Forest/wood and vine by-products as sources of new drugs for sustainable strategies to control fungal growth and type B trichothecene production by *Fusarium graminearum*

Vessela Atanasova,

Charles Tardif, Laetitia Pinson-Gadais, Pierre Waffo-Téguo, Caroline Rouger, Florence Richard-Forget

UR1264 Mycology and Food Safety (MycSA), INRAE, France
FACTORS INFLUENCING *FUSARIUM* INFECTION AND MYCOTOXIN ACCUMULATION: CONTROL STRATEGIES

The use of synthetic fungicides is one of the strategies to control *Fusarium* disease and mycotoxins

But their repeated use:
- increases the cost of production
- leads to disruption in natural biological systems
- fosters environmental and human health concerns
- results in the development of fungal resistance

To decrease the use of synthetic fungicides

Development of bio-based and eco-friendly alternatives

Weather conditions
Inoculum (Life cycle, Toxigenic potential)
Agronomic practices
- Previous crop
- Fungicide
- Tillage
Varieties

Factors from most (****) to least (*) important (Arvalis)
PHENOLIC COMPOUNDS, A POSSIBLE ALTERNATIVE OF SYNTHETIC FUNGICIDES: HYPOTHESES ON THE MECHANISMS OF ACTION

1. Antifungal activity of phenolic compounds is related to their lipophilic properties
 - Montibus et al., 2021, Molecules
 - Ponts et al., 2011, Phytopathol.

2. Anti-mycotoxin activity of phenolic compounds is related to their antioxidant properties
 - Ponts et al., 2007, FEBS Lett.
 - Montibus et al., 2013, PLOS ONE

3. Phenolic compounds inhibit the expression of the key genes involved in the mycotoxin biosynthesis
 - Gautier et al., 2020, Toxins
 - Ferruz et al., 2011, Molecules
 - Boutigny et al., 2009, Mycol. Res.

4. Phenolic compounds affect primary and secondary metabolism of *F. graminearum*
OBJECTIVE AND EXPERIMENTAL DESIGN

Objective: investigate the biological activity of natural extracts obtained from wood/forest and vine by-products to develop environmental-friendly alternatives of chemical fungicides

Maritime pine
Vine
Chestnut
Locust
Oak

- **VINEYARD MANAGEMENT:** 5 TONS/YEAR OF SOLID WASTE
- **WOOD/FOREST SECTOR IN THE EUROPEAN UNION:** 53 MILLION TONS/YEAR OF WOOD WASTE

GREEN EXTRACTION PROCEDURE
PRODUCTION OF BY-PRODUCT EXTRACTS

By-product extracts
Active by-product extracts
Active compounds

BIOGUIDED FRACTIONATION

F. graminearum

GREEN EXTRACTION PROCEDURE

SCREENING OF BY-PRODUCT EXTRACTS & IDENTIFICATION OF ACTIVE COMPOUNDS

METABOLOMICS ANALYSIS AND MOLECULAR NETWORK

STUDY OF THE MECHANISM OF ACTION

MECHANISM OF ACTION

ADAPTED FORMULATIONS
BIO-FUNGICIDES

Montibus et al, 2021, *Molecules*
SCREENING OF NATURAL EXTRACTS OBTAINED FROM BY-PRODUCTS FOR THEIR ANTIFUNGAL AND ANTI-MYCOTOXIN ACTIVITIES

- Four extracts inhibit significantly the fungal growth of *F. graminearum* CBS 185.32 (35-89%)

- The maritime pine sawdust extract $175^\circ C$ is the most active to inhibit TCTB production by *F. graminearum* CBS 185.32 (> 50%)

- The activities of maritime pine sawdust extract are confirmed on a panel of *F. graminearum* strains

INRAE
43rd Mycotoxin Workshop
May 30 – June 01, 2022 / Vessela ATANASOVA

Montibus et al, 2021, *Molecules*
Antioxidant activity & Total phenolic content of the by-product extracts

- Active extract is not characterized by the highest antioxidant activity
- Active extract is not the richest in total polyphenols

Other specific characteristics contribute to the activity?
CHARACTERIZATION OF THE PHENOLIC COMPOSITION OF THE ACTIVE EXTRACT BY LC-DAD/MS

Three main groups of phenolic compounds: phenolic acids/aldehydes/alcohols, lignans, and flavonoids

More than half of the compounds are mono- or di-methylated

Lignans, phenolic acids and/or flavonoid activity?

Role of methylation (increased hydrophobicity of the molecules) in antifungal and anti-mycotoxin activity?

Synergistic effect between the compounds?

Montibus et al, 2021, Molecules
SCREENING OF NATURAL EXTRACTS FOR THEIR ANTIFUNGAL AND ANTI-MYCOTOXIN ACTIVITIES
EX: VINE BY-PRODUCTS

Vine by-product extracts

PhD Charles Tardif
StilDeTox ANR project

Percentage of inhibition/activation of the fungal biomass
- *F. graminearum* CBS 185.32 - 125 mg/L - Gardiner liquid medium - 6 days of culture

<table>
<thead>
<tr>
<th>Variety</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>104</td>
<td>36</td>
<td>-17</td>
<td>71</td>
<td>-39</td>
</tr>
<tr>
<td>2</td>
<td>83</td>
<td>91</td>
<td>46</td>
<td>80</td>
<td>NT</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>82</td>
<td>98</td>
<td>96</td>
<td>NT</td>
</tr>
</tbody>
</table>

- Ten extracts significantly inhibit fungal growth
- Four extracts with strong antifungal activity over than 90%
- All extracts significantly inhibit TCTB production by *F. graminearum* CBS 185.32
ISOLATION AND IDENTIFICATION OF ACTIVE COMPOUNDS BY BIO-GUIDED FRACTIONATION

- Six fractions were obtained by centrifugal partition chromatography
- Active compounds were eluted in the F6 fraction which reduced mycotoxin production by 85%
- Two major pics identified as phenolic oligomers which represent 60% of the total dry weight of the F6 fraction

> Studies on the activity and the mechanism of action of these compounds are underway
Data obtained from LC-MS/MS untargeted metabolomics study of 13 extracts with known bioactivity.

- GNPS molecular network based on MS/MS spectra similarity
- Cytoscape mapping of bioactivity to identify bioactive clusters

Four ions potentially linked to the biological activity of the extract against *F. graminearum*

These ions were attributed to the phenolic oligomeric compounds

- PhD Charles Tardif (charles.tardif@u-bordeaux.fr)
- StiDeTox project
CONCLUSION AND PERSPECTIVES

PRODUCTION OF BY-PRODUCT EXTRACTS

- Maritime pine and vine by-products are sources of bioactive compounds against *F. graminearum* and its mycotoxin production
- Development of eco-extraction method that permits the obtention of active extracts

SCREENING OF BY-PRODUCT EXTRACTS & IDENTIFICATION OF ACTIVE COMPounds

- Extracts with strong antifungal and anti-mycotoxin activities
- The two strategies used for isolation and identification of the active compounds in the extracts of interest are complementary
- Active molecules: - oligomeric compounds - methylated compounds

MECHANISMS OF ACTION

- Microscopy analysis to investigate the morphological disorders induced by the active molecules
- Transcriptomic approach to investigate the effect of active molecules on gene expression linked to the oxidative stress and toxin biosynthesis
- Combination of ^{1}H NMR and LC-MS/MS analyses to investigate the effect of active molecules on primary and secondary metabolic pathways

ADAPTED FORMULATION

Bio-fungicides

Collaborations with private and academic partners

- Development of adapted formulations
- Tests in real conditions

INRAE
43rd Mycotoxin Workshop
May 30 – June 01, 2022 / Vessela ATANASOVA
MANY THANKS TO

ACADEMIC PARTNERS
- Florence Forget
- Laetitia Pinson-Gadais
- Marie-Noëlle Bonnin-Verdal
- Christine Ducos
- Nathalie Ferrer
- Sylvain Chéreau
- Marie Foulongne
- Gérard Barroso
- Nadia Ponts
- Thierry Gibard
- Nathalie Gallegos

PRIVATE PARTNERS
- Noémie Collet
- Jérémy Esteves
- Chloé Agro
- Alexandra Callegarin

THANK YOU FOR YOUR ATTENTION