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Abstract

Collagen 6A3 (Col6a3), a component of extracellular matrix, is often up-regulated in tumours and is believed to play a pro-
oncogenic role. However the mechanisms of its tumorigenic activity are poorly understood. We show here that Col6a3 is
highly expressed in densely growing mouse embryonic fibroblasts (MEFs). In MEFs where the TAF4 subunit of general
transcription factor IID (TFIID) has been inactivated, elevated Col6a3 expression prevents contact inhibition promoting their
3 dimensional growth as foci and fibrospheres. Analyses of gene expression in densely growing Taf42/2 MEFs revealed
repression of the Hippo pathway and activation of Wnt signalling. The Hippo activator Kibra/Wwc1 is repressed under dense
conditions in Taf42/2 MEFs, leading to nuclear accumulation of the proliferation factor YAP1 in the cells forming 3D foci. At
the same time, Wnt9a is activated and the Sfrp2 antagonist of Wnt signalling is repressed. Surprisingly, treatment of Taf42/2

MEFs with all-trans retinoic acid (ATRA) restores contact inhibition suppressing 3D growth. ATRA represses Col6a3
expression independently of TAF4 expression and Col6a3 silencing is sufficient to restore contact inhibition in Taf42/2 MEFs
and to suppress 3D growth by reactivating Kibra expression to induce Hippo signalling and by inducing Sfrp2 expression to
antagonize Wnt signalling. All together, these results reveal a critical role for Col6a3 in regulating both Hippo and Wnt
signalling to promote 3D growth, and show that the TFIID subunit TAF4 is essential to restrain the growth promoting
properties of Col6a3. Our data provide new insight into the role of extra cellular matrix components in regulating cell
growth.
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Introduction

TAF4 is a subunit of the general transcription factor TFIID. In

vertebrates, the TAF4 family comprises a ubiquitously expressed

TAF4 protein and a tissue specific paralogue, TAF4b, required for

testis and ovary function [1,2]. To address the function of

mammalian TAF4, we previously inactivated TAF4 in the adult

mouse epidermis where its loss results in enhanced EGF signalling

and increased keratinocyte proliferation [3]. Inactivation of TAF4

also leads to malignant transformation of chemically induced

papillomas and the appearance of invasive melanocytic tumours.

Thus, TAF4 acts as a tumour suppressor in the epidermis. We also

have generated Taf4lox/2 and Taf42/2 mouse embryonic fibro-

blasts (MEFs). In Taf4lox/2 MEFs the TFIID contains predomi-

nantly TAF4, whereas in Taf42/2 MEFs, TAF4b replaces TAF4

to maintain TFIID integrity and cell viability [4]. TAF4-

containing and TAF4b-containing TFIIDs have different proper-

ties as Taf42/2 MEFs display TGFb-dependent autocrine growth

and deregulated expression of more than 1000 genes.

Contact inhibition is a process that arrests cell proliferation

upon cellular contacts under conditions of high density. It is an

important mechanism of anti-cancer defence, as tumour cells

normally lose this property and grow in an uncontrolled manner.

The molecular mechanisms underlying contact inhibition are still

poorly understood. A number of recent studies identified the

Hippo signalling pathway as a major effector of contact inhibition

[5–7]. Activation of the Hippo pathway leads to phosphorylation

of the YAP1 and WWTR1/TAZ coactivators by the LATS1/2

kinases and their export from the nucleus. When Hippo signalling

is attenuated, YAP and TAZ accumulate in the nucleus acting as

coactivators for various transcription factors, such as those of the

TEAD family, that activate genes promoting cell proliferation [8].

In normal cells, Hippo signalling is activated in dense conditions

leading to export of YAP/TAZ from the nucleus and arrest of

proliferation, while in transformed cells lacking contact inhibition

the Hippo signalling pathway is attenuated and YAP/TAZ remain

in the nucleus even under dense conditions to promote cell growth.

Loss of contact inhibition is not the only event in oncogenic

transformation. Other events are required, such as the activation

of the Wnt signalling pathway. This pathway regulates many

biological processes, including morphology, proliferation, motility
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and cell fate. The canonical Wnt pathway involves binding of Wnt

proteins to cell-surface receptors of the Frizzled family, causing the

receptors to activate Dishevelled family proteins and resulting in

stabilization and nuclear import of b-catenin. Inappropriate

activation of this pathway with accumulation of nuclear b-catenin

is observed in several human cancers [9].

It is becoming increasingly recognised that the extracellular

matrix (ECM) not only provides a 3 dimensional (3D) matrix for

cell growth and organogenesis, but that signals from the ECM play

critical roles in cell fate and cell growth [10]. In cancer, the local

microenvironment and especially the ECM also play an important

role in cancer progression. Collagens are the most abundant

proteins in the ECM and Collagen VI has been the focus of

substantial interest due to its association with cancer. Collagen VI

is a large, multidomain ECM protein composed of a triple-helix of

a1, a2, and a3 chains that tetramerise through end-to-end

association and assemble into a microfibrillar network. It was

shown that Collagen VI is up-regulated during murine mammary

tumour progression [11]. Accordingly, the absence of Collagen VI

in a breast cancer-prone mouse strain reduced the rates of early

hyperplasia and primary tumour growth [12]. Similarly, Collagen

VI has been shown to contribute to the resistance of human

ovarian cancer cells to cisplatin treatment and to be up-regulated

in several high grade human tumours [13]. However, despite its

importance, the pathways linking Collagen VI to carcinogenesis

remain poor characterised. Moreover, Collagen VI is also a

component of the ECM in normal tissue, indicating that other

mechanisms may keep in check its oncogenic activity.

Here we show that TAF4 is able to attenuate the growth

promoting activities of Collagen VI. In a Taf42/2 background, a

subpopulation of MEFs loses contact inhibition, resulting in the

formation of 3D foci and growth as fibrospheres. The cells forming

foci are characterised by activated Wnt signalling and inhibition of

Hippo signalling. Strikingly, Col6a3 silencing is sufficient to

restore contact inhibition in Taf42/2 MEFs. Our data show for

the first time that Col6a3 plays a role in modulating signalling

pathways involved in contact inhibition providing an explanation

for the observed association between Col6a3 and cancer. It also

suggests that changes in the ratio of TAF4 and TAF4b can play a

role in the susceptibility of cells to Col6a3-promoted 3D growth.

Finally, we also show that all-trans retinoic acid (ATRA) treatment

represses Col6a3 expression thus abrogating premalignant changes

in both wild-type and Taf42/2 MEFs. Our data suggest that

ATRA could be a valuable treatment for refractory Collagen VI-

associated cancers.

Materials and Methods

Cell lines
The C1Taf4lox/2 and C3Taf42/2 MEFs were derived from

genetically modified Taf4lox/2 mouse embryos and have previ-

ously been described [4]. The floxed Taf4 allele was defloxed in

the C1 MEFs by expression of the Cre recombinase and loss of

TAF4 expression in the C3 MEFs was verified by PCR genotyping

and by western blot analysis as described (10). Cells were cultured

in Dulbecco’s minimal essential media (DMEM) supplemented

with 4.5 g/l glucose and 10% foetal calf serum. Cells were treated

with 1026 M ATRA dissolved in ethanol (DMSO) as indicated.

Fibrosphere assays
For fibrosphere assays, the indicated cells were also grown

under non-adherent conditions in bacterial culture plates. 106 of

the indicated cells were inoculated and grown for 10 days.

Immunofluoresence
Immunofluoressence on C1 and C3 cells was performed by

standard procedure using following antibodies: COL6A3

(PAB17517, Abnova), CTNNB1 (Abcam, ab6302, and BD

Biosciences, 610153), YAP1 (Cell Signalling, #4912), TAZ (BD

Bionsciences, 560235), SOX2 (Cell Signalling, #4900). Immuno-

fluorescence was visualized using a Zeiss Axiophot (Carl Zeiss,

Gottingen, Germany) microscope equipped with epifluorescence

illumination. Confocal microscopy was performed on a Leica SP2

microscope.

Wnt signalling inhibitors
IWR-1 (Sigma-Aldrich, I0161) and XAV939 (Sigma-Aldrich,

X3004) were used at 1 mg/mL concentration.

RNA-seq
RNA-seq was performed as previously described [14]. Briefly,

mRNA was purified from 2 mg of total RNA from C3 cells, grown

at low or high densities, as spheres or after 12 and 24 hours of

treatment with ATRA, using oligo-dT magnetic beads and

fragmented using divalent cations at 95uC for 5 minutes. The

cleaved mRNA fragments were reverse transcribed to cDNA using

random primers and SuperScript II reverse transcriptase (#
18064-014, Invitrogen) and second strand cDNA synthesis using

Polymerase I and RNase H. DNA libraries were prepared as

indicated by Illumina and checked for quality and quantified using

2100 Bioanalyzer (Agilent, USA). The libraries were loaded in the

flowcell at 6pM concentration and clusters were generated using

the Cbot and sequenced on the Illumina Genome Analyzer IIx as

single-end 54 base reads following Illumina’s instructions.

Sequence reads mapped to reference genome mm9/NCBI37

using Tophat [15]. Quantification of gene expression was done

using Cufflinks [16] and annotations from Ensembl release 57. For

each transcript the resulting FPKM were converted into raw read

counts and these counts were added for each gene locus. Data

normalization was performed as described by Anders et al. [17]

and implemented in the DESeq Bioconductor package. For the

analysis of gene expression in low vs high-density C3 cells and

fibrospheres, cut off values were, a minimum average RPKM

value of 5, and fold changes $3 or #0.33 with a pvalue of #0,05.

For the analysis of gene expression following retinoic acid

treatment, fold changes $2 or #0.5 were considered along with

a pvalue #0,05.

ShRNA-mediated gene silencing
Lentiviral shRNA expression vectors and packaging plasmids

were purchased from Sigma-Aldrich. The TRC numbers are

indicated in the Supplemental information. Lentiviral particles

were generated by co-transfection of shRNA vector together with

packaging plasmids into 293T cells. Medium was changed 24 hs

after transfection and viruses harvested 48 hs after transfection

and used for infection of C3 cells. Infected C3 cells were selected

with puromycin resistant and silencing of targeted gene was

checked by RT-qPCR.

RT-qPCR
RNA was prepared using Trizol reagent (Invitrogen, 15596-

018) according to manufacturer’s protocol. Reverse transcription

was performed with Super Script II reverse transcriptase

(Invitrogen, 18064-022) as described in manufacture’s protocol.

Random hexaoligonucleotides were used as primers. qPCR was

performed using LightCycler 480 SYBR Green I master mix
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(Roche, 04887352001) on the LightCycler 480 Real-Time PCR

System. List of oligonucleotides is supplied in x S1.

Proliferation assays
For cell counting, 56104 cells were seeded in 10 cm plates. At

the indicated times the cells were trypsinised and counted. BrdU

incorporation was performed using a BrdU Cell Proliferation

Assay kit (QIA58) from Merck/CalBiochem as per the manufac-

turers instructions. Briefly, the cells were grown for the indicated

times with or without RA and then BrdU incorporation for

24 hours was measured by an immuno-colometric assay.

Results

TAF4-null MEFs display 3D growth
We have previously reported generation of Taf42/2 MEFs by

defloxing of Taf4lox/2 MEFs [4]. The Taf42/2 MEFs (hereafter

C3) are irregularly shaped and have lost contact inhibition as they

readily form three dimensional (3D) foci that are never observed

with the Taf4lox/2 MEFs (hereafter C1) (Fig. 1A). We also noted

that whereas the C1 cells did not proliferate in soft agar, the C3

cells formed clearly visible colonies (Fig. 1B).

Many types of transformed cells can be grown under non-

adherent conditions as spheres such as ‘mammospheres’ in the

case of breast cancer cells [18]. We tested the ability of the C3 cells

to grow as ‘fibrospheres’ under non-adherent conditions and found

that they form large round spheres and trabecular structures,

whereas the C1 cells did not develop fibrospheres (Fig. 1C). TAF4

inactivation therefore confers the ability for 3D growth to at least a

subpopulation of C3 MEFs.

Gene expression changes associated with growth at high
density and as fibrospheres

We next used RNA-seq to profile the changes in gene

expression that occur upon 3D growth. RNA was prepared from

low or high-density adherent cultures of C3 cells comprising 3D

foci and from fibrospheres. In comparison with non-confluent

cells, 669 transcripts were-up-regulated and 714 down-regulated in

dense cells (Figs. 2A and B and Table S2). Similarly, in

fibrospheres, 675 transcripts were-up-regulated and 1066 down-

regulated in comparison with non-confluent cells (Figs. 2A and B

and Table S2). A large overlap can be observed amongst

transcripts whose expression is deregulated upon the transition

from the non-confluent to the dense or fibrosphere states. Around

half of the up-regulated genes and a majority of the down-

regulated genes are regulated in common under both the dense

and fibrosphere conditions.

Ontology analysis of the down-regulated transcripts indicated

strong enrichment in those involved in cell cycle and cell division

consistent with the fact that proliferation is considerably reduced

in dense C3 cells or when grown as spheres compared to the rapid

growth of the non-dense cultures (Figs. 2C and D and Table S3).

In contrast, the up-regulated transcripts are enriched in three

distinct classes, those associated with activation of the interferon

(immune) response, apoptosis, and transcripts encoding proteins

involved in modification of adhesion and ECM composition

(Fig. 2E and F). An ontology analysis of the transcripts that are

selectively up-regulated in fibrospheres compared to dense

monolayers also revealed an enrichment in genes associated with

the membrane and ECM, but did not reveal a pathway specific to

this growth state (data not shown).

We had previously reported that genes of the interferon

response were strongly induced in the C3 cells lacking TAF4

compared to the C1 cells. We ascribed this difference to TAF4

inactivation [4]. However, the above results indicate that

activation of the interferon response requires loss of TAF4 and

growth to high density. The presence of a large collection of

apoptosis associated transcripts amongst the up-regulated class

further indicates the presence of a significant number of apoptotic

cells in dense cultures and in fibrospheres. The presence of the

apoptotic cells may be related to activation of the interferon

response genes, since it has been previously established that DNA

Figure 1. 3D growth of C3 cells. A. Phase contrast microscopy (206 magnification) of C1 and C3 cells grown as dense cultures for 3 days. B.
Growth of C1 and C3 cells after 10 days in soft agar. C. Phase contrast microscopy (126magnification) of C1 cells or C3 cells in grown for 10 days
under non-adherent conditions.
doi:10.1371/journal.pone.0087365.g001

COL6A3 Regulates Hippo Signalling

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e87365



from dead cells can induce the interferon response if taken up by

the surrounding cells [19]. However, in the context of this study

we have not further investigated this point.

The gene expression analysis also clearly indicates major

changes in transcripts associated with cell adhesion and the

ECM in dense cultures and spheres. Expression of several

collagens (6a3, 18a1) and laminins (a4 and a5) are strongly

induced along with VCAM1, thrombospondin 2, intergrins b8,

a2b and a7 and cadherins 13 and 26. Thus, 3D growth involves

major changes in cell adhesion and remodelling of the ECM. On

the other hand, expression of Olfm1 and Spp1, although induced in

Figure 2. Changes in gene expression upon 3D growth of C3 cells. A–B Venn diagrammes showing overlapping changes in gene expression
upon growth as dense cultures or fibrospheres. C–F. Ontology analysis (http://david.abcc.ncifcrf.gov/) of the deregulated genes showing some
relevant categories from the CC-FAT and BP FAT classifications. The number of genes and the associated P values for each category are indicated.
doi:10.1371/journal.pone.0087365.g002
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dense C3 cells, is very much higher in fibrospheres (Figs. 3H and

I).

We confirmed the changes in expression of several of the genes

identified by RNA-seq by RT-qPCR in low density C3 cells and

after increasing times in culture to become dense and in

fibrospheres. In agreement with the RNA-seq data, expression of

Col6a3 strongly increases in dense C3 cells and is strongly

expressed in fibrospheres (Fig. 3A). A similar profile was seen

with Sned1, Fgf2, Mgp, Vav3 and the interferon response genes Irf7

and Usp18 (Figs. 3B–G).

Expression of the interferon response genes was not induced in

dense C1 cells and is thus specific to C3 cells. Interestingly

however, expression of several of the ECM-related genes such as

Col6a3 and Sned1 is significantly induced in dense TAF4-expressing

C1 cells showing that their up-regulation is more generally

associated with dense MEF growth and is not specific to the C3

cells (Figs. 3A–C). Strikingly, immunofluorescence using anti-

COL6A3 antibody shows that strong COL6A3 expression in

Taf42/2 MEFs was limited to the cells forming the 3D foci

(Fig. 4A). The surrounding monolayer cells show only weak

labelling. The immunofluorescence signal was lost in cells

expressing shRNAs directed against Col6a3 (see below) demon-

strating its specificity (Fig. 4B and C). Thus, COL6A3 expression is

strongly and selectively up-regulated in the C3 cells that form 3D

foci.

Suppressed Hippo signalling in C3 MEFs
The Hippo signalling pathway is a major player in contact

inhibition where cell-cell contacts activate the pathway to

phosphorylate the YAP1 and WWTR1/TAZ coactivators and

export them from the nucleus of dense cells thereby leading to

arrest of proliferation. Examination of the gene expression profiles

of low vs high density C3 cells and fibrospheres shows no

significant change in the expression of many of the principal

components of this pathway with the notable exception of Kibra

(Wwc1) whose expression is strongly down regulated in dense cells

and fibrospsheres (Table S2). Kibra is an activator of the Hippo

pathway in Drosophila in vivo [20] In mammalian cells, Kibra

associates with and activates the LATS1-2 kinases promoting

YAP1 phosphorylation and its nuclear export [21]. In contrast,

silencing of Kibra expression reduces YAP1 phosphorylation

resulting in nuclear accumulation. We also noted that Fat4

expression was down-regulated in fibrospheres compared to non-

confluent cells, although the expression of this gene is overall low

in C3 cells (Table S2). FAT4 is an activator of Hippo signalling in

Drosophila, but does not appear to regulate the Hippo pathway in

mammals [22].

RTqPCR confirmed that Kibra expression is reduced in dense

C3 cells and in fibrospheres (Fig. 5A). In contrast, its expression is

considerably higher in non-dense and dense C1 cells. These results

show that Kibra, a positive regulator of Hippo signalling is

strongly expressed in C1 cells, but is down regulated in dense C3

cells suggesting that the Hippo pathway is activated in dense C1

cells leading to contact inhibition, but not in C3 cells. RTqPCR

also confirmed low expression of Fat4 in dense and non-dense C3

cells as well as fibrospheres, whereas its expression is strongly

induced in dense C1 cells (Fig. 5A).

To determine whether reduced Kibra expression correlates with

Hippo signalling, we assessed cellular localisation of YAP1 and

TAZ by immunostaining of C1 and C3 cells. In low density

proliferating C1 cells, a clear nuclear staining for YAP1 is observed

(Fig. 5B). In contrast, in dense C1 cultures where proliferation is

arrested, YAP1 is now predominantly localised in the cytoplasm at

the plasma membrane. In proliferating C1 cells, TAZ is also

localised in the nucleus, whereas in dense cells, it remains in the

nucleus, but the signal becomes weaker and in many cells is almost

completely lost (Fig. S1A). These observations are consistent with

activation of Hippo signalling under dense conditions that leads

both to cytoplasmic localisation of YAP1, but also to proteolytic

degradation of TAZ [23].

In C3 cells a different profile is observed. In low-density C3

cells, YAP1 and TAZ are nuclear (Figs. 5B and Fig. S2A). In dense

C3 cells, TAZ remains nuclear, but its expression is reduced with

many cells showing little or no staining (Fig. S2A). In dense C3

cultures however, YAP1 is located in both the nucleus and

cytoplasm in cells that are dense, but not forming 3D foci. In

contrast, in cells forming 3D foci, strong YAP1 nuclear staining is

observed (Fig. 5C and Fig. S2C). Thus, down-regulation of Kibra

in dense C3 cells is associated with a strong increase in YAP1

nuclear localisation accounting for the lack of contact inhibition

and the observed 3D foci.

Wnt signalling is essential for 3D growth of C3 MEFs
To identify additional signalling pathways that may be involved

in promoting the 3D growth of C3 cells, we made a closer analysis

of the gene expression data. Examination of genes deregulated in

densely growing cells showed that expression of the Wnt9a ligand

was strongly up-regulated, while the Wnt antagonist Sfrp2 was

repressed (Table S2). RT-qPCR confirmed that Wnt9a expression

is strongly up-regulated in dense C3 cells and also showed its up-

regulation in fibrospheres that was not evidently seen by RNA-seq.

In contrast, Wnt9a is not induced in dense C1 cells (Fig. 6A).

Furthermore, basal Sfrp2 expression in low density C3 cells is

further reduced when cells become dense, whereas it is strongly

up-regulated in dense C1 cells (Fig. 6B). These data suggest that

up-regulation of the Wnt9a ligand and the reduction in Sfrp2

expression activates the Wnt pathway to promote 3D growth of

C3 cells, whereas in dense C1 cells Wnt signalling is attenuated

due to lack of Wnt9a induction and high Sfrp2 expression.

To test the role of Wnt signalling in 3D growth, we performed

shRNA knockdown of Wnt9a and tested the effect of chemical

inhibitors of this pathway. Wnt9a silencing with two independent

shRNAs (Fig. 6C) as well as treatment with the Wnt pathway

inhibitors IWR1 and XAV939 all reduced 3D foci formation

(Fig. 6D and data not shown). In each case, upon prolonged

growth, areas of high cell density form, but they do not develop

into full 3D foci as seen with untreated cells expressing a control

shRNA. Furthermore, each treatment also completely inhibited

fibrosphere formation (data not shown). These data show that Wnt

signalling plays a critical role in 3D growth of the C3 cells.

Cross-talk between the Hippo and Wnt signalling pathways has

been described. Hippo can negatively regulate Wnt signalling, for

example, through interactions of cytoplasmic TAZ with the

dishevelled proteins [24]. In contrast, in the absence of Hippo

signalling, nuclear YAP can associate with b-catenin (CTNNB1) to

promote expression of target genes such as SOX2 [25]. Formation

of 3D foci is associated with nuclear b-catenin staining as well as

nuclear YAP1 accumulation (Figs. 5C and 6E). A low expression

of SOX2 can be seen in both low and high-density C1 cells (Fig.

S1B). In low density C3 cells, SOX2 expression is heterogeneous,

with cells that express little or no SOX2, cells with intermediate

levels and rare cells with strong SOX2 staining (Fig. S2B). Under

dense conditions, SOX2 is strongly expressed in the cells that form

foci (Fig. 5C and Fig. S2B). Almost all cells in foci with strong

nuclear YAP1 staining also display strong SOX2 staining. In

control experiments and as expected, strong SOX2 staining is seen

in all nuclei of F9 embryonal carcinoma cells, but is absent from

hepatocyte cells demonstrating the specificity of this staining (Fig.

COL6A3 Regulates Hippo Signalling
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S1C). Treatment with the Wnt inhibitor XAV939 leads to a loss of

nuclear b-catenin staining (Fig. 6E), but has no effect on either

SOX2 or YAP1 expression or localisation (Fig. 6F). Thus,

inhibition of Wnt signalling does not lead to a loss of SOX2

expression suggesting that in these cells nuclear YAP1 alone is

sufficient to promote its expression as is seen in ES cells [26].

Together these results show that the conjugation of enhanced

Wnt signalling along with reduced Hippo signalling and nuclear

YAP1 accumulation is associated with 3D growth of a subpop-

ulation of C3 cells.

ATRA suppresses 3D growth of Taf42/2 MEFs
We have previously shown that ATRA treatment induces a

change in morphology of C3 cells that adopt a more regular

elongated shape [4]. ATRA treatment did not alter cell

proliferation. Growth kinetics performed by cell counting did

not show any significant difference between the untreated and

ATRA treated C3 cells (Fig. S3A). Similarly, ATRA treatment did

not lead to significant changes in BrdU incorporation over a 5 day

period (Fig. S3B). Finally ATRA treatment did not modify the cell

cycle as measured by FACS analysis (Fig. S3C). In particular, no

Figure 3. Comparative gene expression in C1 and C3 cells. A–I. Results of RT-qPCR analysis of the indicated genes in C1 or C3 cells grown for
3 and 10 days in monolayer cluture or 10 days as fibrospheres (F1 and F2).
doi:10.1371/journal.pone.0087365.g003
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significant G1/S arrest similar to what is seen with F9 or breast

cancer cells [27–29] is observed with the MEFs. ATRA does not

therefore inhibit 3D growth by inducing cell cycle arrest or

apoptosis of the C3 cells. Nevertheless, ATRA restores contact

inhibition attested by lack of 3D foci in monolayers (Fig. 7A) and

loss of fibrosphere growth (Fig. 7B). These results show that while

ATRA does not affect C3 cell growth under normal conditions, it

strongly reduces their 3D growth.

ATRA modulates expression of ECM components
3D growth of C3 cells involves enhanced Wnt signalling and

repressed Hippo signalling leading to changes in expression of a

large number of genes. We reasoned that expression of one or

several of these pathway/genes may be counteracted by ATRA

thus inhibiting 3D growth. We used RNA-seq to assay the changes

in gene expression after 12 hours of RA treatment to identify

mainly direct RAR targets and after 72 hours when the changes in

cell morphology become particularly evident to identify transcripts

that are induced or repressed under these conditions (Table S4).

After 72 hours of ATRA treatment only 80 genes showed a

three-fold or more increase in expression, 32 of which showed also

at least a three-fold increase after 12 hours (Table S4). 42

transcripts showed a three-fold or more down-regulation of which

8 were repressed at least three fold after 12 hours (Table S4).

Remarkably however, comparison of the genes whose expression is

up and down regulated upon 3D growth with those regulated by

ATRA reveals Col6a3 gene as almost the only potentially relevant

target. Indeed, Col6a3, whose expression is strongly induced upon

3D growth, is repressed after 72 hours of ATRA treatment (Table

S4). ATRA also down-regulates, but to a lesser extent other

collagens Col6a2, Col5a3 and Col7a1 showing that one of its major

effects in these cells is regulation of genes contributing to ECM

Figure 4. Elevated COL6A3 expression in MEFs growing as 3D foci. A. Immunostaining of dense C3 MEFs for COL6A3. Two distinct fields are
shown. COL6A3 is not homogeneously expressed, but strong expression is limited to the cells forming the 3D foci. B–C. Immunostaining of dense C3
cells expressing shRNAs directed against Col6a3 demonstrating the specificity of the staining.
doi:10.1371/journal.pone.0087365.g004

COL6A3 Regulates Hippo Signalling

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e87365



modification. Repression of Col6a3 and Col6a2 expression there-

fore down regulates assembly of holo-collagen VI potentially

modulating the growth and clonogenic properties of C3 cells.

To examine the possible implication of Col6a3 in 3D cell growth,

we first verified by RT-qPCR that its expression was repressed by

ATRA. We examined the effect of ATRA on Col6a3 expression at

the time when its expression is induced in dense cells. C3 cells were

grown for 7 days in culture until dense, but before the appearance of

3D foci and then exposed to ATRA. After 12 hours of ATRA

treatment only a negligible reduction of expression was observed,

however after 24 hours a 3–4 fold reduction was observed (Fig. 7C).

A more potent reduction in Col6a3 expression was also seen after

72 hours of treatment when its expression is strongly up-regulated

without ATRA upon the formation of 3D foci. Interestingly, ATRA

also represses Col6a3 expression in TAF4-expressing C1 cells

(Fig. 7D). Hence, ATRA can repress the induction of Col6a3

Figure 5. Differential regulation of Hippo signalling in C1 and C3 MEFs. A Results of RT-qPCR analysis of the indicated genes in C1 or C3
cells grown for 3 and 10 days in monolayer culture, or 10 days as fibrospheres (F1). B Immunostaining of C1 and C3 MEFs for YAP1 at low or high
densities. C Immunostaining of C3 MEFs grown at high density for YAP1, SOX2 or b-catenin as indicated.
doi:10.1371/journal.pone.0087365.g005
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expression that takes place upon dense MEF growth, irrespective of

the presence or absence of TAF4.

COL6A3 silencing restores contact inhibition
The above results show a correlation between high expression of

COL6A3 in cells forming 3D foci, and the attenuation of this

strong expression when foci formation is abolished by ATRA.

However, these observations do not demonstrate that elevated

COL6A3 expression is essential for 3D growth. To address this

point, we used lentiviral shRNA vectors to suppress Col6a3

expression. Two independent shRNA-sequences showed a signif-

icant knockdown, strongly suppressing Col6a3 expression under

Figure 6. Wnt signalling is required for 3D growth. A–C. Results of RT-qPCR analysis of the indicated genes in C1 or C3 cells grown for 3 and 9–
10 days in monolayer cluture, 10 days as fibrospheres (F1 and F2) or in C3 cells expressing the indicated shRNAs. D Phase contrast microscopy (206
magnification) of C3 cells grown in presence or absence of the indicated Wnt pathway inhibitors or expressing control shRNA and shRNA directed
againt Wnt9a. E. Confocal microscopy sections through foci grown in the presence or absence of XAV939 showing that the nuclear b-catenin
localisation seen in the control C3 cells is lost in presence of XAV939. F. Immunostaining for YAP1 and SOX2 in foci in presence or absence of XAV939.
doi:10.1371/journal.pone.0087365.g006

COL6A3 Regulates Hippo Signalling

PLOS ONE | www.plosone.org 9 February 2014 | Volume 9 | Issue 2 | e87365



high density conditions (Fig. 8A). Strikingly, suppression of Col6a3

expression by both shRNAs abolished fibrosphere growth (Fig. 8B).

Moreover, shCol6a3 silencing leads to changes in cell morphology

very similar to those seen upon ATRA treatment. Upon

knockdown of Col6a3 expression or ATRA treatment, cells adopt

a more regular elongated shape and there was a complete loss of

3D foci formation (Fig. 8C). Strong Col6a3 expression is therefore

essential for formation of 3D foci, but also the general change in

morphology seen upon shRNA knockdown shows that even the

low basal Col6a3 expression in monolayer cells plays a role in

determining their morphology.

Examination of gene expression in dense shCol6a3 knockdown

cells showed little effect on many genes, such as Irf7 and the other

interferon response genes or Sned1, Fgf2 or Mgp, whose expression

was induced upon dense growth of both the control and shCol6a3

knockdown (Fig. S4 and data not shown). In contrast, expression

of other genes normally induced upon 3D growth such as Vav3 and

Blnk is strongly reduced upon Col6a3 knockdown (Fig. S4). These

observations distinguish genes whose expression is -up-regulated in

dense cultures of C3 cells and often (with the exception of the

interferon response genes) in dense C1 cells that are not dependent

on 3D growth, from genes whose expression is associated with 3D

growth and are not up-regulated in dense C1 cells.

Importantly, we also observed that Wnt9a expression was less

strongly induced in dense shCol6a3 cells than in normal dense C3

cells, but that Sfrp2 expression was strongly induced (Fig. 8D).

Moreover, we also found that Kibra expression was strongly

stimulated in the shCol6a3 cells (Fig. 8D). The elevated Kibra

expression seen in shCol6a3 cells suggests re-activation of Hippo

signalling to repress 3D growth. Low density shCol6a3 C3 cells

show nuclear staining for YAP1 and TAZ and heterogeneous

staining for SOX2 analogous to native C3 cells (Fig. 9A and S5A).

However, in agreement with the elevated Kibra expression, in

dense shCol6a3 C3 cells strongly reduced YAP1, TAZ and SOX2

expression is observed (Figs. 9B and S5B). Thus, elevated Col6a3

expression in dense C3 cells plays a critical role in repressing

Hippo signalling to promote 3D growth.

Discussion

Cross-talk between Col6a3, TAF4 and the Wnt and Hippo
pathways regulates 3D growth

In this study, we show that Col6a3 expression is up-regulated in

densely growing MEFs and that its high expression in Taf42/2

MEFs promotes loss of contact inhibition and their 3D growth

through modulation of the Hippo and Wnt pathways. It is

important to note that this phenotype is seen in the two

independent Taf42/2 MEF lines that we isolated and that re-

expression of exogenous TAF4 restores cell morphology and

promotes contact inhibition. Thus, all of the changes are directly

due to loss of TAF4 and can be reversed by its re-expression [4].

Col6a3 expression is induced in dense TAF4-expressing and

Taf42/2 MEFs. The high expression seen in the Taf42/2 MEFs

originates mainly from the small number of cells forming foci,

whereas in dense TAF4-expressing MEFs, expression is much

more homogeneous (data not shown). The ability of TAF4 to

counteract the growth promoting effects of high Col6a3 expression

can be evaluated by comparing the responses of the two cell types

under conditions of dense growth. In TAF4-expressing C1 cells,

YAP1 and TAZ are located in the nucleus as the cells proliferate at

low density. At high density, Kibra remains highly expressed,

while Fat4 expression is strongly induced. This suggests that Hippo

Figure 7. ATRA induced changes in properties of C3 MEFs. A. Phase contrast microscopy (206 magnification) of C3 cells grown as dense
cultures for 3 days in presence or absence of ATRA. B. Phase contrast microscopy (126magnification) of C3 cells in grown for 10 days as fibrospheres
in presence or absence of ATRA. C–D Effect of ATRA on Col6a3 expression in C3 and C1 cells grown for the indicated number of days in presence or
absence of ATRA.
doi:10.1371/journal.pone.0087365.g007
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signalling is maintained in dense C1 cells to mediate contact

inhibition, an idea confirmed by the translocation of YAP1 from

the nucleus and the overall down-regulation of TAZ expression in

dense cultures.

In contrast, in the absence of TAF4, the pathways and factors

that normally maintain Kibra expression under dense conditions

are no longer operative and Kibra expression is repressed

attenuating Hippo signalling. Consequently, in dense Taf42/2

cells, YAP1 accumulates in the nucleus to promote 3D growth.

Kibra expression can be induced by YAP1 overexpression through

an as yet unknown mechanism [21]. Nevertheless, the transcrip-

tion factors and pathways that regulate Kibra expression in the C3

cells and that require TAF4 as a coactivator remain to be

determined. It is also interesting to note that FAT4 expression also

correlates with that of Hippo signalling despite the fact that

current evidence does not support a role for FAT4 in this pathway

Figure 8. Col6a3 is required for 3D MEF growth. A. RT-qPCR of Col6a3 expression in cells expressing control shRNA or two independent shRNAs
directed against Col6a3 after the indicated number of days in culture. B. Phase contrast microscopy (126magnification) of C3 cells expressing control
shRNA or shRNAs directed against Col6a3 grown for 10 days as fibrospheres. C. Phase contrast microscopy (206magnification) of C3 MEFs in the
presence and absence of ATRA showing the characteristic changes in cell morphology induced by RA and compared with C3 cells expressing shRNAs
directed against Col6a3. Col6a3 knockdown induces changes in cell morphology analogous to those seen in the presence of RA. D. Effects of Col6a3
silencing on gene expression.
doi:10.1371/journal.pone.0087365.g008
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in mammals where it is rather a critical regulator of the planar cell

polarity pathway [30]. The role, if any, that TAF4 control of

FAT4 expression may play in modulating the growth of C1 and

C3 MEFs remains to be investigated.

Several lines of evidence indicate that Wnt signalling is also

involved in 3D growth of Taf42/2 MEFs. In dense Taf42/2

MEFs, Wnt9a expression is strongly up-regulated while Sfrp2

expression is repressed. The nuclear localisation of b-catenin in the

cells forming 3D foci shows enhanced Wnt signalling in these cells.

Also shRNA-mediated Wnt9a silencing or use of chemical

inhibitors of Wnt signalling abrogates 3D growth indicating the

critical role of the pathway in this process. Interestingly, ChIP-seq

has revealed SOX2 [31] and YAP1 [26] binding close to the

Wnt9a gene. This suggests that YAP1 and SOX2 in dense C3 cells

may activate Wnt9a expression in a positive feed forward loop to

promote 3D growth. This contrasts with the TAF4-expressing

MEFs, where Wnt9a expression is not induced under dense

conditions, but Sfrp2 expression is strongly induced. Consequently,

in dense TAF4-expressing MEFs, Wnt signalling is repressed, the

opposite of what is observed in Taf42/2 MEFs. The loss of TAF4

Figure 9. Reactivation of Hippo signalling upon Col6a3 silencing. A. Expression of YAP1 and SOX2 in low-density shCol6a3 knockdown cells
grown for 2 days as monolayers. Cells expressing low or high levels of SOX2 are indicated by arrows. B. Expression of YAP1 and SOX2 expression in
dense shCol6a3 silenced cells grown for 8 days as monolayers. Col6a3 silencing leads to diminished YAP1 and SOX2 expression.
doi:10.1371/journal.pone.0087365.g009
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therefore modifies Wnt9a and Sfrp expression to activate Wnt

signalling in conditions of high density to promote 3D growth.

Together our results support a model where loss of contact

inhibition through diminished Hippo signalling allows the cells to

form dense foci, while enhanced Wnt signalling is further required

for full 3D growth. It is also interesting to note that high SOX2

expression is seen already in rare nuclei of low-density C3 cells.

Thus TAF4 inactivation leads to heterogeneity in the cell

population suggesting that it is the SOX2 high population that

is competent to generate 3D foci under dense conditions.

Retinoic acid regulates MEF growth via repression of
Col6a3

The capacity of Taf42/2 MEFs for 3D growth appears to be

associated with high Col6a3 expression. The expression of several

membrane and ECM components is strongly induced in dense

conditions. Nevertheless, shRNA mediated silencing of Col6a3

alone is sufficient to abolish 3D growth. Further evidence for a

critical role of Col6a3 in 3D growth comes from the observation

that its expression is down-regulated by ATRA that restores

contact inhibition and represses 3D growth. ATRA down-

regulates both Col6a3 and to a lesser extent Col6a2, thereby

down-regulating holo-collagen VI fibre formation. While the

expression of many membrane and ECM components are strongly

induced by 3D growth, Col6a3 is one of the few regulated by

ATRA and is the most strongly repressed. Moreover, ATRA

treatment does not affect expression of known components of the

Hippo pathway and may even potentiate Wnt signalling through

up-regulation of Wnt9a. These observations, together with the

results of Col6a3 silencing, indicate that the major mechanism by

which ATRA inhibits 3D growth is through repression of Col6a3.

The growth suppressive effect of ATRA on these cells by

regulation of ECM components is therefore fundamentally

different from that seen in F9 embryonal carcinoma cells, HL60

myeloid cells, or mammary carcinoma cells where RA treatment

induces cell cycle arrest, differentiation and under some conditions

apoptosis [28,29,32,33].

ECM components such as COL6A3 can provide a network that

physically facilitates 3D growth. While the reduction in this

network in the presence of ATRA may contribute to its ability to

repress 3D growth, remodelling the ECM does not appear to be

the only role of COL6A3 as it’s silencing also dramatically

modulates gene expression and signalling. ShCol6a3 silencing

stimulates expression of Kibra and re-activates Hippo signalling

leading to reduced YAP1 expression. These observations show

that Col6a3 plays an active role in modulating expression of growth

control genes and are in line with previous results showing that

high Col6a3 expression modulates cell and tumour growth.

Ovarian cancer cells resistant to cisplatin show a potent induction

of the Col6a3 gene and in vivo, high grade tumours express higher

levels of Col6a3 than low grade tumours [13]. Similarly, Col6a3 is

up-regulated in the stroma of colon tumours [34], and promotes

the development of hyperplastic foci and primary tumour growth

in breast cancer models by activating pro-survival and prolifera-

tion pathways involving, as seen here, b-catenin [12]. Collagen VI

has also been shown to promote cell cycle progression and anti-

apoptotic pathways in serum-starved fibroblasts and in corneal

derived fibroblasts [35,36]. Our data extend these observations

showing how Col6a3 can modulate expression of critical regulators

of the Hippo and Wnt pathways to promote growth and how it

can serve as a target for ATRA mediated suppression of growth.

Together the results described here reveal a novel and complex

interplay between at least three signalling pathways (Hippo, Wnt

and ATRA) that control 3D fibroblast growth. We describe the

ability of TAF4 to control expression of critical components of the

Hippo and Wnt pathways and a novel role of COL6A3 as ATRA-

regulated modulator of 3D growth and as regulator of gene

expression.

Supporting Information

Figure S1 Expression and localisation of TAZ and SOX2
in C1 MEFs. A. Immunostaining of non-dense and dense C1

MEFs for TAZ. B. Immunostaining of non-dense and dense C1

MEFs for SOX2 (206 magnification). C. Control staining of F9

embryonal carcinoma cells and of hepatocyte cells with SOX2

antibody to demonstrate the specificity of the signal.

(PDF)

Figure S2 Expression and localisation of TAZ, YAP1 and
SOX2 in C3 MEFs. A. Immunostaining of non-dense and dense

C3 MEFs for TAZ. B. Immunostaining of low density C3 cells

with YAP1 and SOX2 antibody (206 magnification). Cells

expressing low or high levels of SOX2 are indicated by arrows.

C Immunostaining of dense C3 MEFs for YAP1 and SOX2 (206
magnification). The location of cells growing in a 3D foci is

indicated.

(PDF)

Figure S3 A. Effect of RA on C3 cell proliferation. A.

Kinetics of cell growth in presence or absence of RA as evaluated

by cell counting. B. Assessment of cell division by incorporation of

BrdU on cells grown for the indicated periods in presence or

absence of RA. C. Results of a representative FACS assay showing

the % cells in each stage of cell cycle. D. Clonogenic assays of C3

cells in presence or absence of ATRA or shCol6a3 on wells coated

with fibronectin.

(PDF)

Figure S4 Effect of shCol6a3 knockdown on gene
expression. RT-qPCR on the indicated genes in C3 cells

expressing control shRNA or shRNA directed against Col6a3

grown for 3 or 10 days as indicated.

(PDF)

Figure S5 Expression of TAZ in shCol6a3 knockdown
cells. A. Expression of TAZ in low-density shCol6a3 knockdown

cells. B Expression of TAZ in high density shCol6a3 knockdown

cells.

(PDF)

Table S1 Sequences of primers used for qPCR of the
indicated genes on the forward and reverse strands.
(DOC)

Table S2 Excel table of RNA-seq results. Page 1 shows
transcripts induced in dense conditions. Shown are, the

Ensembl gene ID, the average RPKM expression values under

each condition, the fold change and Log2 change values under the

indicated conditions, gene name and description. Pages 2–4 show

the same information concerning transcripts induced in spheres,

repressed under dense conditions and repressed in spheres

respectively.

(XLS)

Table S3 Ontology analyses of genes whose expression
is modified under conditions of dense or 3D growth.
Each page shows the analysis of genes differentially regulated

under the specified conditions with the indicated ontology terms.

(XLS)

Table S4 Genes regulated by ARTA in C3 MEFs. Pages 1

and 2 show the induced and repressed genes after 12 and 72 hours
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of ATRA treatment. Shown are the Ensembl gene IDs, gene

name, log2 ratios 2ATRA/+ATRA 12 hours, 2ATRA/+ATRA

72 hours, +ATRA12 hours/+ATRA 72 hours, and gene descrip-

tion.

(XLS)
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