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THE CRITICAL DENSITY FOR ACTIVATED RANDOM WALKS IS ALWAYS
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Activated Random Walks, on Z
d for any d> 1, is an interacting particle

system, where particles can be in either of two states: active or frozen. Each
active particle performs a continuous-time simple random walk during an
exponential time of parameter λ, after which it stays still in the frozen state,
until another active particle shares its location, and turns it instantaneously
back into activity. This model is known to have a phase transition, and we
show that the critical density, controlling the phase transition, is less than one
in any dimension and for any value of the sleep rate λ. We provide upper
bounds for the critical density in both the small λ and large λ regimes.
Keywords and phrases. Activated random walks, phase transition, self-
organized criticality.
MSC 2020 subject classifications. 60K35, 82B26.

1. Model and results.

1.1. Activated Random Walks. This paper is a companion to [9]. We continue our study
of a specific reaction-diffusion model known as Activated Random Walks (ARW) invented
to study self-organized criticality. Informally, random walks diffuse on a graph which has
a tendency to hinder the motion of lonely walkers, whereas the vicinity of other diffusions
turns hindered particles into diffusive ones. Here, we consider the Euclidean lattice Zd in any
dimension, or a large Euclidean torus. The initial configuration is an independent Poisson
number of particles at each site of Zd, with parameter µ < 1. Each particle can be in any
of two states: active or frozen (or sleeping). Each active particle performs a continuous-time
simple random walk with rate 1 and is equipped with an independent exponential clock of
parameter λ, at the marks of which the particle changes state, and stops moving. When a
frozen particle shares a site with another particle, it gets instantly activated. When the graph
is an infinite Euclidean lattice, and one increases the initial density of active particles, one
expects to see a transition, at a critical density µc(λ), from a regime of low density where
particles are still to a high density regime of configurations made of constantly evolving
islands of sleeping particles at low density in a sea of diffusing particles at high density.
When we start with a large number of active particles at the origin we expect a large ball to be
eventually covered at density µc(λ). This phenomenon is known as self-organized criticality,
in the sense that the system alone reaches a critical state. This notion was introduced in
the eighties by Bak, Tang and Wiesenfeld [3] together with a related toy model, the abelian

sandpile. The ARW model, which is less constrained, was actually popularized some 13 years
ago by our late friend Vladas Sidoravicius and we refer to Levine and Liang [15] for some
comparison between the two models. The ARW model shares with the abelian sandpile the

MSC2020 subject classifications: Primary 60K35, 82B26.
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nice feature that the order in which the particles are launched is irrelevant, which is known
as the abelian property.

When working with Z
d, and when active particles are drawn from a product Poisson mea-

sure of intensity µ at each site, ARW is known to have a phase transition between an active

phase and a frozen phase. The active phase is characterized by every vertex being visited in-
finitely many times, whereas in the frozen phase the origin is visited a finite number of times.
In a seminal work Rolla and Sidoravicius [19] prove that the system stays active forever with
a probability which is increasing in µ, and which satisfies a zero-one law under Pλ

µ , law of
the process when the sleep rate is λ and the initial configuration is drawn from the product
Poisson measure of intensity µ. Thus, the following density µc(λ) is well defined:

µc(λ) = inf
{

µ : Pλ
µ(the origin is visited a finite number of times) = 0

}

.

In [20] Rolla, Sidoravicius and Zindy show that µc(λ) is the same number when the initial
configuration is drawn from any translation-invariant ergodic measure with mean µ. On Z

d

with d> 3, Stauffer and Taggi in [21] show that when λ is small, µc(λ) < 1, and they pro-
vide a general lower bound µc(λ) > λ/(1 + λ), which is valid in any dimension and for
every λ > 0. In a subsequent work [22] Taggi shows that µc(λ)< 1 for all λ ∈ (0,∞) on Z

d

with d> 3, and provides an upper bound on the critical density, showing that µc(λ)6Cd
√
λ

for every λ> 0, for some positive constant Cd.
Even in dimension one, ARW is far from trivial. In d = 1, Basu, Ganguly and Hoffman

introduce in [4] a block dynamics allowing them to replace the complex correlation of the
odometer function (measuring the number of instructions used at each site) by some balance
equations at the end-points of their blocks (where particles leave) and at the centers (where
particles arrive). They obtain that µc(λ)< 1 for small λ. Following the same approach, As-
selah, Rolla and Schapira show in [2] that µc(λ) =O(

√
λ) for small λ, and Hoffman, Richey

and Rolla show in [10] that, for any λ, µc(λ)< 1 in dimension 1. Finally, let us mention that
a lot of works have considered asymmetric random walks, where µc(λ)< 1 has been settled.
In dimension 2, two independent recent works by Forien and Gaudillière [9] on the one hand,
and Y. Hu [11] on the other hand, have established that µc(λ)< 1 when λ is small enough.

The family of ARW models is very rich as we vary λ from 0 to ∞, and as we vary the
initial conditions with active and frozen particles. Let us illustrate this with two examples.
When λ = 0, the active particles stay alive forever: if we start with a product Poisson dis-
tribution of sleeping particles and one active particle at the origin, the model is known as
the frog model. Kesten and Sidoravicius have also studied a model for the propagation of
an infection, where the sleeping particles can move at a slower rate than the active ones.
When λ=∞, and we send active particles from the origin, then this is the celebrated model
called internal diffusion limited aggregation (IDLA). This latter model is much older, and in
a sense much simpler since frozen particles remain so forever. It has been thoroughly stud-
ied, and a shape theorem has been obtained in the nineties by [13] on Z

d, and on a few other
interesting graphs, as well as for closely related variants: uniform IDLA [5], Hasting-Levitov
dynamics [17], rotor-router [16] and divisible sandpiles. Besides, fluctuations around the typ-
ical shape have been obtained on Z

d independently by Asselah and Gaudillière in [1] and by
Jerison, Levine and Sheffield in [12]. It remains the focus of recent interest [6].

We show in this paper that when we start with particles which are all active on the
torus Zdn := (Z/nZ)d, for any dimension d and λ > 0, there is a density µ < 1, independent
of n, above which the system remains active during an exponentially large time (in |Zdn|) with
overwhelming probability. This implies that there exists a non-trivial active phase on the in-
finite Euclidean lattice for all sleep rates λ. In other words, when we start the system on Z

d

with active particles distributed as a product measure with more than µc(λ)< 1 particles per
site on average, then the origin is almost surely visited infinitely many times.
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1.2. Main results. Our main result is the following.

THEOREM 1.1. In any dimension d > 1, for every sleep rate λ > 0, the critical density

of the Activated Random Walks model on Z
d satisfies µc(λ)< 1.

This result is new in d= 2 and our proof encompasses all dimensions (with small changes).
Since it is constructive, it does provide upper bounds on µc(λ): these bounds are new in d= 2,
and improve existing bounds for d> 3. Note that we cover the regime of large λ as well as
small λ. Theorem 1.1 follows from the upper bounds we now present (and from the fact that
the critical density µc is non-decreasing in λ, see for example [18]).

THEOREM 1.2. In dimension d= 2, there exists a > 0 such that, for λ small enough,

(1.1) µc(λ) 6 λ | lnλ|a ,
and there exists c > 0 such that, for λ large enough,

(1.2) µc(λ) 6 1− c

λ(lnλ)2
.

THEOREM 1.3. In dimension d > 3, there exists c = c(d) > 0 such that, for λ small

enough,

(1.3) µc(λ) 6 cλ ,

and there exists c= c(d)> 0 such that, for λ large enough,

(1.4) µc(λ) 6 1− c

λ lnλ
.

These bounds, in the two regimes of sleep rate, are of a correct nature (up to some loga-
rithmic factor in λ), as we try to justify in our heuristic discussion below.

REMARK. Our proof method also works to show that µc(λ) < 1 for every λ > 0 in di-
mension 1, with minor changes, but in this setting it does not yield significantly new bounds
on the critical density, hence we choose not to detail this case. We limit ourselves to some
comments in section 1.6 about how to adapt our proof to the one-dimensional case.

1.3. Heuristics. At a heuristic level, the critical density of frozen particles can be thought
of as follows. Consider a configuration of frozen particles drawn from a Poisson product
measure on Z

d with density µ, and launch an active particle at the origin. The density µ
equals µc(λ) if an active particle, in its journey before freezing, encounters on average exactly
one sleeping particle. In other words, the number of active particles should strike a balance:
one particle wakes up when another one freezes. Thus, if Rt is the number of distinct visited
sites in a time period [0, t] by a continuous-time random walk, and if τ is an independent
exponential time of mean 1/λ, we expect that

(1.5) E[Rτ ] · µc(λ) ≃ 1 .

The symbol ≃ is here to remind the reader that this is just heuristics. Now, there are two
regimes: small λ where τ is of order of its mean 1/λ which is large, and the regime of
large λ where the particle makes a jump with probability 1/(1 + λ) which is small. In the



4

case of small λ, we rewrite (1.5) as E[R1/λ] ·µc(λ)≃ 1, and we only need to recall the large
time asymptotics of the range of a random walk (see for example [8]):

E[Rt] =







O(
√
t) if d= 1

O( t
ln t) if d= 2

O(t) if d> 3.

This implies the following heuristics for µc(λ) for small λ:

µc(λ) =







O(
√
λ) if d= 1

O(λ| lnλ|) if d= 2
O(λ) if d> 3.

When λ is large, the active particle makes one jump with probability 1/(1 + λ) so that

E[Rτ ] ≃ 1 +
1

λ
,

which, plugged into (1.5), suggests that µc(λ)≃ 1− 1/λ when λ→∞.
Establishing these bounds remains a challenging problem, as well as establishing some

shape theorem, or understanding ARW at the critical density. The model of ARW presents
many other interesting questions, and we refer to Rolla’s survey [18] for a nice review. One
difficulty is that the time a particle stays in one of its two states actually depends on the
local density of particles which itself changes with time: if an active particle travels amidst
a region of high density, then it most likely remains active as long as it remains inside this
region; instead, if it crosses a low density region, it most likely switches to a frozen state at
the first mark of its exponential clock.

1.4. Sketch of the proof of Theorem 1.2. Most of our work is devoted to proving The-
orem 1.2 (the case d = 2), which is our main result, while Theorem 1.3 (the transient
case d > 3) requires much less technology and simply follows as a by-product of an in-
termediate Lemma.

We now describe informally the six steps of our strategy, of which three are taken from [9],
and three are new. The new ideas, namely the dormitories, the ping-pong rally and the
coloured loops, are all of a hierarchical nature.

To show that it takes an exponentially large time to stabilize a configuration on the torus,
we introduce a hierarchical structure on the set where the particles eventually settle, which
we call the hierarchical dormitory. With this construction, we first show that some elemen-
tary blocks of this hierarchy, called the clusters, have a stabilization time exponentially large
in their size. We then perform an induction using a toppling strategy which we call the ping-

pong rally, where neighbouring clusters interact and reactivate each other many times, lead-
ing to a stabilization time for their union which is roughly the product of the individual
stabilization times. Thus, we obtain that at each space scale, the stabilization time of a clus-

ter is of order an exponential in the volume of the cluster. The coloured loops are the last
important ingredient in our proof: modifying slightly the dynamics of the ARW model by
ignoring some reactivation events, we are able to obtain some independence between the
different levels of the hierarchy, which turns out to be crucial in our inductive proof.

1.4.1. Working on the torus and using the abelian property. In [9] it is shown that µc < 1
if, when starting with a density µ< 1 of active particles, the time needed to stabilize ARW on
the torus Z

d
n = (Z/nZ)d is exponentially large in n with high probability. Thus, we always

consider Zdn with n large enough.
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We recall that there is a celebrated graphical representation, known as the site-wise or
Diaconis-Fulton representation (see [7] for the original construction or [18] for a nice pre-
sentation in the context of ARW), where we pile stacks of independent instructions on top of
each site of Zdn, and use these instructions one after another to move the particles.

A key property of this representation of the model, known as the abelian property, is that
the final configuration and the number of steps performed (these steps are called topplings)
do not depend on the order with which the instructions are used, allowing us to choose an
arbitrary strategy to move particles. We rely heavily on this property throughout our work
(although our graphical representation, described below in section 2.5 is no longer abelian,
its construction itself relies on the abelian property of the ARW model).

1.4.2. Decomposition over all possible settling sets. Whereas [9] focuses on the case
where the sleep rate λ is small, in our case we fix λ, which can be either small or large, and
we look for a density µ < 1 so that the stabilization time on the torus is exponentially large.
Starting from a fixed initial configuration with µnd particles, we decompose the probability
to stabilize the configuration in a given time, summing over all the possible sets where the
particles can settle.

Then, as in [9], for a fixed couple (λ, µ) we look for an estimate on the stabilization time
which is uniform over all possible settling sets A ⊂ Z

d
n, and we perform a union bound.

Hence, in our estimate we get a combinatorial factor
(

nd

µnd

)

corresponding to the number of
possible settling sets. This factor can be thought of as an “entropic” term, which we have
to outweigh by an “energy” term corresponding to the probability to stabilize in a given
setA⊂ Z

d
n in a short time. Since this entropic factor

( nd

µnd

)

gets smaller when µ is either close
to 0 or close to 1, we concentrate on these two distinct regimes of the sleep rate, namely λ→ 0
and λ→∞, with a corresponding density µ→ 0 or µ→ 1.

The use of a uniform estimate over settling sets is responsible for some logarithm factors
appearing in the bounds that we obtain on the critical density µc. This can be seen in the state-
ment of Lemma 2.1 (where ψ(µ) corresponds to the entropy, while κ controls the energy) and
in the final estimates for our proofs in sections 3 and 4, where we tune the parameters λ and µ
such that the entropy-energy balance is favourable. Thus, a possible direction to improve our
estimates on µc could be to refine this union bound by ruling out some sets A on which it is
very unlikely that the particles settle.

1.4.3. Reduction to a model with density 1 on the trace graph. Once such a setA⊂ Z
d
n is

fixed, we look for an upper bound on the probability that the particles settle on A in a given
time. To this end, as explained in section 3.1 of [9], we suppress all sleeping instructions
on Z

d
n \A. Indeed, provided that particles eventually settle in A, these sleeping instructions

are overridden at some time or another. Then, using the abelian property of the model, we
may first let each particle move until it reaches an empty site of A. Thus, we may start from
the configuration with exactly one active particle on each site of A (see section 3.2 of [9]).
Thus, we end up with a simplified model on a fixed subsetA that we call the dormitory, which
starts fully occupied with active particles. These active particles cannot settle anywhere but
on A.

Let us now describe the order with which the particles move. At the beginning of each step,
we choose an active particle and read its first unused instruction. If it is a sleep instruction,
the step is over, the particle falls asleep and we choose another particle at the next step.
Otherwise, if it is a jump instruction, we let the particle jump, and follow instructions along
its path until it goes back to its starting point. Indeed, when the particle is not at its starting
position, it is either outside of A, and there is no sleep instruction, or it is on top of another
particle, and the sleep instructions have no effect. Note that at the end of its loop, the particle
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is active, and has waken up all sleeping particles along the loop. Thus, each step of the
dynamics consists either in a sleep event or in drawing a loop (that is to say, the support of
an excursion) from a site with an active particle, and updating the set of active particles.

Doing so, after each step (i.e., after a sleep or a loop) we go back to a configuration where
there is exactly one particle on each site of A. Thus, in a way, we reduced the problem to the
study of an easier model with density 1, but on the modified graph which is the trace graph
on A, that is to say, the graph whose vertex set is A and where the transition probability
from x to y is the probability that y is the first site of A encountered by a random walk on
the torus that has just jumped out of x, as if particles were “sliding” on Z

d
n \A with infinite

speed until they reach a site of A.
This idea to reduce the model to the case of density 1 is a key idea which is at the core

of both [9] and the present work. Once constrained to this settling set A where there is just
enough space for all the particles to fixate, it is very difficult for the model to reach the stable
state where all the particles are sleeping. Hence, a phenomenon of metastability is expected,
the system remaining trapped in a situation where only a fraction of the particles are sleeping,
with a huge potential barrier to overcome to bring all particles to a rest.

Thus, it is not surprising that, for every fixed settling set A, the model where particles
are forced to settle on A takes an exponentially large time to reach its stable state, this time
being roughly distributed as a geometric random variable. Many trials are necessary before
overcoming the drift.

Therefore, if one can prove that, for a general class of graphs, the model with density 1
takes an exponential time to stabilize, there only remains to see if the combinatorial fac-
tor
(

nd

µnd

)

corresponding to the choice of the dormitory A can be outweighed by the estimate
on the exponential fixating time of the density-one model on A.

1.4.4. Hierarchical Dormitories. Once the settling set A is fixed, we introduce a deter-
ministic hierarchical structure on A, which is a new ingredient compared to [9]. This struc-
ture consists in a finite decreasing sequence of subsets of A, say A0 ⊃A1 ⊃ · · · ⊃ AJ , and
a corresponding sequence of partitions C0, C1, . . . , CJ (where Cj is a partition of Aj) whose
elements are called clusters (even though they are not necessarily connected).

The construction of the 0-th level of the hierarchy varies depending on which regime we
are studying. The idea is that these clusters are densely connected in some sense, so that the
stabilization of any cluster C ∈ C0 produces a number of loops which is exponentially large
in the size of C , so that these clusters can interact with other clusters of C0 which are far
apart.

In the regime of small λ (thus with µ→ 0), that is to say, for the proof of the bound (1.1),
the set A is rather sparse, so we simply take A0 = A and C0 composed only of singletons.
Indeed, the stabilization of a singleton already emits a number of loops which is geometric
with mean 1/λ, which is large when λ→ 0. In the proof of the bound (1.2) in the large λ
regime, the first partition C0 is composed of clusters of high density, so high that if at least a
fraction of the particles in a cluster are frozen, then loops emanating from well chosen sites
have a tendency to wake up many particles.

Then, in both regimes, clusters of C1 are obtained by pairing clusters of C0 when their dis-
tance is not too large. Then, by way of induction at each step j, we construct each partition Cj
by merging pairs of clusters in Cj−1 which are not too far apart. In so doing, we merge as
many pairs as possible, but possibly throw away clusters which are isolated. Also, at each
level some clusters are not merged, but we impose a minimal size for clusters at each level,
so that the clusters get bigger and bigger along the hierarchy. The construction stops when
we obtain a partition CJ which contains one single set. We then have to check that we have
not thrown away too much, so that this last cluster on top of the hierarchy contains at least a
fraction of the initial set A.

The detailed construction of this hierarchy is presented in section 5.
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1.4.5. Ping-pong rallies. Let us now explain how we control the stabilization time. In
a first step, we prove that, for every cluster C ∈ C0, the number of topplings to stabilize
the configuration on C is exponentially large in the size of C . This is done in section 6 by
using that the number of sleeping particles has a negative drift (when at least a fraction of
the cluster is sleeping), implying through a martingale argument that the stabilization time
of C dominates a geometric random variable with exponentially large mean, with an explicit
control on the parameter in the exponential (which is important to obtain our explicit bounds
on µc).

Then, at each level of the hierarchy, we introduce ping-pong rallies. We prove by induction
on j that, for every C ∈ Cj , the number of topplings necessary to stabilize C is exponentially
large in the size of C . We insist that at each space scale we need to control the whole law of
the stabilization time, not just the tail. We now present a mechanism behind the exponential
fixation time.

Consider a cluster C =D ∪E in Cj+1 with D and E in Cj . Starting with D and E fully
active we perform sleeps and loops on each active site in D up to the full stabilization of D,
before doing the same in E to reach the full stabilization of E. Now, after these two rounds,
some sites in D may have been reactivated during the stabilization of E. If D is not too
far from E, D has great chances to be actually fully reactivated. We then stabilize D again,
which in turn reactivates E and so on and so forth up to the complete stabilization of C . We
say that our merging clusters play a ping-pong rally which ends when one cluster stabilizes
without reactivating all the particles of its playing partner.

The ping-pong rally is behind the reinforcement of activity. Indeed, let tD and tE be the
expected values of TD and TE , the random numbers of loops needed to stabilize D and E
respectively. Let also εD and εE be the probabilities that E and D are not completely re-
activated during the stabilization of D and E, respectively. The expected total number of
excursions needed to stabilize C is then larger than or equal to

∑

k>0

[

(1− εE)(1− εD)
]k
(tD + tE) =

tD + tE
εD + εE − εDεE

>
tD + tE
εD + εE

.

Having reduced our analysis to the density-one, hence metastable, systems D and E, we
can expect TD and TE to be approximate geometric random variables with success prob-
ability 1/tD and 1/tE . Having also chosen D and E close enough for them to merge at
scale j+1, we can also expect εD and εE to be of order 1/tD and 1/tE at most. In metastable
situations indeed, we can expect the thermalisation times to metastable equilibria to be small
with respect to the mean stabilization times. In our case the latter, tD and tE , should be expo-
nentially large in |D| and |E|, while the former should be only polynomial in |D| and |E|. For
the ping-pong rally to stop, a cluster should then essentially stabilize within its thermalisation
time to metastable equilibrium: if not, it will produce an exponentially large number of loops
that will continue the ping-pong rally with very large probability. Since the stabilization time
when starting from a fully active cluster will dominate the geometric stabilization time when
starting from metastable equilibrium, εE and εD should be of order 1/tD and 1/tE up to
logarithmic corrections at most. This would give a lower bound for the mean number tC of
the needed excursions to stabilize C of order

tD + tE

t−1
D + t−1

E

= tD × tE .

If our induction hypothesis assumes that tD and tE are exponentially large in the size of D
and E, we would obtain from these heuristics that tC is exponentially large in the size
of D ∪E =C .
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1.4.6. Coloured Loops. The technical difficulties lie in the need to control the whole
law of the stabilization time at each scale (and not only its expectation or its tail) and in the
intricate dependence relation between the length of the ping-pong rally (i.e., how many times
the sets D and E fully reactivate each other) and the duration of the successive stabilization
steps of the rally. It is not clear how the stabilization time of one set, sayD, is correlated with
the event that the other set E is fully reactivated during this stabilization of D. Intuitively,
knowing that the stabilization of D takes a long time, we have many loops emerging from D
which can reactivate the sites of E, but we also have some information on the shapes of these
loops, namely that they tend to visit many sites of D.

To overcome this issue of intertwined dependence, we introduce in section 2.4 distin-

guished sites which bear coloured loops which are used to activate clusters at a distinct level
of the hierarchy. More precisely, each cluster of the hierarchy is equipped with a distinguished
site, and each loop emerging from this site is devoted to activating one specific cluster, so that
at each level of the hierarchy, a certain proportion of the loops are ignored and shelved apart
for further levels. Doing so, knowing that it takes a long time to stabilize D, we only have
an information on the loops which are devoted to reactivation inside of D, while the loops
devoted to reactivation of E are left blank, and are thus distributed as standard excursions.

By allowing only some loops to activate given particles, we build a dynamics which is
faster to stabilize. Since we only need a lower bound on the stabilization time for the original
dynamics, we will avoid controlling the previously mentioned relaxation time to metastable
equilibrium by working with such a stochastic domination. It will also turn out that our
coloured loop numbers are positively correlated with the ping-pong rally lengths. See sec-
tion 2.4 for the description of these coloured loops, and section 7 for the inductive step where
we use their crucial independence property.

1.5. Sketch of the proof of Theorem 1.3. In dimensions d> 3, since the probability that
a loop starting from any point x ∈ Z

d
n visits any other vertex y ∈ Z

d
n is bounded below by

a universal positive constant, independent of n and of the distance between x and y (see
Lemma 2.5), we may almost forget the geometry in our strategy.

We still reason with a fixed settling setA and we perform loops, going back after each step
to a configuration with exactly one particle on each site of A. But, compared with the proof
in dimension 2, we do not need any hierarchical structure on A, nor to distinguish vertices
or to colour the loops. However, for coherence with the rest of the paper which is devoted to
dimension 2 and to avoid introducing specific notation for this corollary, we say that we use a
trivial hierarchy and we keep one distinguished vertex and coloured loops, but this is simply
a matter of notation.

Then, our toppling strategy simply consists in toppling whatever active vertex inA and per-
forming a sleep or a loop. The result then follows from the computations of the initialization
step in section 6, which show that the system with density one has a metastable behaviour,
easily leading to the bounds on the critical density indicated in Theorem 1.3.

1.6. How to adapt our proof in dimension 1. As explained above, our proof method also
works to show that µc < 1 for all λ > 0 in dimension 1, with some adaptations, and it also
yields bounds on the critical density, but these bounds are not new.

The regime of small sleep rate λ is already pretty well understood. We refer to [2] which
shows that c

√
λ6 µc(λ)6C

√
λ for some constants c, C > 0 and λ small enough.

In the regime of large sleep rate λ, to obtain a lower bound on µc using our method, one
needs to consider connected sets at the first level of the hierarchy. Thus, the partition C0 is
composed of the connected components of A which contain at least v vertices, with v a well
chosen function of λ.
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Then, in the initialization step, one needs to control the drift in a finer way, using the fact
that a connected component in dimension 1 is simply a segment. Thus, one can choose an
endpoint as the distinguished vertex and use the toppling procedure which simply consists in
toppling the active site which is closest to the distinguished vertex. Doing so, one can show
that there is a drift which leads to the distinguished vertex being awaken many times. To this
end, instead of simply writing that the toppled site has a certain number of sleeping sites in
a certain ball around itself, as in section 6, one has to use the fact that there is one sleeping
site at distance 1, another one at distance 2, and so on. Summing the probabilities to wake up
each of these sites, one obtains a series which diverges with the size of the cluster, showing
that there is a drift which outweighs the sleep rate when the size v of the cluster is taken large
enough.

After this step, one can conclude using the induction result given by Lemma 3.1. Thus,
our proof also works in dimension 1. But it turns out that, in this case, it does not yield
significantly better results than the bounds existing in the literature. Namely, in [10] it is
shown that µc(λ)6 1− exp(−cλ) for some c > 0 and λ large enough, and our method yields
the same kind of estimate, hence the choice to restrict our exposition to dimensions at least 2.

1.7. Organization of the paper. After some preliminaries in section 2, we present the
proof of Theorem 1.2 about d = 2 in section 3, followed by the proof of Theorem 1.3, the
transient case d> 3, in section 4. Both of these proofs rely on a certain number of interme-
diary Lemmas, which are proved in the subsequent sections.

The construction of the dormitories used in the two-dimensional case is presented in sec-
tion 5, while the induction is performed in sections 6 (for the initialization) and 7 (for the
inductive step). Finally in the appendix, we gather the proofs of some technical Lemmas.

2. General considerations. We now present some general definitions and preliminaries.
Let d, n> 1.

2.1. Notation. Recall that we write Zdn = (Z/nZ)d for the d-dimensional torus. Denoting
by πn : Zd → Z

d
n a standard projection from Z

d onto the torus, we define the distance between
two points x, y ∈ Z

d
n as

(2.1) d(x, y) = inf
{

‖a− b‖∞ : a, b ∈ Z
d , πn(a) = x, πn(b) = y

}

.

For every non-empty set C ⊂ Z
d
n, we define its diameter

diamC = max
x, y∈C

d(x, y) .

For every x ∈ Z
d
n and every r ∈N, we denote by B(x, r) the closed ball in the torus centered

on x with radius r, that is to say,

B(x, r) =
{

y ∈ Z
d
n : d(x, y)6 r

}

.

Note that the volume of B(x, r) is simply given by

(2.2)
∣

∣B(x, r)
∣

∣ =

{

(2r+1)d if n> 2r+1 ,

nd otherwise.

With a slight abuse of language, a set C ⊂ Z
d
n is said to be connected if, for any two

points x, y ∈C , there exists k ∈N and a sequence x0, . . . , xk ∈C such that x0 = x, xk = y
and d(xj , xj+1) = 1 for every j < k (as if there were diagonal edges). Similarly, if r ∈ N, a
set C ⊂ Z

d
n is said to be r-connected if, for any two points x, y ∈C , there exists k ∈N and a

sequence x0, . . . , xk ∈C such that x0 = x, xk = y and d(xj , xj+1)6 r every j < k.
For every set E, we denote by P(E) the set of all subsets of E.
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2.2. Sufficient condition for activity in terms of the number of topplings. Lemma 2.1
below gives a sufficient condition on the two parameters λ and µ of the model to show that
we are in the active phase. This Lemma follows from [9] and to state it we need to introduce
some notation.

The Lemma is formulated in terms of the number of topplings necessary to stabilize a
given initial configuration of the model. The number of topplings refers to the total number
of jump and sleep events. In the continuous-time model, each active particle jumps with
rate 1 and tries to fall asleep with rate λ (which can either lead to the particle effectively
falling asleep if it is alone or to nothing happening otherwise), and both of these events are
called topplings.

In the site-wise representation of the model where, for each site, we draw an infinite se-
quence of toppling instructions (which can consist either of sleep instructions or of jump
instructions indicating a neighbouring site to jump on), the number of topplings refers to
the number of toppling instructions used. We refer to [18] for a detailed presentation of this
representation.

As explained in the sketch given in section 1.4, we consider a modification of the ARW
model where, for a fixed A⊂ Z

d
n, particles cannot fall asleep out of A (as if the sleeping rate

was λ on A and 0 on Z
d
n \A, or if no sleep instructions are drawn out of A). We write Pλ,A

µ

for the probability distribution relative to this modification of the ARW model where particles
are not allowed to sleep out of A, and we write MA for the number of topplings on the sites
of A necessary to stabilize. The initial configuration is written η0 : Zdn →N, where η0(x) = k
means that we start with k active particles on the site x.

LEMMA 2.1. Let d> 1, let λ > 0 and µ ∈ (0,1), and let us write

(2.3) ψ(µ) = −µ lnµ− (1− µ) ln(1− µ) .

If there exist a > 0 and b > ψ(µ) such that, for n ∈ N large enough, for every A⊂ Z
d
n such

that |A|=
⌈

µnd
⌉

, we have

(2.4) Pλ,A
µ

(

MA 6 ean
d
∣

∣

∣
η0 = 1A

)

6 e−bn
d

,

then µ> µc(λ), where µc is the critical density of the usual ARW model on Z
d.

The proof of this Lemma, which is only a combination of several results of [9], is briefly
presented in the appendix A.1 for completeness.

2.3. Dormitory hierarchy. Given a settling set A⊂ Z
d
n, we now describe a hierarchical

structure that we build on A and which is the basis of our toppling strategy. This structure,
called the dormitory hierarchy, is deterministically associated to the set A and also depends
on some parameters v and (Dj)j∈N which will be chosen as functions of the sleep rate λ. A
dormitory hierarchy is defined as follows:

DEFINITION. Let d, n, v > 1 and let D = (Dj)j∈N ∈ (N \ {0})N. For every sub-

set A⊂ Z
d
n, we call a (v, D)-dormitory hierarchy on A a finite decreasing sequence of

subsets A⊃A0 ⊃ . . .⊃AJ , with J ∈ N and, for every j 6 J , a partition Cj of Aj such

that:

(i) For 06 j 6 J , for every C ∈ Cj , we have |C|> 2⌊j/2⌋v;

(ii) For 06 j 6 J − 1, for every C ∈ Cj+1 \ Cj , we have diamC 6Dj and there exist two

sets C0, C1 ∈ Cj such that C =C0 ∪C1;

(iii) The last partition CJ contains one single set.
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Given a dormitory hierarchy (Aj , Cj)j6J , for every j 6 J and every x ∈ Aj , we de-
fine Cj(x) to be the set C ∈ Cj such that x ∈ C . When x ∈ Z

d
n \ Aj or j > J , we

set Cj(x) = ∅. The sets C ∈ Cj are called clusters at the level j. The parameter v ∈ N

controls the volume of the clusters at each level of the hierarchy, while the sequence of di-
ameters Dj ensures that we only merge clusters which are not too far apart.

One might wonder why the condition (i) is not rather |C|> 2jv, which would be possible
by merging all clusters in pairs at each level. This would also work, but it would imply throw-
ing away some clusters which end up alone: for example if C0 contains only three clusters
of size exactly v, then to construct C1 one of them would have to be thrown away. In fact,
this leads to throwing away too many clusters and in particular this would weaken the esti-
mate (1.1) on the critical density when λ→ 0. Hence the choice of this weaker condition (i),
which enables us to deal with odd numbers of clusters grouped together: for example groups
of three clusters can be merged together in two steps. This still leads to throwing away some
clusters at each level (this is why the sequence (Aj) is decreasing), but we only discard a
cluster if is isolated and not just because it belongs to a group of an odd number of clusters
close to one another. See our construction in section 5 for more details.

2.4. Distinguished vertices and coloured loops.

2.4.1. Distinguished vertices. LetA⊂ Z
d
n, and let (Aj , Cj)j6J be a dormitory hierarchy

on A, as defined in section 2.3. We define recursively a distinguished vertex in each set
of the partitions. The distinguished point of a set C is written x⋆C and the particle sitting
in x⋆C is called the distinguished particle of the cluster C . For every C ∈ C0, we simply
set x⋆C = min C , for an arbitrary order on the vertices of the torus. Then, for 1 6 j 6 J ,
if C ∈ Cj \ Cj−1, the property (ii) of the hierarchy tells us that C is the union of two clusters
of Cj−1. In this case, we let x⋆C be the distinguished vertex of the biggest of these two clusters
(in terms of number of vertices, and with an arbitrary rule to break ties).

We say that a vertex x is distinguished at the level j 6 J if there exists C ∈ Cj such
that x= x⋆C , that is to say, if x= x⋆Cj(x)

. If j > J , we say that no vertex is distinguished at
level j. Note that if x is distinguished at a certain level j, then it is also distinguished at all
levels j′ for j′ < j.

2.4.2. Toppling steps: sleeps and loops. As explained above, we reason with a fixed
subset A ⊂ Z

d
n and we study the number of topplings necessary for all the particles to fall

asleep, starting from the configuration with one active particle on each site ofA, in a modified
model where there are no sleep instructions outside of A.

As in [9], our toppling strategy consists in a certain number of steps such that, after each
step, there is still exactly one particle on each site of A. Thus, the configuration of the model
at each step may be encoded by the subset R ⊂ A of the sites which contain one active
particle, while each site of A \R contains one sleeping particle. We say that a set C ⊂A is
stable if R∩C =∅.

At each step, we start by choosing a site x ∈ A where an active particle is present. With
probability λ/(1 + λ), this particle falls asleep on x (we call this step an x-sleep) and we
proceed to the next step.

Otherwise (hence with probability 1/(1 + λ)), the particle makes an x-loop, that is to say,
it performs a simple random walk on the torus, until it goes back to its starting point x, where
it is left, active. The sleeping particles met along this loop are waken up by the passage of
the particle, but only under a certain condition, depending on the “colour” of the loop, as
explained below.
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2.4.3. Coloured loops. The coloured loops are a new ingredient compared to [9]: each
time a loop starts from a site x, we assign to this loop a random colour J , where J + 1
is drawn from a geometric distribution with parameter 1/2. Then, if along its loop starting
from x the particle meets a sleeping particle at a site y, we only wake up the sleeping particle
if y ∈w(x, J), where the function w is defined as follows: for every x ∈A and every j ∈N,
we set

(2.5) w(x, j) =











Cj+1(x) \Cj(x) if x is distinguished at level j ,

∅ if x is distinguished at level 0 but not at level j ,

C0(x) if x is not distinguished at any level.

We now explain the practical meaning of the above definition, which is illustrated on
figure 1.

If x is distinguished at level 0 but not at level 1, then the x-loops of colour 0 (on average
half of the x-loops) can only wake up the particles in C1(x) \ C0(x), and the rest of the x-
loops are ignored, that is to say, they cannot wake up anyone (because w(x, j) = ∅ for
all j > 1).

If x is distinguished at levels 0, . . . , j but not at level j + 1, then the loops of colour 0
(which represent on average half of the loops) are devoted to C1(x) \ C0(x), while the
loops of colour 1 (about a quarter of the loops) are devoted to C2(x) \ C1(x), and so on,
until the loops of colour j (an average proportion 1/2j+1 of the loops) which are devoted
to Cj+1(x) \Cj(x), whereas the loops of colour strictly more than j cannot wake up anyone.

As for the loops coming from sites x which are not distinguished at any level, their colours
have no importance and they are only allowed to wake up the sites in the same 0-level com-
ponent C0(x). Note that, on the contrary, the loops coming from a distinguished site x can
never wake up the other sites of C0(x).

Note also that, for example, if C ∈ C0 ∩ C1 (that is to say, if the cluster C is not merged
with another cluster of C0), then the x⋆C -loops of colour 0 are not allowed to wake up anyone,
since we have w(x⋆C , 0) =C \C =∅.

2.4.4. Comparison with the original ARW model. If all the particles are sleeping after
a certain sequence of steps using this restriction on coloured loops, then the same sequence
of steps can be performed in the original model, where no waking up events are ignored
(the evolution of the two models can be coupled such that, at any time, the configuration in
the modified model is always “below” the configuration in the original model after the same
number of steps). This sequence might not be enough to stabilize the configuration in the
original model but the number of steps performed provides a lower bound on the number of
topplings necessary to stabilize the configuration in the original model (see Lemma 2.2 and
its proof in the appendix A.1 for more details).

2.5. The loop representation of the modified ARW model. Let us fix A⊂ Zdn, along with
a dormitory hierarchy (Aj , Cj)j6J .

2.5.1. Our probability space. We now describe a representation of the model which is
convenient for our proof method, and which consists in storing an infinite array of loops
above every vertex. The dormitory A being fixed, we consider independent random variables



















(

I(x, h)
)

x∈A,h∈N
∈ {0,1}A×N ,

(

J(x, ℓ)
)

x∈A, ℓ∈N
∈N

A×N ,

(

Γ(x, ℓ, j)
)

x∈A, ℓ∈N, j∈N
∈P(A)A×N

2

,
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all loops

C ∈ C0

x
⋆
C = x

⋆
E = x

⋆
I

all loops

D ∈ C0

x
⋆
Dloops of colour 0

E =C ∪D ∈ C1

all loops

F ∈ C0

x
⋆
F = x

⋆
H

all loops

G ∈ C0

x
⋆
Gloops of colour 0

H = F ∪G ∈ C1

loops of colour 1

I =E ∪H ∈ C2

loops of colour 2

FIG 1. Clusters of the dormitory hierarchy are drawn in rounded rectangles. Each cluster bears a distinguished

vertex which is represented by a dark normal rectangle. The loops from the sites which are not distinguished are

only allowed to wake up sites in the same cluster of C0, including the distinguished site. The loops of colour 0

emitted by the distinguished site x
⋆
C are only allowed to wake up the sites in D, while the loops of colour 1

emitted by x
⋆
E = x

⋆
C are only allowed to wake up sites in H , and the loops of colour 3 are devoted to waking up

the sites in another cluster of C1 with which I merges at the next level.

where the variables I(x, h) are Bernoulli with parameter λ/(1 + λ) while the vari-
ables 1 + J(x, ℓ) are geometric with parameter 1/2 and Γ(x, ℓ, j) is distributed as the sup-
port of a symmetric random walk on the torus started and killed at x, that is to say, for
every B ⊂ Z

d
n, we have

P
(

Γ(x, ℓ, j) =B
)

= Px

(

{

y ∈ Z
d
n : Ty < T+

x

}

=B
)

,

where Ty denotes the first hitting time of y, while T+
x is the first return time to x, and Px

is the probability measure relative to the symmetric random walk on the torus started at x.
Probabilities and expectations are simply denoted by P and E, which depend implicitly on
the parameter λ and on the set A.

2.5.2. Update rules. We now describe the update rules of our model. Recall that a con-
figuration of our model is a subset R⊂A indicating which sites are active. The idea is that,
when we perform a toppling step at a site x, to decide whether this step is an x-sleep or
an x-loop we look at the instruction I(x, h), where h counts the total number of x-loops
and x-sleeps already performed, so that we do not use twice the same variable I(x, h).
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If I(x, h) = 1, the particle falls asleep (this is what we call an x-sleep). Otherwise, we
perform an x-loop with colour j = J(x, ℓ), where ℓ is the number of loops (of any colour)
which have already been performed at x. The effect of this loop is to wake up all the particles
in Γ(x, ℓ, j) ∩ w(x, j), where w : A × N → P(A) is the function defined by (2.5) which
indicates the set of sites that x has the right to wake up during a loop of colour j.

Note that, with this notation, the array Γ contains too many loops because, for every x ∈A
and every ℓ ∈ N, at most one of the loops {Γ(x, ℓ, j), j ∈ N} is used, depending on the
colour J(x, ℓ) of the x-loop numbered ℓ. But this notation is more convenient to highlight
the independence between loops of different colours, in particular in section 7.

To update the configuration we need to recall the numbers of instructions and loops already
used at each vertex. This is the role of what we call the odometer function h :A→N and the
loop odometer function ℓ :A→N.

2.5.3. Step-toppling operator. Given a configuration R ⊂ A, an odometer h : A→ N,
a loop odometer ℓ : A→ N and a site x ∈ R, writing i = I

(

x, h(x)
)

for the next available
instruction at x and j = J

(

x, ℓ(x)
)

which is the colour of the next x-loop, we define the
step-toppling operator as

Φx(R, h, ℓ) =

{

(

R \ {x}, h+ δx, ℓ
)

if i= 1 ,
(

R∪
(

Γ(x, ℓ(x), j) ∩w(x, j)
)

, h+ δx, ℓ+ δx
)

otherwise.

This operator gives the configuration obtained after performing a step starting at x, and the
resulting odometer and loop odometer after the step.

2.5.4. Toppling procedures and procedure-toppling operator. For every cluster C ⊂ C0,
we call a C-toppling procedure any function f : P(C) \ {∅} → C such that, for every con-
figuration R ⊂ C with R 6= ∅, we have f(R) ∈ R and x⋆C ∈ R⇒ f(R) = x⋆C . The role of
a C-toppling procedure is to indicate the order with which sites must be toppled depending
on the actual configuration R, “without looking into the future”. It is fundamental for our
proof that the choice of the next toppling depends only on the actual configuration restricted
to C . Here, R⊂C denotes the set of active sites in C and, as such, defines the configuration
of particles inside C . The condition f(R) ∈ R ensures that we topple an active site, while
the condition involving x⋆C means that we give priority to the distinguished vertex, which is
toppled as soon as it is awaken. The priority given to the distinguished vertex is due to the
fact that we want this distinguished vertex to be awaken many times and to emit many loops,
which would not be the case if it was the last site to be toppled.

Given a cluster C ⊂ C0 and a fixed C-toppling procedure f , the procedure-toppling op-
erator simply consists in applying the step-toppling operator Φx defined above at the site x
indicated by the toppling procedure, and doing nothing if C is already stable:

ΦC :















P(A)×
(

N
A
)2 −→ P(A)×

(

N
A
)2

(R, h, ℓ) 7−→
{

(R, h, ℓ) if R ∩C =∅ ,

Φf(R∩C)(R, h, ℓ) otherwise.

The dependency in f is implicit and is omitted to simplify the notation. For every t ∈N, this
operator iterated t times is simply written

(

ΦC
)(t)

.

2.6. Our recursive toppling strategy. Let A⊂ Z
d
n and let (Aj , Cj)j6J be a fixed dormi-

tory hierarchy on A. We now explain, for every j 6 J and every C ∈ Cj , how we proceed to
stabilize the set C .
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2.6.1. Stabilization at the 0-th level. Assume that, for every clusterC ∈ C0, we have fixed
a C-toppling procedure fC (these procedures will be constructed in the proof of Lemma 3.4,
in section 6).

For every C ∈ C0, to stabilize the set C we simply use the toppling procedure fC until all
the sites of C are asleep. Since we may need to stabilize this set C many times, we consider a
general stabilization operator starting from a given initial configuration R⊂A and a certain
offset h0, ℓ0 for the odometers. Indeed, when we perform many stabilizations of various sets
of the hierarchy, each stabilization starts from the configuration and the odometers left by the
previous stabilizations. Namely, for every C ∈ C0, we define the stabilization operator

StabC :

{

P(A)×
(

N
A
)2 −→ P(A)×

(

N
A
)2

(R0, h0, ℓ0) 7−→ (Rτ , hτ , ℓτ ) ,

where, for every t> 1, we write

(Rt, ht, ℓt) =
(

ΦC
)(t)

(R0, h0, ℓ0) ,

with ΦC referring to the procedure-toppling operator using the toppling procedure fC , and

τ = inf
{

t ∈N : Rt ∩C =∅
}

.

If τ =+∞, the value of StabC(R0, h0, ℓ0) can be defined arbitrarily (we do not care about
this case since it occurs with probability 0).

2.6.2. The ping-pong rally. We now construct recursively the stabilization operators for
the successive levels of the hierarchy. Let j ∈ {1, . . . , J } be such that the stabilization oper-
ator is well defined for every C ∈ Cj−1, and let C ∈ Cj \ Cj−1. By definition of the dormitory
hierarchy, we can write C = C0 ∪ C1 with C0, C1 ∈ Cj−1. Let us assume that x⋆C = x⋆C0

(otherwise we swap the notation between C0 and C1).
Then, to stabilize the set C , we start by stabilizing C0, then C1. After this, if some sites

of C0 have been reactivated during the stabilization of C1, we stabilize C0 once again. Then,
if some sites of C1 are still active, we stabilize C1 again, and so on and so forth, alternating
between the two sets until both are fully stabilized.

Formally, the stabilization operator for C is defined as

(2.6) StabC :

{

P(A)×
(

N
A
)2 −→ P(A)×

(

N
A
)2

(R0, h0, ℓ0) 7−→ (Rτ , hτ , ℓτ ) ,

where, for every i ∈N, we write
{

(R2i+1, h2i+1, ℓ2i+1) = StabC0
(R2i, h2i, ℓ2i)

(R2i+2, h2i+2, ℓ2i+2) = StabC1
(R2i+1, h2i+1, ℓ2i+1)

and

τ = inf
{

i ∈N : Ri ∩C =∅
}

.

2.6.3. Number of topplings and loops during stabilization. Let j ∈ {0, . . . , J } and
let C ∈ Cj . We denote the total number of sleeps and loops performed during the stabilization
of C by

H(C) =
∑

x∈C

hstab(x) where (Rstab, hstab, ℓstab) = StabC(A, 0, 0) = StabC(C, 0, 0) .
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In our main proof, instead of controlling the total number of sleeps and loops used to stabilize,
we concentrate on the number of loops performed by the distinguished vertex x⋆C during
the stabilization of C , which we denote by L(C) = ℓstab(x

⋆
C), with ℓstab defined as above,

whereas the number of sleeps is written S(C) = hstab(x
⋆
C)−ℓstab(x

⋆
C). Then, among the loops

produced by x⋆C we are interested in the loops of a specific colour. Thus, for every k ∈N, we
introduce the notation

L(C, k) =
∣

∣

∣

{

ℓ <L(C) : J(x⋆C , ℓ) = k
}
∣

∣

∣

for the number of loops of colour k emitted by x⋆C during the stabilization of C using our
toppling strategy.

2.7. Sufficient condition for activity in terms of the number of sleeps and loops. Instead
of the more general sufficient condition given by Lemma 2.1, we use the following more
specific condition which is adapted to our setting. Recall that the function ψ was defined
in (2.3).

LEMMA 2.2. Let d > 1, let λ > 0 and µ ∈ (0,1). If there exists κ > ψ(µ) such that,

for n ∈N large enough, for everyA⊂ Z
d
n with |A|=

⌈

µnd
⌉

, there exists a dormitory hierar-

chy (Aj , Cj)j6J and a toppling procedure fC for every C ∈ C0 such that, with the recursive

toppling strategy defined in section 2.6, we have the stochastic domination

(2.7) H(AJ ) � Geom
(

exp(−κnd)
)

,

then we have µ> µc(λ), where µc(λ) is the critical density of the usual ARW model on Z
d.

The proof of this Lemma, which relies on the previous sufficient condition given by
Lemma 2.1, is deferred to the appendix A.1.

Note that in our construction with loops, the number of loops performed during stabiliza-
tion is not abelian: it depends on the toppling strategy. Indeed, once the sleep instructions I ,
the colours J and the loops Γ (which altogether enclose all the randomness in our model)
are drawn, one can obtain different numbers of loops depending on the order with which the
loops are used, and even the number of sleeps and loops or the total odometer summing the
number of topplings performed along the loops are not abelian.

However, having fixed our toppling strategy, H(AJ ), the total number of sleeps and loops
performed to stabilize, is stochastically dominated by MA, the number of toppling instruc-
tions used on the sites of A during stabilization in the “original” ARW model (where sleep
instructions out of A are ignored but no waking up events are ignored).

2.8. Correlation between the numbers of loops of each colour. The following result
relates the number of loops of colour j performed by the distinguished vertex of a clus-
ter C ∈ Cj with the number of sleeps and loops of colour at most j − 1:

LEMMA 2.3. Let d, n > 1, let λ > 0, let A ⊂ Z
d
n, let (Aj , Cj)j6J be a dormitory hi-

erarchy on A and for every C ∈ C0, let fC be a toppling procedure on C . Then, for ev-

ery j ∈ {0, . . . , J } and every cluster C ∈ Cj , we have the equality in distribution

(2.8) L(C, j) d
=

T
∑

i=1

(Xi − 1) ,

where T = S(C) + L(C, 0) + · · ·+ L(C, j − 1) and (Xi)i>1 are i.i.d. geometric random

variables with parameter

(2.9)
λ+1− 2−j

λ+ 1− 2−(j+1)
,
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which are independent of T .

This Lemma can be easily understood if one thinks of a continuous-time variant of
our model where particles fall asleep at rate ps = λ and perform loops of colour j with
rate pj = 2−(j+1). Then, the number of loops of colour j between any two topplings counted
in T is a geometric minus one, with parameter

(2.10)
ps + p0 + · · ·+ pj−1

ps + p0 + · · ·+ pj−1 + pj
=

λ+2−1 + · · ·+2−j

λ+ 2−1 + · · ·+ 2−(j+1)
=

λ+1− 2−j

λ+ 1− 2−(j+1)
,

and the independence between T and these geometric variables follows from the fact that
the loops with colour j have no impact on the stabilization of C . See the proof in the ap-
pendix A.2 for more details.

2.9. A useful property of geometric random variables. We now state a technical Lemma
which is proved in the appendix A.3.

LEMMA 2.4. Let N be a geometric random variable with parameter a ∈ (0,1), and

let (Xn)n∈N be i.i.d. geometric variables with parameter b ∈ (0,1), independent of N . Then,

the variable

S = 1+

N
∑

n=1

(

Xn − 1
)

is geometric with parameter
ab

1− b+ ab
.

2.10. Hitting probabilities on the torus. We need to introduce a key function, which
measures the chance to wake up a distant site in a loop on the torus Zdn, for d> 1:

(2.11) Υd : r ∈N \ {0} 7−→ inf
{

Px
(

Ty < T+
x

)

, n ∈N, x, y ∈ Z
d
n : d(x, y)6 r

}

.

We use the following estimates on this function:

LEMMA 2.5. We have the lower bounds:

• In dimension d= 1, we have Υ1(r) = 1/(2r) for every r> 1;

• In dimension d= 2, there exists K > 0 such that Υ2(r)>K/ ln r for every r > 2;

• In dimension d> 3, there exists K =K(d)> 0 such that Υd(r)>K for every r > 1.

The proof of this Lemma is deferred to the appendix A.4.

3. Proof of Theorem 1.2. This section is devoted to the proof of our main result which
gives upper bounds on the critical density in two dimensions for small and large sleep rates.
The arguments rely on several intermediary Lemmas, but we postpone the proofs of these
Lemmas to later sections, to allow the reader to grasp the articulation of the proof.

3.1. Canvas for the inductive proof. Recall that we rely on the sufficient condition for
activity given by Lemma 2.2. Thus, for λ > 0 and µ ∈ (0,1) fixed, we reason with n ∈ N

a large integer and A ⊂ Z
2
n fixed with |A| =

⌈

µnd
⌉

, and our goal is to prove the stochastic
domination (2.7), for a constant κ > 0 independent of n and A.

To prove this stochastic domination, we proceed inductively on the levels of the dormitory
hierarchy to show that at each level j, for every C ∈ Cj , the number of loops of colour j
produced when stabilizing C dominates an explicit geometric random variable. This is the
key technical part of the paper, and we divide the proof into an initialization and an inductive
step.
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Before performing the induction, we need to construct a dormitory hierarchy (Aj , Cj)j6J

and to choose a toppling procedure fC for each set C ∈ C0. For this first step we proceed
differently depending on the regime of λ considered, hence we postpone it to the next two
sections.

3.1.1. The induction hypothesis. Let (αj)j∈N be a sequence of positive real numbers, to
be chosen later (depending on the regime of λ under consideration). Our induction hypothe-
sis, written P(j), is the following: for every j ∈ {0, . . . , J }, we define

P(j) : ∀C ∈ Cj 1 +L(C, j) � Geom
(

exp(−αj|C|)
)

.

Note that P(j) is an estimate on the whole law of the number of loops: the small and large
values need to be controlled on all scales.

We are now ready to state the key inductive Lemma, whose proof occupies section 7.

LEMMA 3.1. Let d > 1, λ > 0, v > 1, (Dj)j∈N ∈ (N \ {0})N, and let (αj)j∈N be a se-

quence of positive real numbers such that

(3.1) ∀j ∈N
4v(1 + λ)23j/2

(

1− e−αjv
)

Υd(Dj)
6 exp

(

(αj − αj+1)2
j/2v

)

.

For every n> 1 and everyA⊂ Z
d
n equipped with a (v, D)-dormitory hierarchy (Aj , Cj)j6J

and with a collection of toppling procedures (fC)C∈C0
, if the property P(0) holds, then P(j)

also holds for every j 6 J .

Note that the above condition implies that the sequence (αj)j∈N is decreasing, meaning
that the parameter in the exponential gets smaller at each step. However, as we will see, we
are able to choose these parameters such that αj does not tend to 0 when j→∞.

We now conclude the proof of our bounds on µc(λ) in dimension 2 in the two regimes of
the parameter λ.

3.2. Low sleep rate: concluding proof of the bound (1.1). We now explain how to com-
bine the ingredients to prove the upper bound (1.1) on the critical density when λ→ 0. Recall
the definition of dormitory hierarchy which was given in section 2.3. In this setting, we rely
on the dormitory hierarchy given by the following Lemma:

LEMMA 3.2. Let d= 2, let D0 > 1 and let Dj = 6jD0 for every j > 1. For every n> 1
and every A ⊂ Z

2
n with |A| > 288n2/(D0)

2, there exists J ∈ N and a (1, D)-dormitory

hierarchy (Aj , Cj)j6J on A, with |AJ |> |A| − 144n2/(D0)
2 and where C0 contains only

singletons.

The proof of this Lemma is deferred to section 5.

PROOF OF (1.1). Let d= 2. For every λ ∈ (0,1), we define, for every j ∈N,

Dj = 6j
⌈

1

λ

⌉

and αj = ln

(

1 + 2λ

2λ

)

− a

2

(

1−2−j/4
)

ln | lnλ| with a =
29/4

21/4 − 1
,

and we consider

µ = λ | lnλ|a and µ′ = µ− 144

(D0)2
.

Note that all these quantities are functions of the sleep rate λ, although we omit to write the
dependence in the notation. In what follows, we assume that λ is small enough so that µ< 1.
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We start with the construction of the dormitory hierarchy. When the sleep rate λ tends
to 0, we have 1/(D0)

2 ∼ λ2 = o
(

λ| lnλ|a
)

= o(µ), whence µ> 288/(D0)
2 provided that λ

is chosen small enough. This allows us to apply Lemma 3.2 above to construct, for ev-
ery n> 1 and every A ⊂ Z

2
n with |A| =

⌈

µnd
⌉

, a dormitory hierarchy (Aj , Cj)j6J on A
such that C0 contains only singletons and |AJ |> |A| − 144n2/(D0)

2 > µ′nd.
Then, we turn to the initialization step. To prove that P(0) holds, notice that the stabi-

lization of a singleton C ∈ C0 requires exactly S(C) = 1 sleep. Hence, for every C ∈ C0, it
follows from Lemma 2.3 that 1 +L(C, 0) is a geometric random variable with parameter

2λ

1 + 2λ
= e−α0 = e−α0|C| ,

showing that P(0) holds with our definition of α0.
We now wish to apply Lemma 3.1 (with v = 1) to perform the induction step. To do so,

we have to check that the condition (3.1) is satisfied, that is to say, we want to show that

(3.2) g(λ) := sup
j∈N

1

(αj −αj+1) 2j/2
ln

[

4(1 + λ)23j/2
(

1− e−αj

)

Υ2(Dj)

]

6 1 .

For every j ∈N, we have

αj −αj+1 =
a

2

(

2−j/4 − 2−(j+1)/4
)

ln | lnλ| = a
(

21/4 − 1
)

25/4+j/4
ln | lnλ| = 2 ln | lnλ|

2j/4
,

and Lemma 2.5 tells us that there exists K > 0 such that, for every j ∈N,

− lnΥ2(Dj) 6 ln

(

lnDj

K

)

6 ln ln

⌈

1

λ

⌉

+
j ln 6

ln ⌈1/λ⌉ − lnK .

Plugging these into (3.2), we obtain that, when λ→ 0,

g(λ) =
1

2 ln | lnλ| supj∈N

2 ln2 + ln(1 + λ) + 3j ln 2/2− ln
(

1− e−αj

)

− lnΥ2(Dj)

2j/4

=
ln | lnλ|+O(1)

2 ln | lnλ| =
1

2
+ o(1) .

Thus, we have g(λ) 6 1 for λ small enough, meaning that the condition (3.1) necessary to
apply Lemma 3.1 (the induction step) is satisfied. Thus, we deduce that P(J ) also holds,
implying that 1 +L(AJ , J ) dominates a geometric variable of parameter

e−αJ |AJ |
6 e−α∞µ′nd

where α∞ = inf
j∈N

αj = ln

(

1 + 2λ

2λ

)

− a

2
ln | lnλ| ,

implying the same domination for H(AJ ), since H(AJ )> |AJ |+L(AJ )> 1+L(AJ , J ).
To deduce that µ> µc(λ), we now rely on the sufficient condition given by Lemma 2.2. Thus,
there only remains to check that α∞µ

′ >ψ(µ). On the one hand, when λ→ 0, we have

α∞µ
′ =

(

| lnλ| − a

2
ln | lnλ|+O(1)

)

(

λ| lnλ|a +O(λ2)
)

= λ| lnλ|a+1 − a

2
λ| lnλ|a ln | lnλ|+O

(

λ| lnλ|a
)

while, on the other hand, we have

ψ(µ) = λ| lnλ|a
(

| lnλ| − a ln | lnλ|
)

+O
(

λ| lnλ|a
)

= λ| lnλ|a+1 − aλ| lnλ|a ln | lnλ|+O
(

λ| lnλ|a
)

,

which implies that α∞µ
′ > ψ(µ) for λ small enough, allowing us to deduce by virtue of

Lemma 2.2 that µ> µc(λ), thereby concluding the proof of the bound (1.1).
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3.3. High sleep rate: concluding proof of the bound (1.2). We now turn to the proof of
the upper bound on µc(λ) when the sleep rate λ tends to infinity. In this regime, we use the
dormitory hierarchy given by Lemma 3.3 below, which is proved in section 5. Recall the
definition of r-connectedness, which was given in section 2.1.

LEMMA 3.3. Let d= 2, let r > 1 and Dj = 6j × 96r3 for every j ∈N. For n ∈N large

enough, for every A ⊂ Z
2
n with |A| > n2/2, there exists J ∈ N and a

(

r2, D
)

-dormitory

hierarchy (Aj , Cj)j6J on A, with |AJ | > |A| − n2/2 and where every set C ∈ C0 is 8r-

connected and satisfies

(3.3) ∀x ∈C
∣

∣C ∩B(x, 4r)
∣

∣ > r2 .

In fact, one could also consider the simpler hierarchy in which the sets of C0 are simply
the connected components of A which contain at least r2 vertices, which would also work
to prove that µc < 1 for all λ > 0. However, this would yield a weaker bound on µc because
this can lead to throwing away too many vertices if for example A contains many connected
components with strictly less than r2 points, hence our choice of a slightly weaker condition
on the sets of C0.

The initialization step is performed in the following Lemma, which is proved in section 6.
Let K > 0 be the constant given by Lemma 2.5 in dimension d= 2.

LEMMA 3.4. Assume that d= 2. There exists λ0 > 1 such that, for every λ> λ0, defining

(3.4) r =

⌈

8(lnλ)
√
λ√

K

⌉

and α0 =
K

λ lnλ
,

for every D ∈ (N \ {0})N and n > 1, if A ⊂ Z
2
n and (Aj , Cj)j6J is a (r2, D)-dormitory

hierarchy on A such that every set C ∈ C0 is 8r-connected and “dense” in the sense of (3.3),

then, for everyC ∈ C0, there exists aC-toppling procedure f such that 1+L(C, 0) dominates

a geometric variable with parameter exp
(

− α0|C|
)

, that is to say, the property P(0) holds.

PROOF OF (1.2). Let λ0 > 1 given by Lemma 3.4. We consider the functions r and α0

of λ defined in (3.4), and, for j ∈N, we write

αj =
1+ 2−j/4

2
α0 and Dj = 6j × 96r3 .

Let us first check that, with these parameters, the condition (3.1) required to apply the induc-
tion step, namely Lemma 3.1 (with v = r2), is satisfied for λ large enough. For every j ∈N,
we have

αj − αj+1 =
21/4 − 1

25/4
α0

2j/4
.

Then, using the estimate of Lemma 2.5, we can write

− lnΥ2(Dj) 6 ln

(

lnDj

K

)

= ln
(

j ln 6 + ln96 + 3 ln r
)

− lnK 6 ln ln r+ ln j +K ′ ,

for a certain fixed constantK ′ > 0. Using this and noting that αj > α0/2 for every j ∈N and
that 25/4/(21/4 − 1)< 16, we have, when λ→∞,

sup
j∈N

1

(αj −αj+1) 2j/2r2
ln

[

4r2(1 + λ)23j/2
(

1− e−αjr2
)

Υ2(Dj)

]
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6
16

α0r2
sup
j∈N

2 ln2 + 2 ln r+ ln(1 + λ) + 3j ln 2/2− ln
(

1− e−αjr2
)

− lnΥ2(Dj)

2j/4

=
1

4 lnλ

[

2 ln r+ lnλ+O
(

e−α0r2/2
)

+O(ln ln r) +O(1)
]

=
1

2
+ o(1) .

Therefore, the condition (3.1) is satisfied for λ large enough. Let λ1 > λ0 such that this
condition is satisfied for all λ> λ1, and such that 4λ1(lnλ1)2 >K. We now take λ> λ1 and
we define

µ = 1− K

8λ(lnλ)2
.

Let n> 1, and let A⊂ Z
2
n with |A|=

⌈

µnd
⌉

(which implies that |A|> n2/2, since µ> 1/2).
We now consider a dormitory hierarchy (Aj , Cj)j6J given by Lemma 3.3, so that we have

|AJ | > |A| − n2

2
>

(

µ− 1

2

)

n2 .

First, Lemma 3.4 entails that for every C ∈ C0, there exists a C-toppling procedure fC
such that the property P(0) holds with these procedures. Then, Lemma 3.1 ensures
that 1 +L(AJ , J ) dominates a geometric random variable of parameter

exp
(

− αJ |AJ |
)

6 exp
(

− κn2
)

with κ =
α0

2

(

µ− 1

2

)

.

We now check that κ > ψ(µ) for λ large enough, in order to apply Lemma 2.2. When λ→∞,
we have

κ−ψ(µ) =
α0

2

(

µ− 1

2

)

−ψ(µ)

=
α0

2
− α0K

16λ(lnλ)2
− α0

4
− µ| lnµ| − (1− µ)

∣

∣ ln(1− µ)
∣

∣

=
K

4λ lnλ
+O

(

1

λ2(lnλ)3

)

− K

8λ lnλ
+O

(

ln lnλ

λ(lnλ)2

)

=
K

8λ lnλ
+ o

(

1

λ lnλ

)

,

which shows that this quantity is strictly positive when λ is large enough, concluding our
proof that µ> µc(λ), leading to the claimed upper bound (1.2), with c=K/8.

4. The transient case: proof of Theorem 1.3. We now turn to the simpler case of di-
mension d > 3. Given n > 1 and A ⊂ Z

d
n, we consider the trivial hierarchy with only one

level, that is to say, J = 0, A0 =A and C0 = {A}. Then, as explained in paragraph 1.5, com-
pared to the recursive proof in dimension 2, we only keep the initialization step. Indeed, we
will see that the results in dimension d> 3 are easy consequences of the initialization step of
the previous proof, more precisely of Lemma 6.2.

4.1. Low sleep rate: proof of the bound (1.3). Let d> 3, and let K > 0 be the constant
given by Lemma 2.5 associated with d (note that we have K < 1). For every λ < K8/e
and n> 1, we consider

µ =
e

K8
λ , v =

⌈

µnd
⌉

, α = | lnλ| − 2| lnK| and β = 1− 2| lnK|
| lnλ| .
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We show that, provided that λ is small enough, we have µ > µc(λ). To this end, we wish
to apply Lemma 6.2 with these parameters and r = +∞, and for this we have to check the
condition (6.3). For every fixed λ <K8/e, since α > 0 and β ∈ (0,1), we have

lim
n→∞

exp
[

α
(

1− (1− β)v
)

]

6 lim
n→∞

exp
[

α
(

1− (1− β)µnd
)

]

= 0 ,

implying that, for n large enough, we have

λ
(

eα − 1
)

= K2 − λ 6 K2
6 K

(

1− eα(1−(1−β)v)
)

,

which is precisely the required condition (6.3). Thus, we may apply Lemma 6.2 to deduce
that, for n large enough, for every A⊂ Z

d
n with |A| =

⌈

µnd
⌉

, the variable NB (the number
of visits of the set of configurations with “many” active particles, as defined in the statement
of Lemma 6.2) dominates a geometric variable with parameter

exp
(

− α
⌊

β|A|
⌋

)

6 exp
(

− α
⌊

βµnd
⌋

)

,

and so does the number of topplings H(A), since H(A)>NB. Note now that, when λ→ 0,

αβµ =

(

1− 2| lnK|
| lnλ|

)2 e

K8
λ| lnλ| = e

K8
λ| lnλ| − 4e| lnK|

K8
λ+ o(λ) ,

while

ψ(µ) = µ| lnµ|+ (1− µ)| ln(1− µ)| = e

K8
λ| lnλ| − 8e| lnK|

K8
λ+ o(λ) .

Therefore, writing

κ =
e

K8
λ| lnλ| − 6e| lnK|

K8
λ ,

we deduce that, for λ large enough, for n large enough, we have

exp
(

−α
⌊

βµnd
⌋

)

6 exp
(

− κnd
)

and κ > ψ(µ) ,

implying that µ> µc(λ) by virtue of Lemma 2.2, which shows (1.3) with c= e/K8.

4.2. High sleep rate: proof of the bound (1.4). Let d> 3, and let K > 0 be the constant
given by Lemma 2.5 applied in dimension d. Let λ > 1 and let

µ = 1− K

16λ lnλ
.

We assume that λ is large enough so that µ > 0. Let α = K/(2λ), let β = 1/2, let n > 1
and v =

⌈

µnd
⌉

. As in section 4.1, the condition (6.3) is satisfied provided that λ and n are
large enough, since λ

(

eα − 1
)

∼ λα=K/2 when λ→∞. Thus, it follows from Lemma 6.2
that, for every A ⊂ Z

d
n with |A| =

⌈

µnd
⌉

, the variable NB dominates a geometric variable
with parameter

exp

(

−α
⌊ |A|

2

⌋)

= exp

(

−K

2λ

⌊

⌈

µnd
⌉

2

⌋)

6 exp

(

−K

8λ
nd
)

,

for λ and n large enough. Now, when λ→∞, we have

ψ(µ) = ψ

(

K

16λ lnλ

)

∼ K

16λ lnλ
ln

(

16λ lnλ

K

)

∼ K

16λ
.

Thus, for λ large enough, we have K/(8λ) >ψ(µ), which allows us to apply Lemma 2.2 to
deduce that µ> µc(λ), concluding the proof of the upper bound (1.4) with c=K/16.
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5. Construction of the dormitory hierarchy. The goal of this section is to detail the
construction the hierarchical structure on the settling set A. The method differs depending
on the regime of sleep rate considered, but the only difference is the definition of C0. Hence,
we start by explaining the recursive construction of the hierarchy once C0 is defined, which
is common in the two regimes, before detailing the construction of this first level in the two
regimes.

5.1. Inductive construction.

LEMMA 5.1. Let d, n, v, D0 > 1, let Dj = 6jD0 for every j > 1 and let A ⊂ Z
d
n. As-

sume that A0 ⊂ A is such that |A0| > 8v(6n/D0)
d and that C0 is a partition of A0 such

that, every cluster C ∈ C0 is ⌊D0/(12v)⌋-connected and satisfies |C| > v. Then, one can

complete (A0, C0) into a (v, D)-dormitory hierarchy (Aj , Cj)j6J on A such that

(5.1) |AJ | > |A0| − 4v

(

6n

D0

)d

.

We proceed by induction, constructing two levels at each step. The idea is that, once the
partition C2j is defined, we construct C2j+1 and C2j+2 by keeping the clusters C ∈ C2j which
are of size |C|> 2j+1v and merging as many pairs or triples of the remaining clusters as pos-
sible, while ensuring that doing so, we do not create any cluster of diameter larger than D2j .
The remaining clusters of C2j are thrown away. To merge three clusters of C2j , we simply
merge two of them in C2j+1, before merging the resulting cluster with the third one when
passing to C2j+2.

PROOF. We construct the sequence Aj and the partitions Cj recursively. To obtain the
lower bound (5.1), it is enough to ensure that, at each level j, we have

(5.2)
∣

∣A0 \Aj
∣

∣ 6 2v(6n)d
⌊(j−1)/2⌋
∑

i=0

2i

(D2i)d
.

Indeed, if the above bound is satisfied, then we have

∣

∣A0 \AJ

∣

∣ 6 2v

(

6n

D0

)d +∞
∑

i=0

(

2

62d

)i

= 2v

(

6n

D0

)d

× 1

1− 2/62d
6 4v

(

6n

D0

)d

.

Now assume that j ∈ N and that the sets A0, . . . , A2j and the partitions C0, . . . , C2j
are constructed and satisfy the two requirements (i)-(ii) and the property (5.2). Note that
this latter property, together with the assumption |A0|> 4v(6n/D0)

d, ensure that A2j 6=∅.
If |C2j | = 1, we let J = 2j and we stop here, the hierarchy being complete. Thus, we now
assume that |C2j |> 2. Defining the sets (N stands for “narrow”, M stands for “merging”, B
for “big” and R for “rubbish”)

N =

{

C ∈ C2j : diamC 6
D2j

6

}

,

M =

{

C ∈N : ∃C ′ ∈N \ {C} , diam
(

C ∪C ′
)

6
D2j

2

}

,

B =
{

C ∈N \M : |C| > 2j+1v
}

and R = N \
(

M∪B
)

,
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we let

A2j+2 = A2j+1 =
⋃

C ∈C2j\R

C =
⋃

C∈M∪B∪ (C2j\N )

C ,

meaning that R corresponds to the part that is thrown away between A2j and A2j+1.
To construct the partitions C2j+1 and C2j+2, we consider the graph structure on the set M

which is obtained by declaring any two sets C1, C2 ∈ M to be neighbours if and only
if diam(C1 ∪C2)6D2j/2. This yields a graph with no isolated point, by definition of M.
Now, we have the following Lemma whose simple proof is deferred to the appendix A.5:

LEMMA 5.2. For every finite undirected graph G= (V, E) with no isolated point, there

exists a partition of V into sets of cardinality 2 or 3 and diameter (for the graph distance

on G) at most 2.

This Lemma yields a partition Π of M into sets of cardinality 2 or 3 and diameter (for the
graph distance we just defined) at most 2. The partition C2j+2 is then obtained by keeping the
sets in C2j \N and in B as they are and by merging the sets in M in pairs or triples according
to this partition Π. Formally, we let

C2j+2 =
(

C2j \N
)

∪ B ∪
{

⋃

C∈P

C , P ∈Π

}

.

To construct the intermediate partition C2j+1, we consider a partition Π′ obtained from Π
by keeping the sets of cardinality 2 and splitting each set of cardinality 3 into one set of
cardinality 2 and one singleton (chosen arbitrarily), and we let

C2j+1 =
(

C2j \N
)

∪ B ∪
{

⋃

C∈P

C , P ∈Π′

}

.

We now check that the above construction satisfies the required conditions. First, merging
two or three clusters of size at least 2jv yields a cluster of size at least 2j+1v. Besides,
if C ∈ C2j \ N , meaning that diamC > D2j/6 = D2j−1, then the condition (ii) tells us
that C does not come from a previous merging, meaning that C ∈ C0, which implies that C
is ⌊D0/(12v)⌋-connected, whence

|C| > diamC

D0/(12v)
>

2vD2j

D0
= 2× 62jv > 2j+1v .

Therefore, the condition (i) holds at ranks 2j +1 and 2j +2.
To prove (ii), it remains to check that, for every P ∈Π, we have

diam
⋃

C∈P

C = sup
C1,C2∈P

sup
x∈C1, y∈C2

d(x, y) 6 D2j .

Let P ∈ Π, let C1, C2 ∈ P , let x ∈ C1 and y ∈ C2. By definition of Π, we know that the
graph distance between C1 and C2 in M is at most 2. If C1 = C2 or if the graph dis-
tance is 1, then we have d(x, y) 6 diam(C1 ∪ C2) 6 D2j/2 6 D2j . If the graph distance
between C1 and C2 in M is 2, then there exists C3 ∈M such that diam(C1 ∪C3)6D2j/2
and diam(C2 ∪C3)6D2j/2. Choosing an arbitrary z ∈C3, we deduce that

d(x, y) 6 d(x, z) + d(z, y) 6 diam
(

C1 ∪C3

)

+diam
(

C3 ∪C2

)

6 D2j ,

which shows that, in all cases, (ii) holds at ranks 2j + 1 and 2j + 2.
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To prove that (5.2) remains true for 2j + 1 and 2j + 2., we only need to show that

(5.3)
∣

∣A2j+1 \A2j

∣

∣ 6 2j+1v

(

6n

D2j

)d

.

By definition of R, we know that for every cluster C ∈ R, we have |C| < 2j+1v
and diamC 6D2j/6. Thus, we may write

(5.4)
∣

∣A2j+1 \A2j

∣

∣ =

∣

∣

∣

∣

⋃

C ∈R

C

∣

∣

∣

∣

6 |R|2j+1v .

If C1, C2 ∈ R with C1 6= C2, we have diam(C1 ∪ C2) > D2j/2 whence, by the triangle
inequality,

d(C1, C2) > diam(C1 ∪C2)− diamC1 − diamC2 >
D2j

2
− 2

D2j

6
=

D2j

6
.

We now distinguish between two cases.
On the one hand, if D2j/6 > n, then N = C2j and, since we assumed that |C2j | > 2, we

also have M=N = C2j , whence R=∅.
On the other hand, if D2j/6< n, choosing a vertex in each set of R, we deduce that the

closed balls of radius ⌈D2j/12⌉ centered on these points are pairwise disjoint, whence, using
our formula (2.2) for the volume of the ball,

|R| 6
∣

∣Z
d
n

∣

∣

(

2 ⌈D2j/12⌉+ 1
)d

=

(

6n

D2j

)d

.

In both cases, going back to (5.4), we obtain (5.3), implying that the property (5.2) is inherited
at rank 2j +1, and thus also at rank 2j+2, since A2j+2 =A2j+1. The result thus follows by
induction.

5.2. Dormitory hierarchy for low sleep rate: proof of Lemma 3.2. With the above recur-
sive construction, we easily obtain Lemma 3.2.

PROOF OF LEMMA 3.2. Let D0 > 1, let n> 1 and A⊂ Z
2
n with A> 288n2/(D0)

2. For
first level of the hierarchy, we simply take A0 =A and C0 =

{

{x}, x∈A
}

. The result then
follows by applying Lemma 5.1 with v = 1 to construct the rest of the hierarchy.

5.3. Dormitory hierarchy for high sleep rate: proof of Lemma 3.3. We now turn to the
proof of Lemma 3.3.

PROOF OF LEMMA 3.3. Let r > 1, let Dj = 6j × 96r3, let n > 2r + 1 and let A ⊂ Z
2
n

such that |A|> n2/2. The set A0 can be defined as

A0 =
{

x ∈A : ∃ y ∈B(x, 2r) ,
∣

∣A∩B(y, 2r)
∣

∣ > r2
}

.

Then, we consider the relation on this set A0 obtained by declaring two sites x, y ∈ A to
be connected if d(x, y) 6 8r, and we simply define C0 as the collection of the connected
components of A0 for this relation (in a word, the 8r-connected components of A0).

The property (3.3) follows from this construction, implying also that (i) holds at rank j = 0
(with v = r2). We now look for a lower bound on |A0|. To this end, we claim that, for
every x ∈ Z

2
n, we have

(5.5)
∣

∣(A \A0)∩B(x, r)
∣

∣ < r2 .
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Indeed, if x ∈ Z
2
n does not satisfy the above inequality, then for every y ∈ (A \A0)∩B(x, r),

we have
∣

∣A∩B(y, 2r)
∣

∣ >
∣

∣A∩B(x, r)
∣

∣ >
∣

∣(A \A0)∩B(x, r)
∣

∣ > r2 ,

which contradicts the fact that y /∈ A0. Using this claim (5.5), we may write (denoting by 0
an arbitrary point of the torus),

∣

∣A \A0

∣

∣×
∣

∣B(0, r)
∣

∣ =
∑

y∈Z2
n

1{y∈A\A0}

∣

∣B(y, r)
∣

∣ =
∑

y∈Z2
n

1{y∈A\A0}

∑

x∈Z2
n

1{d(x, y)6r}

=
∑

x∈Z2
n

∑

y∈Z2
n

1{y∈A\A0} 1{d(x, y)6r} =
∑

x∈Z2
n

∣

∣(A \A0)∩B(x, r)
∣

∣ 6 r2n2 ,

which implies that

∣

∣A \A0

∣

∣ 6
r2 n2

∣

∣B(0, r)
∣

∣

=
r2 n2

(2r+1)2
6

n2

4
,

using that n > 2r + 1. Since n2/4 < n2/(64r4) = 4v(6n/D0)
2 and 8r = ⌊D0/(12v)⌋, we

may apply Lemma 5.1 with v = r2 to obtain the whole hierarchy.

6. Initialization: proof of Lemma 3.4. The goal of this section is to prove that, for
every set C ∈ C0, the number of loops of colour 0 produced by the distinguished vertex x⋆C
while C is stabilized (using an appropriate toppling procedure) is exponentially large in the
size of C .

6.1. Active particles amidst sleeping ones. The following Lemma tells us that, when at
least a fraction of the particles are already sleeping, one can find an active particle surrounded
by many sleeping particles so that, if toppled, this particle has good chances to wake up many
particles. Recall the definition of r-connectedness which was given in paragraph 2.1.

LEMMA 6.1. Let d, n, r, v > 1 and β ∈ (0,1). Let C ⊂ Zdn be a non-empty and 8r-

connected subset of the torus such that, for every x ∈C , we have |C ∩B(x, 4r)|> v. Then,

for every R⊂C such that 0< |R|6 β|C|, there exists x0 ∈R such that
∣

∣(C \R)∩B(x0, 16r)
∣

∣ > (1− β)v .

PROOF. Let d, n, r, v > 1, β ∈ (0,1), and C ⊂ Z
d
n be as in the statement, and let R⊂ C

such that 0< |R|6 β|C|. Let us consider the set

Y =
{

Y ⊂C : ∀ y, y′ ∈ Y , y 6= y′ ⇒ d(y, y′)> 8r
}

,

and choose Y ∈ Y which is maximal for inclusion (we have Y 6=∅ since ∅ ∈ Y). Using our
assumption on C , we can write

(6.1) |C| >
∣

∣

∣

∣

C ∩
⋃

y∈Y

B(y, 4r)

∣

∣

∣

∣

=
∑

y∈Y

∣

∣C ∩B(y, 4r)
∣

∣ > v |Y | ,

where we used that the above union is disjoint. We now notice that

C ⊂
⋃

y∈Y

B(y, 8r) ,
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otherwise there would exist a point z ∈C \ ∪y∈YB(y, 8r) and we would have Y ⊔{z} ∈ Y ,
which would contradict the maximality of Y . Therefore, we have

∣

∣C \R
∣

∣ =

∣

∣

∣

∣

⋃

y∈Y

(

(C \R)∩B(y, 8r)
)

∣

∣

∣

∣

6
∑

y∈Y

∣

∣(C \R)∩B(y, 8r)
∣

∣ .

Combining this with (6.1) and recalling that |C \R|> (1− β)|C|, we obtain that
∑

y∈Y

∣

∣(C \R)∩B(y, 8r)
∣

∣ >
∣

∣C \R
∣

∣ > (1− β)|C| > (1− β)v |Y | .

Therefore, by the pigeonhole principle, we can find y ∈ Y such that

(6.2)
∣

∣(C \R)∩B(y, 8r)
∣

∣ > (1− β)v .

If y ∈ R, then x0 = y is a solution of the problem. Thus, we assume henceforth that y /∈
R. Since C is 8r-connected and R 6= ∅, we may consider a path y = y0, y1, . . . , yk
with k ∈N, yk ∈ R and, for every j < k, yj ∈ C \ R and d(yj , yj+1) 6 8r. We now con-
sider

j0 = min
{

j ∈ {0, . . . , k} : B(yj, 4r)∩R 6=∅

}

,

that is to say, we look at the first point of the path which sees an active site nearby. The
above set is non-empty because at least yk ∈R. We then choose a point x0 ∈B(yj0 , 4r)∩R.
If j0 = 0, then we have

B(x0, 16r) ⊃ B(y0, 8r) = B(y, 8r) ,

whence, recalling (6.2),
∣

∣(C \R)∩B(x0, 16r)
∣

∣ >
∣

∣(C \R)∩B(y, 8r)
∣

∣ > (1− β)v .

Otherwise, if j0 > 0, then, by minimality of j0, we have B(yj0−1, 4r) ∩ R = ∅. However,
following our assumption on C , we know that |C ∩B(yj0−1, 4r)| > v. Together, these two
facts imply that

∣

∣(C \R)∩B(yj0−1, 4r)
∣

∣ > v .

Now, since

d
(

x0, yj0−1

)

6 d
(

x0, yj0
)

+ d
(

yj0, yj0−1

)

6 4r+8r = 12r ,

we deduce that B(x0, 16r)⊃B(yj0−1, 4r), whence
∣

∣(C \R)∩B(x0, 16r)
∣

∣ > v > (1− β)v ,

concluding the proof of the Lemma.

6.2. The metastability phenomenon. By the metastability phenomenon we mean that,
starting from everyone active inside a set C ∈ C0, during the stabilization of C the configura-
tion escapes and returns an exponentially large number of times in the set of configurations
with “many” active particles. This Lemma is used again when d > 3 (see section 4), tak-
ing r = +∞ (with the convention that Υd(∞) = limr→∞Υd(r)). Recall the definition of
toppling procedures which was given in section 2.5.
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LEMMA 6.2. Let d, v > 1, let λ, α > 0, β ∈ (0,1) and r ∈N∪ {∞} \ {0} such that

(6.3) λ
(

eα − 1
)

6 Υd(16r)
(

1− eα(1−(1−β)v)
)

.

For every n> 1 and every subsetA⊂ Z
d
n, if (Aj , Cj)j6J is a dormitory hierarchy onA such

that |C ∩B(x, 4r)|> v for everyC ∈ C0 and every x ∈C , then, for everyC ∈ C0 there exists

a C-toppling procedure f such that, considering the set of configurations

B =
{

R⊂A : |R ∩C| > β|C|
}

,

the number NB of visits of this set B during the stabilization of C (i.e., one plus the number

of returns to B from a configuration out of B) dominates a geometric random variable with

parameter exp
(

− α ⌊β|C|⌋
)

. Moreover, this domination is uniform with respect to the first

configuration R /∈ B reached by the system, that is to say, writing, for every t ∈N,

(Rt, ht, ℓt) =
(

ΦC
)(t)

(A, 0, 0) =
(

ΦC
)(t)

(C, 0, 0)

and defining τ = inf{t ∈ N : Rt /∈ B}, then for every R ⊂ A such that P(Rτ = R) > 0,

conditionally on {Rτ =R}, we have the aforementioned stochastic domination.

PROOF. With the notation of the statement, Lemma 6.1 (which remains true if r = ∞)
tells us that there exists a function f0 :P(C) \ {∅}→C such that, for every R ⊂ C
with 0 < |R| 6 β|C| (for the other configurations, the value of f0 can be chosen arbitrar-
ily), we have f0(R) ∈R and

(6.4)
∣

∣

(

C \R
)

∩B
(

f0(R), 16r
)∣

∣ > (1− β)v .

We now turn this function into a C-toppling procedure f by adding the rule that that the
distinguished vertex is toppled in priority: thus, for every configurationR ∈P(C) \ {∅}, we
set

f(R) =

{

x⋆C if x⋆C ∈R,
f0(R) otherwise.

Namely, we topple the distinguished particle if it is awaken, else if at least a fraction 1−β is
sleeping we topple a particle surrounded by many sleeping particles, and otherwise we topple
whatever active particle. Let us consider the “boundary” set:

(6.5) ∂B =
{

R⊂A \ {x⋆C} : |R ∩C|=
⌊

β|C|
⌋

}

.

We claim that P(Rτ ∈ ∂B) = 1, that is to say, when we exit from B we necessarily arrive
in ∂B. Indeed, one can only exit from B when a particle falls asleep. If this site x which
falls asleep when exiting from B is not x⋆C , it implies that x⋆C was already sleeping, because
otherwise x⋆C would have been toppled instead of x (recall that the distinguished vertex has
priority over all other sites). Therefore, when we exit from B, the distinguished vertex is
always sleeping.

Thus, to prove the result, we may consider the stabilization of C starting from a determin-
istic initial configuration R0 ∈ ∂B and, for every t ∈N, we write

(Rt, ht, ℓt) =
(

ΦC
)(t)

(R0, 0, 0) ,

overriding the notation of the statement, and we prove that, starting from the initial config-
uration, one plus the number of visits of B dominates a geometric variable. The toppling
procedure defines a Markov chain on the state space P(A), and we consider the two follow-
ing stopping times of this Markov chain:

TB = inf
{

t ∈N : Rt ∈ B
}

and Tsleep = inf
{

t ∈N : Rt ∩C =∅
}

.
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Let us now show that the process

Mt = 1{t<TB} e
−αNt where Nt =

∣

∣Rt ∩C \ {x⋆C}
∣

∣

is a supermartingale with respect to the filtration (Ft)t∈N generated by (Rt)t∈N.
First, note that if Rt ∈ B or Rt ∩C =∅, then we haveMt+1 =Mt. Besides, recall that, as

soon as the distinguished vertex x⋆C is active, it is toppled in priority. Yet, the distinguished
vertex is not counted in Nt, and it cannot wake up anyone in C , because w(x⋆C , j) ∩C =∅

for all j ∈N, following our definition (2.5) of w (which indicates which sites can be awaken
by the loops of colour j). Hence, if x⋆C ∈ Rt then we necessarily have Nt+1 = Nt. What’s
more, since the distinguished vertex cannot wake up anyone in C , if x⋆C ∈ Rt and Rt /∈ B
then we still have Rt+1 /∈ B. Thus, we proved the implication

(6.6)
{

Rt ∈ B
}

∪
{

Rt ∩C =∅
}

∪
{

x⋆C ∈Rt
}

⊂
{

Mt+1 =Mt

}

.

We now assume that Rt /∈ B, Rt ∩C 6=∅ and x⋆C /∈Rt, and we write x= f(Rt) = f0(Rt),
which is the next site to be toppled. Recall that I

(

x, ht(x)
)

is the Bernoulli variable which de-
cides if x falls asleep or performs a loop, in which case this loop covers the set Γ

(

x, ℓt(x), j
)

with j = J
(

x, ℓt(x)
)

. Recalling that, since x 6= x⋆C , we have w(x, j) = C0(x) = C , we can
write

Nt+1 −Nt = −I(x, ht(x)) +
(

1− I(x, ht(x))
)

×
∣

∣Γ
(

x, ℓt(x), j
)

∩
(

C \ (Rt ∪ {x⋆C})
)
∣

∣

> −I(x, ht(x)) +
(

1− I(x, ht(x))
)

∑

y∈B(x,16r)∩C\(Rt∪{x⋆
C})

1{y∈Γ(x, ℓt(x), j)} .

Recall now that the bound (6.4) ensures that the above sum contains at least ⌈(1− β)v − 1⌉
terms. Besides, each of these terms dominates a Bernoulli variable with parameter Υd(16r),
where Υd is the function which was defined in (2.11). Even though these variables may
not be independent, we have the following result whose elementary proof is deferred to the
appendix A.6.

LEMMA 6.3. Let n ∈N and let X1, . . . , Xn be Bernoulli random variables with param-

eter p ∈ [0,1] (non necessarily independent). Then, for every c > 0, we have

E

[

e−c(X1+···+Xn)
]

6 1− p+ pe−cn .

Using this result, we deduce that, on the event
{

Rt /∈ B
}

∩
{

Rt ∩C 6=∅
}

∩
{

x⋆C /∈Rt
}

,
we have

E
(

Mt+1

∣

∣Ft
)

6 Mt ×E
(

e−α(Nt+1−Nt)
∣

∣Ft
)

6 Mt

(

λ

1 + λ
eα +

1−Υd(16r)
(

1− eα(1−(1−β)v)
)

1 + λ

)

= Mt

(

1 +
λ
(

eα − 1
)

−Υd(16r)
(

1− eα(1−(1−β)v)
)

1 + λ

)

6 Mt ,

using our assumption (6.3). Recalling (6.6), we deduce that (Mt) is a supermartingale with
respect to (Ft). Hence, using Doob’s Theorem and using that R0 ∈ ∂B, we obtain that, for
every m> 0,

E
[

MTB∧Tsleep∧m

]

6 M0 = exp
(

−α|R0 ∩C|
)

= e−α⌊β|C|⌋ ,
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which implies by Fatou’s Lemma that

E
[

MTB∧Tsleep

]

= E

[

lim inf
m→∞

MTB∧Tsleep∧m

]

6 lim inf
m→∞

E
[

MTB∧Tsleep∧m

]

6 e−α⌊β|C|⌋ ,

whence

P
(

Tsleep <TB
)

= E
[

MTB∧Tsleep

]

6 e−α⌊β|C|⌋ .

This being true for all starting configurations R0 ∈ ∂B, the result follows.

6.3. Concluding proof of Lemma 3.4. Let λ > 1, and let r and α0 be defined by (3.4).
Let D ∈ (N \ {0})N, let n > 1, let A ⊂ Z

2
n and assume that (Aj , Cj)j6J is a (r2, D)-

dormitory hierarchy on A such that every set C ∈ C0 is 8r-connected and satisfies (3.3).
We wish to apply Lemma 6.2 with α= 3α0/2, β = 5/6 and v = r2. To do so, we need to

check that the condition (6.3) is satisfied, at least for λ large enough. Replacing α0 and r by
their expressions given by (3.4), we have

eα(1−(1−β)v) = exp

[

3α0

2

(

1− r2

6

)

]

6 exp

[

3K

2λ lnλ

(

1− 64λ(lnλ)2

6K

)

]

λ→∞∼ 1

λ16
,

whence eα(1−(1−β)v) 6 1/8 for λ large enough. Combining this with the lower bound on Υ2

given by Lemma 2.5, we deduce that, for λ large enough,

(6.7) λ
(

eα − 1
)

−Υ2(16r)
(

1− eα(1−(1−β)v)
)

6 λ

[

exp

(

3K

2λ lnλ

)

− 1

]

− (7/8)K

ln r+ ln16
.

Using now that ln r ∼ (lnλ)/2 when λ→∞, we may write

λ

[

exp

(

3K

2λ lnλ

)

− 1

]

− (7/8)K

ln r+ ln16

λ→∞∼ 3K

2 lnλ
− 7K

4 lnλ
= − K

4 lnλ
< 0 .

Plugging this into (6.7), we deduce that the condition (6.3) necessary to apply Lemma 6.2 is
satisfied for λ large enough. Thus, using this Lemma we deduce that for every C ∈ C0 there
exists a C-toppling procedure f such that NB, the number of visits of the set B defined in the
statement of Lemma 6.2, dominates a geometric variable of parameter

exp

(

−3α0

2

⌊

5|C|
6

⌋)

.

Recalling that |C|> r2 with r→∞ when λ→∞, we have ⌊5|C|/6⌋> 3|C|/4 provided that
that λ is chosen large enough so that r2 > 12. Thus, for λ large enough, for every C ∈ C0, the
variable NB dominates a geometric random variable with parameter exp

(

− 9α0|C|/8
)

.
Now it remains to deduce a lower bound on the number of sleeps performed by the distin-

guished vertex before stabilization. As in the proof of Lemma 6.2, we consider the process
starting from a fixed initial configuration R0 ∈ ∂B, with ∂B given by (6.5), so that the num-
ber of visits of B from this initial configuration is NB − 1. Let us introduce two new random
times: first,

T⋆ = inf
{

t ∈N : x⋆C ∈Rt
}

,

which is the first time when the distinguished vertex is awaken (recall that x⋆C /∈R0 because
we start from R0 ∈ ∂B), and, for t ∈N,

T tB = inf
{

t′ > t : Rt′ ∈ B
}

.
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We also define a deterministic time t0 = ⌊2|C| ln |C|/ lnλ⌋, and we now look for a lower
bound on the probability of the event that, starting from R0, we wake up the distinguished
particle before t0 and, after doing this, we visit B before stabilization, that is to say,

(6.8) E =
{

T⋆ 6 t0

}

∩
{

T T⋆

B < Tsleep

}

.

To this end, we write

P
(

Ec
)

= P

(

{

T⋆ > t0
}

∪
{

T T⋆

B > Tsleep
}

)

= P

(

{

T⋆ > t0
}

∪
{

T T⋆

B =∞
}

)

6 P

(

{

T⋆ > t0
}

∪
{

T t0B =∞
}

)

6 P

(

Tsleep 6 t0

)

+ P

(

{

T⋆ > t0
}

∩
{

t0 < Tsleep
}

)

+ P

(

{

T t0B =∞
}

∩
{

t0 < Tsleep
}

)

.(6.9)

We now control each of these terms. To deal with the first term, we note that Tsleep > NB,
which we proved to dominate a geometric variable with parameter exp

(

− 9α0|C|/8
)

,
whence

P

(

Tsleep 6 t0

)

6 P

(

NB 6 t0

)

6 t0 exp

(

−9α0|C|
8

)

.

To deal with the third term, we note that, if NB > t0, that is to say, we have at least t0 returns
to B, then at least one of these returns must occur after time t0, whence

P

(

{

T t0B =∞
}

∩
{

t0 < Tsleep
}

)

6 P

(

NB 6 t0

)

6 t0 exp

(

−9α0|C|
8

)

.

To deal with the second term, we note that, C being 8r-connected, we have diamC 6 8r|C|.
Thus, as long as the distinguished vertex sleeps, at each step, the probability to wake it up is
at least Υ2

(

8r|C|
)

/(1 + λ). Therefore, we have

P

(

{

T⋆ > t0
}

∩
{

t0 < Tsleep
}

)

6

(

1− Υ2

(

8r|C|
)

1 + λ

)t0

.

Plugging these three bounds into (6.9) and using the lower bound on Υ2 given by Lemma 2.5,
we get

P
(

Ec
)

6 2t0 e
−9α0|C|/8 +

(

1− Υ2

(

8r|C|
)

1 + λ

)t0

6
4|C| ln |C|

lnλ
e−9α0|C|/8 + exp

(

−2|C| ln |C|
lnλ

× 1

1 + λ
× K

ln 8 + ln r+ ln |C|

)

6
4|C|2
lnλ

e−9α0|C|/8 + exp

(

− 4K|C| ln r
(1 + λ) lnλ(3 ln 2 + 3 ln r)

)

=
e−α0|C|

2λ
×
[

8λ|C|2
lnλ

e−α0|C|/8 + 2λ exp

(

α0|C| − 4K|C| ln r
3(1 + λ) lnλ(ln 2 + ln r)

)

]

.

We now wish to show that, for λ large enough, for every |C|> r2, the quantity between the
brackets is smaller than 1. Defining

M = sup
x>0

(

x2e−x/16
)

,
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we may write
(6.10)
2λP

(

Ec
)

e−α0|C|
6

8Mλ3 lnλ

K2
e−α0r2/16 + 2λ exp

[

(

K

λ lnλ
− 4K ln r

3(1 + λ) lnλ
(

ln 2 + ln r
)

)

|C|
]

.

On the one hand, we have

(6.11)
8Mλ3 lnλ

K2
e−α0r2/16 >

8Mλ3 lnλ

K2
e−4 lnλ =

8M lnλ

K2λ

λ→∞−→ 0 .

On the other hand, we have

K

λ lnλ
− 4K ln r

3(1 + λ) lnλ
(

ln 2 + ln r
)

λ→∞∼ K

λ lnλ
− 4K

3λ lnλ
= − K

3λ lnλ
,

whence, for λ large enough,

K

λ lnλ
− 4K ln r

3(1 + λ) lnλ
(

ln 2 + ln r
) 6 − K

6λ lnλ
,

implying that, for |C|> r2,

2λ exp

[

(

K

λ lnλ
− 4K ln r

3(1 + λ) lnλ
(

ln 2 + ln r
)

)

|C|
]

6 2λ exp

(

− K

6λ lnλ
× 64λ(lnλ)2

K

)

=
2

λ29/3
λ→∞−→ 0 .(6.12)

Plugging (6.11) and (6.12) into (6.10), we deduce that, for λ large enough, for every |C|> r2,
we have

P
(

Ec
)

6
1

2λ
exp

(

−α0|C|
)

.

Recalling the definition (6.8) of the event E , note that, if E is realized, it means that, starting
from R0 ∈ ∂B, the distinguished particle is waken up, after which we visit B and, sooner or
later, we reach ∂B again, which implies that the distinguished particle fell asleep. Since our
estimate on E is valid uniformly over all the initial configurationsR0 ∈ ∂B, we have a renewal
sequence, and we deduce that S(C), which denotes the number of x⋆C -sleeps during the stabi-
lization of C , dominates a geometric random variable with parameter exp

(

−α0|C|
)

/(2λ).
To conclude our proof, there only remains to translate this result into a lower bound on the

number of loops of colour 0. Following Lemma 2.3, we have the equality in distribution

L(C, 0) d
=

S(C)
∑

i=1

(Xi − 1) ,

where the variables (Xi) are i.i.d. geometric variables with parameter b= 2λ/(2λ+ 1) and
are independent of S(C). Using now Lemma 2.4, we deduce that 1 + L(C, 0) dominates a
geometric variable with parameter

b exp
(

−α0|C|
)

/(2λ)

1− b+ b exp
(

− α0|C|
)

/(2λ)
=

exp
(

−α0|C|
)

1 + exp
(

− α0|C|
) 6 exp

(

−α0|C|
)

,

concluding the proof of P(0).
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7. Inductive step: proof of Lemma 3.1. Let d, λ, v, (Dj), (αj), n, A, (Aj , Cj) be as
in the statement. We assume that 06 j <J is such that the property P(j) holds, and we wish
to establish the property P(j + 1), that is to say, we need to pass from a statement about the
loops of colour j produced by the clusters of Cj to a statement about the loops of colour j+1
produced by the clusters of Cj+1, with the constant αj being replaced with αj+1.

We start by translating our aim into a statement about the number of loops of colour j.
Namely, we show that, to establish P(j+1), it is enough to prove the stochastic domination:
(7.1)

∀C ∈ Cj+1 1 +L(C, j) � Geom(a) where a =
1

2j+2(1 + λ)
exp

(

− αj+1|C|
)

.

Indeed, it follows from Lemma 2.3 that

∀C ∈ Cj+1 1 +L(C, j + 1)
d
=

S(C)+L(C,0)+···+L(C, j)
∑

i=1

(Xi − 1) >

1+L(C, j)
∑

i=1

(Xi − 1) ,

where the variables (Xi)i∈N are i.i.d. geometric variables with parameter

b =
2j+2(1 + λ)− 2

2j+2(1 + λ)− 1
.

Thus, using Lemma 2.4 about the sum of a geometric number of geometrics minus one, the
statement (7.1) would imply that, for everyC ∈ Cj+1, the variable 1+L(C, j+1) dominates
a geometric variable with parameter

ab

1− b+ ab
6

ab

1− b
=
(

2j+2(1 + λ)− 2
)

a 6 2j+2(1 + λ)a = exp
(

− αj+1|C|
)

,

which is precisely P(j +1). Thus, there only remains to prove (7.1).
We now turn to the study of the number of loops of colour j produced by a clus-

ter C ∈ Cj+1. We start by distinguishing between two cases. First, if C ∈ Cj then,
since |C| > 2⌊(j+1)/2⌋v > 2j/2v, the claim (7.1) follows from our assumption (3.1) on the
sequence (αj)j∈N, which entails that

exp
(

−αj |C|
)

6 exp
[

− (αj −αj+1)2
j/2v−αj+1|C|

]

6
exp

(

−αj+1|C|
)

2j+2(1 + λ)
= a .

Hence, we now assume that C ∈ Cj+1 \ Cj . In this case, following property (ii) of the
hierarchy, we have diamC 6Dj and we can write C = C0 ∪C1 with C0, C1 ∈ Cj . To sim-
plify the notation, we simply write x⋆0 = x⋆C0

and x⋆1 = x⋆C1
. Upon exchanging the names C0

andC1, we may assume that |C0|> |C1| and x⋆C = x⋆0 (recall that, as explained in section 2.3,
the distinguished vertex of the union of two clusters is the distinguished vertex of the largest
of the two clusters). For k ∈ {0,1}, let us define qk = exp

(

−αj |Ck|
)

, so that our induction
hypothesis P(j) tells us that 1+L(C0, j) and 1+L(C1, j) respectively dominate geometric
random variables of parameter q0 and q1.

7.1. Some notation. Recall the ping-pong mechanism described in section 2.6. To
shorten notation, we write

ε : i ∈N 7−→ i mod. 2 =

{

0 if i is even,

1 otherwise.

Thus, the stabilization of C = C0 ∪C1 is composed of a series of stabilizations where, dur-
ing the i-th stabilization (the numbering starting at 0), we stabilize the set Cε(i). Let us
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write R0 =C (since the configuration out of C has no impact on the stabilization of C , we
could as well take R0 =A) and h0 = ℓ0 = 0, and let us define recursively, for every i ∈N,

(7.2) (Ri+1, hi+1, ℓi+1) = StabCε(i)
(Ri, hi, ℓi) ,

where Stab is the stabilization operator defined by (2.6). Note that if i ∈ N is such
that Ri ∩C =∅ (that is to say, both sets are stabilized), then the above definition implies
that (Rj , hj , ℓj) = (Ri, hi, ℓi) for all j > i. For every i ∈N, we denote by Li the the number
of loops of colour j produced by the distinguished vertex x⋆ε(i) during the i-th stabilization.
Formally, for every i ∈N, we have

Li =
∣

∣

∣

{

ℓ ∈
{

ℓi
(

x⋆ε(i)
)

, . . . , ℓi+1

(

x⋆ε(i)
)

− 1
}

: J
(

x⋆ε(i), ℓ
)

= j
}
∣

∣

∣
.

Note that the variables (Li)i∈N are not independent because, for example, the second stabi-
lization of C0 (which produces L2 loops at x⋆0) depends on the configuration which results
from the previous stabilizations, in particular it depends on the sites of C0 which have been
reactivated during the stabilization of C1.

7.2. Number of good stabilizations. We now define the random number

(7.3) N = inf
{

i> 1 : C0 6⊂R2i or C1 6⊂R2i+1

}

.

When 16 i < 2N −1, after the i-th stabilization (during which the set Cε(i) is stabilized),
the other set Cε(i+1) is fully active. This means that the loops of colour j produced by the
distinguished vertex x⋆ε(i) during the i-th stabilization have entirely covered the other set
(recall that only these loops are allowed to wake up the sites in the other set, as explained in
section 2.4).

Thus, each of the first N stabilizations of C0 andC1 starts with the corresponding set fully
active. Note that we do not require anything on the first stabilization of C0 because, in any
case, since C1 is already fully active at the beginning of the procedure, it is still active after
the first stabilization of C0, so that this first stabilization of C0 does not need to wake up C1

for the mechanism of reciprocal activation to be able to go on.

7.3. The induction relation. The key inequality which yields the induction property is

(7.4) L(C, j) =

+∞
∑

i=0

L2i >

N−1
∑

i=0

L2i .

Note that we only count the loops produced during the even steps because we are only inter-
ested in the number of loops emerging from x⋆0.

7.4. Our aim: a geometric sum of i.i.d. geometric variables. We will show later that N
is a geometric variable, and we want to show that the sum in (7.4) dominates a geometric
variable. If the variables 1 +L2i were i.i.d. geometric variables independent of N , we could
conclude using Lemma 2.4 that 1+L(C, j) dominates a geometric variable, whose parameter
has an explicit expression in the two parameters.

A first issue is that the variables 1 +L2i are not i.i.d. geometric variables, and this family
not even dominates a family of i.i.d. geometrics. Even though it follows from the induction
hypothesis that 1 + L0 dominates a geometric with parameter q0, this is not the case of the
subsequent variables, because for i > 2N some stabilizations may start from a set which is
not fully active. In fact with probability 1 we even have Li = 0 for i large enough. To solve
this problem, we show below that we can replace this sequence L with another sequence L′

which does dominate a sequence of independent geometrics.
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7.5. An infinite “Sisyphus” sequence. It is convenient to consider another infinite se-
quence L′ = (L′

i)i∈N which is defined similarly, with the only difference that, after each sta-
bilization, we proceed with the next stabilization assuming that all sites of the other set have
been awaken. Formally, we start with the same initial parameters R′

0 =R0 =C , h′0 = h0 = 0
and ℓ′0 = ℓ0 = 0 and we define recursively, for i ∈N,

(

R′
i+1, h

′
i+1, ℓ

′
i+1

)

= StabCε(i)

(

Cε(i), h
′
i, ℓ

′
i

)

.

Note that the only difference with respect to the previous definition (7.2) is that as first ar-
gument of the stabilization operator Stab we have Cε(i) instead of Ri, which means that we
start the i-th stabilization with the set Cε(i) fully active, regardless of what happened during
the previous stabilizations. We then also define L′

i to be the number of loops of colour j
produced by the distinguished vertex of Cε(i) during the i-th stabilization, that is to say,

L′
i =

∣

∣

∣

{

ℓ ∈
{

ℓ′i
(

x⋆ε(i)
)

, . . . , ℓ′i+1

(

x⋆ε(i)
)

− 1
}

: J
(

x⋆ε(i), ℓ
)

= j
}
∣

∣

∣
,

and we define N ′ exactly as N was defined in (7.3) but replacing R with R′. One can then
notice that, by definition of N , for every i < 2N , we have L′

i = Li and R′
i+1 =Ri+1.

We claim that we also have N ′ = N . On the one hand, if C0 6⊂ R2N = R′
2N then by

definition we have N ′ =N . Otherwise, if C0 ⊂R2N =R′
2N , then we also have L′

2N =L2N

whence R′
2N+1 =R2N+1 6⊃C1, which also implies that N ′ = N . Therefore, in both cases

we have N ′ =N .
We may now rewrite the induction relation (7.4) as

(7.5) L(C, j) >

N−1
∑

i=0

L2i =

N ′−1
∑

i=0

L′
2i .

7.6. The dependency we want to get rid of. With (7.5), the problem is now much simpli-
fied, because the variables (L′

i) are independent, and for every i ∈ N, we have that 1 + L′
2i

is distributed as 1 + L(C0, j) which, by the induction hypothesis, dominates a geometric
random variable with parameter q0.

However, this sequence L′ is not independent of N ′. Yet, this dependency can be con-
trolled, and we show below that L′ and N ′ are positively correlated.

7.7. The key independence property thanks to the coloured loops. An important property
of this new sequence L′ is that it is independent of the loops of colour j produced by the two
distinguished vertices:

(7.6) (L′
i)i∈N ⊥

(

Γ(x⋆k, ℓ, j)
)

k∈{0,1}, ℓ∈N

because, among the loops emitted by x⋆0 and x⋆1, only those of colour 0, . . . , j − 1 can affect
the internal stabilizations of C0 and C1, while the loops of colour j emitted by x⋆0 are only
used to wake up sites of C1 during the stabilizations of C0, and vice versa. Thus, since this
new sequence L′ is constructed precisely by ignoring which sites of the other cluster are
reactivated during each stabilization, we have the above independence property.

This means that, conditioned on L′, we know the number of loops of colour j that can re-
activate the other set, but we have no information about the shapes of these loops of colour j,
so that these loops still behave as i.i.d. excursions. This property would not have hold if we
had not coloured the loops.
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7.8. Why distinguished vertices ?. Along with the above independence property (7.6)
which follows from our colouring of the loops, it is also important that the loops devoted to
reactivating C1 (resp. C0) all have the same starting point x⋆0 (resp. x⋆1). Indeed, it is crucial
to have in each set a distinguished vertex which is the only one able to wake up the other set.

Otherwise, if we had coloured all the loops but with all the vertices allowed to wake up
the other set (that is to say, if the loops emanating from any point x ∈ C0 could reactivate
the sites in C1 if and only if they are of colour j), then it would be harder to control the
correlation between L′

2i and the probability that C1 is fully reactivated by the loops emerging
from C0 during the i-th stabilization of C0, because we would not know how the starting
points of these loops are distributed.

Hence our choice to select one distinguished vertex in each set and to devote the job of
reactivating the other set only to the loops emerging from this vertex. Doing so, conditioned
on L′, we know how many loops we have at our disposal to wake up the other set, and we
know exactly where these loops start, while we have no information about the shapes of these
loops. Using these ingredients, we now show that there is a positive correlation between L′

and N ′.

7.9. Positive correlation. We now decompose (7.5) over the different possible values
of N ′, writing

P
(

L(C, j) > m
)

>

+∞
∑

k=1

P

({

k−1
∑

i=0

L′
2i > m

}

∩
{

N ′ = k
}

)

=

+∞
∑

k=1

P

({

k−1
∑

i=0

L′
2i > m

}

∩
{

N ′
> k
}

∩
{

C0 6⊂R′
2k or C1 6⊂R′

2k+1

}

)

.

In the above three events, the two first only depend on L′
0, . . . , L′

2k−2 and R′
2, . . . , R

′
2k−1,

and are therefore independent of the third event, leading to
(7.7)

P
(

L(C, j) > m
)

>

+∞
∑

k=1

P

({

k−1
∑

i=0

L′
2i > m

}

∩
{

N ′
> k
}

)

P
(

C0 6⊂R′
2k orC1 6⊂R′

2k+1

)

.

To show that the two first events are positively correlated, we write

P
(

N ′
> k

∣

∣ L′
)

= P

(

⋂

16 i<k

{

C0 ⊂R′
2i

}

∩
{

C1 ⊂R′
2i+1

}

∣

∣

∣

∣

∣

L′

)

= P

(

⋂

16 i62k−2

{

Cε(i+1) ⊂ Ui
}

∣

∣

∣

∣

∣

L′

)

,(7.8)

where the set Ui is given by

Ui =
⋃

ℓ′i(x
⋆
ε(i))6 ℓ<ℓ′i+1(x

⋆
ε(i))

J(x⋆
ε(i), ℓ)= j

Γ
(

x⋆ε(i), ℓ, j
)

.

Now note that, following the key independence property (7.6), the loops involved in the
above union are independent of L′, while the number of loops involved in the union is by
definition L′

i. Thus, conditioned on L′, the events in the intersection in (7.8) are independent
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and we simply have

P
(

N ′
> k

∣

∣ L′
)

=
∏

16 i62k−2

P

(

Cε(i+1) ⊂
⋃

06 ℓ<L′
i

Γ
(

x⋆ε(i), ℓ, j
)

∣

∣

∣

∣

∣

L′

)

=
∏

16 i62k−2

ψε(i)
(

L′
i

)

,(7.9)

where the function ψ0 is defined by

ψ0 : x ∈N 7−→ P

(

C1 ⊂
⋃

06 ℓ<x

Γ
(

x⋆0, ℓ, j
)

)

and ψ1 is defined similarly, replacing C1 with C0 and x⋆0 with x⋆1. Clearly, these functions
are increasing, implying that the two events {N ′ > k} and {∑k−1

i=0 L′
2i >m} are positively

correlated. Thus, coming back to (7.7), we deduce that

P
(

L(C, j) > m
)

>

+∞
∑

k=1

P

(

k−1
∑

i=0

L′
2i > m

)

P
(

N ′
> k
)

P
(

C0 6⊂R′
2k or C1 6⊂R′

2k+1

)

=

+∞
∑

k=1

P

(

k−1
∑

i=0

L′
2i > m

)

P
(

N ′ = k
)

= P

(

N ′′−1
∑

i=0

L′
2i > m

)

,

where N ′′ is a copy of N ′ which is independent of L′ (with a slight abuse of notation,
we keep the notation P for the new probability measure). Now notice that if follows from
our computation (7.9) that N ′ (and hence also N ′′) is a geometric random variable with
parameter 1− p0p1, where

(7.10) p0 = E
[

ψ0(L′
0)
]

and p1 = E
[

ψ1(L′
1)
]

.

At this point, recalling that, for every i ∈ N, 1 + L′
i is distributed as 1 +L(Cε(i), j), which

by the induction hypothesis dominates a geometric variable of parameter qε(i), and using
Lemma 2.4 about the sum of a geometric number of geometric variables (minus one), we
deduce that 1 +L(C, j) dominates a geometric variable with parameter

(7.11) q′ =
(1− p0p1)q0
1− p0p1q0

6
(1− p0p1)q0

1− q0
.

7.10. Bound on the parameter of the geometric variable. We now estimate p0 and p1
introduced in (7.10). For every x ∈N, we have

1−ψ0(x) = P

(

C1 6⊂
⋃

06 ℓ<x

Γ
(

x⋆0, ℓ, j
)

)

6
∑

y∈C1

P

(

y /∈
⋃

06 ℓ<x

Γ
(

x⋆0, ℓ, j
)

)

=
∑

y∈C1

P

(

y /∈ Γ(x⋆0, 0, j)
)x

6 |C1|
(

1−Υd(Dj)
)x
,

using the decreasing function Υd defined by (2.11), and the fact that diamC 6 Dj . Note
that, in the one-dimensional case, the above estimate could be easily improved because, in
dimension 1, if a loop visits both ends of a cluster, then it wakes up everyone in this cluster.



38

In order to estimate p0, we replace x with L′
0 and recall once again that 1+L′

0 dominates
a geometric random variable with parameter q0, yielding

1− p0 = E
[

1− ψ0(L′
0)
]

6

+∞
∑

m=0

q0(1− q0)
m
(

1−ψ0(m)
)

6 |C1|q0
+∞
∑

m=0

(1− q0)
m
(

1−Υd(Dj)
)m

=
|C1|q0

1− (1− q0)
(

1−Υd(Dj)
)

=
|C1|q0

Υd(Dj) + q0
(

1−Υd(Dj)
) 6

|C1|q0
Υd(Dj)

.

A similar bound holds for p1, replacing |C1|q0 with |C0|q1. Using these bounds, we deduce
that the parameter q′ defined in (7.11) is bounded by

q′ 6

[

(1− p0) + p0(1− p1)
]

q0

1− q0
6

(

|C1|q0 + |C0|q1
)

q0

(1− q0)Υd(Dj)
6

|C| q1q0
(1− q0)Υd(Dj)

,

where in the last inequality we used that q0 6 q1. Noting now that

q0q1 = exp
(

−αj |C0| − αj|C1|
)

= exp
(

− αj|C|
)

,

this becomes

q′ 6
|C| exp

(

−αj |C|
)

(1− q0)Υd(Dj)
6

|C| exp
(

− (αj −αj+1)|C|
)

(

1− e−αjv
)

Υd(Dj)
exp

(

− αj+1|C|
)

.

Writing u= αj−αj+1 and noting that the function z : x 7→ xe−ux is decreasing on [1/u, ∞)
and that the property (i) of the hierarchy together with our assumption (3.1) on (αj) ensure
that

|C| > 2⌊(j+1)/2⌋v > 2j/2v >
1

u
,

we deduce that z
(

|C|
)

6 z
(

2j/2v
)

, whence

q′ 6
2j/2v exp

(

− (αj −αj+1)2
j/2v

)

(

1− e−αjv
)

Υd(Dj)
exp

(

− αj+1|C|
)

.

Using our assumption (3.1), we deduce that q′ 6 exp
(

− αj+1|C|
)

/
(

2j+2(1 + λ)
)

, which
proves our goal estimate (7.1), concluding the inductive step.

APPENDIX: PROOFS OF THE TECHNICAL LEMMAS

A.1. Sufficient conditions for activity: proof of Lemmas 2.1 and 2.2. We start with
the proof of the sufficient condition formulated in terms of the number of topplings, which is
a mere combination of ingredients of [9]:

PROOF OF LEMMA 2.1. Let d> 1, λ > 0, µ ∈ (0,1) and let a > 0, b > ψ(µ) and n0 > 1
be such that (2.4) holds for every n > n0 and every A⊂ Z

d
n with |A| =

⌈

µnd
⌉

. Let n> n0
and let us fix an initial configuration η : Zdn →N such that |η|=∑x∈Zd

n
η(x) =

⌈

µnd
⌉

. Writ-
ing M for the number of topplings necessary to stabilize, recalling thatMA denotes the num-
ber of topplings on the sites of A, and writing Afinal for the random set where the particles
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eventually settle, we can write, as in section 3.8 of [9]:

Pλ
µ

(

M 6 ean
d
∣

∣

∣
η0 = η

)

=
∑

|A|=⌈µnd⌉

Pλ
µ

(

{

M 6 ean
d}∩

{

Afinal =A
}

∣

∣

∣
η0 = η

)

6
∑

|A|=⌈µnd⌉

Pλ,A
µ

(

MA 6 ean
d
∣

∣

∣
η0 = η

)

6
∑

|A|=⌈µnd⌉

Pλ,A
µ

(

MA 6 ean
d
∣

∣

∣
η0 = 1A

)

6

(

nd

⌈µnd⌉

)

e−bn
d

,

where we used Lemma 5 of [9] in the first inequality, Lemma 6 of [9] in the second inequality,
and our assumption (2.4) in the last inequality. Then, using the fact that

(

nd

⌈µnd⌉

)

= O
(

eψ(µ)n
d
)

,

which follows from Stirling’s formula, we deduce that

sup
η∈NZdn : |η|=⌈µnd⌉

Pλ
µ

(

M 6 ean
d
∣

∣

∣
η0 = η

)

= O
(

e−(b−ψ(µ))nd
)

,

implying that, taking 0< c<min
(

a, b− ψ(µ)
)

, for n large enough, we have

sup
η∈NZdn : |η|=⌈µnd⌉

Pλ
µ

(

M 6 ecn
d
∣

∣

∣
η0 = η

)

< e−cn
d

,

which, by the monotonicity of the number of topplings with respect to the initial configura-
tion, implies that

Pλ
µ

(

M 6 ecn
d
∣

∣

∣
|η0|> µnd

)

< e−cn
d

.

We then proceed as in sections 3.9 and 3.10 of [9], dealing with the Poisson initial distribution
and with the exponential toppling clocks, to deduce that, for every µ′ > µ, there exists c′ > 0
such that the fixation time Tn of the continuous-time ARW model on Z

d
n satisfies

∀n> 1 Pλ
µ′

(

Tn 6 ec
′nd
)

6 e−c
′nd

,

which, by Theorem 4 of [9], implies that µ′ > µc(λ). This being true for every µ′ > µ, we
deduce that µ> µc(λ).

We now translate this sufficient condition in the context of our loop representation, where
some waking up events are ignored.

PROOF OF LEMMA 2.2. Let d > 1, λ > 0, µ ∈ (0,1) and κ as in the statement. Let us
recall that our representation described in section 2.5, which consists in storing a pile of loops
above each vertex, differs from the classical site-wise representation of the ARW model in
that the number of topplings necessary to stabilize is not abelian: it depends on the order with
which the sites are toppled, as explained in section 2.7. Yet, it follows from the construction
of our toppling strategy that the two representations can be coupled in the following way.

Let n large enough, let A⊂ Z
d
n with |A|=

⌈

µnd
⌉

, and let (Aj , Cj)j6J be a dormitory hi-
erarchy onA and (fC)C∈C0

a collection of toppling procedures such that the assumption (2.7)
holds.

Draw a stack of toppling instructions τ = (τ(x, h))x∈Zd
n, h∈N distributed according

to Pλ,A, as defined in [9], that is to say, for every x∈A and h ∈N, the instruction τ(x, h) is
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a sleep instruction with probability λ/(1+λ) and otherwise it is a jump instruction to one of
the neighbours of x chosen uniformly, while if x ∈ Z

d
n \A and h ∈N, the instruction τ(x, h)

cannot be a sleep and is a jump instruction to a uniform neighbour of x, the instructions
being independent. Independently, for every x ∈A and every ℓ ∈N, we draw an independent
variable 1 + J(x, ℓ) which is geometric with parameter 1/2.

Then, follow our toppling strategy to stabilize the set AJ as described in section 2.6, but
reading the instructions from τ and the colours from J , and storing the instructions used in a
stack of sleep instructions I and a stack of loops Γ, so that I(x, h) ∈ {0,1} indicates whether
the h-th step at x is a sleep or a loop while Γ(x, ℓ, j)⊂ Z

d
n is the support of the ℓ-th loop pro-

duced at x, where j = J(x, ℓ) is the colour of this loop. At the end of the stabilization of AJ ,
we complete the obtained stack I with i.i.d. Bernoulli variables with parameter λ/(1 + λ)
and the stack Γ with independent supports of excursions. Since the choice of the next site
to topple using a toppling procedure (as defined in section 2.5) only depends on the present
configuration of the model (and not for example on the instructions which have not been
used yet), the stacks (I, J, Γ) that we obtain have the distribution described in section 2.5.
Thus, we obtain a coupling between, on the one hand, the site-wise representation of the
ARW model, constructed with the stack of toppling instructions (jumps or sleeps) and with
no sleeps out of A, that we call henceforth the A-ARW model, and our model constructed
with the stacks of sleeps, of colours and of loops, in which we ignore some reactivation events
depending on the colours of the loops.

Along this construction, one may execute the toppling instructions in the two models in
parallel. Recall that the two models do not only differ by the notation but also in the fact
that, in our model with loops, we ignore some reactivations (while both models share the
constraint that particles cannot sleep out of A). Thus, with the coupling described above, the
two models do not follow the same evolution. However, one can show that, at any time of
the procedure, if a site of A is active in the loop model, then it is also active in the A-ARW
model. Therefore, our toppling strategy with coloured loops yields a legal toppling sequence
(as defined in [18]) in the A-ARW model, meaning that, at the end of the stabilization of AJ ,
it might be that some sites of AJ are not sleeping in the A-ARW model, but at least we can
guarantee that we only toppled sites which were active in both models. In a certain sense, our
model stabilizes faster because we ignore some reactivation events.

Thus, we have the stochastic domination MA �H(AJ ). Therefore, our assumption (2.7)
implies that MA also dominates a geometric variable with parameter exp(−κnd). Now, to
conclude by applying Lemma 2.1, there only remains to see that, if X is a geometric vari-
able with parameter exp(−κnd), then, choosing b such that ψ(µ) < b < κ and a > 0 such
that a < κ− b, we have

P

(

X 6 ean
d
)

= P

(

X 6
⌊

ean
d⌋
)

= 1−
(

1− e−κn
d)⌊eand

⌋

= 1− exp
(

⌊

ean
d⌋

ln
(

1− e−κn
d)
)

6 −
⌊

ean
d⌋

ln
(

1− e−κn
d) n→∞∼ e−(κ−a)nd

,

implying that, for n large enough, we have

Pλ
A

(

MA 6 ean
d
)

6 P

(

H(AJ ) 6 ean
d
)

6 e−bn
d

,

which allows us to deduce that µ> µc(λ) by virtue of Lemma 2.1.

A.2. Correlation between loop colours: proof of Lemma 2.3.

PROOF OF LEMMA 2.3. Let d, n> 1 and let A⊂ Z
d
n equipped with (Aj , Cj)j6J a dor-

mitory hierarchy on A and toppling procedures (fC)C∈C0
.
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Let us describe an alternative construction of our model with exponential clocks be-
hind the Bernoulli and geometric variables I(x, h)x,h and J(x, ℓ)x, ℓ defined in section 2.5.
For every x ∈ A and every h ∈ N, we consider an exponential variable Ts(x, h) with
parameter ps = λ and, for every j ∈ N, an exponential variable Tj(x, h) with parame-
ter pj = 2−(j+1), all these exponential clocks being independent. Then, for every x ∈ A
and h ∈N, writing

Tmin(x, h) = min
(

Ts(x, h), inf
j∈N

Tj(x, h)
)

,

we define, for x ∈A, h ∈N and ℓ ∈N,

I(x, h) = 1{Tmin(x,h)=Ts(x,h)} and J(x, ℓ) = 1{Tmin(x,h(ℓ))=Tj(x,h(ℓ))} ,

where h(ℓ) is the index of the ℓ-th zero in the sequence I(x, h)h∈N, that is to say:
{

h(0) = min{h> 0 : I(x, h) = 0} ,
∀ ℓ> 1 , h(ℓ) = min

{

h > h(ℓ− 1) : I(x, h) = 0
}

.

With I and J defined in this way, the h-th toppling of the site x is a sleep if the
clock Ts(x, h) rings before all the clocks Tj(x, h), j ∈N, which happens with probabil-
ity λ/(1+λ), and it is a loop of colour j if the first of these clocks to ring is Tj(x, h), which
happens with probability 1/(2j+1(1 + λ)). Thus, the variables I(x, h)x,h defined above are
i.i.d. Bernoulli variables with parameter λ/(1 + λ) and the variables J(x, ℓ)x, ℓ are i.i.d.
geometric variables with parameter 1/2, independent of I(x, h)x,h, that is to say, they are
distributed as in the construction of our model described in section 2.5. Thus, to prove the
result we may assume that the model is constructed with these exponential clocks.

Now let j 6 J and C ∈ Cj , and recall that the loops of colour j which are performed by
the distinguished vertex x⋆C are not allowed to wake up anyone in C: when x⋆C produces a
loop of colour j, the configuration inside C is not affected. Thus, since our toppling strategy
to stabilize C only looks at the configuration inside C (recalling the definition of the toppling
procedures in section 2.5), this implies that, after a x⋆C -loop of colour j, this distinguished
vertex x⋆C is toppled again, as if this loop had not occurred.

Now, call the x⋆C -sleeps and the x⋆C -loops of colour 0, . . . , j − 1 the useful topplings
of x⋆C , and call useless topplings of x⋆C the x⋆C -loops of colour at least j, and let us
write T = S(C) +L(C, 0) + · · ·+L(C, j − 1) for the total number of useful topplings per-
formed by x⋆C during the stabilization of C . As the useless topplings do not impact the sta-
bilization of C , the sequence of useful topplings of x⋆C performed during the stabilization
of C is independent of the useless topplings which are performed between any two useful
topplings. Thus, the variable T = S(C)+L(C, 0) + · · ·+L(C, j− 1) is independent of the
sequence of exponential clocks

(

Tj(x
⋆
C , h)

)

h∈N
.

Let us now define inductively h0 = 0 and, for every i> 1,

hi = min
{

h > hi−1 : Tmin(x
⋆
C , h) 6= Tk(x

⋆
C , h) for every k > j

}

,

so that for every i ∈ {1, . . . , T }, hi is the number of useless topplings of x⋆C which are
produced between the (i− 1)-th and the i-th useful toppling of x⋆C . Let us write Xi − 1 for
the number of loops of colour j among these useless topplings. Namely, for every i> 1, we
write

Xi = 1+
∣

∣

∣

{

h ∈ {hi−1 + 1, . . . , hi − 1} : Tmin(x
⋆
C , h) = Tj(x

⋆
C , h)

}∣

∣

∣
.

With these variables, we have the relation (2.8), the variables (Xi)i>1 are i.i.d., and X1 − 1
is distributed as the number of times that a Poisson point process with intensity pj fires
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before an exponential clock of parameter ps+ p0+ · · ·+ pj−1 rings. Thus,X1 is a geometric
variable with parameter given by the computation (2.10). Also, it follows from the above
considerations that T is independent of (Xi)i>1, since the loops of colour j are irrelevant
for the stabilization of C . Therefore, the variables Xi are independent of T , and the result
follows.

A.3. An elementary property of geometric sums: proof of Lemma 2.4.

PROOF OF LEMMA 2.4. Consider the following heads and tails experiment made with
two coins, a big one and a small one, which give head with probability a and b, respectively.

Toss the small coin up to getting a head, then toss the big coin. If the big coin gives head,
then stop there. Otherwise, if the big coin gives tail, restart the experiment: toss the small
coin again until getting head, then toss the big coin, stop if it gives head, and so on.

Let N be the total number of times that the big coin is tossed during the experiment. The
law of N is geometric with parameter a. Hence, the law of the total number of small tails is
a sum of N independent geometrics minus one, each with parameter b.

The experiment may be seen as a sequence of independent patterns, the three possible
patterns being: a small tail ; a small head followed by a big tail ; a small head followed by
a big head. These three patterns occur with probability 1− b, b(1− a) and ba, respectively.
Then, the total number of small tails is the number of occurrences of the first pattern before
obtaining the third pattern (so that occurrences of the second pattern may be ignored). Hence,
this number is a geometric minus one, with parameter ba/(1− b+ ba).

A.4. Hitting probabilities on the torus: proof of Lemma 2.5.

PROOF. The case d = 1 is simply the gambler’s ruin estimate, see for example Proposi-
tion 5.1.1 of [14]. Assume now that d> 2 (in fact the proof below also works in dimension 1,
but it does not give the explicit constant 1/2).

The key ingredient of our proof is Harnack’s principle, as stated in Theorem 6.3.9 of [14].
Let us consider the open set U and the compact set K given by

U =
(

− 1, 1
)d \

[

−1

2
,
1

2

]d

and K =

[

−5

6
,
5

6

]d

\
(

−2

3
,
2

3

)d

.

Harnack’s principle tells us that there exists a constant C > 0 and an integer r0 > 1
such that, for every r > r0, writing Ur = rU ∩ Z

d and Kr = rK ∩ Z
d, for every func-

tion f : Ur → [0,∞) which is harmonic on Ur , we have f(x)> Cf(y) for every x, y ∈Kr

(where Ur denotes the set of vertices of Zd which are in Ur or have at least one neighbour
in Ur).

For every r > 1, let us write

ur = P0

(

T∂Λr
< T+

0

)

,

which is the probability that a simple symmetric random walk on Z
d started at the origin exits

from the box Λr = {−r, . . . , r} before returning to the origin.
We now let n> 1 and x, y ∈ Z

d
n with x 6= y, and let r= d(x, y). Recall that we work with

the “infinite-norm distance” on the torus, defined by (2.1). By definition of this distance,
writing πn : Zd→ Z

d
n for a standard projection, we may take a, b ∈ Z

d with ‖a− b‖∞ = r
such that πn(a) = x and πn(b) = y. Note also that we always have r6 n/2.

Upon decreasing the constantK which appears in the result of the Lemma, we may assume
that r> 6 ∨ r0 and that a− b has all its coordinates even, so that m= (a+ b)/2 ∈ Z

d.
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We then consider the function

f : z ∈ Ur 7−→ Pπn(m+z)

(

Ty <Tx
)

,

where the random walk considered is on the torus Z
d
n. This function f is harmonic on Ur

because

(m+Ur) ∩
[

(a+ nZd)∪ (b+ nZd)
]

= ∅ .

Therefore, Harnack’s principle ensures that inf f(Kr) > C supf(Kr) (note that Kr 6=∅

because we assumed that r > 6). Yet, since the two points x and y play symmet-
ric roles and since Kr is symmetric, we have f(−z) = 1 − f(z) for every z ∈ Kr ,
whence supf(Kr)> 1/2. Thus, we deduce that inf f(Kr)>C/2.

The result then follows by writing

Px
(

Ty <T+
x

)

> Px
(

Tπn(m+Kr) < T+
x

)

× inf f(Kr) >
C

2
Pa
(

Tm+Kr
< T+

a

)

>
Cu2r
2

and by using the classical lower bounds on ur (see for example section 4.6 of [14]).

A.5. Pairings in graphs: proof of Lemma 5.2. Lemma 5.2 is a corollary of the follow-
ing Lemma:

LEMMA A.1. For every finite connected undirected graph G = (V, E) with |V | > 2,

there exists a partition of V into sets of cardinality 2 or 3 and diameter (for the graph distance

on G) at most 2.

PROOF. We proceed by induction on |V |. The result is obvious if |V |= 2 or |V |= 3. We
now let n > 4 and we assume that the result is true for all the connected undirected graphs
containing between 2 and n− 1 vertices. Let G = (V, E) be a finite connected undirected
graph with |V |= n.

The graph G being connected, we can consider a rooted covering tree of G. Let x ∈ V be
a leaf of this covering tree with maximal distance to the root.

If this leaf has a “sister” y (i.e., another leaf which has the same parent), then the induced
subgraph on V \{x, y} is still connected. Applying the induction hypothesis to this subgraph
yields a partition Π of V \ {x, y}, and then Π∪

{

{x, y}
}

is a solution of the problem, since
the graph distance on G between x and y is at most 2 (because it equals 2 on the covering
tree).

Otherwise, if the leaf x has no sister, then we consider its parent z, and, noticing that the
induced subgraph on V \ {x, z} remains connected, we can apply the induction hypothesis
to this subgraph.

A.6. Sums of dependent Bernoulli variables: proof of Lemma 6.3.

PROOF. Let p ∈ [0,1] and c > 0. We proceed by induction on n. The result is obvious
if n = 0. Assume that the result is valid for n ∈ N, let X1, . . . , Xn+1 be Bernoulli random
variables with parameter p, and let us write Yn = e−c(X1+···+Xn). Conditioning on the last
variable, we have

E

[

e−c(X1+···+Xn+1)
]

= pe−cE
[

Yn
∣

∣Xn+1 = 1
]

+ (1− p)E
[

Yn
∣

∣Xn+1 = 0
]

= pE
[

Yn
∣

∣Xn+1 = 1
]

+ (1− p)E
[

Yn
∣

∣Xn+1 = 0
]

− p
(

1− e−c
)

E
[

Yn
∣

∣Xn+1 = 1
]

= E
[

Yn
]

− p
(

1− e−c
)

E
[

Yn
∣

∣Xn+1 = 1
]

6 E
[

Yn
]

− p
(

1− e−c
)

e−cn

Plugging the induction hypothesis in the above formula then yields the desired result.
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