for security case studies from[START_REF] Petrucci | Squeezing state spaces of (attack-defence) trees[END_REF].

	reduced/original model size (%)	sos reduction pattern pattern+layer pattern+sos	4.018 % 9.278 % 1.836 % 0.933 %	0.01 % 2.192 % 0.036 % 0.001 %	156.479 % 29.89 % 8.017 % 43.541 %	69.418 % 27.535 % 9.03 % 20.055 %
	no reductions sos reduction pattern pattern+layer pattern+sos	|S| |T | |S| |T | |S| |T | |S| |T | |S| |T |	62,689 185,944 2,427 7,564 5,784 17,285 1,845 2,721 664 1,656	51,158,719 364,218,554 8,626 33,595 1,327,546 7,776,327 52,923 94,570 844 1,965	3,381 6,860 4,173 11,852 907 2,154 371 450 1,315 3,144	479 1,326 316 937 157 340 74 89 134 228
	model	forestall	gain_admin	iot_dev	treasure_hunters

The family of sync-memoryless LTSs can in the future be extended beyond these two classes.

The authors acknowledge the support of CNRS and PAN, under the IEA project MoSART, and of NCBR Poland and FNR Luxembourg, under the PolLux/FNR-CORE project STV (POLLUX-VII/1/2019).