
HAL Id: hal-03811772
https://hal.science/hal-03811772

Submitted on 22 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular Analysis of Tree-Topology Models
Jaime Arias, Michal Knapik, Wojciech Penczek, Laure Petrucci

To cite this version:
Jaime Arias, Michal Knapik, Wojciech Penczek, Laure Petrucci. Modular Analysis of Tree-Topology
Models. Formal Methods and Software Engineering, ICFEM, Oct 2022, Madrid, Spain. pp.36-53,
�10.1007/978-3-031-17244-1_3�. �hal-03811772�

https://hal.science/hal-03811772
https://hal.archives-ouvertes.fr

Modular Analysis of Tree-Topology Models?

Jaime Arias1[0000−0003−3019−4902], Michał Knapik2[0000−0003−3259−9786],
Wojciech Penczek2[0000−0001−6477−4863], and Laure

Petrucci1[0000−0003−3154−5268]

1 LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord, 99 av. J-B. Clément,
93430 Villetaneuse, France {first.last}@lipn.univ-paris13.fr

2 Institute of Computer Science, Polish Academy of Sciences, Jana Kazimierza 5,
01-248 Warsaw, Poland {first.last}@ipipan.waw.pl

Abstract. Networks of automata that synchronise over shared actions
are organised according to a graph synchronisation topology. In this
topology two automata are connected if they can jointly execute some
action. We present a very effective reduction for networks with tree-like
synchronisation topologies such that all automata after synchronising
with their parents can execute only local (non-synchronising) actions:
forever or until resetting, i.e. entering the initial state. We show that the
reduction preserves reachability, but not liveness. This construction is
extended to tree-like topologies of arbitrary automata and investigated
experimentally.

Keywords: Model Checking · Networks of Synchronising Automata·
State Space Reduction · Tree-Like Synchronisation Topologies.

1 Introduction

Networks of various types of finite automata (or labelled transition systems,
LTSs for short) [10,14] are a popular choice of formalism when modelling com-
plex systems such as protocols. In this approach, the components of the system
under investigation are abstracted as state machines and the behaviour of the
entire system is captured by their synchronised product. However, the cost of
computing the synchronised product can be prohibitive: in practice the size of
the state space grows exponentially with the number of the sub-modules. This
observation led to an extensive research into how to analyse and represent models
that consist of interacting components without building the entire state space.

In this paper, we tackle the problem of computing a compact representation
of the state space of the entire product of networks of LTSs that exhibit tree-
like synchronisation topologies. Intuitively, this means a graph, whose edges
depict synchronisation between LTSs over common actions of a system, is a

? The authors acknowledge the support of CNRS and PAN, under the IEA project
MoSART, and of NCBR Poland and FNR Luxembourg, under the PolLux/FNR-
CORE project STV (POLLUX-VII/1/2019).

2 J. Arias et al.

tree. Examples of systems having such a synchronisation topology are e.g. attack-
defense trees (ADT) [17,7,6,9], hierarchical [4], broadcast [12], multimedia [8],
and workflow models [3].

This structure of communication is quite natural also in the system design
where circular dependencies are sometimes treated as anti-patterns and cause
problems such as deadlocks.

We design algorithms that compute a compact representation of the synchro-
nised product bottom-up, focusing at each level only on the synchronisations
between the pairs consisting of a parent and one of its children. As it turns out,
the notion of memory is crucial to the size of the constructed LTS (called here
the sum-of-squares product). Namely, if every component resets (i.e. returns to
its initial state) after synchronising with its parent or enters a deadlock, then no
information about its post-synchronisation states needs to be preserved. In this
case, the sum-of-squares product is quite small and can be computed efficiently.
In case some LTSs do not reset after synchronising with their parents, an addi-
tional memory gadget is needed. Then, the general sum-of-squares product also
preserves reachability, but a reduction or good performance is not guaranteed.
The burden of recording the post-synchronisation state of the components can
even lead to substantial blowup of the state space.

Outline of the Paper

In Section 2 we provide the basic definitions of synchronising LTSs, live-reset and
sync-deadlock LTSs, and synchronisation topologies. A bottom-up reduction for
the networks of live-reset and sync-deadlock LTSs is presented in Section 3. We
show how to transform these networks in a reachability-preserving way into a
new, smaller model called the sum-of-squares product. The key idea is that the
new model traces the interactions between the components and their parents,
followed by upstream synchronisations. This bottom-up reduction is extended
in Section 4 to a wider case of tree-like synchronisation topologies with general
LTSs. Section 5 investigates experimentally the effectiveness of the reductions
on several scalable examples and many random cases using a novel open-source
tool [2]. Section 6 draws conclusions and discusses future work.

2 Tree Synchronisation Systems

In this section we recall the notions of networks of Labelled Transition Systems
and their synchronisation topologies. We also introduce and explain the restric-
tions on the models assumed in the next section. In what follows PV denotes
the set of propositions.

Definition 1 (Labelled Transition System). A Labelled Transition System
(LT S) is a tupleM = 〈S, sI ,Acts,→,L〉 where:

1. S is a finite set of states and sI ∈ S the initial state;

Modular Analysis of Tree-Topology Models 3

2. Acts is a finite set of action names;
3. → ⊆ S ×Acts × S is a transition relation;
4. L : S → 2PV is a labelling function.

We usually write s act−−→ s′ instead of (s, act , s′) ∈→. We also denote acts(M) =
Acts and states(M) = S. A run in LT S M is an infinite sequence of states and

actions ρ = s0act0s1act1 . . . s.t. si acti−−→ si+1 for all i ≥ 0. By Runs(M, s) we
denote the set of all the runs starting from state s ∈ S. If s is the initial state,
we write Runs(M) instead of Runs(M, sI).

2.1 LT S Networks and Synchronisation Topologies

Model checkers such as spin [13], Uppaal [11], and IMITATOR [5] usually expect
the systems to be described in a form of interacting modules. Synchronisation
over common actions [10] (or channels) is a popular primitive that enables such
an interaction.

Definition 2 (Asynchronous Product). Let Mi = 〈Si, sIi ,Actsi,→i,Li〉 be
LT S, for i ∈ {1, 2}. The asynchronous product of M1 and M2 is the LT S
M1||M2 = 〈S1×S2, (sI1 , sI2),Acts1∪Acts2,→,L1,2〉 s.t. L1,2((s1, s2)) = L1(s1)∪
L2(s2) for all (s1, s2) ∈ S1 × S2 and the transition rule is defined as follows:

act ∈ Acts1 \Acts2 ∧ s1
act−−→1 s ′1

(s1, s2)
act−−→ (s ′1, s2)

act ∈ Acts2 \Acts1 ∧ s2
act−−→2 s ′2

(s1, s2)
act−−→ (s1, s

′
2)

act ∈ Acts1 ∩Acts2 ∧ s1
act−−→1 s ′1 ∧ s2

act−−→2 s ′2

(s1, s2)
act−−→ (s ′1, s

′
2)

The above definition is naturally extended to an arbitrary number of com-
ponents. We sometimes write ||ni=1Mi instead ofM1|| . . . ||Mn. If s is a state of
M1|| . . . ||Mn, then by sMi

we denote its component corresponding toMi.
The synchronisation topology [17] is an undirected graph that records how

LTSs synchronise with one another.

Definition 3 (Synchronisation Topology). A synchronisation topology (ST)
is a tuple G = 〈Net , T 〉, where Net = {Mi}ni=1 is a set of LT Ss for 1 ≤ i ≤ n,
and T ⊆ Net ×Net is s.t. (Mi,Mj) ∈ T iff i 6= j and Actsi ∩Actsj 6= ∅.

Note that T is induced by Net . Thus, with a slight notational abuse we
sometimes treat G as Net . Moreover, we write acts(G) =

⋃n
i=1 acts(Mi).

Definition 4 (Tree Synchronisation Topology). A synchronisation topol-
ogy G s.t. T is a tree rooted in root(G) is called tree synchronisation topology.

It should be noted that root(G) is not always uniquely induced by G, the root
is thus a part of the signature of tree synchronisation topology.

4 J. Arias et al.

r0

r1 r2

r3

r4

?open

?chooseL

?open

?chooseR

?chooseL

beep

R

s0

!open

M1

t0 t1 t2

!chooseL

ττ

!chooseRM2

Fig. 1. A simple tree synchronisation topology Gx.

Let us fix a tree synchronisation topology G = 〈Net , T , root(G)〉. For each
M ∈ Net by parent(M) we denote the parent of M in T (we assume that
parent(root(G)) = ∅). By children(M) we mean the set of the children of M.
By upacts(M) (resp. downacts(M)) we denote the set of actions via which
M synchronises with its parent (resp. children). For each act ∈ downacts(M),
snd(M, act) denotes the component M′ ∈ children(M) s.t. act ∈ upacts(M′).
Thus, snd(M, act) is the child ofM that synchronises withM over act . IfM is
clear from the context, we simply write snd(act). The local unsynchronised ac-
tions ofM are defined as locacts(M) = acts(M)\ (downacts(M)∪upacts(M)).

For brevity, whenever we refer to a state, action label, transition, or state
space of G we mean a state, action label, transition, or state space of ||ni=1Mi.
We also extend the notion of runs to synchronisation topologies: Runs(G, s) =
Runs(||ni=1Mi, s) for each s ∈ states(||ni=1Mi). Moreover, for each F ⊆ acts(G)
we introduce the notion of one-shot F runs, RunsF (G, s), as the set of all the
runs in Runs(G, s) along which each action from F appears at most once.

Example 1. Figure 1 presents a small tree ST Gx with the root R and two
children M1 and M2. The auxiliary symbols !/? are syntactic sugar, used to
distinguish between upacts and downacts. Here, upacts(R) = ∅, downacts(R) =
{open, chooseL, chooseR}, and locacts(R) = {beep}. Similarly, upacts(M1) =
{open}, upacts(M2) = {chooseL, chooseR}, downacts(M1) = locacts(M1) =
downacts(M2) = ∅, and locacts(M2) = τ .

We start by dealing with networks whose components all share a similar,
simple structure.

Definition 5 (Live-Reset LTS). A LTSM with initial state sIM is live-reset
if for each run ρ = s0act0s1act1 . . .: ∀i ∈ N if act i ∈ upacts(M), then si+1 =
sIM.

Modular Analysis of Tree-Topology Models 5

Definition 6 (Sync-Deadlock LTS). A LTSM is sync-deadlock if for each
run ρ = s0act0s1act1 . . .: ∀i ∈ N if act i ∈ upacts(M), then for each j > i,
actj ∈ locacts(M).

LTSs that are either live-reset or sync-deadlock are said to be sync-memoryless3.
Intuitively, after synchronising with its parent a sync-memoryless LTS either im-
mediately enters its initial state (if live-reset) or executes only local actions (if
sync-deadlock).

If every LTS of ST G is live-reset (resp. sync-deadlock), then we say that G
is live-reset (resp. sync-deadlock). It is easy to see that the tree ST in Figure 1
is live-reset.

Definition 7 (Reachability and liveness). For each p ∈ PV we write G |=
EFp (resp. G |= EGp) iff there exists ρ ∈ Runs(G) s.t. ρ = s0act0s1act1 . . . and
p ∈ L(si) for some (resp. for all) i ∈ N.

By replacing |= with |=F and Runs with RunsF in Definition 7 we obtain the
notion of one-shot F -reachability and the dual of liveness. Both EF and EG are
Computation Tree Logic (CTL) modalities [10]. If G |= EFp, then we say that
p is reachable in G from the initial state.

Definition 8. Let N ⊆ Net and ρ∗ be a prefix of some ρ ∈ Runs(G) s.t. ρ∗ =
s0act0s1act1 . . . By ρ∗↓ (N) we denote the projection of ρ∗ to the asynchronous
product of LTSs in N , i.e. the result of transforming ρ∗ by (1) firstly, projecting
each si on the LTSs in N ; (2) secondly, removing the actions that do not belong
to
⋃
M∈N acts(M), together with their destinations.

Intuitively, ρ∗↓ (N) contains the parts of the global states of ρ∗ that belong to
||M∈NM and actions executed by someM∈ N . It is not difficult to show that
ρ∗↓ (N) does not need to be a valid run of ||M∈NM.

Example 2. Consider a sequence: η = (r0, s0, t0) τ (r0, s0, t1) τ (r0, s0, t2) open
(r1, s0, t2) chooseR (r4, s0, t0) τ (r4, s0, t1) chooseL (r0, s0, t0). Here, we have
η↓ ({R,M1}) = (r0, s0)open(r1, s0)chooseR(r4, s0)chooseL(r0, s0).

3 Compact Representations of State Spaces of Live-Reset
and Sync-Deadlock Trees

In this section we show how to generate compact representations of state spaces
of sync-memoryless tree topologies preserving reachability. The procedure is pre-
sented in two steps. We start with the case of two-level trees. Then, we modify
the construction to deal with trees of arbitrary height in a bottom-up manner.

3 The family of sync-memoryless LTSs can in the future be extended beyond these
two classes.

6 J. Arias et al.

3.1 Constructions for Two-level Trees

Throughout this subsection let G be a sync-memoryless tree ST with components
Net = {R,M1, . . . ,Mn} s.t. root(G) = R and children(R) = {M1, . . . ,Mn}.
Moreover, let R = 〈SR, sIR,ActsR,→R,LR〉 and Mi = 〈Si, sIi ,Actsi,→i,Li〉,
for i ∈ {1, . . . , n}. We employ the observations on the nature of synchronisations
with sync-memoryless components in the following definition.

Definition 9 (Sum-of-squares Product). Define SQu(G) = 〈Susq, sIsq,Actssq,
→sq,Lsq〉 as an LT S s.t.:

1. Susq =
⋃n
i=1(Si × SR) ∪ {sIsq}.

2. sIsq 6∈ Susq is a fresh initial state.
3. Actssq = acts(G) ∪ {ε}, where ε 6∈ acts(G) is a fresh, silent action.
4. The transition relation →sq is defined as follows:

(a) sIsq
ε−→sq (s

I
i , s

I
R), for all i ∈ {1, . . . , n};

(b) if (si, sR)
act−−→ (s′i, s

′
R) is a transition inMi||R, then also (si, sR)

act−−→sq

(s′i, s
′
R), for all i ∈ {1, . . . , n};

(c) if G is live-reset and (si, sR)
act−−→ (sIi , s

′
R) is a transition inMi||R, then

(si, sR)
act−−→sq (s

I
j , s
′
R) for all j ∈ {1, . . . , n} \ {i};

(d) if G is sync-deadlock and (si, sR)
act−−→ (s′i, s

′
R) is a synchronised transi-

tion in Mi||R, then (si, sR)
act−−→sq (s

I
j , s
′
R), for all j ∈ {1, . . . , n} \ {i}.

5. Lsq(si, sR) = Li(si) ∪ LR(sR) ∪
⋃
j 6=i Lj(sIj), for each (si, sR) ∈ Susq.

We call SQu(G) the Sum-of-squares Product of G.

Intuitively, SQu(G) at any given moment traces only the interactions between
the root and one of its children. Item 4a of Definition 9 introduces the new
initial state connected via ε-transitions with the initial states of each square
product Mi||R. Item 4b ensures that the square product preserves the local
and synchronised actions of the root and each child. Item 4c means that after
resetting each component Mi can release control to another module, for live-
reset topologies. Item 4d serves a similar purpose for sync-deadlock topologies.

Example 3. Fig. 2 presents the sum-of-squares product SQu(Gx) for the small
tree ST of Example 1. The fresh initial state sIsq is coloured green, the yellow box
surrounds the square product M1||R, and the pink box surrounds the square
productM2||R. The red colour of some states is explained in Section 3.2. The
arcs that correspond to the transitions synchronised between a child and the
root are coloured red if the control switches between components (according to
Item 4c of Definition 9) and blue otherwise. The local transitions are black.

Theorem 1 (Sum-of-squares Product Preserves Reachability). Let G be
a sync-memoryless two-level tree ST with root R and p ∈ PV. If G is live-reset,
then G |= EFp iff SQu(G) |= EFp. If G is sync-deadlock and F = downacts(R),
then G |=F EFp iff SQu(G) |=F EFp.

Modular Analysis of Tree-Topology Models 7

s0r0

s0r3

s0r2

s0r1

s0r4

open

open

beep

t0r4

t2r1

t0r1

t1r1

t0r2 t1r2 t2r2

t0r3 t1r3 t2r3

t1r4 t2r4

t0r0

t1r0

t2r0τ

chooseL

τ

chooseR

τ τ

τ τ

beep beep beep

τ
chooseL

τ

τ

τ

ch
oo
se
L

chooseR

chooseL

open

open

sIsq

ε

ε

Fig. 2. The sum-of-squares product of the tree ST of Example 1.

Proof. We only deal with the case of live-reset topology; the case of sync-
deadlock follows similarly.

Recall that we assume Net = {R,M1, . . . ,Mn} with root R and children
{Mi}ni=1. Let G |= EFp and ρ = s0act0s1act1 . . . be a run of G s.t. p ∈ L(si)
for some i ∈ N. If ρ contains only local actions, then for any of the components
C ∈ Net each of its local states visited along ρ can be reached by executing in
SQu(G) firstly the ε-action (cf. Item 4a of Definition 9) and then local actions
of C found in ρ (cf. Item 4b of of Definition 9). Moreover, consider a situation
where a non-root component C synchronises with the root only a finite number of
times. Now, each local state s of C that is reachable along ρ only after executing
the final synchronising action of C can be reached in SQu(G) using only ε-
and local actions. Such a run in SQu(G) reaching s can be built as described
previously due to the fact that the final synchronisation resets the component.
Also, let ρ̂ be the result of iterative removal from ρ of all the local actions of any
non-root component C that appear after its last synchronising action together
with their targets, and replacing along the run all the further local states of C
with sIC . It is not difficult to see that ρ̂ visits the same local states of the root
that are visited along ρ and all the local states of each non-root component C
visited before the final synchronising action of C is executed.

We can therefore further assume (?) that ρ contains at least one synchronis-
ing action and can be represented as ρ = α1F1α2F2 . . ., where for each i ∈ N
there exist j, k ∈ N such that αi = sjactj . . . skactksk+1 and actj , . . . , actk ∈
locacts(R) ∪

⋃n
i=1 locacts(Mi), Fi ∈ downacts(R), and each local action of any

component is eventually followed by some of its synchronising actions.

8 J. Arias et al.

Actions are never synchronised between children, thus it can be proven by
induction on the length of the run that the actions in ρ can be reordered to
obtain a run ρ′ ∈ Runs(G, s0) that can be represented as ρ′ = α′1F1α

′
2F2 . . .,

such that:

1. For any i ∈ N there exist j, k ∈ N such that α′i = s′jact ′j . . . s′kact ′ks′k+1

and act ′j , . . . , act ′k ∈ locacts(R) ∪ locacts(snd(Fi)).
2. For each i ∈ N we have αi ↓ ({R, snd(Fi)}) = α′i ↓ ({R, snd(Fi)}).
3. For each s′j in α′i, if 0 is the coordinate of root and k is the coordinate of

snd(Fi), then s′j = (s0, s
I
1 , . . . , s

I
k−1, sk, s

I
k+1, . . .) for some s0 ∈ states(R),

sk ∈ states(snd(Fi)).

Intuitively, ρ′ is built from ρ in such a way that firstly only the root and the
component that synchronises with the root over F1 are allowed to execute their
local actions while all the other components stay in their initial states; then F1 is
fired; and then this scheme is repeated for F2, F3, etc. We can now project ρ′ on
spaces of squares of the root and components active in a given interval, to obtain
ρ′′ = α′1 ↓ ({R, snd(F1)})F1α

′
2 ↓ ({R, snd(F2)})F2 . . . Notice that ρ′′ ∈ SQu(G).

We now show that ρ′′ visits all the local states that appear along ρ. To this
end firstly observe that ρ and ρ′ contain the same local states. Moreover, if a
local state of the root is visited in ρ′ then it is also visited in ρ′′, as we always
project on squares of the root and some other component. If a local state of
a non-root component is visited along ρ′ before executing some synchronising
action Fi then it will also be present before executing Fi along ρ′′. This follows
from the construction of ρ′′ from ρ′ and our assumption (?) of the structure of
ρ. As we have shown that ρ′′ visits each local state that appears along ρ, this
part of the proof is concluded.

Let SQu(G) |= EFp and ρ ∈ Runs(SQu(G)) visits a state labelled with p.
Now, it suffices to replace in ρ each state (sk, s0) that belongs to the square
Mk ×R with the global state (s0, s

I
1 , . . . , s

I
k−1, sk, s

I
k+1, . . .) of G. The result of

this substitution is a run of G that visits p. ut

The next proposition shows that the sum-of-squares does not preserve EG.

Proposition 1 (Sum-of-squares Does Not Preserve EG). There is a live-
reset two-level tree ST G s.t. for some p ∈ PV, G |= EGp and SQu(G) 6|= EGp.

Proof. Consider the tree ST Gy in Fig. 3. Here, we have Gy |= EGp, but each
path ρ along which p holds globally starts withMy

1 executing τ followed byMy
2

executing τ and, consecutively, chooseR. Thus, it is not possible to partition ρ
into intervals where one child and the root fire local actions until they synchronise
and possibly release the control to another child. Hence, SQu(Gy) 6|= EGp. ut

As illustrated in Example 3, the size of the state space of the sum-of-squares
product of a sync-memoryless ST G can be equal to or greater than the size of
the state space of G. On the other hand, the size of a representation of a state
will be smaller in the sum-of-squares product, as it records only local states of
at most two components of the network. However, in less degenerate cases than

Modular Analysis of Tree-Topology Models 9

r0 r1 r2

p

?chooseR ?chooseL
beep

Ry

s0 s1

p

!chooseL

τ

My
1

t0

p

t1

!chooseR

τ

My
2

Fig. 3. The sum-of-squares does not preserve EG.

our toy model we can expect significant reductions. Let us consider a tree with
a root and n children, each with a state space of size m. The number of states
in the asynchronous product is mn+1. In contrast, the size of the sum-of-squares
product of such a topology is n ·m2 + 1. Indeed we record pairs of states from
a child and its root, i.e. m2 possible states. This is done for all n children, and
there is an added fresh initial state. To summarise, the sum-of-squares product
has a size in O(n ·m2).

3.2 Reduced Sum-of-Squares for Any Tree Height

We now adapt the sum-of-squares product of two-level live-reset tree topologies
to the general case. To this end we introduce the auxiliary operation cmpl that
transforms SQu(G) into a live-reset LTS. Intuitively, cmpl redirects each tran-
sition that enters the initial state of the root to the fresh initial state sIsq. No
additional operations are needed for sync-deadlock topologies.

Definition 10. Let G be a live-reset two-level tree ST with components Net =
{R,M1, . . . ,Mn}. By cmpl(SQu(G)) we denote the result of replacing in SQu(G)
every transition ((sMi

, sR), act , (s
′
Mi

, sIR)) with ((sMi
, sR), act , s

I
sq).

Algorithm 1 recursively performs reduction for two-level trees in a bottom-up
manner. If the topology is live-reset, then each reduction is followed by applying
cmpl(SQu(·)) to the computed sum-of-squares to ensure that the output is also
live-reset. Note that Gchld denotes the subtree of G rooted in chld . The next
theorem states soundness and correctness of Algorithm 1.

Theorem 2 (reduceNet(G) Preserves Reachability). Let G = 〈Net , T 〉, be
a sync-memoryless tree ST , F =

⋃
M∈Net downacts(M), and p ∈ PV. If G is

live-reset, then G |= EFp iff reduceNet(G) |= EFp. If G is sync-deadlock, then
G |=F EFp iff reduceNet(G) |=F EFp.

Proof. (Sketch) The proof follows via induction on the height of the tree G. As we
have Theorem 1, it suffices to prove that cmpl(SQu(G)) preserves reachability

10 J. Arias et al.

for any two-level live-reset ST G. This, however, can be done in a way very
similar to the proof of Theorem 1 and is omitted.

Algorithm 1 reduceNet(G)
Input: sync-memoryless tree sync. topology G
Output: LT S M that preserves reachability of each proposition p in G.
1: if G consists of a single LTS then
2: return G (* G is a leaf *)
3: end if
4: let redChdn := ∅
5: for chld ∈ children(root(G)) do
6: redChdn = redChdn ∪ {reduceNet(Gchld)}
7: end for
8: let G′ := {root(G)} ∪ redChdn
9: if G is live-reset then
10: return cmpl(SQu(G′))
11: else
12: return SQu(G′)
13: end if

In certain hierarchical systems such as attack-defense trees [17] we are inter-
ested only in the reachability of the root’s locations. This enables for additional
optimisations related to removing deadlocks and livelocks that halt the root’s
evolution.

Definition 11 (Root-deadlock). Let G be a ST with Net = {R,M1, . . . ,Mn},
root(G) = R and children(R) = {M1, . . . ,Mn}. We say that a state s of
Mi ∈ children(R) is in a root-deadlock iff there is no run ρ ∈ Runs(Mi, s)
s.t. ρ = s0act0s1act1 . . . with act i ∈ acts(R), where s0 = s, for some i ∈ N.

The set of root-deadlocked states of an LT S can be computed in polynomial
time using either a model checker or conventional graph algorithms. These states
can be removed without affecting the reachability of a location of the root.

Example 4. Let us consider the LTS SQu(Gx) in Fig. 2. If it is a child of another
LTS parent(SQu(Gx)) in a live-reset topology and beep ∈ upacts(SQu(Gx)), then
all the states coloured red are root-deadlocked. Fig. 4 displays the reduced sum-
of-squares product of the topology.

Let us now evaluate the size of the state spaces for a tree of height h, con-
sidering each node has n children, each with a state space of size m. Such a
tree has

∑h
i=0 n

i nodes. Hence, the number of states in the asynchronous prod-
uct is m

∑h
i=0 n

i

. The size of the sum-of-squares product of such a topology
is nh · mh+1 +

∑h−1
i=0 n

i · mi. Indeed, for h = 1, this is exactly the size ob-
tained for two-level trees in the previous section. The proof for any arbitrary

Modular Analysis of Tree-Topology Models 11

s0r0

s0r3s0r2
open

beep

t0r4

t2r1

t0r1 t1r1

t0r3t1r3t2r3

t1r4

τ
τ

chooseR

ττ

beepbeepbeep

τchooseL

chooseL

open

open
sIsq

ε

Fig. 4. The reduced sum-of-squares product of the tree ST of Example 4.

height is easily done by induction. To compute the increase from height h to
height h + 1, the same arguments as for the computation in a two-level tree
hold. This leads to the following maximal number of states for height h + 1 :
1+n · (nh ·mh+1+

∑h−1
i=0 n

i ·mi) ·m = nh+1.mh+2+
∑h
i=0 n

i ·mi. To summarise,
the sum-of-squares product has a size in O(nh ·mh+1).

4 The General Case and Local Products

The case of live-reset LTS tree networks entails substantial state space reductions
due to the fact that children reset after synchronising with their root. Before
resetting, only the local states of the root and one of its children need to be
recorded; it can be assumed that all the children wait in their initial states.
After single-level synchronisation, only the information about the root’s state
is relevant, as the synchronising child resets. In the general case of tree-like
networks of synchronising LTSs, both the root’s state and post-synchronisation
state of its children have to be preserved.

In what follows let G be a two-level tree ST s.t. Net = {R,M1, . . . ,Mn},
where root(G) = R and children(R) = {M1, . . . ,Mn}. LetR = 〈SR, sIR,ActsR,
→R,LR〉 and Mi = 〈Si, sIi ,Actsi,→i,Li〉, for i ∈ {1, . . . , n}. For each i ∈
{1, . . . , n} let postSync(Mi) denote the set of all the local states ofMi visited
immediately after synchronising with R. Formally:

postSync(Mi) = {s ∈ Si | ∃act ∈ ActsR∩Actsi s.t. (s′, r′)
act−−→ (s, r) in Si×SR}.

The memory unit, defined as follows, is a collection of all the vectors of states
of the components preserved after synchronisation.

Definition 12 (Memory Unit). The post-synchronisation memory unit of G
is defined as: mem(M1, . . . ,Mn) =

∏n
i=1({sIi } ∪ postSync(Mi)).

Intuitively, Definition 13 generalises Definition 9 by extending the states of
square products with the memory unit that is updated and consulted whenever a

12 J. Arias et al.

synchronisation takes place. This memory gadget can be implemented efficiently,
but here we present it in an explicit way for the sake of readability.

Let i ∈ {1, . . . , n}, si ∈ Si, and m ∈ mem(M1, . . . ,Mn). By m[i/si] we
denote the memory update of m defined as follows: m[j] = m[j] for all i 6= j and
m[i] = si.

Definition 13 (General Sum-of-squares Product). Let GSQ(G) = 〈Sgsq, sIgsq,
Actsgsq,→gsq,Lgsq〉 be an LT S s.t.:

1. Sgsq =
(⋃n

i=1(Si × SR)×mem(M1, . . . ,Mn)
)
∪ {sIgsq}.

2. sIgsq 6∈ Sgsq is a fresh initial state.
3. Actsgsq = acts(G) ∪ {ε}, where ε 6∈ acts(G) is a fresh, silent action.
4. The transition relation →gsq is defined as follows:

(a) For each i ∈ {1, . . . , n}, sIgsq
ε−→gsq (s

I
i , s

I
R,m0), where ∀ni=1m0[i] = sIi .

(b) If si
act−−→i s

′
i and act ∈ locacts(Mi), then (si, sR,m)

act−−→sq (s′i, sR,m),
for each sR ∈ SR and m ∈ mem(M1, . . . ,Mn); similarly, if sR

act−−→R
s′R and act ∈ locacts(R), then (si, sR,m)

act−−→sq (si, s
′
R,m), for each

si ∈ Si and m ∈ mem(M1, . . . ,Mn).
(c) If act ∈ upacts(Mi), si

act−−→i s
′
i, and sR

act−−→R s′R, then (si, sR,m)
act−−→sq

(sj , s
′
R,m

′), where m′ = m[i/s′i] and sj = m[j] for some j ∈ {1, . . . , n}.
5. Lgsq(si, sR,m)=Li(si)∪LR(sR)∪

⋃
j 6=i Lj(m[j]), for each (si, sR,m)∈Sgsq.

We call GSQ(G) the General Sum-of-squares Product of G.

Item 4a of Definition 13 expresses that the new initial state enables ε-transitions
to the initial state of any square product Mi||R with the memory unit set to
the starting values. Similarly to the corresponding case in Definition 9, Item 4b
ensures that the local actions are fully asynchronous and do not affect mem-
ory unit. The idea behind Item 4c is that in a state (si, sR,m) executing a
synchronised action act will require updating the outcome states, saving them
into memory, and then moving all the values from memory to the current state
tracker. The latter may mean switching to another component. The transition
rule, as defined here, concatenates these three steps into one.

Example 5. Fig. 5 presents a three-component ST Gz. Note that the childMz
2

is not live-reset, as it does not reset after synchronising with Rz via chooseF .
Fig. 6 presents the general sum-of-squares product of Gz.

The following analogues of Theorem 1 and Theorem 2 show that the gen-
eral sum-of-squares preserves reachability. We omit the proofs of Theorem 3
and Theorem 4, as they follow via almost exactly the same techniques.

Theorem 3 (General sum-of-squares Preserves Reachability). Let G be
a two-level tree ST . For each p ∈ PV we have G |= EFp iff GSQ(G) |= EFp.

Modular Analysis of Tree-Topology Models 13

r0 r1

?chooseL ?chooseF

?chooseR
Rz

s0 s1

!chooseL

τ

Mz
1

t0 t1

!chooseF

!chooseR
Mz

2

Fig. 5. A simple non live-reset tree synchronisation topology Gz

s0r0s0t0

s1r0s0t0

s0r1s0t1

s1r1s0t1

chooseL τ

τ

t0r0s0t0

t1r1s0t1

chooseF chooseR
chooseL

chooseR

chooseF

sIgsq

ε

ε

Fig. 6. The general sum-of-squares product of the non live-reset tree ST in Fig. 5

A two-level general sum-of-squares can be adapted to deal with tree topolo-
gies G of any height by using recursive construction. The appropriate algorithm,
denoted by reduceGenNet(G), is a slight modification of Algorithm 1 with recur-
sive call in Line 6 replaced with reduceGenNet(Gchld) and the if-else conditional
in Line 9 substituted with return GSQ(G′).

Theorem 4 (reduceGenNet(G) Preserves Reachability). Let G be a tree
ST . For each p ∈ PV, we have G |= EFp iff reduceGenNet(G) |= EFp.

It can be also easily observed that GSQ(.) does not preserve EG, by the
same argument as in Proposition 1 and Fig. 3. Moreover, as previously, root-
deadlocked states (e.g. the red location in Fig. 6) can be removed if only the
reachability of a location in the root is to be preserved.

The general sum-of-squares does not guarantee a reduction of the statespace
size. If G is a two-level tree ST with Net = {R,M1, . . . ,Mn}, then the size of
the statespace of reduceGenNet(G) can reach

∑n
i=1 |Si| · |SR| ·

∏n
i=1 |Si|, thus it

14 J. Arias et al.

crucially depends on the size of the memory unit. On the other hand, we con-
jecture that the memory needed to preserve the general sum-of-squares product
is often much smaller than the memory needed to hold the asynchronous prod-
uct of the entire network. This conjecture is based on the observation that the
states of GSQ(G) are composed of two parts: the pair of local states of two in-
teracting modules and the memory unit which can be shared when implemented
efficiently.

5 Experiments

In this section we evaluate the implementation of reductions for sync-memoryless
tree topologies. The files to reproduce our tests and figures can be found at
https://depot.lipn.univ-paris13.fr/parties/publications/live-trees.

The theory presented in Section 3 has been implemented in the open-source
tool LTR [2], written in C. LTR accepts LTSs networks in a modgraph format [16].
The size of the fully synchronised product is computed using a Binary Decision
Diagrams-based open-source Python tool DD-Net-Checker [1].

Model Generators: Attack-Defence Trees Attack-Defence Trees (ADT s) [15]
are graphical models for representing possible scenarios of incoming risks and
methods for their mitigation for complex systems. While descending from infor-
mal models, ADT s have been extended with various semantics. Here, we re-use
the semantics based on translating the ADT s to networks of communicating
LTSs [17,7]. These networks form tree-like synchronisation topologies with all
the LTSs being sync-deadlock. An attack is deemed a success if a special lo-
cation in the root of a network is reachable. For the purpose of this paper we
implemented a simple translator from ADT s to modgraph format.

Comparing with ADT Reductions In [17] we presented techniques for sim-
plifying tree-like networks using pattern- and layered reductions. The former are
similar to partial order reductions and the crux of latter is in the observation that
it is sufficient to consider only runs where each level of a tree fully synchronises
with its children before the execution proceeds to a higher level. In [17] these
techniques are implemented using time parameter injection into LTSs networks
and translation to timed LTSs networks.

The comparison with the results of reductions from [17] is included for refer-
ence, as the cited work is aimed at the full timed LTS-based semantics of ADT s
which involves numeric attributes such as the time and cost of attack. Under this
semantics the networks produce considerably larger fully synchronised models.
Therefore, the comparison may be slightly unfair, favouring our approach.

ADT Experiments Table 1 shows the evaluation of the experiments on scal-
able models from [17]. Table 2 presents the results of running the experiments
on security case studies, also taken from [17]. It should be noted that for the

https://depot.lipn.univ-paris13.fr/parties/publications/live-trees

Modular Analysis of Tree-Topology Models 15

T
ab

le
1.

R
es
ul
ts

fo
r
sc
al
ab

le
m
od

el
s
fr
om

[1
7]
.

n
o

re
d
u
ct

io
n
s

so
s

re
d
u
ct

io
n

p
a
tt

e
rn

p
a
tt

e
rn

+
la

y
e
r

p
a
tt

e
rn

+
so

s
re

d
u
ce

d
/
o
ri

g
in

a
l
m

o
d
e
l
si

ze
(%

)
m

o
d
e
l

|S
|

|T
|

|S
|

|T
|

|S
|

|T
|

|S
|

|T
|

|S
|

|T
|

so
s

re
d
u
ct

io
n

p
a
tt

e
rn

p
a
tt

e
rn

+
la

y
e
r

p
a
tt

e
rn

+
so

s

(2
,
7
,
2
,
4
)

1
8
5

4
3
2

1
1
1

3
1
0

7
2

1
2
3

5
4

6
9

4
5

6
2

6
8
.2

3
3

%
3
1
.6

0
5

%
1
9
.9

3
5

%
1
7
.3

4
2

%
(2

,
9
,
3
,
4
)

5
8
7

1
,6

9
8

5
6
1

1
,8

2
8

2
4
6

5
7
1

1
9
0

3
7
3

1
0
7

1
9
2

1
0
4
.5

5
1

%
3
5
.7

5
5

%
2
4
.6

3
9

%
1
3
.0

8
5

%
(2

,
1
3
,
3
,
6
)

8
,8

2
3

3
5
,6

0
2

8
6
1

2
,8

0
0

2
,4

0
5

7
,5

8
4

8
8
3

1
,8

0
2

1
7
6

3
0
6

8
.2

4
1

%
2
2
.4

8
5

%
6
.0

4
4

%
1
.0

8
5

%
(2

,
1
5
,
3
,
8
)

3
4
,4

8
1

1
6
0
,0

9
6

1
,1

1
1

3
,6

3
0

6
,7

3
4

2
3
,1

3
5

1
,8

0
8

3
,4

3
9

2
3
9

4
1
7

2
.4

3
7

%
1
5
.3

5
1

%
2
.6

9
7

%
0
.3

3
7

%
(2

,
1
1
,
4
,
4
)

1
,8

2
5

6
,3

3
2

2
,8

1
1

1
0
,4

9
8

8
4
0

2
,4

5
8

6
5
2

1
,6

8
0

2
3
1

5
1
3

1
6
3
.1

6
%

4
0
.4

3
2

%
2
8
.5

8
9

%
9
.1

2
1

%
(2

,
1
5
,
4
,
6
)

2
6
,7

2
5

1
2
4
,7

0
8

4
,3

1
1

1
6
,0

7
8

8
,1

8
4

3
0
,7

7
3

3
,2

5
6

9
,1

6
7

3
9
3

8
6
6

1
3
.4

6
4

%
2
5
.7

2
6

%
8
.2

0
4

%
0
.8

3
1

%
(2

,
1
7
,
4
,
8
)

1
0
3
,9

5
5

5
4
9
,7

6
2

5
,5

6
1

2
0
,8

2
8

2
2
,8

5
4

9
2
,3

9
3

6
,6

0
6

1
7
,6

1
5

5
4
1

1
,2

0
3

4
.0

3
7

%
1
7
.6

2
9

%
3
.7

0
5

%
0
.2

6
7

%
(2

,
2
3
,
4
,
1
0
)

5
,4

1
7
,6

1
3

3
7
,4

1
4
,4

0
4

7
,1

1
1

2
6
,5

5
0

7
8
3
,2

7
1

4
,2

8
2
,9

9
2

7
1
,9

6
5

2
3
7
,1

5
4

7
0
9

1
,5

3
6

0
.0

7
9

%
1
1
.8

2
8

%
0
.7

2
2

%
0
.0

0
5

%
(2

,
1
3
,
5
,
4
)

5
,6

0
3

2
2
,7

7
4

1
4
,0

6
1

5
9
,2

4
8

2
,8

6
8

1
0
,1

2
4

2
,2

2
8

7
,0

8
8

4
8
0

1
,2

8
1

2
5
8
.3

4
%

4
5
.7

8
4

%
3
2
.8

2
9

%
6
.2

0
6

%
(2

,
1
7
,
5
,
6
)

8
0
,6

8
7

4
2
8
,0

8
6

2
1
,5

6
1

9
0
,7

4
8

2
7
,9

2
6

1
2
1
,8

8
7

1
1
,2

5
8

3
8
,6

9
3

8
2
7

2
,2

0
3

2
2
.0

7
4

%
2
9
.4

4
6

%
9
.8

1
8

%
0
.5

9
6

%
(2

,
1
9
,
5
,
8
)

3
1
2
,8

8
9

1
,8

5
8
,2

2
0

2
7
,8

1
1

1
1
7
,4

9
8

7
7
,9

4
8

3
6
2
,2

7
6

2
2
,8

0
8

7
4
,9

8
6

1
,1

4
4

3
,0

7
5

6
.6

9
3

%
2
0
.2

7
6

%
4
.5

0
4

%
0
.1

9
4

%
(2

,
2
5
,
5
,
1
0
)

1
6
,2

6
1
,0

3
1

1
2
3
,0

8
6
,6

3
0

3
5
,5

6
1

1
4
9
,8

2
8

2
,6

4
5
,4

7
2

1
6
,0

5
8
,6

8
9

2
7
3
,4

8
4

1
,1

2
8
,5

7
1

1
,5

3
7

4
,0

6
0

0
.1

3
3

%
1
3
.4

2
3

%
1
.0

0
6

%
0
.0

0
4

%
(2

,
1
5
,
6
,
4
)

1
7
,0

6
5

7
9
,7

8
4

T
O

T
O

9
,7

9
2

4
0
,4

7
6

7
,6

0
8

2
8
,7

9
6

9
7
9

3
,0

6
7

5
1
.9

0
3

%
3
7
.5

8
8

%
4
.1

7
8

%
(2

,
1
9
,
6
,
6
)

2
4
3
,0

8
5

1
,4

4
6
,6

5
6

T
O

T
O

9
5
,3

3
6

4
7
3
,6

7
0

3
8
,5

2
0

1
5
5
,6

9
8

1
,6

9
6

5
,3

1
3

3
3
.6

7
4

%
1
1
.4

9
4

%
0
.4

1
5

%
(2

,
2
1
,
6
,
8
)

9
4
0
,7

1
5

6
,2

0
2
,4

8
6

T
O

T
O

2
6
6
,0

8
4

1
,3

9
7
,3

6
0

7
8
,0

2
0

3
0
3
,7

2
4

2
,3

5
1

7
,4

2
5

2
3
.2

8
7

%
5
.3

4
4

%
0
.1

3
7

%
(2

,
2
7
,
6
,
1
0
)

4
8
,7

9
9
,4

7
7

4
0
1
,7

9
8
,3

3
6

T
O

T
O

9
,0

1
5
,3

4
6

6
0
,1

7
6
,4

4
5

T
O

T
O

3
,1

9
3

9
,9

3
7

1
5
.3

5
6

%
0
.0

0
3

%
(2

,
1
7
,
7
,
4
)

5
1
,7

0
7

2
7
3
,9

9
4

T
O

T
O

3
3
,4

3
2

1
5
8
,3

7
2

2
5
,9

7
6

1
1
3
,9

9
6

1
,9

7
8

7
,1

3
9

5
8
.8

9
%

4
2
.9

7
6

%
2
.7

9
9

%
(2

,
2
1
,
7
,
6
)

7
3
1
,3

0
3

4
,8

2
8
,1

8
6

T
O

T
O

3
2
5
,4

9
2

1
,8

1
3
,6

5
2

1
3
1
,5

6
4

6
1
1
,1

8
8

3
,4

3
5

1
2
,4

0
3

3
8
.4

7
7

%
1
3
.3

6
%

0
.2

8
5

%
(2

,
2
3
,
7
,
8
)

2
,8

2
6
,2

4
1

2
0
,4

9
2
,9

8
4

T
O

T
O

9
0
8
,4

4
0

5
,3

1
9
,1

0
8

2
6
6
,4

6
4

1
,1

9
8
,1

5
6

4
,7

6
6

1
7
,3

3
3

2
6
.7

0
6

%
6
.2

8
1

%
0
.0

9
5

%
(2

,
1
9
,
8
,
4
)

1
5
6
,1

4
5

9
2
6
,4

2
0

T
O

T
O

1
1
4
,1

4
4

6
0
9
,6

0
8

8
8
,6

8
8

4
4
2
,7

3
6

3
,9

7
7

1
6
,2

8
3

6
6
.8

5
5

%
4
9
.0

8
9

%
1
.8

7
1

%
(2

,
2
3
,
8
,
6
)

2
,1

9
8
,0

0
5

1
5
,9

5
1
,2

6
0

T
O

T
O

1
,1

1
1
,2

9
6

6
,8

6
2
,9

1
6

4
4
9
,2

1
6

2
,3

5
7
,9

6
4

6
,9

1
4

2
8
,3

2
3

4
3
.9

3
7

%
1
5
.4

6
7

%
0
.1

9
4

%
(2

,
2
1
,
9
,
4
)

4
7
0
,4

8
3

3
,0

9
3
,5

9
8

T
O

T
O

3
8
9
,7

1
2

2
,3

1
6
,5

4
4

3
0
2
,8

0
0

1
,6

9
4
,3

5
2

7
,9

7
6

3
6
,5

7
1

7
5
.9

3
1

%
5
6
.0

3
6

%
1
.2

5
%

(2
,
2
3
,
1
0
,
4
)

1
,4

1
5
,5

4
5

1
0
,2

2
5
,8

5
6

T
O

T
O

1
,3

3
0
,5

6
0

8
,7

1
2
,2

4
0

T
O

T
O

1
5
,9

7
5

8
1
,1

4
7

8
6
.2

6
8

%
0
.8

3
4

%
(3

,
1
0
,
2
,
6
)

3
,8

0
3

1
5
,5

9
8

3
1
6

1
,5

1
5

2
8
9

6
5
4

2
5
0

5
3
7

7
1

1
2
4

9
.4

3
8

%
4
.8

6
1

%
4
.0

5
6

%
1
.0

0
5

%
(3

,
1
3
,
2
,
9
)

4
3
,3

8
7

2
2
8
,3

6
2

4
6
3

2
,2

2
6

1
,2

8
3

3
,4

2
4

6
5
3

1
,1

9
2

1
0
4

1
8
3

0
.9

9
%

1
.7

3
2

%
0
.6

7
9

%
0
.1

0
6

%
(3

,
1
3
,
3
,
6
)

3
4
,7

3
9

1
8
6
,5

3
0

2
,2

2
7

1
2
,0

1
8

1
,5

6
3

4
,7

0
0

1
,3

8
0

4
,0

2
5

1
6
8

4
0
0

6
.4

3
8

%
2
.8

3
%

2
.4

4
3

%
0
.2

5
7

%
(3

,
1
6
,
3
,
9
)

3
9
2
,5

3
1

2
,5

7
7
,9

5
0

3
,2

5
6

1
7
,6

2
5

6
,7

7
1

2
3
,0

2
4

3
,8

4
6

1
0
,6

6
7

2
4
6

6
0
2

0
.7

0
3

%
1
.0

0
3

%
0
.4

8
9

%
0
.0

2
9

%
(3

,
1
6
,
4
,
6
)

3
1
4
,6

9
9

2
,0

9
7
,6

8
6

1
5
,6

0
4

9
3
,7

2
9

8
,5

1
1

3
1
,9

1
2

7
,5

3
0

2
7
,5

5
9

3
6
4

1
,1

0
2

4
.5

3
2

%
1
.6

7
6

%
1
.4

5
5

%
0
.0

6
1

%
(3

,
1
9
,
4
,
9
)

3
,5

4
0
,9

7
1

2
7
,9

2
0
,1

1
4

2
2
,8

0
7

1
3
7
,3

8
8

3
6
,7

7
7

1
5
2
,3

9
0

2
1
,1

1
7

7
4
,5

0
4

5
3
1

1
,6

5
5

0
.5

0
9

%
0
.6

0
1

%
0
.3

0
4

%
0
.0

0
7

%
(3

,
1
9
,
5
,
6
)

2
,8

4
0
,4

8
3

2
2
,6

6
3
,7

5
4

T
O

T
O

4
6
,3

7
7

2
0
8
,2

9
0

4
1
,0

4
0

1
8
0
,6

3
9

7
5
8

2
,8

0
3

0
.9

9
9

%
0
.8

6
9

%
0
.0

1
4

%
(3

,
2
2
,
5
,
9
)

3
1
,9

0
1
,5

0
7

2
9
3
,8

0
5
,4

4
6

T
O

T
O

2
0
0
,3

4
9

9
7
8
,8

3
4

1
1
5
,1

6
4

4
9
1
,7

9
9

1
,1

0
3

4
,1

9
3

0
.3

6
2

%
0
.1

8
6

%
0
.0

0
2

%
(3

,
2
2
,
6
,
6
)

2
5
,5

9
7
,1

1
5

2
3
8
,0

9
2
,3

5
0

T
O

T
O

2
5
2
,7

2
9

1
,3

2
2
,4

9
0

2
2
3
,6

5
0

1
,1

5
0
,2

5
7

1
,5

4
8

6
,7

9
9

0
.5

9
7

%
0
.5

2
1

%
0
.0

0
3

%
(3

,
2
5
,
6
,
9
)

2
8
7
,2

4
4
,6

3
5

3
,0

2
7
,1

9
8
,1

7
0

T
O

T
O

1
,0

9
1
,7

6
3

6
,1

4
3
,6

7
6

T
O

T
O

2
,2

4
9

1
0
,1

3
0

0
.2

1
8

%
0
.0

%
(3

,
2
5
,
7
,
6
)

2
3
0
,5

0
5
,1

0
7

2
,4

5
0
,1

2
7
,6

0
2

T
O

T
O

1
,3

7
7
,2

4
3

8
,2

2
8
,2

3
2

T
O

T
O

3
,1

3
0

1
5
,9

7
9

0
.3

5
8

%
0
.0

0
1

%

T
ab

le
2.

R
es
ul
ts

fo
r
se
cu
ri
ty

ca
se

st
ud

ie
s
fr
om

[1
7]
.

n
o

re
d
u
ct

io
n
s

so
s

re
d
u
ct

io
n

p
a
tt

e
rn

p
a
tt

e
rn

+
la

y
e
r

p
a
tt

e
rn

+
so

s
re

d
u
ce

d
/
o
ri

g
in

a
l
m

o
d
e
l
si

ze
(%

)
m

o
d
e
l

|S
|

|T
|

|S
|

|T
|

|S
|

|T
|

|S
|

|T
|

|S
|

|T
|

so
s

re
d
u
ct

io
n

p
a
tt

e
rn

p
a
tt

e
rn

+
la

y
e
r

p
a
tt

e
rn

+
so

s

fo
re

st
a
ll

6
2
,6

8
9

1
8
5
,9

4
4

2
,4

2
7

7
,5

6
4

5
,7

8
4

1
7
,2

8
5

1
,8

4
5

2
,7

2
1

6
6
4

1
,6

5
6

4
.0

1
8

%
9
.2

7
8

%
1
.8

3
6

%
0
.9

3
3

%
g
a
in

_
a
d
m

in
5
1
,1

5
8
,7

1
9

3
6
4
,2

1
8
,5

5
4

8
,6

2
6

3
3
,5

9
5

1
,3

2
7
,5

4
6

7
,7

7
6
,3

2
7

5
2
,9

2
3

9
4
,5

7
0

8
4
4

1
,9

6
5

0
.0

1
%

2
.1

9
2

%
0
.0

3
6

%
0
.0

0
1

%
io

t_
d
ev

3
,3

8
1

6
,8

6
0

4
,1

7
3

1
1
,8

5
2

9
0
7

2
,1

5
4

3
7
1

4
5
0

1
,3

1
5

3
,1

4
4

1
5
6
.4

7
9

%
2
9
.8

9
%

8
.0

1
7

%
4
3
.5

4
1

%
tr

ea
su

re
_

h
u
n
te

rs
4
7
9

1
,3

2
6

3
1
6

9
3
7

1
5
7

3
4
0

7
4

8
9

1
3
4

2
2
8

6
9
.4

1
8

%
2
7
.5

3
5

%
9
.0

3
%

2
0
.0

5
5

%

16 J. Arias et al.

latter we used slightly simpler models than in [17], as contrary to the former
paper our tool does not handle data variables such as cost, etc. The goal in each
of these scenarios is reachability of a certain location in the root node and all
the networks are sync-deadlock. The timeout was set to 30 minutes (displayed
as TO in the tables).

The model signature in the first column of Table 1 consists of the branching
factor per an ADT node, the total number of nodes, the depth and the width
of an ADT [17]. In both tables the second pair of columns collects the details of
unreduced models, the third collects the results of applying the sum-of-squares
(here, abbreviated to sos) construction to the unreduced models, the fourth of
applying only pattern reduction, the fifth of pipelining the pattern and layer
reductions, and the sixth of pipelining the pattern reduction and the sum-of-
squares. The remaining columns collect the relative reduction/blowup rates.

The experimental data suggests that the reductions for sync-memoryless net-
works, proposed in this paper, are often comparable or exceeding [17]. This is
especially evident when the sum-of-squares is applied to pattern-reduced models.
The nature of the sum-of-squares construction can lead to statespace blowup,
but this seems observable only for smaller networks. Moreover, larger networks
enable more relative reductions.

To assess this further we conducted an independent series of scalable ex-
periments on random live-reset tree networks. We generated 210 live-reset tree
networks of depths 1–3 and computed their (reduced) sum-of-squares products.
Fig. 7 presents the scatterplot of the results. The red line denotes no reduction.

The same phenomenon as for sync-deadlock trees can be observed: the degree
of reduction increases with the size of the network.

Fig. 7. Statespace sizes of sum-of-squares for live-reset tree networks.

6 Conclusion

In this paper we outlined how to simplify large tree networks of LTSs in which
the components reset or deadlock after synchronising with their parents. We

Modular Analysis of Tree-Topology Models 17

also proposed and investigated a similar construction for the general tree-like
synchronisation topologies. It is shown that the constructions preserve a certain
form of reachability, but do not preserve liveness. An experimental evaluation
shows that the method yields extremely effective reductions for sync-memoryless
networks.

We raise several questions to be explored as future work. Firstly, we only have
a very rough theoretical estimate of the size of reductions for sync-memoryless
networks. Stronger estimations can be obtained. Secondly, for general networks
we only put a hypothesis that the state space of the general sum-of-squares may
substantially grow as compared to the full asynchronous product (albeit with
possibly smaller memory usage). This can be investigated experimentally. More-
over, the “vanilla” technique of general sum-of-squares is straightforward, thus
surely enables many optimisations. Thirdly, the class of live-reset tree networks
is probably one of many that do not need tracing what happens after synchro-
nisation (sync-deadlock networks are slightly different, as one-shot transitions
still need to be traced). Other such classes and topologies could probably be
identified. Finally, the sum-of-squares for sync-deadlock LTS networks guaran-
tees that a state is reachable before reduction iff it is one-shot F -reachable after
(see Definition 7 and Theorem 1). We however do not know the complexity of
verifying one-shot F -reachability; here we conjecture that it is NP-hard, which
may make the reductions for this class of models less impressive than suggested
by experimental results. All of these concerns can be addressed in further re-
search.

References

1. DD-Net-Checker. https://github.com/MichalKnapik/dd-net-checker (2021)
2. LTR. https://github.com/MichalKnapik/automata-net-reduction-tool (2021)
3. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods,

and Systems. Cooperative information systems, MIT Press (2002)
4. Aminof, B., Kupferman, O., Murano, A.: Improved model checking of hierarchical

systems. Inf. Comput. 210, 68–86 (2012)
5. André, É.: IMITATOR 3: Synthesis of timing parameters beyond decidability. In:

CAV. LNCS, vol. 12759, pp. 552–565. Springer (2021)
6. André, É., Lime, D., Ramparison, M., Stoelinga, M.: Parametric analyses of attack-

fault trees. Fundam. Informaticae 182(1), 69–94 (2021)
7. Arias, J., Budde, C.E., Penczek, W., Petrucci, L., Sidoruk, T., Stoelinga, M.: Hack-

ers vs. security: Attack-defence trees as asynchronous multi-agent systems. In:
ICFEM. LNCS, vol. 12531, pp. 3–19. Springer (2020)

8. Arias, J., Celerier, J.M., Desiante-Catherine, M.: Authoring and automatic verifi-
cation of interactive multimedia scores. Journal of New Music Research (2016)

9. Arias, J., Petrucci, L., Masko, L., Penczek, W., Sidoruk, T.: Minimal schedule with
minimal number of agents in attack-defence trees. In: ICECCS. pp. 1–10. IEEE
(2022)

10. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
11. Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W., Hen-

driks, M.: UPPAAL 4.0. In: QEST. pp. 125–126. IEEE Computer Society (2006)

https://github.com/MichalKnapik/dd-net-checker
https://github.com/MichalKnapik/automata-net-reduction-tool

18 J. Arias et al.

12. Belardinelli, F., Lomuscio, A., Murano, A., Rubin, S.: Verification of broadcasting
multi-agent systems against an epistemic strategy logic. In: IJCAI. pp. 91–97 (2017)

13. Holzmann, G.J.: The SPIN Model Checker - primer and reference manual. Addison-
Wesley (2004)

14. Knapik, M., Meski, A., Penczek, W.: Action synthesis for branching time logic:
Theory and applications. ACM Trans. Embed. Comput. Syst. 14(4), 64:1–64:23
(2015)

15. Kordy, B., Mauw, S., Radomirovic, S., Schweitzer, P.: Attack-defense trees. J. Log.
Comput. 24(1), 55–87 (2014)

16. Lakos, C., Petrucci, L.: Modular analysis of systems composed of semiautonomous
subsystems. In: ACSD. pp. 185–196. IEEE Computer Society (2004)

17. Petrucci, L., Knapik, M., Penczek, W., Sidoruk, T.: Squeezing state spaces of
(attack-defence) trees. In: ICECCS. pp. 71–80. IEEE (2019)

