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Abstract

We present a new hypergraph stochastic blockmodel and an associated inference proce-
dure for model-based clustering of the nodes in simple hypergraphs. Simple hypergraphs,
where a node may not appear several times in a same hyperedge, have been overlooked
in the literature, though they appropriately model some high-order interactions (such as
co-authorship). The model assumes latent groups for the nodes and conditional indepen-
dence of the hyperedges given the latent groups. We establish the first proof of generic
identifiability of the parameters in such a model. We develop a variational approximation
Expectation-Maximization algorithm for parameter inference and node clustering, and derive
an integrated classification likelihood criterion for model selection. We illustrate the perfor-
mance of our algorithm on synthetic data and analyse a real dataset of co-authorship. Our
method called HyperSBM is implemented in C++ for efficiency and available as an R package
at https://github.com/LB1304/HyperSBM.

Keywords: co-authorship network, higher-order interactions, hypergraph clustering, la-
tent variable model, variational expectation-maximization

1 Introduction

Over the past two decades a broad variety of models has been developed for pairwise interactions,
encoded in graphs. However, modern applications in various fields highlight the need to account
for high-order interactions, to include the information deriving from groups of three or more
nodes. Simple examples include triadic and larger groups interactions in social networks (whose
importance has early been acknowledged in Simmel, 1950), scientific co-authorship (Estrada and
Rodríguez-Velázquez, 2006), interactions between more than two species in ecological systems
(Muyinda et al., 2020; Singh and Baruah, 2021) or high-order correlations between neurons in
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brain networks (Chelaru et al., 2021). Hypergraphs provide the most general formalization of
high-order interactions: similarly to a graph, a hypergraph is defined as a set of nodes and a
set of hyperedges; each hyperedge is a subset of nodes taking part in an interaction. Here we
distinguish these simple hypergraphs from multisets-hypergraphs where multiset hyperedges are
allowed. A multiset is the generalisation of a set, where each element may appear with some
multiplicity. Thus, multisets-hypergraphs occur when nodes may be repeated in a hyperedge.
We refer to Battiston et al. (2020), Bick et al. (2021), and Torres et al. (2021) for recent reviews
on high-order interactions.

Despite an increasing interest for these high-order interactions, the statistical literature on this
topic remains scarce. Statistics such as centrality or clustering coefficient have been extended
from graphs to hypergraphs (Estrada and Rodríguez-Velázquez, 2006). These statistics help
understand the structure and extract information from the data but do not fill the need for
random hypergraphs models. Some early analyses of hypergraphs rely on their embedding into
the space of bipartite graphs (see, e.g., Battiston et al., 2020). Indeed, hypergraphs with self-loops
and multiple hyperedges (i.e. weighted hyperedges, with integer-valued weights) are equivalent to
bipartite graphs. However, bipartite graphs models were not specifically designed for hypergraphs
and may induce artefacts (we refer to Section A in the Supplementary Material for more details).

Generalising Erdös-Rényi’s model of random graphs leads to uniformly random hypergraphs.
The model consists in drawing uniformly at random from the set of all m-uniform hypergraphs
(i.e. with hyperedges of fixed cardinality m) over a set of n nodes. However, similarly to Erdös-
Rényi, the model is too simple and homogeneous to be used to statistically analyse datasets. The
configuration model for random graphs draws uniformly at random from the set of all graphs
over a set of n nodes with some prescribed degrees sequence. A first generalisation appears
in Ghoshal et al. (2009) focusing on tripartite and 3-uniform hypergraphs, while Chodrow (2020)
extends it to a more general hypergraphs setup. In these references, both the nodes degrees
and the hyperedges sizes are kept fixed. The configuration model is useful to sample (hyper)-
graphs with the same degree sequence (and same hyperedges sizes) as an observed one through
shuffling algorithms, and thus is often used as a null model in a statistical perspective. How-
ever sampling exactly (and not approximately) from this model is challenging, in particular in the
hypergraph case. We refer to Section 4 in Chodrow (2020) for a thorough discussion on this issue.

Another popular way of extracting information from heterogeneous data is clustering. In the
graphs context, stochastic blockmodels (SBMs) were introduced in the early eighties (Frank and
Harary, 1982; Holland et al., 1983) and have flourished in many directions. These models assume
that nodes are clustered into groups and the connection probabilities between nodes are driven
by their groups memberships. Variants handling weighted graphs and degree corrected versions
have been developed among others. In the hypergraphs context, Ghoshdastidar and Dukkipati
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(2014) introduce a planted partition model for m-uniform hypergraphs, which is a particular case
of a SBM. They assume that nodes are clustered into equally-sized groups and two parameters
determine intra-group and inter-groups connection probabilities, the former being larger than the
latter. They develop a spectral partitioning method and establish its consistency. This result is
extended to the non-uniform and weighted sparse (i.e. most weights are close to zero) setting
in Ghoshdastidar and Dukkipati (2017). Introducing hypergraphons, Balasubramanian (2021)
extends the hypergraph SBM ideas to a nonparametric setting. In a parallel vein, Turnbull et al.
(2021) propose a latent space model for hypergraphs, by generalizing random geometric graphs
to hypergraphs, though not designed to capture clustering. A proposal linked to SBM appears
in Vazquez (2009), where nodes belong to latent groups and participate in a hyperedge with a
probability that depends on their group and that hyperedge.

Modularity is also a widely used criterion for clustering entities in the context of interaction
data. It is designed to obtain specific clusters, called communities, characterized by large intra-
group and low inter-groups connection probabilities (exactly as in the above partition model from
Ghoshdastidar and Dukkipati, 2014). In the hypergraph context, the definition of modularity is
not unique. In particular, Kamiński et al. (2019) introduce a “strict” modularity criterion such
that only hyperedges with all their nodes belonging to the same group contribute to an increase
in the modularity. Their criterion measures a deviation of the number of these homogeneous
hyperedges from a new null model: it constitutes a configuration-like model for hypergraphs where
the average values of the degrees are kept fixed. Further in this direction, Chodrow et al. (2021)
introduce a degree-corrected hypergraph SBM and propose two new modularity criteria. Similarly
to Kamiński et al. (2019), one of these criteria relies on an “all-or-nothing” affinity function that
only distinguishes whether a given hyperedge is contained entirely within a single cluster or not.
In this setup, they establish a link between approximate maximum likelihood estimation and
their modularity criterion. This echoes the work of Newman (2016) in the graph context. It is
important to note that the developments in Kamiński et al. (2019) and Chodrow et al. (2021) are
done in a multisets-hypergraphs context where hyperedges are multisets, i.e. nodes are allowed to
appear with a certain multiplicity in each hyperedge. The multisets-hypergraphs setup simplifies
some challenges raised by the computation of the modularity and to our knowledge, modularity
approaches still lack instantiation in the simple hypergraph case. We further discuss this point
in Section 2.2. Focusing on community detection, random walks approaches have also been used
for hypergraph clustering (Swan and Zhan, 2021), as well as low-rank tensor decompositions (Ke
et al., 2020). The misclassification rate for the community detection problem in hypergraphs
and its limits have been analysed in various contexts (see for instance Ahn et al., 2018; Chien
et al., 2019; Cole and Zhu, 2020). We mention that a recent approach has proposed to cluster
hyperedges (Ng and Murphy, 2021) while our focus in this work is on nodes clustering.

The literature about high-order interactions often discusses simplicial complexes in parallel
with hypergraphs (Battiston et al., 2020). However the peculiarity of these structures (namely
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the fact that, stating it in the hypergraphs terminology, each subset of a hyperedge should also
be a hyperedge) puts them out of the scope of this introduction.

In this paper, we focus on model-based clustering for simple hypergraphs and study stochastic
hypergraphs blockmodels. We start by discussing the multisets-hypergraphs assumption, often
presented as a harmless one in the literature, and highlight its consequences on datasets analysis
(Section 2). These consequences motivate our focus on simple hypergraphs, where much less has
been done, while computational challenges are higher. Then, we formulate a general stochastic
simple hypergraphs blockmodel as well as different submodels and briefly highlight the main
differences with previous proposals (Section 3.1). We provide the first result of generic identifia-
bility of the parameters in a hypergraph stochastic blockmodel (Section 3.2). Parameter inference
and node clustering are then performed through a variational Expectation-Maximization (VEM)
algorithm (Section 3.3) and model selection on the number of groups relies on an integrated
classification likelihood (ICL) criterion (Section 3.4). An illustration of the performance of our
methods on synthetic datasets follows (Section 4) and a co-authorship dataset is analysed (Sec-
tion 5). All the proofs of theoretical results are postponed to Section 6. An R package HyperSBM
implementing the method (in C++ for efficiency) and all the codes are available online (see Sec-
tion 7). This manuscript comes with a Supplementary Material (SM) that contains additional
information.

2 The need for simple hypergraphs models

In this section, we discuss modeling differences between multisets-hypergraphs where multiset
hyperedges are allowed, versus simple hypergraphs where hyperedges are subsets of nodes. We
recall that multisets-hypergraphs allow for repeated nodes in a same hyperedge, the latter being
defined as a multiset of nodes. Multiset hyperedges generalize in some sense the notion of self-
loops in graphs and thus are a natural extension to consider. However, they are not appropriate
in all contexts. For instance, a co-authorship dataset cannot contain hyperedges with repeated
nodes (but may contain a self-loop of a unique author). In the same way, a social interaction
hypergraph does not contain multisets hyperedges; triadic interactions are restricted to 3 different
individuals and self-loops are not allowed. In the meantime, they are natural in other contexts;
consider, e.g., chemical reaction hypergraphs where the multiplicity plays the role of the stoichio-
metric coefficients (Flamm et al., 2015). We first argue that multisets-hypergraph models are
inappropriate for analysing simple hypergraphs.
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2.1 A motivating example

For the sake of simplicity, we restrict our attention to 3-uniform hypergraphs on a set of n
nodes and consider two different models. The first one, denoted as MH, acts on 3-uniform
multisets-hypergraphs and draws a hyperedge between any 3 nodes, not necessarily distinct, with
probability pMH. The second one, denoted as SH, acts on 3-uniform simple hypergraphs and
draws a hyperedge between any 3 distinct nodes with probability pSH.

Now, we consider a toy example of observing a simple hypergraph H with n = 3 nodes and
only one hyperedge e = {1, 2, 3}. This dataset could correspond to observing for instance one
publication with 3 authors. When analysed under the MH model, the density of our observed
hypergraph is estimated by

p̂MH = 1/27

because there are n3 = 27 possible size-3 multiset hyperedges under this model, and just one of
these is observed. On the contrary, when analysed under the SH model, we infer a density of

p̂SH = 1

because the only possible size-3 hyperedge is observed. As a consequence, the statistical con-
clusions drawn on this dataset will highly differ depending on whether we restrict attention to
simple hypergraphs or work with more general multisets-hypergraphs. This choice of the ambient
space has to be made according to the specificities of the dataset. This simple and elemen-
tary example shows that it is not possible to statistically analyse a simple hypergraph with a
multisets-hypergraphs model without erroneous conclusions.

2.2 Computational challenge in the simple hypergraph case

The main technical difference between multisets-hypergraphs and simple hypergraphs analysis
comes from the enumeration of m-tuples of nodes. In the multisets-hypergraphs setting, the
summations over multisets of nodes {i1, . . . , im} ∈ {1, . . . , n}m factorize into m independent
sums. On the contrary, in the simple hypergraph setting, the summations involve sets of nodes
{i1, . . . , im} that are constrained to be distinct. As a consequence, such a factorization is impos-
sible.

Let us consider a concrete example. We already emphasized the fact that modularity criteria
for hypergraphs have been proposed only in the multisets-hypergraphs setting (Kamiński et al.,
2019; Chodrow et al., 2021). Modularities are generally constructed as deviation measures of
the number of hyperedges from their expected number under a null model. For instance in the
graphs context, the Newman and Girvan modularity of a partition (C1, . . . , CQ) of the nodes into
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Q clusters is computed as

Modularity(C1, . . . , CQ) =
1

2|E|

Q∑
q=1

∑
i,j∈Cq

(
Aij −

didj
2|E|

)

=
1

2|E|

Q∑
q=1

∑
i,j∈Cq

Aij −
1

2|E|

Q∑
q=1

∑
i,j∈Cq

didj
2|E|

,

where A = (Aij)i,j is the graph adjacency matrix, di is the degree of node i, and 2|E| =
∑

i di is
twice the number of edges. While the first part of these criteria enumerates only the occurring
hyperedges, a quantity that is small in general as most hypergraph datasets are sparse, the second
part needs to account for all tuples of nodes in the graph (or at least in the same group Cq). In
the case of multisets-graphs this second term factorizes to

1

2|E|

Q∑
q=1

∑
i,j∈Cq

didj
2|E|

=
1

2|E|

Q∑
q=1

(
∑

i∈Cq di)(
∑

j∈Cq dj)

2|E|
=

Q∑
q=1

Vol(q)2

(2|E|)2
,

where the computation of the volume Vol(q) =
∑

i∈Cq di has time complexity of O(n). Similarly,
for multisets-hypergraphs the modularity computed in Chodrow et al. (2021) uses two main
terms: the first is a cut term that depends only on occurring hyperegdes while the second relies
on volumes of latent configurations of the nodes (see Eq. (12) and (13) in Chodrow et al., 2021).
On the contrary, in the simple hypergraph setting, enumerating all constrained tuples of nodes
requires enumerating

M∑
m=2

(
n

m

)
elements for a hypergraph with n nodes and maximum hyperedge size M . This quantity is huge
and represents the main computational limit when analysing hypergraphs (our approach to this
issue is detailed in Section C from SM).

3 A stochastic blockmodel for hypergraphs

3.1 Model formulation

Let H = (V, E) denote a binary hypergraph, where V = {1, . . . , n} is a set of n nodes and E is
the set of hyperedges. A hyperedge of size m ≥ 2 is a collection of m distinct nodes in V; we do
not allow for hyperedges being multisets nor self-loops. We indicate by M = max

e∈E
|e| the largest

possible size of the hyperedges in E (so that M ≥ 2, with M = 2 for graphs). Let us denote by

V(m) =
{
{i1, . . . , im} : i1, . . . , im ∈ V and i1 6= . . . 6= im

}
,

E(m) =
{
{i1, . . . , im} ∈ V(m) : {i1, . . . , im} ∈ E

}
,
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the sets of unordered node tuples and hyperedges of size m, respectively. Obviously E =⋃M
m=2 E(m) ⊆

⋃M
m=2 V(m). In particular, for each tuple {i1, . . . , im} ∈ V(m), we define the in-

dicator variable

Yi1,...,im = 1{i1,...,im}∈E =

1 if {i1, . . . , im} ∈ E ,

0 if {i1, . . . , im} /∈ E .

We let Y = (Yi1,...,im){i1,...,im}∈V(m) represent a random hypergraph.
Likewise the formulation of the SBM for graphs, we assume that the nodes belong to Q

unobserved groups. We let Z1, . . . , Zn denote n independent and identically distributed latent
variables with prior distribution πq = P(Zi = q) for each q = 1, . . . , Q and such that πq ≥ 0 and∑Q

q=1 πq = 1. With a slight abuse of notation, we sometimes write Zi = (Zi1, . . . , ZiQ) ∈ {0, 1}Q,
with only one value Ziq equal to 1. We also let Z = (Z1, . . . , Zn). Every m-tuple of nodes is
associated with a latent configuration, simply defined as the set of latent groups these nodes
belong to. We let

Q(m) =
{
{q1, . . . , qm} : q1, . . . , qm ∈ {1, . . . , Q}

}
,

the set of all possible latent configurations of elements in V(m). Note that groups values may
be repeated. Now, conditional on the latent variables Z, all indicator variables Yi1,...,im are
assumed independent and follow a Bernoulli distribution whose parameter depends on the latent
configuration:

Yi1,...,im |{Z1 = q1, . . . , Zm = qm} ∼ B(B(m)
qi1 ,...,qim

) for any {i1, . . . , im} ∈ V(m).

HereB(m)
q1,...,qm denotes the probability thatm unordered nodes with latent configuration {q1, . . . , qm}

are connected into a hyperedge. Note that each B(m) is a fully symmetric tensor of rankm, namely

B(m)
q1,...,qm = B(m)

qσ(1),...,qσ(m)
, ∀q1, . . . , qm and ∀σ permutation of {1, . . . ,m}. (1)

We let θ = (πq, B
(m)
q1,...,qm)q,m,q1≤···≤qm denote the parameter vector and Pθ,Eθ the corresponding

probability distribution and expectation, respectively.

Lemma 1. The number of different parameters in each tensor B(m) = (B
(m)
q1,...,qm)q1≤···≤qm is(

Q+m−1
m

)
.

As a consequence, the total number of parameters of our hypergraph stochastic blockmodel
(HSBM) is given by

(Q− 1) +
M∑
m=2

(
Q+m− 1

m

)
.

As shown in Table 1, the number of parameters increases quite rapidly as the values of Q and
M grow. To significantly reduce the model complexity, we introduce submodels by assuming
equality of some conditional probabilities B(m)

q1,...,qm . We mention that Chodrow et al. (2021) have
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also defined submodels in the context of degree-corrected HSBM. In particular, we consider two
“affiliation” submodels given by

B(m)
q1,...,qm =

α(m) if q1 = · · · = qm,

β(m) if there exist at least qi 6= qj for i 6= j
(Aff-m)

and

B(m)
q1,...,qm =

α if q1 = · · · = qm

β if there exist at least qi 6= qj for i 6= j
∀m = 2, . . . ,M. (Aff)

The number of parameters is dropped to (Q− 1) + 2(M − 1) and to (Q− 1) + 2 under Assump-
tions (Aff-m) and (Aff), respectively. These submodels reflect the same ideas as in Kamiński
et al. (2019) and Chodrow et al. (2021) when they consider that only hyperedges whose nodes
all belong to the same group should increase the modularities.

Q

M 2 3 4 5 6 7

3 4 10 20 35 56 84
4 5 15 35 70 126 210
5 6 21 56 126 252 462
6 7 28 84 210 462 924
7 8 36 120 330 792 1716

Table 1: Number of parameters of the full HSBM for given values of Q (number of latent groups)
and M (largest possible hyperedge size).

The choice of M . It is important to stress that when analysing a dataset, M is not necessarily
the maximum observed value of the hyperedges sizes but rather a modelling choice. Indeed, take
for example a co-authorship dataset with n authors and only 3 co-authors at most. If nothing
prevents 4 persons to be co-authors, then the fact that there are no hyperedges of size 4 gives as
much information as if all the possible size-4 hyperedges would be present. In the same way, the
amount of information contained in a dataset where all but say 5 possible size-4 hyperedges are
present is the same as the amount of information contained in the same dataset but with only 5
occurring size-4 hyperedges. In other words, occurring hyperedges and possible but non-occurring
hyperedges carry as much information (0 and 1 values play a similar role). As a consequence,
M should be chosen by the statistician, depending on the characteristics of the dataset at hand
and on computational resources (see “Algorithm complexity” below for more on that point). One
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should keep in mind that on any dataset, choosing M > 2 is already an improvement (in the
sense of taking more information into account) with respect to a graph analysis of the data at
hand.

Generalizations. Our model could allow for self-loops without any important changes (by au-
thorizing m = 1). It could also be easily generalized to multiple hypergraphs (with or without
self-loops) by putting a (zero-inflated or deflated) Poisson law on the conditional distribution
of the hyperedges. More generally, the conditional Bernoulli distribution could be replaced by
any parametric distribution to handle weighted hypergraphs. The case of multisets-hypergraphs
could also be handled and would result in a fastest algorithm (though requiring a distinct imple-
mentation, which is not provided in our R package).

Differences with previous proposals. Clustering methods for hypergraphs SBMs have al-
ready been proposed in the literature and we highlight here what distinguishes our approach. The
models considered in Ghoshdastidar and Dukkipati (2014, 2017) are restricted to our particular
(Aff-m) model with equally-sized groups (and adding a sparsity parameter in the most recent ref-
erence). In the same way, the references Ke et al. (2020); Ahn et al. (2018); Chien et al. (2019) all
focus on community detection and do not find clusters that are not communities. Then, Chodrow
et al. (2021) introduced a very general degree-corrected SBM for multiple hypergraphs. How-
ever, their inference method solves the clustering problem in the space of multisets-hypergraphs
while the one presented here solves it in the simple hypergraphs space. As already argued in
Section 2.1, while both approaches are founded, they give rise to different statistical analyses.
The choice of which should be used depends on the type of data at hand. Finally, the SBM for
hypergraphs presented in Balasubramanian (2021) is very general; but his least-squares estimator
of a hypergraphon model is untractable. Besides, Algorithm 1 in that reference is dedicated to
community detection and does not recover general groups.

3.2 Parameter identifiability

In the next result, we first establish generic identifiability of the parameters of a HSBM restricted
to simple m-uniform hypergraphs for any m ≥ 2. Generic identifiability (in a parametric context)
means that every parameter θ, except possibly for some lying in a subset whose dimension is
strictly smaller than the dimension of the full parameter space, uniquely defines the distribution
Pθ. In other words, when picking at random (w.r.t. Lebesgue measure) a parameter θ ∈ Θ,
this parameter uniquely defines Pθ almost surely (w.r.t. Lebesgue measure). Identifiability is
established up to label switching on the node groups, as in any discrete latent variable model.
The case m = 2 corresponds to Theorem 2 in Allman et al. (2011). Our proof follows the same
ideas, building on a key result by Kruskal (1977), and relying in our case on a sufficient condition
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for a sequence of nonnegative integers to be the degree sequence of a simplem-uniform hypergraph
(Behrens et al., 2013).

Theorem 2. For anym ≥ 2 and any integer Q, the parameter θ(m) = (πq, B
(m)
q1,...,qm)1≤q≤Q,1≤q1≤···≤qm≤Q

of the HSBM restricted to m-uniform simple hypergraphs over n nodes, is generically identifiable,
up to label switching on the node groups, for large enough n (depending only on m,Q).

The case of fixed group proportions (e.g., equal group proportions πq = 1/Q) needs special
attention. Indeed, our main result does not explicitly characterize the subspace of the parameter
space on which identifiability may not be satisfied (we only know that its dimension is less than
that of the full parameter space). When restricting to fixed group proportions, we are exactly on
a lower dimensional space and may not obtain identifiability without specific care. In the same
way, our result does not apply in the affiliation cases (Aff-m) and (Aff) that correspond to a
restriction of the parameter space to a lower-dimensional subspace.

The result stated for m-uniform hypergraphs is enough to imply a similar one for non-uniform
simple hypergraphs, as stated in the following corollary.

Corollary 3. For any integer Q, the parameter θ = (πq, B
(m)
q1,...,qm)1≤q≤Q,1≤q1≤···≤qm≤Q,2≤m≤M of

the HSBM for simple hypergraphs over n nodes, is generically identifiable, up to label switching
on the node groups, for large enough n (depending only on M,Q).

Our proof of Corollary 3 specifically requires all the πq’s are distinct (a generic condition,
thus not explicitly stated) and does not apply for instance in the restricted case of equal group
proportions. In that case, it is not sufficient to identify the parameters for each value of m
separately.

3.3 Parameter estimation via variational Expectation-Maximization

The likelihood of the model is given by

Pθ(Y ) =

Q∑
q1=1

· · ·
Q∑

qn=1

Pθ(Y ,Z = (q1, . . . , qn))

=

Q∑
q1=1

· · ·
Q∑

qn=1

(
n∏
i=1

Pθ(Zi = qi)

)
M∏
m=2

∏
{i1,...,im}∈V(m)

Pθ(Yi1,...,im |Zi1 = qi1 , . . . , Zim = qim)

=

Q∑
q1=1

· · ·
Q∑

qn=1

(
n∏
i=1

πqi

)
M∏
m=2

∏
{i1,...,im}∈V(m)

(B(m)
qi1 ,...,qim

)Yi1,...,im (1−B(m)
qi1 ,...,qim

)1−Yi1,...,im .

(2)

The computation of the model likelihood is intractable in general. Indeed, Equation (2) involves a
summation over all possible Qn different latent configurations which cannot be done unless n and
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Q are small. Latent variable models often rely on the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) to solve this problem. Nonetheless, this approach can neither be applied
in the context of SBMs. Indeed, the E-step computation of EM algorithm is typically based
on the conditional posterior distribution of the latent variables Pθ(Z|Y ), which is intractable
itself in SBMs (see e.g. Matias and Robin, 2014). A possible remedy is to rely on variational
approximations of EM algorithm (VEM, Jordan et al., 1999).

The complete data log-likelihood is

`cn(θ) = logPθ(Y ,Z) = logPθ(Z) + logPθ(Y |Z) (3)

=

Q∑
q=1

n∑
i=1

Ziq log πq

+
M∑
m=2

∑
V(m)

∑
Q(m)

Zi1q1 · · ·Zimqm
[
Yi1...im logB(m)

q1,...,qm + (1− Yi1...im) log(1−B(m)
q1,...,qm)

]
.

The core idea at the basis of the variational method is to follow the same iterative two-steps
structure as in EM algorithm and replace the intractable posterior distribution Pθ(Z|Y ) by the
best approximation (with respect to Kullback-Leibler divergence) in a class of simpler (often
factorized) distributions. We thus introduce the class of factorized probability distributions Qτ

over Z = (Z1, . . . , Zn) given by

Qτ (Z) =
n∏
i=1

Qτ (Zi) =
n∏
i=1

Q∏
q=1

τ
Ziq
iq ,

with the variational parameter τiq = Qτ (Zi = q) ∈ [0, 1] and
∑Q

q=1 τiq = 1, for any i = 1, . . . , n

and q = 1, . . . , Q. The expectation under distribution Qτ is EQτ and H(Qτ ) denotes the entropy
of Qτ . Now we define the evidence lower bound (ELBO)

J (θ, τ) = EQτ [logPθ(Y ,Z)] +H(Qτ ) (4)

= EQτ [logPθ(Y ,Z)]− EQτ [logQτ (Z)]

=

Q∑
q=1

n∑
i=1

τiq log
πq
τiq

+
M∑
m=2

∑
Q(m)

∑
V(m)

τi1q1 · · · τimqm
[
Yi1,...,im logB(m)

q1,...,qm + (1− Yi1,...,im) log(1−B(m)
q1,...,qm)

]
.

It is easy to see that J (θ, τ) satisfies

J (θ, τ) = logPθ(Y )−KL(Qτ (Z)||Pθ(Z|Y )), (5)

where KL(·||·) denotes the Kullback-Leibler divergence, and thus J is a lower bound of the
model log-likelihood logPθ(Y ). Now, the VEM algorithm alternates the following two steps until
a suitable convergence criterion is satisfied
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• VE-Step maximizes J (θ, τ) with respect to τ

τ̂ (t) = arg max
τ

J (θ(t−1), τ); s.t.
∑Q

q=1 τ̂
(t)
iq = 1 ∀i = 1, . . . , n (6)

this is equivalent to minimizing the Kullback-Leibler divergence term in (5), and thus finding
the “best” approximation of the conditional distribution Pθ(Z|Y );

• M-Step maximizes J (θ, τ) with respect to θ

θ̂(t) = arg max
θ

J (θ, τ (t−1)), s.t.
∑Q

q=1 π̂
(t)
q = 1 (7)

thus updating the value of the model parameters πq and B(m)
q1,...,qm .

In the following we provide the solutions of the two maximization problems in Equations (6)
and (7).

Proposition 4 (VE-Step). Given the current model parameters (πq, B
(m)
q1,...,qm)q,m,q1,...,qm at any

iteration of the VEM algorithm, the corresponding optimal values of the variational parameters
(τ̂iq)i,q defined in Equation (6) should satisfy the following fixed point equation

log τ̂iq = log πq +

M−1∑
m=1

∑
{q1,...,qm}∈Q(m)

∑
{i1,...,im}∈V(m)

s.t.{i,i1,...,im}∈V(m+1)

τ̂i1q1 · · · τ̂imqm

×
[
Yii1...im log(B(m+1)

qq1...qm) + (1− Yii1...im) log(1−B(m+1)
qq1...qm)

]
+ ci, (8)

for any 1 ≤ i ≤ n and 1 ≤ q ≤ Q and where ci are normalising constants such that
∑

q τ̂iq = 1.

Remark. From Proposition 4, the τi’s are obtained using a fixed point algorithm. Although in all
the situations we experienced, the algorithm converged in a reasonable number of iterations, we
have no guarantee about existence nor uniqueness of a solution to (8).

Proposition 5 (M-Step). Given the variational parameters (τiq)i,q at any iteration of the VEM al-
gorithm, the corresponding optimal values of the model parameters (π̂q, B̂

(m)
q1...qm)q,m,q1,...,qm defined

in Equation (7) are given by

π̂q =
1

n

n∑
i=1

τiq and B̂(m)
q1...qm =

∑
{i1,...,im}∈V(m) τi1q1 . . . τimqmYi1...im∑
{i1,...,im}∈V(m) τi1q1 . . . τimqm

.

We now express the solutions of the M-Step under the submodels given by (Aff-m) and (Aff).
Note that the VE-Step is unchanged under these settings.

Proposition 6 (M-Step, affiliation setup). In the particular affiliations submodels given by (Aff-m)
and (Aff) respectively, given variational parameters (τiq)i,q, at any iteration of the VEM algorithm,
the corresponding optimal values of (α̂(m), β̂(m))m and α̂, β̂ maximising J as in Equation (7) are
now given by

12



• Under Assumption (Aff-m),

α̂(m) =

∑Q
q=1

∑
{i1,...,im}∈V(m) τi1q . . . τimqYi1...im∑Q

q=1

∑
{i1,...,im}∈V(m) τi1q . . . τimq

,

β̂(m) =

∑
{q1,...,qm}∈Q(m)

|{q1,...,qm}|≥2

∑
{i1,...,im}∈V(m) τi1q1 . . . τimqmYi1...im∑

{q1,...,qm}∈Q(m)

|{q1,...,qm}|≥2

∑
{i1,...,im}∈V(m) τi1q1 . . . τimqm

.

• Under Assumption (Aff),

α̂ =

∑M
m=2

∑Q
q=1

∑
{i1,...,im}∈V(m) τi1q . . . τimqYi1...im∑M

m=2

∑Q
q=1

∑
{i1,...,im}∈V(m) τi1q . . . τimq

,

β̂ =

∑M
m=2

∑
{q1,...,qm}∈Q(m)

|{q1,...,qm}|≥2

∑
{i1,...,im}∈V(m) τi1q1 . . . τimqmYi1...im∑M

m=2

∑
{q1,...,qm}∈Q(m)

|{q1,...,qm}|≥2

∑
{i1,...,im}∈V(m) τi1q1 . . . τimqm

.

Algorithm initialization. We choose to start the algorithm with its M-step, hence providing
an initial value for τ . This way, we may take advantage of smart initialization strategies based
on a preliminary clustering of the nodes. Specifically, we rely on three different initialization
strategies and keep the best result (that maximizes the criterion J ):

1. random initialization: This naive method simply draws each (τiq)1≤q≤Q uniformly in (0, 1)

for every node i and normalise the vector τi;

2. “soft” spectral clustering : We rely on Algorithm 1 in Ghoshdastidar and Dukkipati (2017)
combined with soft k-means. More precisely, we compute a hypergraph Laplacian and
construct the column matrix X of its leading Q orthonormal eigenvectors. Then the rows
of X are normalized to have unit norm (points 1 to 3 in Algorithm 1 from Ghoshdastidar
and Dukkipati (2017)). We then perform a soft k-means algorithm on the rows of X and
obtain τiq as the posterior probability for node i to belong to cluster q;

3. graph-component absolute spectral clustering : We restrict our attention to edges in the
hypergraph (m = 2) and the corresponding adjacency matrix. We then perform the absolute
spectral clustering (Rohe et al., 2011) on this adjacency matrix. This initialization does not
use the whole information from the hypergraph (hyperedges of size m ≥ 3 are not used).
Nonetheless, absolute spectral clustering is believed to be superior to spectral clustering as
it captures disassortative groups.

Note that in many cases, the random initialization gave as good results as the smart strategies.
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Fixed point. The VE-Step is obtained by a fixed-point algorithm. In practice at iteration t of
the VEM algorithm, starting from the previous values of the variational and the model parameters
τ
(t−1)
iq , θ(t−1), respectively, we iterate over some index u the computation given by (8) and obtain a
sequence of values τ (t,u)iq . We stop these iterations whenever we reach a maximum number of fixed
point iterations (u > Umax) or the variational parameters converged (max

iq
|τ (t,u−1)iq − τ (t,u)iq | ≤ ε).

Stopping criteria. The VEM algorithm iterations should stop whenever the ELBO J and the
sequence of model parameter vectors θ(t) = (θ

(t)
s )s converged. However, experimenting with the

above conditions, the algorithm sometimes stops when the VE-Step still requires a few iterations
to reach a fixed point. In these cases, carrying on with the VEM iterations generally leads to higher
values of the ELBO function, and hence to better estimates. Therefore we impose that the fixed
point in the VE-Step is reached at its first iteration. This reduces the chance to converge to some
local maxima of J . Finally, when these conditions are not reached, we stop the algorithm if a
maximum number of iterations has been reached. To summarize, we stop the algorithm whenever{
|J (θ(t−1))− J (θ(t))|

|J (θ(t))|
≤ ε and max

s
|θ(t−1)s − θ(t)s | ≤ ε and max

iq
|τ (t,0)iq − τ (t,1)iq | ≤ ε

}
or {t > Tmax}.

SM contains additional details about the algorithm’s implementation (Section C) and the
choice of some hyperparameters (Section D).

Algorithm complexity. The complexity of our algorithm is of the order O(nQM
(
n
M

)
), which

is rather prohibitive for large datasets when M becomes large. We recall here that M must be
chosen and is not necessarily the largest observed hyperedge size (see paragraph “The choice of
M ” above). Thus, for large datasets, we recommend limiting the analysis to M = 3 or 4.

3.4 Model selection

Ghoshdastidar and Dukkipati (2017) propose to select the number of groups by looking for the
spectral gap. On the contrary here, we rely on a statistical approach to construct a model
selection criterion.

We let θ̂ and (τ̂i)i denote the estimated parameters obtained at the end of the VEM algorithm.
We also let Ẑi = arg maxq τ̂iq denote the estimate of the group of node i. Then the integrated clas-
sification likelihood (ICL, Biernacki et al., 2000) is defined for the full model and the submodels
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(Aff-m), (Aff) as

ICLfull(q) = logPθ̂(Y , Ẑ)− 1

2
(q − 1) log n− 1

2

M∑
m=2

(
q +m− 1

m

)
log

(
n

m

)
,

ICLaff-m(q) = logPθ̂(Y , Ẑ)− 1

2
(q − 1) log n− (M − 1)

M∑
m=2

log

(
n

m

)
,

ICLaff(q) = logPθ̂(Y , Ẑ)− 1

2
(q − 1) log n−

M∑
m=2

log

(
n

m

)
,

respectively. Then the number of groups is determined as q̂ = arg maxq ICL(q).

4 Simulation results

4.1 Performance of parameter and groups estimation

We conduct a simulation study to assess the performance of HyperSBM package. In the following,
we illustrate the simulation scheme and summarize the main results.

Hypergraphs are simulated from the HSBM, considering Q = 2 latent groups with prior
probabilities equal to 0.6 and 0.4, respectively. The largest size M of hyperdeges is set to 3,
and the number of nodes n ∈ {50, 100, 150, 200}. A simplified latent structure, according to the
(Aff) submodel is assumed, and various scenarios, corresponding to different possible real-world
situations, are analysed:

A. Communities: In this scenario, we focus on community detection and consider the case of
high intra-group and low inter-groups connection probabilities. We thus set α = 0.7 > β =

0.3;

B. Disassortative: In this scenario, we focus on disassortative behaviour and consider the case
of low intra-group and high inter-groups connection probabilities. We thus set α = 0.3 <

β = 0.7;

C. Erdös-Rényi-like: In this scenario, we focus on the difficult case of very similar intra-group
and inter-groups connection probabilities. We thus set α = 0.25 very close to β = 0.35.

For each scenario and each value n of the number of nodes, 10 different datasets are simulated.
We consider estimation under the full HSBM formulation with our VEM algorithm and rely on
soft spectral clustering initialization only. The performance of HyperSBM is assessed in terms of
both recovery of the correct clustering and estimation of the original parameters.

For the correct classification, the Adjusted Rand Index (ARI, Hubert and Arabie, 1985) is
considered, measuring the similarity between the correct node clustering and the estimated one.
This index is always smaller than or equal to 1 (two identical clusterings have an ARI exactly
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equal to 1), and it can assume negative values when the agreement between the two clusterings
is less than what is expected from a random result. Table 2 reports, for each setting, the average

n Scenario A Scenario B Scenario C

50 1.00 1.00 0.50
100 1.00 1.00 0.90
150 1.00 1.00 1.00
200 1.00 1.00 1.00

Table 2: Adjusted Rand Index for different scenarios and number of nodes. Each value is
obtained as the average over 10 simulated datasets.

value of the ARI over the 10 simulated datasets. Considering scenarios A and B, the results
are highly satisfactory, all values being equal to 1. The VEM algorithm perfectly recovers the
correct clusters in all cases, hence showing an optimal performance in detecting communities as
well as disassortative behaviours. Scenario C proves to be a more complex setting for clustering,
especially when combined with a small number of nodes. Considering this setting, the proposed
approach sometimes fails to recover the optimal clustering. This behavior is particularly evident
in the case with n = 50 nodes, where the average ARI is rather low (0.5). In that scenario, the
performances improve with the increase of the number of nodes. Note that such a behaviour could
(partly) be explained by the results of Kim et al. (2018) about exact recovery. Indeed, in a similar
setting, except for their assumption of equal group proportions and m-uniform hypergraphs, they
establish that writing (with our notation) α = p log n/

(
n−1
m−1

)
and β = q log n/

(
n−1
m−1

)
with p, q

positive constants, then I(p, q) = (
√
p − √q)2/2m−1 is the threshold for exact recovery of the

latent groups; namely exact recovery is possible for I(p, q) > 1 and impossible for I(p, q) < 1.
With our choice of parameters in scenario C and relying onm = 3, we have that I(p, q) ' 0.63 < 1

when n = 50 and I(p, q) ' 2.21 > 1 when n = 100. Again, our case is not exactly the same as
we do not have equal group proportions and we observe hyperedges with both m = 2 and m = 3

but our results go in the same direction.
We also inspect the estimation of model parameters by computing the Mean Squared Error

(MSE) between the true parameters and the estimated ones, for both the prior probabilities
πq, and the probabilities of hyperedge occurrence B(m)

q1,...,qm . More specifically, we compute an
aggregated MSE over all the components of θ, defined as

MSE =
1

10

10∑
i=1

{
(π̂i1 − π1)2 +

M∑
m=2

∑
q1,...,qm

(B̂(m),i
q1,...,qm −B

(m)
q1,...,qm)2

}
,

where (π̂i1, {B̂
(m),i
q1,...,qm}m,q1,...,qm) is the parameter estimated on the i-th dataset by the full model.

The corresponding results are summarized through the boxplots in Figure 1. All values are rather
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Figure 1: Mean Squared Error between true and estimated model parameters for different sce-
narios and number of nodes.
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small, showing that the model parameters are generally estimated with a high degree of accuracy.
In particular, scenarios A and B provide the best results, with values of the MSE that are always
lower than 0.5%. On the other hand, scenario C confirms to be the most difficult from the
estimation perspective, showing the highest MSE for each value of n (up to 8%). This analysis
also allows us to better outline the behavior of the VEM algorithm for different values of n; in
particular, in each scenario, the parameters estimation becomes more accurate as the number of
nodes increases. Estimates obtained assuming the submodel (Aff) formulation do not present
any significant difference.

Section E from SM contains additional experiments showing that starting values do not have
a strong influence on the result of the VEM algorithm.

4.2 Performance of model selection

In this section we assess the performance of ICL as a model selection criterion. To this aim
we simulate 50 hypergraphs from the HSBM with Q = 3 latent states and assuming the sub-
model (Aff) for the latent structure. Two different values are tested for the number of nodes,
n = 100 and n = 200, while the largest size M of hyperedges is set equal to 3 in both cases. The
simulated data is then fitted with HyperSBM with a number of latent states ranging from 1 to 5.

n = 100 n = 200

Q Percentage ARI for 3 groups Percentage ARI for 3 groups

2 0% - 2% 0.55
3 68% 1.00 90% 1.00
4 22% 0.57 6% 0.60
5 10% 0.58 2% 0.61

Table 3: Frequency (as a percentage) of the selected number of groups and average Adjusted Rand
Index of the classification obtained with Q = 3 depending on the selected number of groups. Model
selection is carried out by means of the ICL criterion. Results are computed over 50 samples for
each value of n.

In Table 3 we show the frequency of the selected number of groups. Results are highly
satisfactory: the correct model is selected in 68% of cases for n = 100 and in 90% of cases for
n = 200. We also compute the value of ARI of the classification obtained with 3 clusters depending
on the selected number of latent groups. This value is always equal to 1 when the correct model
is recovered, thus confirming the optimal behavior of HyperSBM shown in Section 4.1. On the
contrary, in cases where an incorrect number of groups is selected, values of ARI are quite low
(around or smaller than 0.60). This behavior clarifies that in these cases, the estimation through
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the VEM algorithm is responsible for the bad recovery more than the selection criterion. It is again
confirmed that better results are obtained for higher values of n.

5 Analysis of a co-authorship dataset

5.1 Dataset description

We analyse a co-authorship dataset available at http://vlado.fmf.uni-lj.si/pub/networks/
data/2mode/Sandi/Sandi.htm. The dataset was extracted from the bibliography of a book (
“Product Graphs: Structure and recognition” by Imrich and Klavzăr) and is given as a bipartite
author/article graph. Following Estrada and Rodríguez-Velázquez (2006), we constructed the
hypergraph in which nodes are authors and hyperedges link the authors of a same paper. Details
about pre-treatment of the dataset are given in Section F from SM, as well as further analyses.
We chose M = 4 and worked with the induced main connected component of the hypergraph
with 79 authors and 76 hyperedges (68.5% of which have size 2, while 29% have size 3 and 2.5%
have size 4).

5.2 Analysis with HyperSBM

We performed an analysis of the constructed dataset with our HyperSBM package. The ICL
criterion selected Q = 2 groups. We obtained a small group with only 8 authors (the remaining
71 authors being in the second group). Table 4 presents the distribution of the number of distinct
co-authors per author. Among the 8 authors of the first group, 6 of them have the highest number
of distinct co-authors (and the remaining 2 have 4 distinct co-authors each).

Nb co-authors 1 2 3 4 5 6 7 8 10 11 12

Count 23 27 13 6 2 2 1 1 2 1 1

Table 4: Distribution of the number of distinct co-authors per author. The first group contains
the 6 authors having the largest number of distinct co-authors (between 7 and 12) plus 2 authors
with 4 co-authors each.

Coming back to the bipartite graph of authors and (co-authored) papers, we looked at the
degree distribution of the authors, given in Table 5. This corresponds to the distribution of the
number of co-authored papers per author. We observed that 5 of the 8 authors from our first
group are the ones that co-published the most, the three others having also high degree (one
of degree 5 and two of degree 4). Thus, our first group is made of authors (among) the most
collaborative ones, which are also (among) the most prolific ones.

Neither the first nor the second group inferred by HyperSBM are communities. Indeed we
obtained the following estimated values from the size-2 hyperedges: B̂(2)

11 ' 4.2% is of the same
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Author degree 1 2 3 4 5 6 7 8 10 13

Count 44 14 6 6 4 1 1 1 1 1

Table 5: Degree distribution of authors in the bipartite graph. Our first group contains the 5
most collaborating authors, one of the sixth, plus 2 authors with degree equal to 4.

order as B̂(2)
12 ' 5.1% while B̂(2)

22 ' 0.8% is around five times smaller. This means that the first
group contains authors that have written with authors from the two groups while the second
group is made of authors who have less co-authored papers with people of their own group.
Looking now at size-3 hyperedges, we get that B̂(3)

111 ' 2 · 10−4 ; B̂(3)
112 ' 18 · 10−4 ; B̂(3)

122 ' 7 · 10−4

and B̂(3)
222 ' 0.6 ·10−4. The most important estimated frequency is B̂(3)

112 that concerns 2 authors of
the small first group co-authoring a paper with one author of the large second group. The second
most important estimated frequency is B̂(3)

122 and is obtained for one author from small first group
co-authoring a paper with two authors of the large second group. The remaining frequencies of
size-3 hyperedges are negligible. This characterizes further the first groups as being composed by
authors that do co-author with their own group as well as with authors from the second one.

Finally, looking now at size-4 hyperedges, the only non negligible estimated frequency is
obtained for B̂(4)

1222 ' 4 · 10−6. We note here that the quantities B(3)’s and B(4)’s are intrinsically
on different scales, as are the quantities B(2)’s and B(3)’s. So again, authors from group one
co-authored with the others authors. (Note that the first group is not large enough for a B(4)

frequency with at least 2 authors in that group 1 to be non negligible).

5.3 Comparison with 2 other methods

We first compared our approach with the spectral clustering algorithm proposed in Ghoshdastidar
and Dukkipati (2017). Let us recall that spectral clustering does not come with a statistical
criterion to select the number of groups.

Looking at the partition obtained with Q = 2 groups, spectral clustering output groups with
sizes 24 and 55, respectively. These groups are neither characterized by the number of co-authors
nor their degrees in the bipartite graph (see details in SM). Indeed, in our case the best clusters
are not communities and their sizes are very different, while we recall that spectral clustering
tends to: i) extract communities ; ii) favor groups of similar size.

We then analysed the same dataset as a bipartite graph of authors/papers with the R package
SBM through the function estimateBipartiteSBM (Chiquet et al., 2022). This method infers a
latent blockmodel (that in fact corresponds to a SBM for bipartite graphs) and automatically
selects a number of groups on both parts (authors and papers). Hereafter, we refer to this
method as the Bipartite-SBM implementation. Let us underline here that while the bipartite
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stochastic blockmodel can be written as a particular case of a HSBM, the converse is not true
(See Section A.3 in the SM).

The Bipartite-SBM also selected 2 groups of authors (and one group of papers). There
was one small group with 4 authors, entirely contained in our first small group; it corresponds to
authors that have the highest degree in the bipartite graph and the highest number of co-authors.
So, Bipartite-SBM output a very small group of the most prolific and the most collaborative
authors in this dataset. Further details about the distinctions between these groups and the ones
obtained by HyperSBM are given in SM.

As a conclusion, we see that while the outputs of Bipartite-SBM and HyperSBM may seem
close on this specific dataset, they are nonetheless different. On the other hand, and still on this
specific dataset, the spectral clustering approach outputs results that are completely different
from those of HyperSBM.

6 Proofs

Proof of Lemma 1. We consider a fixed value of m ≥ 2 and denote by Ja, bK the set of integer
values between a, b. Let us recall that B(m) is a fully symmetric tensor (1), so the number of
free parameters in B(m) is equal to the number of ordered sequences q1 ≤ · · · ≤ qm of elements
in J1, QK. We denote by Q+ this set. Then we define a function f which, to any such sequence
q = (q1, . . . , qm), associates the value l = f(q) defined by f(q) = (q1, q2+1, q3+2, . . . , qm+m−1).
We let L+ denote the set of sequences l = (l1, . . . , lm) with coordinates in J1, Q + m − 1K and
such that l1 < l2 < · · · < lm. Thus, for any q ∈ Q+ we get that f(q) ∈ L+.

Conversely, for any l = (l1, . . . , lm) ∈ L+, we can associate the value q = g(l) = (l1, l2−1, l3−
2, . . . , lm −m+ 1). It is easy to see that the image q = g(l) belongs to Q+.

As a consequence, the functions f and g are such that their composition is the identity
function: f ◦ g = g ◦ f = Id. These are one-to-one functions mapping Q+ to L+ and conversely.
This implies that the cardinalities of these two sets are equal. But an element in L+ is exactly a
subset of size m of J1, Q+m− 1K so that the cardinality of L+ is the number of subsets of size
m of J1, Q+m− 1K. This concludes the proof of the lemma.

Proof of Theorem 2. The proof mostly follows the same lines as the proof of Theorem 2 in Allman
et al. (2011) for simple graphs SBM, generalizing it to simple m-uniform HSBM. The full details
of this generalization are given in Section B from SM. In this section, we just establish the key
element that strongly differs from the proof of Theorem 2 in Allman et al. (2011). It consists
in exhibiting a set of degree sequences with some specific properties. As the characterization
of which integer sequences may be realized as degree sequences strongly differs between graphs
and m-uniform hypergraphs, our construction differs from the one in the proof of Theorem 2 in
Allman et al. (2011).
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Consider the following set of integer-valued sequences

D =
{
d = (d1, . . . , dn0) | for 1 ≤ i ≤ n0, di ∈ {m, 2m, 3m, . . . , Qm}

}
.

Lemma 7. The set D of n0-length integer sequences satisfies

(i) for each i ∈ {1, . . . , n0}, the set of i-th coordinates {di | d ∈ D} has cardinality at most Q;

(ii) For large enough n0 (depending on Q,m), any d ∈ D is the degree sequence of a simple
m-uniform hypergraph over n0 nodes;

(iii) |D| ≥ Qn0.

Note that conditions (i), (iii) imply that {di | d ∈ D} should have cardinality exactly Q and
that |D| = Qn0 .

Proof of Lemma 7. Points (i), (iii) are a consequence of the definition of D. For any integer
sequence d, a necessary condition for d to be a degree sequence of a simplem-uniform hypergraph
over n0 nodes is that m divides

∑
i di. Here, we rather need sufficient conditions in order to prove

(ii). We rely on Corollary 2.2 in Behrens et al. (2013).

Corollary 2.2 in Behrens et al. (2013). Let d be an integer-valued sequence with maximum
term ∆ and let p be an integer such that ∆ ≤

(
p−1
m−1

)
. If m divides

∑
i di and

∑
i di ≥ (∆−1)p+1

then d is the degree sequence of a simple m-uniform hypergraph.

Fix some d ∈ D. Note that by construction, m divides
∑

i di. Let ∆ be the maximum value
of this sequence and note that ∆ ≤ Qm. Thus we choose p an integer such that Qm ≤

(
p−1
m−1

)
.

Moreover,
∑

i di ≥ mn0 and (∆− 1)p+ 1 ≤ ∆p ≤ Qmp. Then by choosing n0 ≥ Qp, we obtain
the desired result.

With Lemma 7 at hand, we are able to generalize the proof of Theorem 2 in Allman et al.
(2011) for simple graphs SBM to the case of simple m-uniform HSBM. This concludes the proof
of Theorem 2.

Proof of Corollary 3. From the probability distribution Pθ over simple hypergraphs H on a set of
n nodes and hyperedges with largest size M , we automatically obtain all the probability distri-
butions Pθ restricted to simple m-uniform hypergraphs Hm on the same set of nodes. Applying
the result of Theorem 2 for all values m is sufficient to obtain the desired result. Indeed, as M
is finite, the union of the finite number of lower-dimensional subspaces where identifiability for
fixed m may not be satisfied gives a lower-dimensional subspace, ensuring generic identifiability.
Moreover, for each value of m, we recover the parameter θ(m) up to a permutation on {1, . . . , Q}.
Now, for any m 6= m′ it remains to be able to jointly order the parameters θ(m) and θ(m′) up to
a permutation on {1, . . . , Q}. If all the πq’s are different, which is a generic condition, this can
be easily done because θ(m) and θ(m′) share the same distinct πq’s.
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Proof of Proposition 4. We want to maximize J (θ, τ) with respect to τiq under the constraint∑Q
q=1 τiq = 1 for all i. Using the method of Lagrange multipliers, this is equivalent to maximizing

with respect to τiq the Lagrangian function

Λ(θ, τ, λ) =

n∑
i=1

λi

(
Q∑
q=1

τiq − 1

)
+ J (θ, τ)

=

n∑
i=1

λi

(
Q∑
q=1

τiq − 1

)
+

Q∑
q=1

n∑
i=1

τiq log
πq
τiq

+
n∑
i=1

Q∑
q=1

M−1∑
m=1

∑
{q1,...,qm}∈Q(m)

∑
V(m) 63i

τiqτi1q1 · · · τimqm
[
Yii1...im logB(m)

qq1...qm

+(1− Yii1...im) log(1−B(m)
qq1...qm)

]
.

Computing the partial derivative of Λ(θ, τ ,λ) with respect to τiq, we obtain the following ex-
pression

∂Λ

∂τiq
= λi + log

πq
τiq
− 1

+
M−1∑
m=1

∑
Q(m)

∑
V(m) 63i

τi1q1 · · · τimqm
[
Yii1...im logB(m)

qq1...qm + (1− Yii1...im) log(1−B(m)
qq1...qm)

]
= λi + log πq − log τiq − 1

+ log
M−1∏
m=1

∏
Q(m)

∏
V(m) 63i

[
(B(m)

qq1...qm)Yii1...im · (1−B(m)
qq1...qm)1−Yii1...im

]τi1q1 ···τimqm
,

which is equal to 0 if

τiq = eλi−1 πq

M−1∏
m=1

∏
Q(m)

∏
V(m) 63i

[
(B(m)

qq1...qm)Yii1...im · (1−B(m)
qq1...qm)1−Yii1...im

]τi1q1 ···τimqm
.

The term eλi−1 = 1∑Q
q=1 τiq

is the normalizing constant such that
∑Q

q=1 τiq = 1 for each i.

Finally, let us remark that the Lagrangian function Λ is concave with respect to each τiq, being the
sum of a concave term (τiq log(πq/τiq)) and linear terms. Then the critical point is a maximum.

Proof of Proposition 5. For the prior probabilities πq, we want to maximize J (θ, τ) with respect
to πq subject to the constraint

∑Q
q=1 πq = 1. Using again Lagrange multipliers, this is equivalent

to maximizing

Λ(θ, τ, λ) = λ

(
Q∑
q=1

πq − 1

)
+ J (θ, τ)
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Noting that the second term of J (θ, τ) does not depend on πq, the computation of the partial
derivative of Λ(θ, τ, λ) reduces to

∂

∂πq

[
λ

( Q∑
q=1

πq − 1

)
+

Q∑
q=1

n∑
i=1

τiq log
πq
τiq

]
= λ+

n∑
i=1

τiq
πq
.

This quantity is equal to 0 if

πq = − 1

λ

n∑
i=1

τiq,

where λ = −n is the normalizing constant in order to satisfy
∑Q

q=1 πq = 1.
Note the Lagrangian function Λ is concave with respect to each πq, being the sum of a concave
term (log(πq/τiq)), of a linear term (λ

∑Q
q=1 πq) and of a constant. The critical point is then a

maximum.
Finally, the partial derivative w.r.t. B(m)

q1,...,qm is

∂J
∂B

(m)
q1,...,qm

=
∑
V(m)

τi1q1 · · · τimqm

[
Yi1...im

1

B
(m)
q1...qm

− (1− Yi1...im)
1

1−B(m)
q1...qm

]
.

Through some basic algebraic manipulations, this quantity results equal to 0 if

B(m)
q1,...,qm =

∑
V(m) τi1q1 · · · τimqmYi1...im∑
V(m) τi1q1 · · · τimqm

.

Again, the Lagrangian function is the sum of a concave term (logB
(m)
q1,...,qm) and of some constant

terms, thus being a concave function. The critical point is then a maximum.

Proof of Proposition 6. Let us define the following two subsets of Q(m):

Q(m,1) =
{
{q1, . . . , qm} ∈ Q(m) : q1 = · · · = qm

}
⊂ Q(m),

Q(m,2) =
{
{q1, . . . , qm} ∈ Q(m) : |{q1, . . . , qm}| ≥ 2

}
⊂ Q(m).

It is straightforward to prove that Q(m,1) t Q(m,2) = Q(m) (here t denotes the disjoint union).
Moreover, note that the summation

∑
Q(m,1) is equivalent to

∑Q
q=1. Then the following decom-

position of J (θ, τ) naturally holds:

J (θ, τ) =

Q∑
q=1

n∑
i=1

τiq log
πq
τiq

+
M∑
m=2

Q∑
q=1

∑
V(m)

τi1q · · · τimq
[
Yi1,...,im logα(m) + (1− Yi1,...,im) log(1− α(m))

]

+

M∑
m=2

∑
Q(m,2)

∑
V(m)

τi1q1 · · · τimqm
[
Yi1,...,im log β(m) + (1− Yi1,...,im) log(1− β(m))

]
.
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The partial derivative w.r.t. α(m) is

∂J
∂α(m)

=

Q∑
q=1

∑
V(m)

τi1q · · · τimq
[
Yi1...im

1

α(m)
− (1− Yi1...im)

1

1− α(m)

]
,

hence it follows that:

α̂(m) =

∑Q
q=1

∑
{i1,...,im}∈V(m) τi1q . . . τimqYi1...im∑Q

q=1

∑
{i1,...,im}∈V(m) τi1q . . . τimq

.

Analogously, the partial derivative w.r.t. β(m) is

∂J
∂β(m)

=
∑
Q(m,2)

∑
V(m)

τi1q1 · · · τimqm
[
Yi1...im

1

β(m)
− (1− Yi1...im)

1

1− β(m)

]
,

and

β̂(m) =

∑
{q1,...,qm}∈Q(m,2)

∑
{i1,...,im}∈V(m) τi1q1 . . . τimqmYi1...im∑

{q1,...,qm}∈Q(m,2)

∑
{i1,...,im}∈V(m) τi1q1 . . . τimqm

.

This concludes the proof for the formulas under assumption (Aff-m). The expressions for α̂ and
β̂ under assumption (Aff) are computed in the same way.

7 Codes availability

The algorithm implementation in C++ is available as an R package called HyperSBM at https://
github.com/LB1304/HyperSBM. The Supplementary Material, the files to reproduce the synthetic
experiments and the dataset analysis are available at
https://github.com/LB1304/Hypergraph-Stochastic-Blockmodel.
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Supplementary Material to: Model-based clustering in simple hypergraphs
through a stochastic blockmodel

By Luca Brusa & Catherine Matias

All non-alphabetic references are concerned with the main text.

A Limits of the bipartite graphs representation of hypergraphs

A.1 Bipartite graphs and multiple hypergraphs with self-loops equivalence

Some early analyses of hypergraphs rely on the embedding of the former into the space of bipartite
graphs (see for e.g. Battiston et al., 2020). Indeed, any hypergraph H = (V, E) where V is the
set of nodes and E the set of hyperedges may be represented as a bipartite graph with two parts.
The top part is simply the set V of hypergraph nodes, while the bottom part is the set E of
hyperedges and there is a link between v ∈ V and e ∈ E whenever node v belongs to hyperedge
e in the original hypergraph H.

Now, it is possible to define a “converse” application from bipartite graphs to hypergraphs.
Indeed, any bipartite graph can be projected into two distinct hypergraphs, by choosing one of
the two parts as the nodes set and forming a hyperedge with any set of nodes that are neighbors
(in the bipartite graph) of the same node (belonging to the second part). A major difference
appears whether we consider simple hypergraphs or multiple hypergraphs with self-loops. In
multiple hypergraphs (not to be confused with multisets-hypergraphs) hyperedges may appear
several time so that these are weighted hypergraphs with integer valued weights. We also allow
for self-loops, i.e hyperedges of cardinality 1. Then, this application from bipartite graphs to
hypergraphs slightly differs depending on whether we allow the image of a bipartite graph to be a
multiple hypergraphs with self-loops or a simple hypergraph. In the first case, all the information
from the bipartite graph will be encoded in the multiple hypergraphs with self-loops; while in the
second case, part of the information will be lost. This is illustrated on a toy example in Figure 2.

The embedding of the simple hypergraphs space into the bipartite graphs space is not the
inverse of the natural projection of bipartite graphs into simple hypergraphs. Thus, models of
bipartite graphs are inappropriate to handle simple hypergraphs, as the former generally put mass
on any bipartite graph, notwithstanding the fact that not all of these may be realized as the image
of a simple hypergraph. For the same reason, preferential attachment models of bipartite graphs
(Guillaume and Latapy, 2004) may not be directly used for simple hypergraphs as they would
produce unconstrained bipartite graphs that do not necessarily come from simple hypergraphs.
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Bipartite graphs space Hypergraphs space

a b c

(a)

a b c

(b)

a b c

(c)

a b c

(d)

Figure 2: (a) A bipartite graph G; (b) Projection of G into the multiple hypergraphs
with self-loops space, choosing the top nodes as the new set of nodes. Hyperedges are
{a}, {a, b}, {a, b}, {a, b, c}. The applications from (a) to (b) are invertible bijections, one being
the inverse of the other; (c) Projection of G on the simple hypergraphs subspace. Hyperedges are
{a, b}, {a, b, c}. (d) Embedding of the simple hypergraph in (c) in the bipartite graphs space. Note
that (a) and (d) are not the same bipartite graph.
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A.2 Artefacts induced by bipartite graphs models

In order to view a bipartite graph as a hypergraph, one first needs to select the top and bottom
parts. Swapping the role of the two parts will in general give another hypergraph. Most statistical
models of bipartite graphs handle the two parts symmetrically and do not differentiate between
a top and a bottom part. They are thus inadequate for modeling hypergraphs.

One may also note that most random bipartite graphs models are designed for fixed parts
sizes, which induces, on top of a fixed number of nodes, a fixed number of hyperedges in the
corresponding hypergraph model, an artifact which is not always desirable. For instance the
uniformly random hypergraphs model allows for any possible density on the hyperedges.

A last example of inadequacy is given by configuration models on bipartite graphs that induce
configuration models on hypergraphs. In these models, the degree distributions in each part are
kept fixed. When projected in the hypergraphs space, that means that the degrees of the nodes
and the sizes of the hyperedges are kept fixed. Then, relying on shuffling algorithms to explore
the space of this configuration model, one will loose the labels on the bottom part (the hyperedges
part) as these are automatically induced by the new edges of the bipartite graph and the labelling
of the top part (the nodes part). As a consequence, if a specific node tends to take part in large
size hyperedges, this information is lost in the configuration model issued from bipartite graphs.

To our knowledge, there is no configuration model on hypergraphs that only keeps the nodes
degrees sequence fixed. We mention that Section 4 from Chodrow (2020) provides a discussion
about the limitations of the embedding approach in terms of the types of hypergraph null models
from which we can conveniently sample. In particular, Chodrow (2020) establishes that there is
no obvious route for vertex-label sampling in hypergraphs through bipartite random graphs.

A.3 HyperSBM is not a bipartite SBM

In this section, we briefly outline that (i) while the bipartite stochastic blockmodel can be seen
as a particular case of HSBM, (ii) the converse is not true in general.

To see point (i), let us consider a bipartite SBM on a graph G with nodes divided in 2 parts,
say V = {1, . . . , n} and U = {1, . . . , e}. The model has Q groups (resp. R groups) on the subset
of nodes V (resp. U), with group proportions π (resp. η). We let Z1, . . . , Zn (resp. W1, . . . ,We)
denote the latent groups of nodes V (resp. U).

The model is also given by a connectivity matrix M of size Q×R whose entries Mqr are the
conditional probabilities that a node in V from group q connects a node in U from group r. In
other words Mqr = P(Xiu = 1|Zi = q,Wu = r) where X = (Xiu) is the n× e incidence matrix of
G.

Now consider the hypergraph H constructed on the set of nodes V and whose hyperedges are
obtained by looking at the set of nodes in V connected to a same node in U . (A similar construction
could be made with swapping the roles of V and U). Then, the probability distribution of H
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under the induced bipartite SBM is exactly a HSBM with Q groups, with group proportions π
and parameters

B(m)
q1,...,qm = P(Yi1,...,im = 1|Zi1 = q1, . . . , Zim = qm)

= P(Xi1,u = 1, . . . , Xim,u = 1|Zi1 = q1, . . . , Zim = qm)

=
R∑
r=1

P(Xi1,u = 1, . . . , Xim,u = 1,Wu = r|Zi1 = q1, . . . , Zim = qm)

=

R∑
r=1

ηr

qm∏
q=q1

Mqr,

where u is the node that connects {i1, . . . , im} into a hyperedge. So we see that the bibartite
SBM induces a HSBM with constrained connection probabilities.

Let us now explain why (ii) the converse is not true in general. We start from a HSBM with
Q groups and parameters (π, (B

(m)
q1,...,qm)q1,...,qm)2≤m≤M on a hypergraph H with set of nodes V.

Considering U = {1, . . . , e} where e is the number of hyperedges in H, we construct a bipartite
graph G with nodes V×U and links between any i ∈ V and any u ∈ U whenever node i belongs to
hyperedge u in the hypergraph H. Now, if there is a bipartite SBM on G with same distribution
as HyperSBM, then necessarily it has Q groups on V, with group proportions given by π. We let
R denote the number of groups on such a model on U , together with η the corresponding group
proportions, and M the Q × R matrix of connection probabilities. Then we observe that η and
M should satisfy the relations

∀2 ≤ m ≤M,∀q1, . . . , qm ∈ {1, . . . , Q}m, B(m)
q1,...,qm =

R∑
r=1

ηr

qm∏
q=q1

Mqr. (9)

Here, we first remark that the bipartite SBM fit on the co-authorship dataset (from Section 5)
selected R = 1, thus inducing hyperedges connectivity parameters with a product form

B(m)
q1,...,qm =

qm∏
q=q1

Mq1.

Our fitted HSBM on this same dataset did not result in hyperedges connectivity parameters with
a product form, which establishes that the models are clearly different.

Now, more generally, we could ask whether for given parameters (B
(m)
q1,...,qm)2≤m≤M , there exist

some values of R, η and M such that (9) is satisfied. The answer is: not always. To see this,
consider for instance Q = 2 and remark the relation between the two quantities

B
(2)
11 =

R∑
r=1

ηrM
2
1r,

B
(3)
111 =

R∑
r=1

ηrM
3
1r,
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so that B(2)
11 and B(3)

111 cannot be chosen independently.

B The complete proof of Theorem 2

For the sake of completeness, we provide here the complete proof of Theorem 2. This proof
mostly reproduces the proof of Theorem 2 in Allman et al. (2011).

The strategy relying on Kruskal’s result. The proof strongly relies on an algebraic result
from Kruskal (1977) that appeared to be a powerful tool to establish identifiability results in
various models whose common feature is the presence of discrete latent groups and at least three
conditionally independent random variables. We first rephrase Kruskal’s result in a statistical
context. Consider a latent random variable V with state space {1, . . . , r} and distribution given
by the column vector v = (v1, . . . , vr). Assume that there are three observable random variables
Uj for j = 1, 2, 3, each with finite state space {1, . . . , κj}. The Ujs are moreover assumed to
be independent conditional on V . Let Mj , j = 1, 2, 3 be the stochastic matrix of size r × κj
whose ith row is mj

i = P(Uj = · | V = i). Then consider the 3-dimensional array (or tensor)
with dimensions κ1 × κ2 × κ3 denoted [v;M1,M2,M3] and whose (s, t, u) entry (for any 1 ≤ s ≤
κ1, 1 ≤ t ≤ κ2, 1 ≤ u ≤ κ3) is defined by

[v;M1,M2,M3]s,t,u =

r∑
i=1

vim
1
i (s)m

2
i (t)m

3
i (u)

=
r∑
i=1

P(V = i)P(U1 = s|V = i)P(U2 = t|V = i)P(U3 = u|V = i)

= P(U1 = s, U2 = t, U3 = u).

Note that [v;M1,M2,M3] is left unchanged by simultaneously permuting the rows of all the Mj

and the entries of v, as this corresponds to permuting the labels of the latent classes. Knowledge
of the distribution of (U1, U2, U3) is equivalent to knowledge of the tensor [v;M1,M2,M3].
Now, the Kruskal rank of a matrixM , denoted rankKM , is the largest number I such that every
set of I rows of M are independent. Note that for any matrix M , its Kruskal rank is necessarily
less than its rank, namely rankKM ≤ rankM , and equality of rank and Kruskal rank does not
hold in general. However, in the particular case when a matrix M of size p× q has rank p, it also
has Kruskal rank p. Now, let Ij = rankKMj . Kruskal (1977) established the following result. If

I1 + I2 + I3 ≥ 2r + 2, (10)

then the tensor [v;M1,M2,M3] uniquely determines v and the Mj , up to simultaneous per-
mutation of the rows. In other words, the set of parameters {(v,P(Uj = · | V ))} is uniquely
identified, up to label switching on the latent groups, from the distribution of the random vari-
ables (U1, U2, U3).
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Now, to obtain generic identifiability, it is sufficient to exhibit a single parameter value for
which (10) is satisfied. Indeed, the set of parameter values for which rankKMj is fixed can be
expressed through a Boolean combination of polynomial inequalities ( 6=, or rather non-equalities)
involving matrix minors in those parameters. In the same way, the converse condition of (10),
namely inequality I1 + I2 + I3 ≤ 2r + 1 is the finite Boolean combination of polynomial non-
equalities on the model parameters. This means that this set of parameters is an algebraic variety.
But an algebraic variety can only be either the whole parameter space (in which case exhibiting a
single value where (10) is satisfied would not be possible) or a proper subvariety, thus a subspace
of dimension strictly lower than that of the whole parameter space.

The strategy of the proof for showing identifiability of certain discrete latent class models
developed in Allman et al. (2011) and other papers by the same authors is to embed these models
in the context of Kruskal’s result just described. Applying Kruskal’s result to the embedded
model, the authors derive partial identifiability results on the embedded model, and then, using
details of the embedding, relate these to the original model.

Embedding the HSBM into Kruskal’s setup. For some number of nodes n (to be specified
later), we let V = (Z1, Z2, . . . , Zn) be the latent random variable, with state space {1, . . . , Q}n

and denote by v the corresponding vector of its probability distribution. The entries of v are
of the form πn1

1 · · ·π
nQ
Q for some integers nq ≥ 0 and such that

∑
q nq = n. We fix m ≥ 2 and

consider simple m-uniform hypergraphs on the set of nodes V = {1, . . . , n}. Recall that V(m)

is the set of all distinct m-tuples of nodes in V and {Yi1,...,im ; {i1, . . . , im} ∈ V(m)} the set of
all indicator variables corresponding to possible (simple) hyperedges of a m-uniform hypergraph
over V. Now, we will construct below subsets H1, H2, H3 ⊂ V(m) of distinct m-tuples of nodes
such that Hi ∩Hj = ∅ for any i 6= j. Then, we choose the 3 observed variables Uj (1 ≤ j ≤ 3) as
the vectors of indicator variables Uj = (Yi1,...,im){i1,...,im}∈Hj . This induces that κj = 2|Hj | (where
|Hj | is the cardinality of Hj). As the subsets H1, H2, H3 do not share any m-tuple of nodes, the
random variables Uj are conditionally independent given V . We are in the statistical context of
Kruskal’s result.

The goal is now to construct the 3 subsetsHj ofm-tuples such that their pairwise intersections
are empty and such that condition (10) is satisfied (for at least one parameter value of the
embedded model and thus generically for this embedded model). This construction of the Hj ’s
proceeds in two steps: the base case and an extension step.

Starting with a small set V0 = {1, . . . , n0} of nodes, we define a matrix A of dimension
Qn0 ×2(n0m). Its rows are indexed by latent configurations v ∈ {1, . . . , Q}n0 of the nodes in V0, its
columns by the set of all possible states of the vector of indicator variables (Yi1,...,im){i1,...,im}∈V0 ,
and the entries of A give the probability of observing the specified states of the vector of indicator
variables, conditioned on the latent configurations v. Thus each column index corresponds to a
different simple m-uniform hypergraph on V0. The base case consists in exhibiting a value of
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n0 such that this matrix A generically has full row rank. Then, in an extension step, relying
on n = n20 nodes, we construct the subsets H1, H2, H3 with the desired properties (namely their
pairwise intersections are empty and (10) is generically satisfied).

From Kruskal’s theorem, we obtain that the vector v and the matrices M1,M2,M3 are gener-
ically uniquely determined, up to simultaneous permutation of the rows from the distribution of
a simple m-uniform HSBM.

With these embedded parameters v,M1,M2,M3 in hand, it is still necessary to recover the
initial parameters of the simple m-uniform HSBM: the group proportions πq and the connectivity
matrix B(m) = (B

(m)
q1,...,qm)1≤q1≤···≤qm≤Q. This will be done in the conclusion.

Base case. In the following, we drop the exponent (m) in the notation for the connection
probabilities B and simply let Bq1,...,qm = P(Yi1,...,im = 1 | Zi1 = q1, . . . , Zim = qm) = 1−B̄q1,...,qm .
The initial step consists in finding a value of n0 such that the matrix A of size Qn0 × 2(n0m)

containing the probabilities of any simple m-uniform hypergraph over these n0 nodes, conditional
on the hidden node states, generically has full row rank.

The condition of having full row rank can be expressed as the non-vanishing of at least one
Qn0 × Qn0 minor of A. Composing the map sending the parameters {Bq1,...,qm} → A with
this collection of minors gives polynomials in the parameters of the model. To see that these
polynomials are not identically zero, and thus are non-zero for generic parameters, it is enough
to exhibit a single choice of the {Bq1,...,qm} for which the corresponding matrix A has full row
rank. We choose to consider parameters {Bq1,...,qm} of the form

Bq1,...,qm =
sq1sq2 . . . sqm

sq1sq2 . . . sqm + tq1tq2 . . . tqm
, so B̄q1,...,qm =

tq1tq2 . . . tqm
sq1sq2 . . . sqm + tq1tq2 . . . tqm

,

with sq, tl > 0 to be chosen later. However, since the property of having full row rank is unchanged
under non-zero rescaling of the rows of the matrix A, and all entries of A are monomials with total
degree

(
n0

m

)
in Bq1,...,qm , B̄q1,...,qm}, we may simplify the entries of A by removing denominators,

and consider the matrix (also called A) with entries in terms of Bq1,...,qm = sq1sq2 . . . sqm and
B̄q1,...,qm = tq1tq2 . . . tqm .

The rows of A are indexed by the composite node states v ∈ {1, . . . , Q}n0 , while its columns
are indexed by the m-uniform hypergraphs H = (yi1,...,im){i1,...,im}∈V0 ∈ {0, 1}(

n0
m). For any

composite hidden state v ∈ {1, . . . , Q}n0 and any node i ∈ {1, . . . , n0}, let v(i) ∈ {1, . . . , Q}
denote the state of node i in the composite state v. With our particular choice of the parameters
Bq1,...,qm , the (v,H)-entry of A is given by

∏
{i1...im}∈V(m)

0

B
yi1,...,im
v(i1),...,v(im)B̄

1−yi1,...,im
v(i1),...,v(im) =

n0∏
i=1

sdiv(i)t
n0−1−di
v(i) ,
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where
di =

∑
{i1...im}∈V(m)

0
i∈{i1...im}

yi1,...,im

is the degree of node i in the hypergraph H = (yi1,...,im){i1,...,im}∈V0 . With this choice of param-
eters {Bq1,...,qm}, the entries in a column of A are entirely determined by the degree sequence
d = (di)1≤i≤n0 of the hypergraph under consideration. Two different hypergraphs may result
in the same degree sequence, thus the same values in the two columns of A. For any degree
sequence d = (di)1≤i≤n0 arising from a simple m-uniform hypergraph on n0 nodes, let Ad denote
a corresponding column of A. In order to prove that the matrix A has full row rank, it is enough
to exhibit Qn0 independent columns of A. To this aim, we introduce polynomial functions whose
independence is equivalent to that of corresponding columns.

For each node i ∈ {1, . . . , n0} and each latent group q ∈ {1, . . . , Q}, introduce an indetermi-
nate Xi,q and a Qn0-size row vector X = (

∏
1≤i≤n0

Xi,v(i))v∈{1,...,Q}n0 . For each degree sequence
d, we have

XAd =
∑

v∈{1,...,Q}n0

∏
1≤i≤n0

sdiv(i)t
n0−1−di
v(i) Xi,v(i) =

∏
1≤i≤n0

(
sdi1 t

n0−1−di
1 Xi,1 + · · ·+ sdiQ t

n0−1−di
Q Xi,Q

)
.

Now, independence of a set of columns {Ad} is equivalent to the independence of the corre-
sponding set of polynomial functions {XAd} in the indeterminates {Xi,q}. For a set D of degree
sequences, to prove that the polynomials {XAd}d∈D are independent, we assume that there exist
scalars ad such that ∑

d∈D
adXAd ≡ 0, (11)

and show that necessarily all ad = 0. This will be given by the following lemma from Allman
et al. (2011). This lemma is originally formulated for a set D of degree sequences. However it
is not specific to degree sequences; it applies for any sets D of sequences of integers indexed by
{1, . . . , n0} and thus we phrase it in this way. We refer to Allman et al. (2011) for its proof.

Lemma 8. (Lemma 18 in Allman et al. (2011).) Assume n0 ≥ Q. Let D be a set of n0-length
integer sequences such that for each i ∈ {1, . . . , n0}, the set of i-th coordinates {di | d ∈ D} has
cardinality at most Q. Then for generic values of sq, tl, for each i and each d? ∈ {di | d ∈ D}
there exist values of the indeterminates {Xi,q}1≤q≤Q that annihilate all the polynomials XAd for
d ∈ D except those for which di = d?.

The next step is to construct a set D of n0-length integer sequences that satisfies

• for each i ∈ {1, . . . , n0}, the set of i-th coordinates {di | d ∈ D} has cardinality at most Q
(condition in Lemma 8);

• any d ∈ D may be the degree sequence of a simple m-uniform hypergraph;
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• |D| ≥ Qn0 .

With such a set at hand, by choosing one column of A associated to each degree sequence in D, we
obtain a collection of |D| ≥ Qn0 different columns of A. These columns are independent since for
each sequence d? ∈ D, by Lemma 8 we can choose values of the indeterminates {Xi,q}1≤i≤n0,1≤q≤Q

such that all polynomials XAd vanish, except XAd? , leading to ad? = 0 in equation (11). Thus,
exhibiting such a set D is the last step to prove that A has generically full row rank.

Now, this is where our proof strongly differs from the one of Theorem 2 in Allman et al. (2011).
Indeed, the characterizations of degree sequences for graphs and simple m-uniform hypergraphs
are completely different. Relying on a result by Behrens et al. (2013), we have exhibited such a
set in Lemma 7.

This concludes the proof of the base case.

The extension step. The extension step builds on the base case, in order to construct a larger
set of n = n20 nodes and subsets H1, H2, H3 ⊂ V(m) of distinctm-tuples of nodes in V = {1, . . . , n}
with the desired properties. This step was first stated as Lemma 16 in Allman et al. (2009) in
the context of simple graphs SBM and we extend it below to our case.

Let us recall that we want to construct H1, H2, H3 ⊂ V(m) that are pairwise disjoint. Then,
with notation from above, we choose the 3 observed variables Uj (1 ≤ j ≤ 3) as the vectors
of indicator variables Uj = (Yi1,...,im){i1,...,im}∈Hj . As the subsets H1, H2, H3 do not share any
m-tuple of nodes, the random variables Uj are conditionally independent given V = (Z1, . . . , Zn).
We let Mj denote the Qn × 2|Hj | matrix of conditional probabilities of Uj given Z.

Lemma 9. Suppose that for some number of nodes n0, the matrix A of size Qn0 × 2(n0m) defined
above has generically full row rank. Then with n = n20 there exist pairwise disjoint subsets
H1, H2, H3 ⊂ V(m) of m-tuples of nodes in V = {1, . . . , n} such that for each j the Qn × 2|Hj |

matrix Mj has generically full row rank (Qn).

Proof of Lemma 9. Let us describe the construction of Hj . We will partition the n20 nodes into
n0 groups of size n0 in three different ways, each way leading to one Hj . Then each Hj will be
the union of the n0 sets of all m-tuples made of some n0 nodes. Thus each Hj has cardinality
n0
(
n0

m

)
.

Labeling the nodes by (u, v) ∈ {1, · · · , n0} × {1, · · · , n0}, we picture the nodes as lattice
points in a square grid. We take as the partition leading to H1 the rows of the grid, as the
partition leading to H2 the columns of the grid, and as the partition leading to H3 the diagonals.
In other words, H1 is the union over n0 rows of all m-tuples of nodes within each row. The
same with columns and diagonals. Explicitly, we define two functions u, v that associate to any
i ∈ {1, . . . , n0} its coordinates (u(i), v(i)) on the n0×n0 grid. Then, the Hj are m-tuple of nodes
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defined as

H1 = ∪n0
u=1H1(u) = ∪n0

u=1{{i1, . . . , im} ∈ V
(m) | ∀k, u(ik) = u, v(ik) ∈ {1, · · · , n0}},

H2 = ∪n0
v=1H2(v) = ∪n0

v=1{{i1, . . . , im} ∈ V
(m) | ∀k, v(ik) = v, u(ik) ∈ {1, · · · , n0}},

H3 = ∪n0
s=1H3(s)

= ∪n0
s=1{{i1, . . . , im} ∈ V

(m) | ∀k, u(ik) = s, v(ik) = s+ tmodn0 for some t ∈ {1, · · · , n0}}.

The Hj are pairwise disjoints as required.
The matrix Mj of conditional probabilities of Uj given Z has Qn rows indexed by composite

states of all n = n20 nodes, and 2n0(n0m) columns indexed by m-tuples in Hj .
Observe that with an appropriate ordering of the rows and columns (which is dependent on

j), Mj has a block structure given by

Mj = A⊗A⊗ · · · ⊗A (n0 factors). (12)

(Note that since A is Qn0 × 2(n0m), the tensor product on the right is (Qn0)n0 ×
(

2(n0m)
)n0

which

is Qn2
0 × 2n0(n0m), the size of Mj .) That Mj is this tensor product is most easily seen by noting

the partitioning of the n20 nodes into n0 disjoint sets (rows, columns and diagonals of the grid)
gives rise to n0 copies of the matrix A, one for each set of all simple m-uniform hypergraphs over
n0 nodes. The row indices of Mj are obtained by choosing an assignment of states to the nodes
in Hj(u) for each u independently, and the column indices by the union of independently-chosen
simple m-uniform hypergraphs subgraphs on Hj(u) for each u. This independence in both rows
and columns leads to the tensor decomposition of Mj .

Now since A has generically full row rank (Qn0), equation (12) implies that Mj does as well
(i.e has row rank Qn2

0 = Qn).

Next, with v,M1,M2,M3 defined by the embedding given in the previous paragraphs, we
apply Kruskal’s Theorem to the table [v;M1,M2,M3]. By construction of the Mj , condition (10)
is generically satisfied since 3Qn ≥ 2Qn + 2. Thus the vector v and the matrices M1,M2,M3 are
generically uniquely determined, up to simultaneous permutation of the rows from the distribution
of a simple m-uniform HSBM.

It now remains to recover the original parameters of the simple m-uniform HSBM: the group
proportions πq and the connectivity matrix (B

(m)
q1,...,qm)1≤q1≤qm≤Q.

Conclusion for the original model. The entries of v are of the form πn1
1 · · ·π

nQ
Q with

∑
nq =

n, while the entries of the Mj contain information on the B(m)
q1,...,qm . Although the ordering of the

rows of the Mj is arbitrary, crucially we do know how the rows of Mj are paired with the entries
of v.

By focusing on one of the matrices, say M1, and adding appropriate columns of it, we can
obtain marginal conditional probabilities of single hyperedge variables, namely a column vector
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with values (Pθ(Yi1,...,im = 1|(Z1, . . . , Zn) = v))v for any m-tuple {i1, . . . , im}. Indeed, this vector
is obtained by summing all the columns of M1 corresponding to simple m-uniform hypergraphs
with Yi1,...,im = 1. Thus, we recover the set of values {B(m)

q1,...,qm}1≤q1≤···≤qm≤Q, but without order.
Namely, we still do not know the B(m)

q1,...,qm up to a permutation on {1, . . . , Q} only, but rather up
to a permutation on {1, . . . , Q}n.

In the following, we assume without loss of generality, as it is a generic condition, that all
{B(m)

q1,...,qm}1≤q1≤···≤qm≤Q are distinct.
We look at the first (m + 1) nodes V1 = {1, . . . ,m,m + 1} and consider the m + 1 different

m-tuples {i1, . . . , im} ∈ V(m)
1 that can be made from these nodes (ik ∈ V1). Again, for each of

thesem-tuples, adding appropriate columns ofM1, we can jointly obtain the vectors of conditional
marginal probabilities (Pθ(Y{i1,...,im} = 1|(Z1, . . . , Zn) = v))v. Jointly means that all those vectors
share the same ordering over the index v ∈ {1, . . . , Q}n. In other words, we recover the sets of
values

∀v ∈ {1, . . . , Q}n, Rv = {B(m)
vi1 ,...,vim

; {i1, . . . , im} ∈ V(m)
1 }.

Now, we assumed the B’s are all distinct so the cardinalities of the sets Rv will help us discriminate
the different parameters (up to a permutation on {1, . . . , Q} only). Indeed, there are exactly Q
sets Rv with cardinality exactly one. These corresponds to the cases were v = (q, q, . . . , q) for
some 1 ≤ q ≤ Q. From this, we can distinguish the parameters of the form {B(m)

q,...,q; 1 ≤ q ≤ Q}
from the complete set of parameters. Note that the corresponding entries of v are given by πmq .
So we also recover the paired values {(πq, B(m)

q,...,q); 1 ≤ q ≤ Q}. Then, we continue with the sets
Rv with cardinality two: these are of the form {B(m)

q,...,q;B
(m)
q,...,q,l} for some 1 ≤ q 6= l ≤ Q. As

we already identified the parameters {B(m)
q,...,q; 1 ≤ q ≤ Q} and all B’s are distinct, this enables

us to identify the set of parameters {B(m)
q,...,q,l; 1 ≤ q 6= l ≤ Q}. By induction, we recover the set

of parameters {B(m)
q,...,q,l,l′ ; 1 ≤ q, l, l′ ≤ Q and q, l, l′ distinct} et caetera, ending with the set of

parameters {B(m)
q1,...,qm ; 1 ≤ q1 < q2 < · · · < qm ≤ Q}. This means that we finally have obtained

the parameters {πq, B(m)
q1,...,qm}1≤q≤Q;1≤q1≤···≤qm≤Q up to a permutation over {1, . . . , Q}.

Finally, note that all generic aspects of this argument, in the base case and the requirement
that the parameters B(m)

q1,...,qm be distinct, concern only the B(m)
q1,...,qm . Thus if the group proportions

πq are fixed to any specific values, the theorem remains valid.

Remark. The requirement on large enough n is more precisely given as n ≥ Q2p2 where p is the
smallest integer such that

(
p−1
m−1

)
≥ Qm. A rough approximation gives that p is of the order

(Qm)1/(m−1) which gives that n should be larger than Q2(Qm)2/(m−1).

C Computational details on the algorithm’s implementation

In order to provide an efficient implementation, the whole estimation algorithm is implemented
in C++ language using the Armadillo library for linear algebra. Moreover the implementation
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is made available in R by means of the R packages Rcpp (Eddelbuettel and François, 2011; Ed-
delbuettel, 2013) and RcppArmadillo (Eddelbuettel and Sanderson, 2014). In the following we
consider some of the most relevant computational details.

Dealing with heavy computational cost. Dealing with very large data structures, the main
drawback of the proposed algorithm is the intensive computational effort, in terms of both execu-
tion time needed to converge and required memory space. The most outstanding example regards
the computation of the products τi1q1 · · · τimqm , required both in the VE-Step (see Proposition 4,
for τiq) and in the M-Step (see Proposition 5, for B(m)

q1,...,qm). The huge computational cost of
this calculation derives from the large number of potential unordered node tuples even for rather
small values of n and m; indeed |V(m)| =

(
n
m

)
. A first possibility is to compute all the products

τi1q1 · · · τimqm in a recursive manner at the beginning of each VEM iteration and to store them in a
matrix. Although this is actually very beneficial for the computational time, the resulting matrix
is huge, having number of rows and columns equal to

(
n
m

)
and

(
Q+m−1

m

)
respectively. The result

is a structure that is intractable except for very small values of n, Q, and (especially) m. Taking
into account that every element requires 8 bytes, we report some examples in Table 6, in order
to better clarify the magnitude of the quantity to store. Stated the impossibility to store a ma-
trix of such size, the computation of the required products τi1q1 · · · τimqm is implemented directly
inside the VE- and M-Steps through nested loops; this process involves an important increase in
the computing times, but on the other hand requires a minimal amount of memory. To handle
the slowness of the computation, both the VE-Step and the M-Step are efficiently implemented in
parallel through the RcppParallel package (Allaire et al., 2022).

n m Q Memory size n m Q Memory size

100 3 2 ≈ 5.2 MB 500 3 2 ≈ 0.6 GB

100 3 4 ≈ 25.9 MB 500 3 4 ≈ 3.3 GB

100 6 2 ≈ 66.8 GB 500 6 2 ≈ 1179.2 TB

100 6 4 ≈ 801.1 GB 500 6 4 ≈ 14150.8 TB

Table 6: Memory size of the matrix containing the products τi1q1 · · · τimqm for given values of n
(number of nodes), Q (number of latent groups) and m (hyperedge size).

Floating point underflow. Another crucial aspect is the possible occurrence of numerical
instability deriving from the multiplication of many small values in the computation of τ̂iq. A
simple remedy is provided by the calculation of log τ̂iq instead of τ̂iq. So, denoting biq = log(τ̂iq −
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ci), we compute τ̂iq relying on

τ̂iq =
exp(biq − bmax,i)∑Q
p=1 exp(biq − bmax,i)

,

where bmax,i = max
q=1...Q

biq prevents the denominator to grow excessively large, thus avoiding new

potential numerical issues related to the floating point underflow.

D Hyperparameters settings

All the experiments were made with the following hyperparameters. Concerning the soft spectral
clustering initialization, the k-means algorithm (on the rows of the column leading eigenvectors
matrix) is run with 100 initializations. The tolerance threshold ε used to stop the fixed point and
the VEM algorithm is set to 10−6. The maximum numbers of iterations for the fixed point and the
VEM algorithm were set to Umax = 50 and Tmax = 50, respectively.

E Influence of the initial value on VEM

As a final note, we also assess the influence of starting values on the behavior of the VEM algo-
rithm. To this aim, we preliminary analyze the performance of spectral clustering algorithm,
relying again on the ARI. Results are reported in Table 7 and clearly show the opposite behavior
of this clustering method in detecting communities (scenario A) and disassortative behaviours
(scenarios B and C): taking into account community detection, spectral clustering algorithm per-
fectly recovers the true clusters, apart from a few cases in which n is very small. On the contrary,
considering disassortative behaviours, spectral clustering algorithm completely fails in determin-
ing the correct clusters, all values of the ARI being extremely close to 0. Hence, “soft” spectral
clustering proves to be a very smart initialization strategy for scenario A, while for scenarios B
and C, it behaves analogously to a random starting value. The optimal performance of VEM algo-
rithm throughout all scenarios, therefore, highlights a very weak influence of the starting value
on the behavior of the algorithm: a random initialization usually ensures a proper convergence
and a correct clustering; instead, the real advantage deriving from the adoption of a smart initial
value is a reduction in computing time (data not shown).

F Analyses on the co-authorship dataset

The original dataset has 274 papers and 314 authors, with 1 paper having 6 authors and 1 paper
having 5 authors. We decided to consider M = 4 and discard these 2 papers with more than 5
authors. Then, we looked at the largest connected component of the resulting graph. It resulted
in 76 papers and 79 authors.
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n Scenario A Scenario B Scenario C

50 0.69 −0.43 · 10−2 −3.57 · 10−3

100 0.99 0.43 · 10−2 −7.01 · 10−3

150 1.00 −0.12 · 10−2 4.60 · 10−5

200 1.00 −0.42 · 10−2 −4.51 · 10−3

Table 7: Adjusted Rand Index for different scenarios and number of nodes with respect to the
soft spectral clustering initialization. Each value is obtained as the average over 10 simulated
datasets.

We ran HyperSBM with Q ranging from 2 to 5, with 2 different initialisations: 1 random and
1 relying on the soft spectral clustering. The random initialisation always gave the best result.
The results were robust to different tries. ICL selected Q = 2 groups, as shown in Figure 3.
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2 3 4 5
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Figure 3: Integrated Classification Likelihood index resulting from fitting the HSBM to the co-
authorship dataset with number of latent groups ranging from 2 to 5.

We obtained a first small group with only 8 authors (the remaining 71 authors being in the
second large group). Inspecting more closely the variational parameters τiq for all the nodes, we
found that a total of 4 nodes could be considered as ambiguously classified, while all other nodes
had posterior probabilities to belong to one of the group larger than 0.8. More precisely, in the
first small group, 2 nodes had posterior probabilities to belong to that group equal to 0.54 and
0.63, respectively; while in the second large group, 2 nodes had posterior probabilities to belong
to that group equal to 0.56 and 0.72, respectively.

We discussed in the main text the number of co-authors and degrees in the bipartite graph
(i.e. number of co-published papers) of the first small group of authors. We noticed that the 2
authors in this group that had smallest number of co-authors (namely 4) and smallest number
of degrees (also 4) are the ones that are ambiguously clustered in this group. While the 2 other
authors ambiguously clustered in the second large group have a number of co-authors of 6 and 4,
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respectively; and both a degree of 4. This reinforces the conclusion that on this dataset, Hyper-
SBM has grouped apart the authors which are both the most collaborative and the most prolific
ones.

Then we ran the spectral clustering algorithm on our dataset. We looked at the spectral gap,
that indicated 15 groups but the gap is not clear. Then we looked at the clustering obtained with
Q = 2 groups. Spectral clustering output groups with sizes 24 and 55, respectively. We recall
that spectral clustering tends to output comparable sizes groups. The small group contains the
only author with 12 co-authors and the remaining authors have a number of co-authors ranging
from 1 to 4. The second large group has a distribution of the number of co-authors ranging from
1 to 11. The small group contains authors with small degree in the bipartite graph, i.e having
few co-published papers (all but one author have degrees less 4 and a last author has degree 7),
while the second large group contains the 3 authors with largest degree, the rest of the authors
having degrees ranging from 1 to 6. Thus, these groups are neither characterized by the number
of co-authors nor by their degrees in the bipartite graph.

Finally, we analyzed the same dataset as a bipartite graph under a Bipartite SBM. We relied
on the R package SBM through the function estimateBipartiteSBM (Chiquet et al., 2022).

The Bipartite-SBM also selected 2 groups of authors (and one group of papers). There was
one small group with 4 authors, which are exactly the ones that have the highest degree in the
bipartite graph and also correspond to the 4 authors having the highest number of co-authors.

Here, 2 nodes could be considered as ambiguously classified: one node from the first small
(resp. second large) group had posterior probability to belong to that group of 0.73 only (resp.
0.67 only). These 2 nodes where not ambiguously classified by HyperSBM and both appeared in
our first small group.

It is interesting to compare the situation of three particular authors here. Author with index
48 has 7 co-authors (the 6th highest) and 6 co-authored papers (the 5th highest). It is outside the
small first group with Bipartite-SBM method (posterior probability 1 − 0.67 = 0.33 to belong
to that group); while HyperSBM clusters it unambiguously in the first small group. Similarly,
author with index 27 has 12 coauthors (1st highest) and only 7 co-authored papers (the 4th
highest). This node was ambiguously classified by Bipartite-SBM method in the first small
group (posterior probability 0.73 only); while HyperSBM clusters it unambiguously in the first
small group. Now, conversely, author with index 35 has 8 co-authors (the 6th highest) and 5
co-authored papers (also the 5th highest). This author is unambiguously clustered from the two
methods; but while HyperSBM puts it in the first small graph, Bipartite-SBM excludes it from that
group. The examination of these 3 particular tangent cases seem to show that on this dataset,
Bipartite-SBM was more sensible to authors’s degrees in the bipartite graph while HyperSBM

paid more attention to the sizes of the hyperedges (i.e. number of co-authors) an author was
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involved in
We also looked at estimated connection probabilities in the bipartite SBM. The authors from

the first small group of Bipartite-SBM have many papers (estimated connection probability with
the unique group pf papers in the bipartite graph is 11.5% whereas only 2.5% for the other large
group). Finally, we computed the parameters values B(m)

q1,...,qm obtained with the groups estimated
by Bipartite-SBM. We obtained with m = 2 that B̂(2)

11 ' 16, 6% (to be compared with 4.2% in
HyperSBM); while B̂(2)

12 ' 7% and B̂(2)
22 ' 1% (more similar to the results of HyperSBM, which are

5.1% and 0.8%, respectively). In this case, the first group of authors behaves differently with
respect to intra-group connections compared to outer-group connections.
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