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The Critical Density for Activated Random Walks

is always less than 1

Amine Asselah ∗ Nicolas Forien † Alexandre Gaudillière ‡

October 11, 2022

Abstract

Activated Random Walks, on Zd for any d > 1, is an interacting particle system, where
particles can be in either of two states: active or frozen. Each active particle performs a
continuous-time simple random walk during an exponential time of parameter λ, after which
it stays still in the frozen state, until another active particle shares its location, and turns it
instantaneously back into activity. This model is known to have a phase transition, and we show
that the critical density, controlling the phase transition, is less than one in any dimension and
for any value of the sleep rate λ. We provide upper bounds for the critical density in both the
small λ and large λ regimes.
Keywords and phrases. Activated random walks, phase transition, self-organized criticality.
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∗LAMA, Univ Paris Est Créteil, Univ Gustave Eiffel, UPEM, CNRS, F-94010, Créteil, France and New York
University at Shanghai

†Sapienza Università di Roma, Dipartimento di Matematica, Roma, Italy
‡Aix Marseille Univ, CNRS, I2M, Marseille, France

1



2.6 Our recursive toppling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Sufficient condition for activity in terms of the number of sleeps and loops . . . . . . 18

2.8 Correlation between the numbers of loops of each colour . . . . . . . . . . . . . . . . 18

2.9 A useful property of geometric random variables . . . . . . . . . . . . . . . . . . . . 19

2.10 Hitting probabilities on the torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Proof of Theorem 1.2 20

3.1 Canvas for the inductive proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Low sleep rate: concluding proof of the bound (1.1) . . . . . . . . . . . . . . . . . . 21

3.3 High sleep rate: concluding proof of the bound (1.2) . . . . . . . . . . . . . . . . . . 22

4 The transient case: proof of Theorem 1.3 24

4.1 Low sleep rate: proof of the bound (1.3) . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 High sleep rate: proof of the bound (1.4) . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Construction of the dormitory hierarchy 25

5.1 Inductive construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Dormitory hierarchy for low sleep rate: proof of Lemma 3.2 . . . . . . . . . . . . . . 28

5.3 Dormitory hierarchy for high sleep rate: proof of Lemma 3.3 . . . . . . . . . . . . . . 28

6 Initialization: proof of Lemma 3.4 28

6.1 Active particles amidst sleeping ones . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 The metastability phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3 Concluding proof of Lemma 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Inductive step: proof of Lemma 3.1 35

A Appendix: proofs of the technical Lemmas 41

A.1 Sufficient conditions for activity: proof of Lemmas 2.1 and 2.2 . . . . . . . . . . . . . 41

A.2 Correlation between loop colours: proof of Lemma 2.3 . . . . . . . . . . . . . . . . . 43

A.3 An elementary property of geometric sums: proof of Lemma 2.4 . . . . . . . . . . . . 44

A.4 Hitting probabilities on the torus: proof of Lemma 2.5 . . . . . . . . . . . . . . . . . 45

A.5 Pairings in graphs: proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.6 Sums of dependent Bernoulli variables: proof of Lemma 6.3 . . . . . . . . . . . . . . 46

1 Model and results

1.1 Activated Random Walks

This paper is a companion to [FG22]. We continue our study of a specific reaction-diffusion model
known as Activated Random Walks (ARW) invented to study self-organized criticality. Informally,
random walks diffuse on a graph which has a tendency to hinder the motion of lonely walkers,
whereas the vicinity of other diffusions turns hindered particles into diffusive ones. Here, we consider
the Euclidean lattice Zd in any dimension, or a large Euclidean torus. The initial configuration
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is an independent Poisson number of particles at each site of Zd, with parameter µ < 1. Each
particle can be in any of two states: active or frozen (or sleeping). Each active particle performs a
continuous-time simple random walk with rate 1 and is equipped with an independent exponential
clock of parameter λ, at the marks of which the particle changes state, and stops moving. When a
frozen particle shares a site with another particle, it gets instantly activated. When the graph is
an infinite Euclidean lattice, and one increases the initial density of active particles, one expects
to see a transition, at a critical density µc(λ), from a regime of low density where particles are still
to a high density regime of configurations made of constantly evolving islands of sleeping particles
at low density in a sea of diffusing particles at high density. When we start with a large number
of active particles at the origin we expect a large ball to be eventually covered at density µc(λ).
This phenomenon is known as self-organized criticality, in the sense that the system alone reaches
a critical state. This notion was introduced in the eighties by Bak, Tang and Wiesenfeld [BTW87]
together with a related toy model, the abelian sandpile. The ARW model, which is less constrained,
was actually popularized some 13 years ago by our late friend Vladas Sidoravicius and we refer to
Levine and Liang [LL21] for some comparison between the two models. The ARW model shares
with the abelian sandpile the nice feature that the order in which the particles are launched is
irrelevant, which is known as the abelian property.

When working with Zd, and when active particles are drawn from a product Poisson measure
of intensity µ at each site, ARW is known to have a phase transition between an active phase and
a frozen phase. The active phase is characterized by every vertex being visited infinitely many
times, whereas in the frozen phase the origin is visited a finite number of times. In a seminal work
Rolla and Sidoravicius [RS12] prove that the system stays active forever with a probability which
is increasing in µ, and which satisfies a zero-one law under Pλµ , law of the process when the sleep
rate is λ and the initial configuration is drawn from the product Poisson measure of intensity µ.
Thus, the following density µc(λ) is well defined:

µc(λ) = inf
{
µ : Pλµ(the origin is visited a finite number of times) = 0

}
.

In [RSZ19] Rolla, Sidoravicius and Zindy show that µc(λ) is the same number when the initial con-
figuration is drawn from any translation-invariant ergodic measure with mean µ. On Zd with d > 3,
Stauffer and Taggi in [ST18] show that when λ is small, µc(λ) < 1, and they provide a general lower
bound µc(λ) > λ/(1 + λ), which is valid in any dimension and for every λ > 0. In a subsequent
work [Tag19] Taggi shows that µc(λ) < 1 for all λ ∈ (0,∞) on Zd with d > 3, and provides an
upper bound on the critical density, showing that µc(λ) 6 Cd

√
λ for every λ > 0, for some positive

constant Cd.

Even in dimension one, ARW is far from trivial. In d = 1, Basu, Ganguly and Hoffman introduce
in [BGH18] a block dynamics allowing them to replace the complex correlation of the odometer
function (measuring the number of instructions used at each site) by some balance equations at the
end-points of their blocks (where particles leave) and at the centers (where particles arrive). They
obtain that µc(λ) < 1 for small λ. Following the same approach, Asselah, Rolla and Schapira show
in [ARS19] that µc(λ) = O(

√
λ) for small λ, and Hoffman, Richey and Rolla show in [HRR20] that,

for any λ, µc(λ) < 1 in dimension 1. Finally, let us mention that a lot of works have considered
asymmetric random walks, where µc(λ) < 1 has been settled. In dimension 2, two independent
recent works by Forien and Gaudillière [FG22] on the one hand, and Y. Hu [Hu22] on the other
hand, have established that µc(λ) < 1 when λ is small enough.

The family of ARW models is very rich as we vary λ from 0 to ∞, and as we vary the initial
conditions with active and frozen particles. Let us illustrate this with two examples. When λ = 0,
the active particles stay alive forever: if we start with a product Poisson distribution of sleeping
particles and one active particle at the origin, the model is known as the frog model. Kesten
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and Sidoravicius have also studied a model for the propagation of an infection, where the sleeping
particles can move at a slower rate than the active ones. When λ =∞, and we send active particles
from the origin, then this is the celebrated model called internal diffusion limited aggregation
(IDLA). This latter model is much older, and in a sense much simpler since frozen particles remain
so forever. It has been thoroughly studied, and a shape theorem has been obtained in the nineties
by [LBG92] on Zd, and on a few other interesting graphs, as well as for closely related variants:
uniform IDLA [BDCKL20], Hasting-Levitov dynamics [NST21], rotor-router [LP09] and divisible
sandpiles. Besides, fluctuations around the typical shape have been obtained on Zd independently
by Asselah and Gaudillière in [AG13] and by Jerison, Levine and Sheffield in [JLS12]. It remains
the focus of recent interest [BRG22].

We show in this paper that when we start with particles all active on the torus Zdn := (Z/nZ)d,
for any dimension d and λ > 0, there is a density µ < 1, independent of n, above which the system
remains active during an exponentially large time (in |Zdn|) with overwhelming probability. This
implies that there exists a non-trivial active phase on the infinite Euclidean lattice for all sleep
rates λ. In other words, when we start the system on Zd with active particles distributed as a
product measure with more than µc(λ) < 1 particles per site on average, then the origin is almost
surely visited infinitely many times.

1.2 Main results

Our main result is the following.

Theorem 1.1. In any dimension d > 1, for every sleep rate λ > 0, the critical density of the
Activated Random Walks model on Zd satisfies µc(λ) < 1.

This result is new in d = 2 and our proof encompasses all dimensions (with small changes).
Since it is constructive, it does provide upper bounds on µc(λ): these bounds are new in d = 2,
and improve existing bounds for d > 3. Note that we cover the regime of large λ as well as small λ.
Theorem 1.1 follows from the upper bounds we now present (and from the fact that the critical
density µc is non-decreasing in λ, see for example [Rol20]).

Theorem 1.2. In dimension d = 2, there exists a > 0 such that, for λ small enough,

µc(λ) 6 λ | lnλ|a , (1.1)

and there exists c > 0 such that, for λ large enough,

µc(λ) 6 1− c

λ(lnλ)2
. (1.2)

Theorem 1.3. In dimension d > 3, there exists c = c(d) > 0 such that, for λ small enough,

µc(λ) 6 c λ , (1.3)

and there exists c = c(d) > 0 such that, for λ large enough,

µc(λ) 6 1− c

λ lnλ
. (1.4)

These bounds, in the two regimes of sleep rate, are of a correct nature (up to some logarithmic
factor in λ), as we try to justify in our heuristic discussion below.
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Remark about d = 1. Our proof method also works to prove that µc(λ) < 1 for every λ > 0 in
dimension 1, with minor changes, but in this setting it does not yield significantly new bounds on
the critical density, hence we choose not to detail this case. We limit ourselves to some comments
in section 1.6 about how to adapt our proof to the one-dimensional case.

1.3 Heuristics

At a heuristic level, the critical density of frozen particles can be thought of as follows. Consider
a configuration of frozen particles drawn from a Poisson product measure on Zd with density µ,
and launch an active particle at the origin. The density µ equals µc(λ) if an active particle, in its
journey before freezing, encounters on average exactly one sleeping particle. In other words, the
number of active particles should strike a balance: one particle wakes up when another one freezes.
Thus, if Rt is the number of distinct visited sites in a time period [0, t] by a continuous-time random
walk, and if τ is an independent exponential time of mean 1/λ, we expect that

E[Rτ ] · µc(λ) ' 1 . (1.5)

The symbol ' is here to remind the reader that this is just heuristics. Now, there are two regimes:
small λ where τ is of order of its mean 1/λ which is large, and the regime of large λ where the particle
makes a jump with probability 1/(1 + λ) which is small. In the case of small λ, we rewrite (1.5)
as E[R1/λ] · µc(λ) ' 1, and we only need to recall the large time asymptotics of the range of a
random walk (see for example [DE51]):

E[Rt] =


O(
√
t) if d = 1

O( t
ln t) if d = 2

O(t) if d > 3.

This implies the following heuristics for µc(λ) for small λ:

µc(λ) =

 O(
√
λ) if d = 1

O(λ| lnλ|) if d = 2
O(λ) if d > 3.

When λ is large, the active particle makes one jump with probability 1/(1 + λ) so that

E[Rτ ] ' 1 +
1

λ
,

which, plugged into (1.5), suggests that µc(λ) ' 1− 1/λ when λ→∞.

Establishing these bounds remains a challenging problem, as well as establishing some shape
theorem, or understanding ARW at the critical density. The model of ARW presents many other
interesting questions, and we refer to Rolla’s survey [Rol20] for a nice review. One difficulty is that
the time a particle stays in one of its two states actually depends on the local density of particles
which itself changes with time: if an active particle travels amidst a region of high density, then it
most likely remains active as long as it remains inside this region; instead, if it crosses a low density
region, it most likely switches to a frozen state at the first mark of its exponential clock.

1.4 Sketch of the proof of Theorem 1.2

Most of our work is devoted to proving Theorem 1.2 (the case d = 2), which is our main result,
while Theorem 1.3 (the transient case d > 3) requires much less technology and simply follows as
a by-product of an intermediate Lemma.
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We now describe informally the six steps of our strategy, of which three are taken from [FG22],
and three are new. The new ideas, namely the dormitories, the ping-pong rally and the coloured
loops, are all of a hierarchical nature.

To show that it takes an exponentially large time to stabilize a configuration on the torus, we
introduce a hierarchical structure on the set where the particles eventually settle, which we call
the hierarchical dormitory. With this construction, we first show that some elementary blocks
of this hierarchy, called the clusters, have a stabilization time exponentially large in their size.
We then perform an induction using a toppling strategy which we call the ping-pong rally, where
neighbouring clusters interact and reactivate each other many times, leading to a stabilization time
for their union which is roughly the product of the individual stabilization times. Thus, we obtain
that at each space scale, the stabilization time of a cluster is of order an exponential in the volume
of the cluster. The coloured loops are the last important ingredient in our proof: modifying slightly
the dynamics of the ARW model by ignoring some reactivation events, we are able to obtain some
independence between the different levels of the hierarchy, which turns out to be crucial in our
inductive proof.

Working on the torus and using the abelian property. In [FG22] it is shown that µc < 1
if, when starting with a density µ < 1 of active particles, the time needed to stabilize ARW on the
torus Zdn = (Z/nZ)d is exponentially large in n with high probability. Thus, we always consider Zdn
with n large enough.

We recall that there is a celebrated graphical representation, known as the site-wise or Diaconis-
Fulton representation (see [DF91] for the original construction or [Rol20] for a nice presentation in
the context of ARW), where we pile stacks of independent instructions on top of each site of Zdn,
and use these instructions one after another to move the particles.

A key property of this representation of the model, known as the abelian property, is that
the final configuration and the number of steps performed (these steps are called topplings) do
not depend on the order with which the instructions are used, allowing us to choose an arbitrary
strategy to move particles. We rely heavily on this property throughout our work (although our
graphical representation, described below in section 2.5 is no longer abelian, its construction itself
relies on the abelian property of the ARW model).

Decomposition over all possible settling sets. Whereas [FG22] focuses on the case where
the sleep rate λ is small, in our case we fix λ, which can be either small or large, and we look
for a density µ < 1 so that the stabilization time on the torus is exponentially large. Starting
from a fixed initial configuration with µnd particles, we decompose the probability to stabilize the
configuration in a given time, summing over all the possible sets where the particles can settle.

Then, as in [FG22], for a fixed couple (λ, µ) we look for an estimate on the stabilization time
which is uniform over all possible settling sets A ⊂ Zdn, and we perform a union bound. Hence, in
our estimate we get a combinatorial factor

(
nd

µnd

)
corresponding to the number of possible settling

sets. This factor can be thought of as an “entropic” term, which we have to outweigh by an
“energy” term corresponding to the probability to stabilize in a given set A ⊂ Zdn in a short time.
Since this entropic factor

(
nd

µnd

)
gets smaller when µ is either close to 0 or close to 1, we concentrate

on these two distinct regimes of the sleep rate, namely λ → 0 and λ → ∞, with a corresponding
density µ→ 0 or µ→ 1.

The use of a uniform estimate over settling sets is responsible for some logarithm factors ap-
pearing in the bounds that we obtain on the critical density µc. This can be seen in the statement
of Lemma 2.1 (where ψ(µ) corresponds to the entropy, while κ controls the energy) and in the final
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estimates for our proofs in sections 3 and 4, where we tune the parameters λ and µ such that the
entropy-energy balance is favourable. Thus, a possible direction to improve our estimates on µc
could be to refine this union bound by ruling out some sets A on which it is very unlikely that the
particles settle.

Reduction to a model with density 1 on the trace graph. Once such a set A ⊂ Zdn is
fixed, we look for an upper bound on the probability that the particles settle on A in a given time.
To this end, as explained in section 3.1 of [FG22], we suppress all sleeping instructions on Zdn \ A.
Indeed, provided that particles eventually settle in A, these sleeping instructions are overridden
at some time or another. Then, using the abelian property of the model, we may first let each
particle move until it reaches an empty site of A. Thus, we may start from the configuration with
exactly one active particle on each site of A (see section 3.2 of [FG22]). Thus, we end up with a
simplified model on a fixed subset A that we call the dormitory, which starts fully occupied with
active particles. These active particles cannot settle anywhere but on A.

Let us now describe the order with which the particles move. At the beginning of each step,
we choose an active particle and read its first unused instruction. If it is a sleep instruction, the
step is over, the particle falls asleep and we choose another particle at the next step. Otherwise,
if it is a jump instruction, we let the particle jump, and follow instructions along its path until it
goes back to its starting point. Indeed, when the particle is not at its starting position, it is either
outside of A, and there is no sleep instruction, or it is on top of another particle, and the sleep
instructions have no effect. Note that at the end of its loop, the particle is active, and has waken
up all sleeping particles along the loop. Thus, each step of the dynamics consists either in a sleep
event or in drawing a loop (that is to say, the support of an excursion) from a site with an active
particle, and updating the set of active particles.

Doing so, after each step (i.e., after a sleep or a loop) we go back to a configuration where there
is exactly one particle on each site of A. Thus, in a way, we reduced the problem to the study
of an easier model with density 1, but on the modified graph which is the trace graph on A, that
is to say, the graph whose vertex set is A and where the transition probability from x to y is the
probability that y is the first site of A encountered by a random walk on the torus that has just
jumped out of x, as if particles were “sliding” on Zdn \A with infinite speed until they reach a site
of A.

This idea to reduce the model to the case of density 1 is a key idea which is at the core of
both [FG22] and the present work. Once constrained to this settling set A where there is just
enough space for all the particles to fixate, it is very difficult for the model to reach the stable state
where all the particles are sleeping. Hence, a phenomenon of metastability is expected, the system
remaining trapped in a situation where only a fraction of the particles are sleeping, with a huge
potential barrier to overcome to bring all particles to a rest.

Thus, it is not surprising that, for every fixed settling set A, the model where particles are
forced to settle on A takes an exponentially large time to reach its stable state, this time being
roughly distributed as a geometric random variable. Many trials are necessary before overcoming
the drift.

Therefore, if one can prove that, for a general class of graphs, the model with density 1 takes
an exponential time to stabilize, there only remains to see if the combinatorial factor

(
nd

µnd

)
corre-

sponding to the choice of the dormitory A can be outweighed by the estimate on the exponential
fixating time of the density-one model on A.

Hierarchical Dormitories. Once the settling set A is fixed, we introduce a deterministic hier-
archical structure on A, which is a new ingredient compared to [FG22]. This structure consists in a
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finite decreasing sequence of subsets of A, say A0 ⊃ A1 ⊃ · · · ⊃ AJ , and a corresponding sequence
of partitions C0, C1, . . . , CJ (where Cj is a partition of Aj) whose elements are called clusters (even
though they are not necessarily connected).

The construction of the 0-th level of the hierarchy varies depending on which regime we are
studying. The idea is that these clusters are densely connected in some sense, so that the stabi-
lization of any cluster C ∈ C0 produces a number of loops which is exponentially large in the size
of C, so that these clusters can interact with other clusters of C0 which are far apart.

In the regime of small λ (thus with µ→ 0), that is to say, for the proof of the bound (1.1), the
set A is rather sparse, so we simply take A0 = A and C0 composed only of singletons. Indeed, the
stabilization of a singleton already emits a number of loops which is geometric with mean 1/λ, which
is large when λ→ 0. In the proof of the bound (1.2) in the large λ regime, the first partition C0 is
composed of clusters of high density, so high that if at least a fraction of the particles in a cluster
are frozen, then loops emanating from well chosen sites have a tendency to wake up many particles.

Then, in both regimes, clusters of C1 are obtained by pairing clusters of C0 when their distance
is not too large. Then, by way of induction at each step j, we construct each partition Cj by
merging pairs of clusters in Cj−1 which are not too far apart. In so doing, we merge as many pairs
as possible, but possibly throw away clusters which are isolated. Also, at each level some clusters
are not merged, but we impose a minimal size for clusters at each level, so that the clusters get
bigger and bigger along the hierarchy. The construction stops when we obtain a partition CJ which
contains one single set. We then have to check that we have not thrown away too much, so that
this last cluster on top of the hierarchy contains at least a fraction of the initial set A.

The detailed construction of this hierarchy is presented in section 5.

Ping-pong rallies. Let us now explain how we control the stabilization time. In a first step, we
prove that, for every cluster C ∈ C0, the number of topplings to stabilize the configuration on C is
exponentially large in the size of C. This is done in section 6 by using that the number of sleeping
particles has a negative drift (when at least a fraction of the cluster is sleeping), implying through a
martingale argument that the stabilization time of C dominates a geometric random variable with
exponentially large mean, with an explicit control on the parameter in the exponential (which is
important to obtain our explicit bounds on µc).

Then, at each level of the hierarchy, we introduce ping-pong rallies. We prove by induction on j
that, for every C ∈ Cj , the number of topplings necessary to stabilize C is exponentially large in the
size of C. We insist that at each space scale we need to control the whole law of the stabilization
time, not just the tail. We now present a mechanism behind the exponential fixation time.

Consider a cluster C = D ∪E in Cj+1 with D and E in Cj . Starting with D and E fully active
we perform sleeps and loops on each active site in D up to the full stabilization of D, before doing
the same in E to reach the full stabilization of E. Now, after these two rounds, some sites in D
may have been reactivated during the stabilization of E. If D is not too far from E, D has great
chances to be actually fully reactivated. We then stabilize D again, which in turn reactivates E
and so on and so forth up to the complete stabilization of C. We say that our merging clusters
play a ping-pong rally which ends when one cluster stabilizes without reactivating all the particles
of its playing partner.

The ping-pong rally is behind the reinforcement of activity. Indeed, let tD and tE be the ex-
pected values of TD and TE , the random numbers of loops needed to stabilize D and E respectively.
Let also εD and εE be the probabilities that E and D are not completely reactivated during the sta-
bilization of D and E, respectively. The expected total number of excursions needed to stabilize C
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is then larger than or equal to∑
k>0

[
(1− εE)(1− εD)

]k
(tD + tE) =

tD + tE
εD + εE − εDεE

>
tD + tE
εD + εE

.

Having reduced our analysis to the density-one, hence metastable, systems D and E, we can
expect TD and TE to be approximate geometric random variables with success probability 1/tD
and 1/tE . Having also chosen D and E close enough for them to merge at scale j + 1, we can
also expect εD and εE to be of order 1/tD and 1/tE at most. In metastable situations indeed, we
can expect the thermalisation times to metastable equilibria to be small with respect to the mean
stabilization times. In our case the latter, tD and tE , should be exponentially large in |D| and |E|,
while the former should be only polynomial in |D| and |E|. For the ping-pong rally to stop, a cluster
should then essentially stabilize within its thermalisation time to metastable equilibrium: if not,
it will produce an exponentially large number of loops that will continue the ping-pong rally with
very large probability. Since the stabilization time when starting from a fully active cluster will
dominate the geometric stabilization time when starting from metastable equilibrium, εE and εD
should be of order 1/tD and 1/tE up to logarithmic corrections at most. This would give a lower
bound for the mean number tC of the needed excursions to stabilize C of order

tD + tE

t−1
D + t−1

E

= tD × tE .

If our induction hypothesis assumes that tD and tE are exponentially large in the size of D and E,
we would obtain from these heuristics that tC is exponentially large in the size of D ∪ E = C.

Coloured loops to prove stochastic domination only and avoid intricate correlations.
The technical difficulties lie in the need to control the whole law of the stabilization time at each
scale (and not only its expectation or its tail) and in the intricate dependence relation between the
length of the ping-pong rally (i.e., how many times the sets D and E fully reactivate each other) and
the duration of the successive stabilization steps of the rally. It is not clear how the stabilization
time of one set, say D, is correlated with the event that the other set E is fully reactivated during
this stabilization of D. Intuitively, knowing that the stabilization of D takes a long time, we have
many loops emerging from D which can reactivate the sites of E, but we also have some information
on the shapes of these loops, namely that they tend to visit many sites of D.

To overcome this issue of intertwined dependence, we introduce in section 2.4 distinguished sites
which bear coloured loops which are used to activate clusters at a distinct level of the hierarchy.
More precisely, each cluster of the hierarchy is equipped with a distinguished site, and each loop
emerging from this site is devoted to activating one specific cluster, so that at each level of the
hierarchy, a certain proportion of the loops are ignored and shelved apart for further levels. Doing
so, knowing that it takes a long time to stabilize D, we only have an information on the loops
which are devoted to reactivation inside of D, while the loops devoted to reactivation of E are left
blank, and are thus distributed as standard excursions.

By allowing only some loops to activate given particles, we build a dynamics which is faster to
stabilize. Since we only need a lower bound on the stabilization time for the original dynamics,
we will avoid controlling the previously mentioned relaxation time to metastable equilibrium by
working with such a stochastic domination. It will also turn out that our coloured loop numbers
are positively correlated with the ping-pong rally lengths. See section 2.4 for the description of
these coloured loops, and section 7 for the inductive step where we use their crucial independence
property.
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1.5 Sketch of the proof of Theorem 1.3

In dimensions d > 3, since the probability that a loop starting from any point x ∈ Zdn visits any
other vertex y ∈ Zdn is bounded below by a universal positive constant, independent of n and of the
distance between x and y (see Lemma 2.5), we may almost forget the geometry in our strategy.

We still reason with a fixed settling set A and we perform loops, going back after each step
to a configuration with exactly one particle on each site of A. But, compared with the proof in
dimension 2, we do not need any hierarchical structure on A, nor to distinguish vertices or to colour
the loops. However, for coherence with the rest of the paper which is devoted to dimension 2 and
to avoid introducing specific notation for this corollary, we say that we use a trivial hierarchy and
we keep one distinguished vertex and coloured loops, but this is simply a matter of notation.

Then, our toppling strategy simply consists in toppling whatever active vertex in A and per-
forming a sleep or a loop. The result then follows from the computations of the initialization step in
section 6, which show that the system with density one has a metastable behaviour, easily leading
to the bounds on the critical density indicated in Theorem 1.3.

1.6 How to adapt our proof in dimension 1

As explained above, our proof method also works to show that µc < 1 for all λ > 0 in dimension 1,
with some adaptations, and it also yields bounds on the critical density, but these bounds are not
new.

The regime of small sleep rate λ is already pretty well understood. We refer to [ARS19] which
shows that c

√
λ 6 µc(λ) 6 C

√
λ for some constants c, C > 0 and λ small enough.

In the regime of large sleep rate λ, to obtain a lower bound on µc using our method, one needs
to consider connected sets at the first level of the hierarchy. Thus, the partition C0 is composed
of the connected components of A which contain at least v vertices, with v a well chosen function
of λ.

Then, in the initialization step, one needs to control the drift in a finer way, using the fact that
a connected component in dimension 1 is simply a segment. Thus, one can choose an endpoint
as the distinguished vertex and use the toppling procedure which simply consists in toppling the
active site which is closest to the distinguished vertex. Doing so, one can show that there is a drift
which leads to the distinguished vertex being awaken many times. To this end, instead of simply
writing that the toppled site has a certain number of sleeping sites in a certain ball around itself,
as in section 6, one has to use the fact that there is one sleeping site at distance 1, another one
at distance 2, and so on. Summing the probabilities to wake up each of these sites, one obtains a
series which diverges with the size of the cluster, showing that there is a drift which outweighs the
sleep rate when the size v of the cluster is taken large enough.

After this step, one can conclude using the induction result given by Lemma 3.1. Thus, our
proof also works in dimension 1. But it turns out that, in this case, it does not yield signifi-
cantly better results than the bounds existing in the literature. Namely, in [HRR20] it is shown
that µc(λ) 6 1− exp(−cλ) for some c > 0 and λ large enough, and our method yields the same
kind of estimate, hence the choice to restrict our exposition to dimensions at least 2.

1.7 Organization of the paper

After some preliminaries in section 2, we present the proof of Theorem 1.2 about d = 2 in section 3,
followed by the proof of Theorem 1.3, the transient case d > 3, in section 4. Both of these proofs
rely on a certain number of intermediary Lemmas, which are proved in the subsequent sections.
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The construction of the dormitories used in the two-dimensional case is presented in section 5,
while the induction is performed in sections 6 (for the initialization) and 7 (for the inductive step).
Finally in the appendix A, we gather the proofs of some technical Lemmas.

2 General considerations

We now present some general definitions and preliminaries. Let d, n > 1.

2.1 Some rather classical notation

Recall that we write Zdn = (Z/nZ)d for the d-dimensional torus. Denoting by πn : Zd → Zdn a
standard projection from Zd onto the torus, we define the distance between two points x, y ∈ Zdn
as

d(x, y) = inf
{
‖a− b‖∞ : a, b ∈ Zd , πn(a) = x, πn(b) = y

}
. (2.1)

For every non-empty set C ⊂ Zdn, we define its diameter

diamC = max
x, y ∈C

d(x, y) .

For every x ∈ Zdn and every r ∈ N, we denote by B(x, r) the closed ball in the torus centered on x
with radius r, that is to say,

B(x, r) =
{
y ∈ Zdn : d(x, y) 6 r

}
.

Note that the volume of B(x, r) is simply given by

∣∣B(x, r)
∣∣ =

{
(2r + 1)d if n > 2r + 1 ,

nd otherwise.
(2.2)

With a slight abuse of language, a set C ⊂ Zdn is said to be connected if, for any two points x, y ∈ C,
there exists k ∈ N and a sequence x0, . . . , xk ∈ C such that x0 = x, xk = y and d(xj , xj+1) = 1
for every j < k (as if there were diagonal edges). Similarly, if r ∈ N, a set C ⊂ Zdn is said to
be r-connected if, for any two points x, y ∈ C, there exists k ∈ N and a sequence x0, . . . , xk ∈ C
such that x0 = x, xk = y and d(xj , xj+1) 6 r every j < k.

For every set E, we denote by P(E) the set of all subsets of E.

2.2 Sufficient condition for activity in terms of the number of topplings

Lemma 2.1 below gives a sufficient condition on the two parameters λ and µ of the model to show
that we are in the active phase. This Lemma follows from [FG22] and to state it we need to
introduce some notation.

The Lemma is formulated in terms of the number of topplings necessary to stabilize a given
initial configuration of the model. The number of topplings refers to the total number of jump and
sleep events. In the continuous-time model, each active particle jumps with rate 1 and tries to fall
asleep with rate λ (which can either lead to the particle effectively falling asleep if it is alone or to
nothing happening otherwise), and both of these events are called topplings.

In the site-wise representation of the model where, for each site, we draw an infinite sequence
of toppling instructions (which can consist either of sleep instructions or of jump instructions
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indicating a neighbouring site to jump on), the number of topplings refers to the number of toppling
instructions used. We refer to [Rol20] for a detailed presentation of this representation.

As explained in the sketch given in section 1.4, we consider a modification of the ARW model
where, for a fixed A ⊂ Zdn, particles cannot fall asleep out of A (as if the sleeping rate was λ on A

and 0 on Zdn \A, or if no sleep instructions are drawn out of A). We write Pλ,Aµ for the probability
distribution relative to this modification of the ARW model where particles are not allowed to sleep
out of A, and we write MA for the number of topplings on the sites of A necessary to stabilize. The
initial configuration is written η0 : Zdn → N, where η0(x) = k means that we start with k active
particles on the site x.

Lemma 2.1. Let d > 1, let λ > 0 and µ ∈ (0, 1), and let us write

ψ(µ) = −µ lnµ− (1− µ) ln(1− µ) . (2.3)

If there exist a > 0 and b > ψ(µ) such that, for n ∈ N large enough, for every A ⊂ Zdn such
that |A| =

⌈
µnd

⌉
, we have

Pλ,Aµ
(
MA 6 ean

d
∣∣∣ η0 = 1A

)
6 e−bn

d
, (2.4)

then µ > µc(λ), where µc is the critical density of the usual ARW model on Zd.

The proof of this Lemma, which is only a combination of several results of [FG22], is briefly
presented in the appendix A.1 for completeness.

2.3 Dormitory hierarchy

Given a settling set A ⊂ Zdn, we now describe a hierarchical structure that we build on A and
which is the basis of our toppling strategy. This structure, called the dormitory hierarchy, is
deterministically associated to the set A and also depends on some parameters v and (Dj)j∈N
which will be chosen as functions of the sleep rate λ. A dormitory hierarchy is defined as follows:

Definition. Let d, n, v > 1 and let D = (Dj)j∈N ∈ (N \ {0})N. For every A ⊂ Zdn, we call a (v, D)-
dormitory hierarchy on A a decreasing sequence of subsets A ⊃ A0 ⊃ . . . ⊃ Aj0, with J ∈ N and,
for every j 6 J , a partition Cj of Aj such that:

(i) For 0 6 j 6 J , for every C ∈ Cj, we have |C| > 2bj/2cv;

(ii) For 0 6 j 6 J − 1, for every C ∈ Cj+1 \ Cj, we have diamC 6 Dj and there exist two
sets C0, C1 ∈ Cj such that C = C0 ∪ C1;

(iii) The last partition CJ contains one single set.

Given a dormitory hierarchy (Aj , Cj)j6J , for every j 6 J and every x ∈ Aj , we define Cj(x) to
be the set C ∈ Cj such that x ∈ C. When x ∈ Zdn \Aj or j > J , we set Cj(x) = ∅. The sets C ∈ Cj
are called clusters at the level j. The parameter v ∈ N controls the volume of the clusters at each
level of the hierarchy, while the sequence of diameters Dj ensures that we only merge clusters which
are not too far apart.

One might wonder why the condition (i) is not rather |C| > 2jv, which would be possible by
merging all clusters in pairs at each level. This would also work, but it would imply throwing away
some clusters which end up alone: for example if C0 contains only three clusters of size exactly v,
then to construct C1 one of them would have to be thrown away. In fact, this leads to throwing
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away too many clusters and in particular this would weaken the estimate (1.1) on the critical
density when λ → 0. Hence the choice of this weaker condition (i), which enables us to deal with
odd numbers of clusters grouped together: for example groups of three clusters can be merged
together in two steps. This still leads to throw away some clusters at each level (this is why the
sequence (Aj) is decreasing), but we only discard a cluster if is isolated and not just because it
belongs to a group of an odd number of clusters close to one another. See our construction in
section 5 for more details.

2.4 Distinguished vertices and coloured loops

Distinguished vertices. Let A ⊂ Zdn, and let (Aj , Cj)j6J be a dormitory hierarchy on A, as
defined in section 2.3. We define recursively a distinguished vertex in each set of the partitions. The
distinguished point of a set C is written x?C and the particle sitting in x?C is called the distinguished
particle of the cluster C. For every C ∈ C0, we simply set x?C = min C, for an arbitrary order on
the vertices of the torus. Then, for 1 6 j 6 J , if C ∈ Cj \ Cj−1, the property (ii) of the hierarchy
tells us that C is the union of two clusters of Cj−1. In this case, we let x?C be the distinguished
vertex of the biggest of these two clusters (in terms of number of vertices, and with an arbitrary
rule to break ties).

We say that a vertex x is distinguished at the level j 6 J if there exists C ∈ Cj such that x = x?C ,
that is to say, if x = x?Cj(x). If j > J , we say that no vertex is distinguished at level j. Note that
if x is distinguished at a certain level j, then it is also distinguished at all levels j′ for j′ < j.

Toppling steps: sleeps and loops. As explained above, we reason with a fixed subset A ⊂ Zdn
and we study the number of topplings necessary for all the particles to fall asleep, starting from
the configuration with one active particle on each site of A, in a modified model where there are
no sleep instructions outside of A.

As in [FG22], our toppling strategy consists in a certain number of steps such that, after each
step, there is still exactly one particle on each site of A. Thus, the configuration of the model at
each step may be encoded by the subset R ⊂ A of the sites which contain one active particle, while
each site of A \R contains one sleeping particle. We say that a set C ⊂ A is stable if R ∩ C = ∅.

At each step, we start by choosing a site x ∈ A where an active particle is present. With
probability λ/(1 + λ), this particle falls asleep on x (we call this step an x-sleep) and we proceed
to the next step.

Otherwise (hence with probability 1/(1 + λ)), the particle makes an x-loop, that is to say, it
performs a simple random walk on the torus, until it goes back to its starting point x, where it is
left, active. The sleeping particles met along this loop are waken up by the passage of the particle,
but only under a certain condition, depending on the “colour” of the loop, as explained below.

Coloured loops. The coloured loops are a new ingredient compared to [FG22]: each time a
loop starts from a site x, we assign to this loop a random colour J , where J + 1 is drawn from
a geometric distribution with parameter 1/2. Then, if along its loop starting from x the particle
meets a sleeping particle at a site y, we only wake up the sleeping particle if y ∈ w(x, J), where
the function w is defined as follows: for every x ∈ A and every j ∈ N, we set

w(x, j) =


Cj+1(x) \ Cj(x) if x is distinguished at level j ,

∅ if x is distinguished at level 0 but not at level j ,

C0(x) if x is not distinguished at any level.

(2.5)
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We now explain the practical meaning of the above definition, which is illustrated on figure 1.

If x is distinguished at level 0 but not at level 1, then the x-loops of colour 0 (on average half
of the x-loops) can only wake up the particles in C1(x) \ C0(x), and the rest of the x-loops are
ignored, that is to say, they cannot wake up anyone (because w(x, j) = ∅ for all j > 1).

If x is distinguished at levels 0, . . . , j but not at level j + 1, then the loops of colour 0 (which
represent on average half of the loops) are devoted to C1(x) \ C0(x), while the loops of colour 1
(about a quarter of the loops) are devoted to C2(x) \ C1(x), and so on, until the loops of colour j
(an average proportion 1/2j+1 of the loops) which are devoted to Cj+1(x) \ Cj(x), whereas the
loops of colour strictly more than j cannot wake up anyone.

As for the loops coming from sites x which are not distinguished at any level, their colours have
no importance and they are only allowed to wake up the sites in the same 0-level component C0(x).
Note that, on the contrary, the loops coming from a distinguished site x can never wake up the
other sites of C0(x).

Note also that, for example, if C ∈ C0 ∩ C1 (that is to say, if the cluster C is not merged with
another cluster of C0), then the x?C-loops of colour 0 are not allowed to wake up anyone, since we
have w(x?C , 0) = C \ C = ∅.

Comparison with the original ARW model. If all the particles are sleeping after a certain
sequence of steps using this restriction on coloured loops, then the same sequence of steps can
be performed in the original model, where no waking up events are ignored (the evolution of the
two models can be coupled such that, at any time, the configuration in the modified model is
always “below” the configuration in the original model after the same number of steps). This
sequence might not be enough to stabilize the configuration in the original model but the number
of steps performed provides a lower bound on the number of topplings necessary to stabilize the
configuration in the original model (see Lemma 2.2 and its proof in the appendix A.1 for more
details).

2.5 The loop representation of the modified ARW model

Let us fix A ⊂ Zdn, along with a dormitory hierarchy (Aj , Cj)j6J .

Our probability space. We now describe a representation of the model which is convenient for
our proof method, and which consists in storing an infinite array of loops above every vertex. The
dormitory A being fixed, we consider independent random variables(
I(x, h)

)
x∈A, h∈N ∈ {0, 1}

A×N,
(
J(x, `)

)
x∈A, `∈N ∈ NA×N and

(
Γ(x, `, j)

)
x∈A, `∈N, j∈N ∈ P(A)A×N

2
,

where the variables I(x, h) are Bernoulli with parameter λ/(1+λ) while the variables 1+J(x, `) are
geometric with parameter 1/2 and Γ(x, `, j) is distributed as the support of a symmetric random
walk on the torus started and killed at x, that is to say, for every B ⊂ Zdn, we have

P
(
Γ(x, `, j) = B

)
= Px

({
y ∈ Zdn : Ty < T+

x

}
= B

)
,

where Ty denotes the first hitting time of y, while T+
x is the first return time to x, and Px is the

probability measure relative to the symmetric random walk on the torus started at x. Probabilities
and expectations are simply denoted by P and E, which depend implicitly on the parameter λ and
on the set A.
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all loops

C ∈ C0

x?C = x?E = x?I

all loops

D ∈ C0

x?Dloops of colour 0

E = C ∪D ∈ C1

all loops

F ∈ C0

x?F = x?H

all loops

G ∈ C0

x?Gloops of colour 0

H = F ∪G ∈ C1

loops of colour 1

I = E ∪H ∈ C2

loops of colour 2

Figure 1: Clusters of the dormitory hierarchy are drawn in rounded rectangles. Each cluster bears
a distinguished vertex which is represented by a dark normal rectangle. The loops from the sites
which are not distinguished are only allowed to wake up sites in the same cluster of C0, including
the distinguished site. The loops of colour 0 emitted by the distinguished site x?C are only allowed
to wake up the sites in D, while the loops of colour 1 emitted by x?E = x?C are only allowed to wake
up sites in H, and the loops of colour 3 are devoted to waking up the sites in another cluster of C1

with which I merges at the next level.
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Update rules. We now describe the update rules of our model. Recall that a configuration of
our model is a subset R ⊂ A indicating which sites are active. The idea is that, when we perform
a toppling step at a site x, to decide whether this step is an x-sleep or an x-loop we look at the
instruction I(x, h), where h counts the total number of x-loops and x-sleeps already performed, so
that we do not use twice the same variable I(x, h).

If I(x, h) = 1, the particle falls asleep (this is what we call an x-sleep). Otherwise, we perform
an x-loop with colour j = J(x, `), where ` is the number of loops (of any colour) which have already
been performed at x. The effect of this loop is to wake up all the particles in Γ(x, `, j) ∩ w(x, j),
where w : A×N→ P(A) is the function defined by (2.5) which indicates the set of sites that x has
the right to wake up during a loop of colour j.

Note that, with this notation, the array Γ contains too many loops because, for every x ∈ A and
every ` ∈ N, at most one of the loops {Γ(x, `, j), j ∈ N} is used, depending on the colour J(x, `) of
the x-loop numbered `. But this notation is more convenient to highlight the independence between
loops of different colours, in particular in section 7.

To update the configuration we need to recall the numbers of instructions and loops already
used at each vertex. This is the role of what we call the odometer function h : A→ N and the loop
odometer function ` : A→ N.

Step-toppling operator. Given a configuration R ⊂ A, an odometer h : A→ N, a loop odome-
ter ` : A → N and a site x ∈ R, writing i = I

(
x, h(x)

)
for the next available instruction at x

and j = J
(
x, `(x)

)
which is the colour of the next x-loop, we define the step-toppling operator as

Φx(R, h, `) =

{(
R \ {x}, h+ δx, `

)
if i = 1 ,(

R ∪
(
Γ(x, `(x), j) ∩ w(x, j)

)
, h+ δx, `+ δx

)
otherwise.

This operator gives the configuration obtained after performing a step starting at x, and the
resulting odometer and loop odometer after the step.

Toppling procedures and procedure-toppling operator. For every cluster C ⊂ C0, we call
a C-toppling procedure any function f : P(C) \ {∅} → C such that, for every R ⊂ C with R 6= ∅,
we have f(R) ∈ R and x?C ∈ R⇒ f(R) = x?C . The role of a C-toppling procedure is to indicate the
order with which sites must be toppled depending on the actual configuration R, “without looking
into the future”. It is fundamental for our proof that the choice of the next toppling depends only
on the actual configuration restricted to C. The condition f(R) ∈ R ensures that we topple an
active site, while the condition involving x?C means that we give priority to the distinguished vertex,
which is toppled as soon as it is awaken. The priority given to the distinguished vertex is due to
the fact that we want this distinguished vertex to be awaken many times and to emit many loops,
which would not be the case if it was the last site to be toppled.

Given a cluster C ⊂ C0 and a fixed C-toppling procedure f , the procedure-toppling operator
simply consists in applying the step-toppling operator Φx defined above at the site x indicated by
the toppling procedure, and doing nothing if C is already stable:

ΦC :


P(A)×

(
NA
)2 −→ P(A)×

(
NA
)2

(R, h, `) 7−→

{
(R, h, `) if R ∩ C = ∅ ,

Φf(R∩C)(R, h, `) otherwise.

The dependency in f is implicit and is omitted to simplify the notation. For every t ∈ N, this
operator iterated t times is simply written

(
ΦC

)(t)
.
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2.6 Our recursive toppling strategy

Let A ⊂ Zdn and let (Aj , Cj)j6J be a fixed dormitory hierarchy on A. We now explain, for
every j 6 J and every C ∈ Cj , how we proceed to stabilize the set C.

Stabilization at the 0-th level. Assume that, for every C ∈ C0, we have a C-toppling proce-
dure fC (these procedures will be constructed in the proof of Lemma 3.4, in section 6).

For every C ∈ C0, to stabilize the set C we simply use the toppling procedure fC until all the
sites of C are asleep. Since we may need to stabilize this set C many times, we consider a general
stabilization operator starting from a given initial configuration R ⊂ A and a certain offset h0, `0 for
the odometers. Indeed, when we perform many stabilizations of various sets of the hierarchy, each
stabilization starts from the configuration and the odometers left by the previous stabilizations.
Namely, for every C ∈ C0, we define the stabilization operator

StabC :

{
P(A)×

(
NA
)2 −→ P(A)×

(
NA
)2

(R0, h0, `0) 7−→ (Rτ , hτ , `τ ) ,

where, for every t > 1, we write

(Rt, ht, `t) =
(
ΦC

)(t)
(R0, h0, `0) ,

with ΦC referring to the procedure-toppling operator using the toppling procedure fC , and

τ = inf
{
t ∈ N : Rt ∩ C = ∅

}
.

If τ = +∞, the value of StabC(R0, h0, `0) can be defined arbitrarily (we do not care about this
case since it occurs with probability 0).

The ping-pong rally. We now construct recursively the stabilization operators for the successive
levels of the hierarchy. Let j ∈ {1, . . . , J } be such that the stabilization operator is well defined
for every C ∈ Cj−1, and let C ∈ Cj \ Cj−1. By definition of the dormitory hierarchy, we can
write C = C0 ∪ C1 with C0, C1 ∈ Cj−1. Let us assume that x?C = x?C0

(otherwise we swap the
notation between C0 and C1).

Then, to stabilize the set C, we start by stabilizing C0, then C1. After this, if some sites of C0

have been reactivated during the stabilization of C1, we stabilize C0 once again. Then, if some sites
of C1 are still active, we stabilize C1 again, and so on and so forth, alternating between the two
sets until both are fully stabilized.

Formally, the stabilization operator for C is defined as

StabC :

{
P(A)×

(
NA
)2 −→ P(A)×

(
NA
)2

(R0, h0, `0) 7−→ (Rτ , hτ , `τ ) ,
(2.6)

where, for every i ∈ N, we write{
(R2i+1, h2i+1, `2i+1) = StabC0(R2i, h2i, `2i)

(R2i+2, h2i+2, `2i+2) = StabC1(R2i+1, h2i+1, `2i+1)

and
τ = inf

{
i ∈ N : Ri ∩ C = ∅

}
.
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Number of topplings and loops during stabilization. Let j ∈ {0, . . . , J } and let C ∈ Cj .
We denote the total number of sleeps and loops performed during the stabilization of C by

H(C) =
∑
x∈A

hstab(x) where (Rstab, hstab, `stab) = StabC(A, 0, 0) = StabC(C, 0, 0) .

In our main proof, instead of controlling the total number of sleeps and loops used to stabilize, we
concentrate on the number of loops performed by the distinguished vertex x?C during the stabiliza-
tion of C, which we denote by L(C) = `stab(x?C), with `stab defined as above, whereas the number
of sleeps is written S(C) = hstab(x?C) − `stab(x?C). Then, among the loops produced by x?C we are
interested in the loops of a specific colour. Thus, for every k ∈ N, we introduce the notation

L(C, k) =
∣∣∣{ ` < L(C) : J(x?C , `) = k

}∣∣∣
for the number of loops of colour k emitted by x?C during the stabilization of C using our toppling
strategy.

2.7 Sufficient condition for activity in terms of the number of sleeps and loops

Instead of the more general sufficient condition given by Lemma 2.1, we use the following more
specific condition which is adapted to our setting. Recall that the function ψ was defined in (2.3).

Lemma 2.2. Let d > 1, let λ > 0 and µ ∈ (0, 1). If there exists κ > ψ(µ) such that, for n ∈ N
large enough, for every A ⊂ Zdn with |A| =

⌈
µnd

⌉
, there exists a dormitory hierarchy (Aj , Cj)j6J

and a toppling procedure fC for every C ∈ C0 such that, with the recursive toppling strategy defined
in section 2.6, we have the stochastic domination

H(AJ ) � Geom
(

exp(−κnd)
)
, (2.7)

then we have µ > µc(λ), where µc(λ) is the critical density of the usual ARW model on Zd.

The proof of this Lemma, which relies on the previous sufficient condition given by Lemma 2.1,
is deferred to the appendix A.1.

Remark on abelianity. Note that in our construction with loops, the number of loops performed
during stabilization is not abelian: it depends on the toppling strategy. Indeed, once the sleep
instructions I, the colours J and the loops Γ (which altogether enclose all the randomness in our
model) are drawn, one can obtain different numbers of loops depending on the order with which
the loops are used, and even the number of sleeps and loops or the total odometer summing the
number of topplings performed along the loops are not abelian.

However, having fixed our toppling strategy, H(AJ ), the total number of sleeps and loops
performed to stabilize is stochastically dominated by MA, the number of toppling instructions used
on the sites of A during stabilization in the “original” ARW model (where sleep instructions out
of A are ignored but no waking up events are ignored).

2.8 Correlation between the numbers of loops of each colour

The following result relates the number of loops of colour j performed by the distinguished vertex
of a cluster C ∈ Cj with the number of sleeps and loops of colour at most j − 1:
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Lemma 2.3. Let d, n > 1, let λ > 0, let A ⊂ Zdn, let (Aj , Cj)j6J be a dormitory hierarchy on A
and for every C ∈ C0, let fC be a toppling procedure on C. Then, for every j ∈ {0, . . . , J } and
every cluster C ∈ Cj, we have the equality in distribution

L(C, j)
d
=

T∑
i=1

(Xi − 1) , (2.8)

where T = S(C) + L(C, 0) + · · · + L(C, j − 1) and (Xi)i>1 are i.i.d. geometric random variables
with parameter

λ+ 1− 2−j

λ+ 1− 2−(j+1)
, (2.9)

which are independent of T .

This Lemma can be easily understood if one thinks of a continuous-time variant of our model
where particles fall asleep at rate ps = λ and perform loops of colour j with rate pj = 2−(j+1).
Then, the number of loops of colour j between any two topplings counted in T is a geometric minus
one, with parameter

ps + p0 + · · ·+ pj−1

ps + p0 + · · ·+ pj−1 + pj
=

λ+ 2−1 + · · ·+ 2−j

λ+ 2−1 + · · ·+ 2−(j+1)
=

λ+ 1− 2−j

λ+ 1− 2−(j+1)
, (2.10)

and the independence between T and these geometric variables follows from the fact that the loops
with colour j have no impact on the stabilization of C. See the proof in the appendix A.2 for more
details.

2.9 A useful property of geometric random variables

We now state a technical Lemma which is proved in the appendix A.3.

Lemma 2.4. Let N be a geometric random variable with parameter a ∈ (0, 1), and let (Xn)n∈N be
i.i.d. geometric variables with parameter b ∈ (0, 1), independent of N . Then, the variable

S = 1 +

N∑
n=1

(
Xn − 1

)
is geometric with parameter

ab

1− b+ ab
.

2.10 Hitting probabilities on the torus

We need to introduce a key function, which measures the chance to wake up a distant site in a loop
on the torus Zdn, for d > 1:

Υd : r ∈ N \ {0} 7−→ inf
{
Px
(
Ty < T+

x

)
, n ∈ N, x, y ∈ Zdn : d(x, y) 6 r

}
. (2.11)

We use the following estimates on this function:

Lemma 2.5. We have the lower bounds:

• In dimension d = 1, we have Υ1(r) = 1/(2r) for every r > 1;

• In dimension d = 2, there exists K > 0 such that Υ2(r) > K/ ln r for every r > 2;

• In dimension d > 3, there exists K = K(d) > 0 such that Υd(r) > K for every r > 1.

The proof of this Lemma is deferred to the appendix A.4.
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3 Proof of Theorem 1.2

This section is devoted to the proof of our main result which gives upper bounds on the critical
density in two dimensions for small and large sleep rates. The arguments rely on several interme-
diary Lemmas, but we postpone the proofs of these Lemmas to later sections, to allow the reader
to grasp the articulation of the proof.

3.1 Canvas for the inductive proof

Recall that we rely on the sufficient condition for activity given by Lemma 2.2. Thus, for λ > 0
and µ ∈ (0, 1) fixed, we reason with n ∈ N a large integer and A ⊂ Z2

n fixed with |A| =
⌈
µnd

⌉
, and

our goal is to prove the stochastic domination (2.7), for a constant κ > 0 independent of n and A.

To prove this stochastic domination, we proceed inductively on the levels of the dormitory
hierarchy to show that at each level j, for every C ∈ Cj , the number of loops of colour j produced
when stabilizing C dominates an explicit geometric random variable. This is the key technical part
of the paper, and we divide the proof into an initialization and an inductive step.

Before performing the induction, we need to construct a dormitory hierarchy (Aj , Cj)j6J and
to choose a toppling procedure fC for each set C ∈ C0. For this first step we proceed differently
depending on the regime of λ considered, hence we postpone it to the next two sections.

The induction hypothesis P(j): Let (αj)j∈N be a sequence of positive real numbers, to be
chosen later (depending on the regime of λ under consideration). Our induction hypothesis, writ-
ten P(j), is the following: for every j ∈ {0, . . . , J }, we define

P(j) : ∀C ∈ Cj 1 + L(C, j) � Geom
(

exp(−αj |C|)
)
.

Note that P(j) is an estimate on the whole law of the number of loops: the small and large values
need to be controlled on all scales.

We are now ready to state the key inductive Lemma, whose proof occupies section 7.

Lemma 3.1. Let d > 1, λ > 0, v > 1, (Dj)j∈N ∈ (N \ {0})N, and let (αj)j∈N be a sequence of
positive real numbers such that

∀j ∈ N
4v(1 + λ)23j/2(

1− e−αjv
)
Υd(Dj)

6 exp
(

(αj − αj+1)2j/2v
)
. (3.1)

For every n > 1 and every A ⊂ Zdn equipped with a (v, D)-dormitory hierarchy (Aj , Cj)j6J and
with a collection of toppling procedures (fC)C∈C0, if the property P(0) holds, then P(j) also holds
for every j 6 J .

Note that the above condition implies that the sequence (αj)j∈N is decreasing, meaning that
the parameter in the exponential gets smaller at each step. However, as we will see, we are able to
choose these parameters such that αj does not tend to 0 when j →∞.

We now conclude the proof of our bounds on µc(λ) in dimension 2 in the two regimes of the
parameter λ.
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3.2 Low sleep rate: concluding proof of the bound (1.1)

We now explain how to combine the ingredients to prove the upper bound (1.1) on the critical
density when λ → 0. Recall the definition of dormitory hierarchy which was given in section 2.3.
In this setting, we rely on the dormitory hierarchy given by the following Lemma:

Lemma 3.2. Let d = 2, let D0 > 1 and let Dj = 6jD0 for every j > 1. For every n > 1
and every A ⊂ Z2

n with |A| > 288n2/(D0)2, there exists J ∈ N and a (1, D)-dormitory hierar-
chy (Aj , Cj)j6J on A, with |AJ | > |A| − 144n2/(D0)2 and where C0 contains only singletons.

The proof of this Lemma is deferred to section 5.

Proof of (1.1). Let d = 2. For every λ ∈ (0, 1), we define, for every j ∈ N,

Dj = 6j
⌈

1

λ

⌉
and αj = ln

(
1 + 2λ

2λ

)
−a

2

(
1−2−j/4

)
ln | lnλ| where a =

29/4

21/4 − 1
,

and we consider

µ = λ | lnλ|a and µ′ = µ− 144

(D0)2
.

Note that all these quantities are functions of the sleep rate λ, although we omit to write the
dependence in the notation. In what follows, we assume that λ is small enough so that µ < 1.

We start with the construction of the dormitory hierarchy. When the sleep rate λ tends to 0,
we have 1/(D0)2 ∼ λ2 = o

(
λ| lnλ|a

)
= o(µ), whence µ > 288/(D0)2 provided that λ is chosen small

enough. This allows us to apply Lemma 3.2 above to construct, for every n > 1 and every A ⊂ Z2
n

with |A| =
⌈
µnd

⌉
, a dormitory hierarchy (Aj , Cj)j6J on A such that C0 contains only singletons

and |AJ | > |A| − 144n2/(D0)2 > µ′nd.

Then, we turn to the initialization step. To prove that P(0) holds, notice that the stabilization
of a singleton C ∈ C0 requires exactly S(C) = 1 sleep. Hence, for every C ∈ C0, it follows from
Lemma 2.3 that 1 + L(C, 0) is a geometric random variable with parameter

2λ

1 + 2λ
= e−α0 = e−α0|C| ,

showing that P(0) holds with our definition of α0.

We now wish to apply Lemma 3.1 (with v = 1) to perform the induction step. To do so, we
have to check that the condition (3.1) is satisfied, that is to say, we want to show that

g(λ) := sup
j∈N

1

(αj − αj+1) 2j/2
ln

[
4(1 + λ)23j/2(

1− e−αj
)
Υ2(Dj)

]
6 1 . (3.2)

For every j ∈ N, we have

αj − αj+1 =
a

2

(
2−j/4 − 2−(j+1)/4

)
ln | lnλ| =

a
(
21/4 − 1

)
25/4+j/4

ln | lnλ| =
2 ln | lnλ|

2j/4
,

and Lemma 2.5 tells us that there exists K > 0 such that, for every j ∈ N,

− ln Υ2(Dj) 6 ln

(
lnDj

K

)
= ln

(
j ln 6 + ln

⌈
1

λ

⌉)
− lnK 6 ln ln

⌈
1

λ

⌉
+

j ln 6

ln d1/λe
− lnK .
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Plugging these into (3.2), we obtain that, when λ→ 0,

g(λ) =
1

2 ln | lnλ|
sup
j∈N

2 ln 2 + ln(1 + λ) + 3j ln 2/2− ln
(
1− e−αj

)
− ln Υ2(Dj)

2j/4

=
ln | lnλ|+O(1)

2 ln | lnλ|
=

1

2
+ o(1) .

Thus, we have g(λ) 6 1 for λ small enough, meaning that the condition (3.1) necessary to apply
Lemma 3.1 (the induction step) is satisfied. Thus, we deduce that P(J ) also holds, implying
that 1 + L(AJ , J ) dominates a geometric variable of parameter

exp
(
− αJ |AJ |

)
6 exp

(
− α∞µ′nd

)
where α∞ = inf

j∈N
αj = ln

(
1 + 2λ

2λ

)
− a

2
ln | lnλ| ,

which implies the same domination for H(AJ ), since H(AJ ) > |A|+ L(AJ ) > 1 + L(AJ , J ). To
deduce that µ > µc(λ), we now rely on the sufficient condition given by Lemma 2.2. Thus, there
only remains to check that α∞µ

′ > ψ(µ). On the one hand, when λ→ 0, we have

α∞µ
′ =

(
| lnλ| − a

2
ln | lnλ|+O(1)

) (
λ| lnλ|a +O(λ2)

)
= λ| lnλ|a+1 − a

2
λ| lnλ|a ln | lnλ|+O

(
λ| lnλ|a

)
while, on the other hand, we have

ψ(µ) = λ| lnλ|a
(
| lnλ| − a ln | lnλ|

)
+O

(
λ| lnλ|a

)
= λ| lnλ|a+1 − aλ| lnλ|a ln | lnλ|+O

(
λ| lnλ|a

)
,

which implies that α∞µ
′ > ψ(µ) for λ small enough, allowing us to deduce by virtue of Lemma 2.2

that µ > µc(λ), thereby concluding the proof of the bound (1.1).

3.3 High sleep rate: concluding proof of the bound (1.2)

We now turn to the proof of the upper bound on µc(λ) when the sleep rate λ tends to infinity. In
this regime, we use the dormitory hierarchy given by Lemma 3.3 below, which is proved in section 5.
Recall the definition of r-connectedness, which was given in section 2.1.

Lemma 3.3. Let d = 2, let r > 1 and Dj = 6j×96r3 for every j ∈ N. For n ∈ N large enough, for
every A ⊂ Z2

n with |A| > n2/2, there exists J ∈ N and a
(
r2, D

)
-dormitory hierarchy (Aj , Cj)j6J

on A, with |AJ | > |A| − n2/2 and where every set C ∈ C0 is 8r-connected and satisfies

∀x ∈ C
∣∣C ∩B(x, 4r)

∣∣ > r2 . (3.3)

In fact, one could also consider the simpler hierarchy in which the sets of C0 are simply the
connected components of A which contain at least r2 vertices, which would also work to prove
that µc < 1 for all λ > 0. However, this would yield a weaker bound on µc because this can lead
to throwing away too many vertices if for example A contains many connected components with
strictly less than r2 points, hence our choice of a slightly weaker condition on the sets of C0.

The initialization step is performed in the following Lemma, which is proved in section 6.
Let K > 0 be the constant given by Lemma 2.5 in dimension d = 2.
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Lemma 3.4. Assume that d = 2. There exists λ0 > 1 such that, for every λ > λ0, defining

r =

⌈
8(lnλ)

√
λ√

K

⌉
and α0 =

K

λ lnλ
, (3.4)

for every D ∈ (N \ {0})N and n > 1, if A ⊂ Z2
n and (Aj , Cj)j6J is a (r2, D)-dormitory hierarchy

on A such that every set C ∈ C0 is 8r-connected and “dense” in the sense of (3.3), then, for
every C ∈ C0, there exists a C-toppling procedure f such that L(C, 0) dominates a geometric
variable with parameter exp

(
− α0|C|

)
, that is to say, the property P(0) holds.

Proof of (1.2). Let λ0 > 1 given by Lemma 3.4. We consider the functions r and α0 of λ defined
in (3.4), and, for j ∈ N, we write

αj =
1 + 2−j/4

2
α0 and Dj = 6j × 96r3 .

Let us first check that, with these parameters, the condition (3.1) required to apply the induction
step, namely Lemma 3.1 (with v = r2), is satisfied for λ large enough. For every j ∈ N, we have

αj − αj+1 =
21/4 − 1

25/4

α0

2j/4
.

Then, using the estimate of Lemma 2.5, we can write

− ln Υ2(Dj) 6 ln

(
lnDj

K

)
= ln

(
j ln 6 + ln 96 + 3 ln r

)
− lnK 6 ln ln r + ln j +K ′ ,

for a certain fixed constant K ′ > 0. Using this and noting that αj > α0/2 for every j ∈ N and
that 25/4/(21/4 − 1) < 16, we have, when λ→∞,

sup
j∈N

1

(αj − αj+1) 2j/2r2
ln

[
4r2(1 + λ)23j/2(

1− e−αjr2
)
Υ2(Dj)

]

6
16

α0r2
sup
j∈N

2 ln 2 + 2 ln r + ln(1 + λ) + 3j ln 2/2− ln
(
1− e−αjr

2)− ln Υ2(Dj)

2j/4

=
1

4 lnλ

[
2 ln r + lnλ+O

(
e−α0r2/2

)
+O(ln ln r) +O(1)

]
=

1

2
+ o(1) .

Therefore, the condition (3.1) is satisfied for λ large enough. Let λ1 > λ0 such that this condition
is satisfied for all λ > λ1, and such that 4λ1(lnλ1)2 > K. We now take λ > λ1 and we define

µ = 1− K

8λ(lnλ)2
.

Let n > 1, and let A ⊂ Z2
n with |A| =

⌈
µnd

⌉
(which implies that |A| > n2/2, since µ > 1/2). We

now consider a dormitory hierarchy (Aj , Cj)j6J given by Lemma 3.3, so that we have

|AJ | > |A| − n2

2
>

(
µ− 1

2

)
n2 .

First, Lemma 3.4 entails that for every C ∈ C0, there exists a C-toppling procedure fC such that
the property P(0) holds with these procedures. Then, Lemma 3.1 ensures that 1 + L(AJ , J )
dominates a geometric random variable of parameter

exp
(
− αJ |AJ |

)
6 exp

(
− κn2

)
with κ =

α0

2

(
µ− 1

2

)
.
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We now check that κ > ψ(µ) for λ large enough, in order to apply Lemma 2.2. When λ→∞, we
have

κ− ψ(µ) =
α0

2

(
µ− 1

2

)
− ψ(µ) =

α0

2
− α0K

16λ(lnλ)2
− α0

4
− µ| lnµ| − (1− µ)

∣∣ ln(1− µ)
∣∣

=
K

4λ lnλ
+O

(
1

λ2(lnλ)3

)
− K

8λ lnλ
+O

(
ln lnλ

λ(lnλ)2

)
=

K

8λ lnλ
+ o

(
1

λ lnλ

)
,

which shows that this quantity is strictly positive when λ is large enough, concluding our proof
that µ > µc(λ), leading to the claimed upper bound (1.2), with c = K/8.

4 The transient case: proof of Theorem 1.3

We now turn to the simpler case of dimension d > 3. Given n > 1 and A ⊂ Zdn, we consider
the trivial hierarchy with only one level, that is to say, J = 0, A0 = A and C0 = {A}. Then,
as explained in paragraph 1.5, compared to the recursive proof in dimension 2, we only keep the
initialization step. Indeed, we will see that the results in dimension d > 3 are easy consequences of
the initialization step of the previous proof, more precisely of Lemma 6.2.

4.1 Low sleep rate: proof of the bound (1.3)

Let d > 3, and let K > 0 be the constant given by Lemma 2.5 associated with d (note that we
have K < 1). For every λ < K8/e and n > 1, we consider

µ =
e

K8
λ , v =

⌈
µnd

⌉
, α = | lnλ| − 2| lnK| and β = 1− 2| lnK|

| lnλ|
.

We show that, provided that λ is small enough, we have µ > µc(λ). To this end, we wish to apply
Lemma 6.2 with these parameters and r = +∞, and for this we have to check the condition (6.3).
For every fixed λ < K8/e, since α > 0 and β ∈ (0, 1), we have

lim
n→∞

exp
[
α
(
1− (1− β)v

)]
6 lim

n→∞
exp

[
α
(
1− (1− β)µnd

)]
= 0 ,

implying that, for n large enough, we have

λ
(
eα − 1

)
= K2 − λ 6 K2 6 K

(
1− eα(1−(1−β)v)

)
,

which is precisely the required condition (6.3). Thus, we may apply Lemma 6.2 to deduce that,
for n large enough, for every A ⊂ Zdn with |A| =

⌈
µnd

⌉
, the variable NB (the number of visits of

the set of configurations with “many” active particles, as defined in the statement of Lemma 6.2)
dominates a geometric variable with parameter

exp
(
− α

⌊
β|A|

⌋)
6 exp

(
− α

⌊
βµnd

⌋)
,

and so does the number of topplings H(A), since H(A) > NB. Note now that, when λ→ 0,

αβµ =

(
1− 2| lnK|

| lnλ|

)2 e

K8
λ| lnλ| =

e

K8
λ| lnλ| − 4e| lnK|

K8
λ+ o(λ) ,

while

ψ(µ) = µ| lnµ|+ (1− µ)| ln(1− µ)| =
e

K8
λ| lnλ| − 8e| lnK|

K8
λ+ o(λ) .
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Therefore, writing

κ =
e

K8
λ| lnλ| − 6e| lnK|

K8
λ ,

we deduce that, for λ large enough, for n large enough, we have

exp
(
− α

⌊
βµnd

⌋)
6 exp

(
− κnd

)
and κ > ψ(µ) ,

implying that µ > µc(λ) by virtue of Lemma 2.2, which shows (1.3) with c = e/K8.

4.2 High sleep rate: proof of the bound (1.4)

Let d > 3, and let K > 0 be the constant given by Lemma 2.5 applied in dimension d. Let λ > 1
and let

µ = 1− K

16λ lnλ
.

We assume that λ is large enough so that µ > 0. Let α = K/(2λ), let β = 1/2, let n > 1
and v =

⌈
µnd

⌉
. As in section 4.1, the condition (6.3) is satisfied provided that λ and n are large

enough, since λ
(
eα − 1

)
∼ λα = K/2 when λ → ∞. Thus, it follows from Lemma 6.2 that, for

every A ⊂ Zdn with |A| =
⌈
µnd

⌉
, the variable NB dominates a geometric variable with parameter

exp

(
−α

⌊
|A|
2

⌋)
= exp

(
−K

2λ

⌊⌈
µnd

⌉
2

⌋)
6 exp

(
−K

8λ
nd
)
,

for λ and n large enough. Now, when λ→∞, we have

ψ(µ) = ψ

(
K

16λ lnλ

)
∼ K

16λ lnλ
ln

(
16λ lnλ

K

)
∼ K

16λ
.

Thus, for λ large enough, we have K/(8λ) > ψ(µ), which allows us to apply Lemma 2.2 to deduce
that µ > µc(λ), concluding the proof of the upper bound (1.4) with c = K/16.

5 Construction of the dormitory hierarchy

The goal of this section is to detail the construction the hierarchical structure on the settling set A.
The method differs depending on the regime of sleep rate considered, but the only difference is the
definition of C0. Hence, we start by explaining the recursive construction of the hierarchy once C0

is defined, which is common in the two regimes, before detailing the construction of this first level
in the two regimes.

5.1 Inductive construction

Lemma 5.1. Let d, n, v, D0 > 1, let Dj = 6jD0 for every j > 1 and let A ⊂ Zdn. Assume
that A0 ⊂ A is such that |A0| > 8v(6n/D0)d and that C0 is a partition of A0 such that, every
cluster C ∈ C0 is bD0/(12v)c-connected and satisfies |C| > v. Then, one can complete (A0, C0)
into a (v, D)-dormitory hierarchy (Aj , Cj)j6J on A such that

|AJ | > |A0| − 4v

(
6n

D0

)d
. (5.1)
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We proceed by induction, constructing two levels at each step. The idea is that, once the
partition C2j is defined, we construct C2j+1 and C2j+2 by keeping the clusters C ∈ C2j which are of
size |C| > 2j+1v and merging as many pairs or triples of the remaining clusters as possible, while
ensuring that doing so, we do not create any cluster of diameter larger than D2j . The remaining
clusters of C2j are thrown away. To merge three clusters of C2j , we simply merge two of them
in C2j+1, before merging the resulting cluster with the third one when passing to C2j+2.

Proof. We construct the sequence Aj and the partitions Cj recursively. To obtain the lower
bound (5.1), it is enough to ensure that, at each level j, we have

∣∣A0 \Aj
∣∣ 6 2v(6n)d

b(j−1)/2c∑
i=0

2i

(D2i)d
. (5.2)

Indeed, if the above bound is satisfied, then we have

∣∣A0 \AJ
∣∣ 6 2v

(
6n

D0

)d +∞∑
i=0

(
2

62d

)i
= 2v

(
6n

D0

)d
× 1

1− 2/62d
6 4v

(
6n

D0

)d
.

Now assume that j ∈ N and that the sets A0, . . . , A2j and the partitions C0, . . . , C2j are
constructed and satisfy the two requirements (i)-(ii) and the property (5.2). Note that this latter
property, together with the assumption |A0| > 4v(6n/D0)d, ensure that A2j 6= ∅. If |C2j | = 1, we
let J = 2j and we stop here, the hierarchy being complete. Thus, we now assume that |C2j | > 2.
Defining the sets (N stands for “narrow”,M stands for “merging”, B for “big” andR for “rubbish”)

N =

{
C ∈ C2j : diamC 6

D2j

6

}
, M =

{
C ∈ N : ∃C ′ ∈ N \{C} , diam

(
C∪C ′

)
6

D2j

2

}
,

B =
{
C ∈ N \M : |C| > 2j+1v

}
and R = N \

(
M∪B

)
,

we let
A2j+2 = A2j+1 =

⋃
C ∈C2j\R

C =
⋃

C ∈M∪B∪ (C2j\N )

C ,

meaning that R corresponds to the part that is thrown away between A2j and A2j+1.

To construct the partitions C2j+1 and C2j+2, we consider the graph structure onM obtained by
declaring any two sets C1, C2 ∈ M to be neighbours if and only if diam(C1 ∪ C2) 6 D2j/2. This
yields a graph with no isolated point, by definition of M. Now, we have the following Lemma
whose simple proof is deferred to the appendix A.5:

Lemma 5.2. For every finite undirected graph G = (V, E) with no isolated point, there exists a
partition of V into sets of cardinality 2 or 3 and diameter (for the graph distance on G) at most 2.

This Lemma yields a partition Π of M into sets of cardinality 2 or 3 and diameter (for the
graph distance we just defined) at most 2. The partition C2j+2 is then obtained by keeping the sets
in C2j \ N and in B as they are and by merging the sets in M in pairs or triples according to this
partition Π. Formally, we let

C2j+2 =
(
C2j \ N

)
∪ B ∪

{ ⋃
C∈P

C , P ∈ Π

}
.
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To construct the intermediate partition C2j+1, we consider a partition Π′ obtained from Π by
keeping the sets of cardinality 2 and splitting each set of cardinality 3 into one set of cardinality 2
and one singleton (chosen arbitrarily), and we let

C2j+1 =
(
C2j \ N

)
∪ B ∪

{ ⋃
C∈P

C , P ∈ Π′

}
.

We now check that the above construction satisfies the required conditions. First, merging two
or three clusters of size at least 2jv yields a cluster of size at least 2j+1v. Besides, if C ∈ C2j \ N ,
meaning that diamC > D2j/6 = D2j−1, then the condition (ii) tells us that C does not come from
a previous merging, meaning that C ∈ C0, which implies that C is bD0/(12v)c-connected, whence

|C| >
diamC

D0/(12v)
>

2vD2j

D0
= 2× 62jv > 2j+1v .

Therefore, the condition (i) holds at ranks 2j + 1 and 2j + 2.

To prove (ii), it remains to check that, for every P ∈ Π, we have

diam
⋃
C∈P

C 6 D2j .

Let P ∈ Π, and let x, y ∈
⋃
C∈P C. Let C1, C2 ∈ P such that x ∈ C1 and y ∈ C2. Since the

graph distance between C1 and C2 in M is at most 2, we know that there exists C3 ∈ M such
that diam(C1 ∪ C3) 6 D2j/2 and diam(C2 ∪ C3) 6 D2j/2, whence

d(x, y) 6 diam
(
C1 ∪ C2

)
6 diam

(
C1 ∪ C3

)
+ diam

(
C3 ∪ C2

)
6 D2j ,

which shows that (ii) holds at ranks 2j + 1 and 2j + 2.

To prove that (5.2) remains true for 2j + 1 and 2j + 2., we only need to show that∣∣A2j+1 \A2j

∣∣ 6 2j+1v

(
6n

D2j

)d
. (5.3)

By definition of R, we know that for every C ∈ R, we have |C| < 2j+1v and diamC 6 D2j/6.
Thus, we may write ∣∣A2j+1 \A2j

∣∣ =

∣∣∣∣ ⋃
C ∈R

C

∣∣∣∣ 6 |R| 2j+1v . (5.4)

If C1, C2 ∈ R with C1 6= C2, we have diam(C1 ∪ C2) > D2j/2 whence, by the triangle inequality,

d(C1, C2) > diam(C1 ∪ C2)− diamC1 − diamC2 >
D2j

2
− 2

D2j

6
=

D2j

6
.

We now distinguish between two cases.

On the one hand, if D2j/6 > n, then N = C2j and, since we assumed that |C2j | > 2, we also
have M = N = C2j , whence R = ∅.

On the other hand, if D2j/6 < n, choosing a vertex in each set of R, we deduce that the
closed balls of radius dD2j/12e centered on these points are pairwise disjoint, whence, using our
formula (2.2) for the volume of the ball,

|R| 6

∣∣Zdn∣∣(
2 dD2j/12e+ 1

)d =

(
6n

D2j

)d
.

In both cases, going back to (5.4), we obtain (5.3), implying that the property (5.2) is inherited
at rank 2j + 1, and thus also at rank 2j + 2, since A2j+2 = A2j+1. The result thus follows by
induction.
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5.2 Dormitory hierarchy for low sleep rate: proof of Lemma 3.2

With the above recursive construction, we easily obtain Lemma 3.2.

Proof of Lemma 3.2. Let D0 > 1, let n > 1 and A ⊂ Z2
n with A > 288n2/(D0)2. For first level of

the hierarchy, we simply take A0 = A and C0 =
{
{x}, x ∈ A

}
. The result then follows by applying

Lemma 5.1 with v = 1 to construct the rest of the hierarchy.

5.3 Dormitory hierarchy for high sleep rate: proof of Lemma 3.3

We now turn to the proof of Lemma 3.3.

Proof of Lemma 3.3. Let r > 1, let Dj = 6j × 96r3, let n > 2r + 1 and let A ⊂ Z2
n such

that |A| > n2/2. The set A0 can be defined as

A0 =
{
x ∈ A : ∃ y ∈ B(x, 2r) ,

∣∣A ∩B(y, 2r)
∣∣ > r2

}
.

Then, we consider the relation on this set A0 obtained by declaring two sites x, y ∈ A to be
connected if d(x, y) 6 8r, and we simply define C0 as the collection of the connected components
of A0 for this relation (in a word, the 8r-connected components of A0).

The property (3.3) follows from this construction, implying also (i) at rank j = 0 (with v = r2).
We now look for a lower bound on |A0|. To this end, we claim that, for every x ∈ Z2

n, we have∣∣(A \A0) ∩B(x, r)
∣∣ < r2 . (5.5)

Indeed, if x ∈ Z2
n does not satisfy the above inequality, then for every y ∈ (A \A0) ∩B(x, r), we

have ∣∣A ∩B(y, 2r)
∣∣ >

∣∣A ∩B(x, r)
∣∣ >

∣∣(A \A0) ∩B(x, r)
∣∣ > r2 ,

which contradicts the fact that y /∈ A0. Using this claim (5.5), we may write (denoting by 0 an
arbitrary point of the torus),∣∣A \A0

∣∣× ∣∣B(0, r)
∣∣ =

∑
y∈Z2

n

1{y∈A\A0}
∣∣B(y, r)

∣∣ =
∑
y∈Z2

n

1{y∈A\A0}
∑
x∈Z2

n

1{d(x, y)6r}

=
∑
x∈Z2

n

∑
y∈Z2

n

1{y∈A\A0} 1{d(x, y)6r} =
∑
x∈Z2

n

∣∣(A \A0) ∩B(x, r)
∣∣ 6 r2 n2 ,

which implies that ∣∣A \A0

∣∣ 6
r2 n2∣∣B(0, r)

∣∣ =
r2 n2

(2r + 1)2
6

n2

4
,

using the fact that n > 2r + 1. Since n2/4 < n2/(64r4) = 4v(6n/D0)2 and 8r = bD0/(12v)c, we
may apply Lemma 5.1 with v = r2 to obtain the whole hierarchy.

6 Initialization: proof of Lemma 3.4

The goal of this section is to prove that, for every set C ∈ C0, the number of loops of colour 0
produced by the distinguished vertex x?C while C is stabilized (using an appropriate toppling pro-
cedure) is exponentially large in the size of C.
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6.1 Active particles amidst sleeping ones

The following Lemma tells us that, when at least a fraction of the particles are already sleeping, one
can find an active particle surrounded by many sleeping particles so that, if toppled, this particle
has good chances to wake up many particles.

Lemma 6.1. Let d, n, r, v > 1 and β ∈ (0, 1). Let C ⊂ Zdn be a non-empty and 8r-connected subset
of the torus (see paragraph 2.1 for the definition of r-connectedness) such that, for every x ∈ C,
we have |C ∩B(x, 4r)| > v. Then, for every R ⊂ C such that 0 < |R| 6 β|C|, there exists x? ∈ R
such that ∣∣(C \R) ∩B(x?, 16r)

∣∣ > (1− β) v .

Proof. Let d, n, r, v > 1, β ∈ (0, 1), and C ⊂ Zdn be as in the statement, and let R ⊂ C such
that 0 < |R| 6 β|C|. Let us consider the set

Y =
{
Y ⊂ C : ∀ y, y′ ∈ Y , y 6= y′ ⇒ d(y, y′) > 8r

}
,

and choose Y ∈ Y which is maximal for inclusion (we have Y 6= ∅ since ∅ ∈ Y). Using our
assumption on C, we can write

|C| >

∣∣∣∣C ∩ ⋃
y∈Y

B(y, 4r)

∣∣∣∣ =
∑
y∈Y

∣∣C ∩B(y, 4r)
∣∣ > v |Y | , (6.1)

where we used that the above union is disjoint. We now notice that

C ⊂
⋃
y∈Y

B(y, 8r) ,

otherwise there would exist a point z ∈ C \ ∪y∈YB(y, 8r) and we would have Y t {z} ∈ Y, which
would contradict the maximality of Y . Therefore, we have∣∣C \R∣∣ =

∣∣∣∣ ⋃
y∈Y

(
(C \R) ∩B(y, 8r)

)∣∣∣∣ 6
∑
y∈Y

∣∣(C \R) ∩B(y, 8r)
∣∣ .

Combining this with (6.1) and recalling that |C \R| > (1− β)|C|, we obtain that∑
y∈Y

∣∣(C \R) ∩B(y, 8r)
∣∣ >

∣∣C \R∣∣ > (1− β)|C| > (1− β) v |Y | .

Therefore, by the pigeonhole principle, we can find y ∈ Y such that∣∣(C \R) ∩B(y, 8r)
∣∣ > (1− β) v . (6.2)

If y ∈ R, then x? = y is a solution of the problem. Thus, we assume henceforth that y /∈ R. Since C
is 8r-connected and R 6= ∅, we may consider a path y = y0, y1, . . . , yk with k ∈ N, yk ∈ R and,
for every j < k, yj ∈ C \R and d(yj , yj+1) 6 8r. We now consider

j0 = min
{
j ∈ {0, . . . , k} : B(yj , 4r) ∩R 6= ∅

}
,

that is to say, we look at the first point of the path which sees an active site nearby. The above set
is non-empty because at least yk ∈ R. We then choose a point x? ∈ B(yj0 , 4r) ∩R. If j0 = 0, then
we have

B(x?, 16r) ⊃ B(y0, 8r) = B(y, 8r) ,

29



whence, recalling (6.2),∣∣(C \R) ∩B(x?, 16r)
∣∣ >

∣∣(C \R) ∩B(y, 8r)
∣∣ > (1− β) v .

Otherwise, if j0 > 0, then, by minimality of j0, we have B(yj0−1, 4r) ∩R = ∅. However, following
our assumption on C, we know that |C ∩B(yj0−1, 4r)| > v. Together, these two facts imply that∣∣(C \R) ∩B(yj0−1, 4r)

∣∣ > v .

Now, since
d
(
x?, yj0−1

)
6 d

(
x?, yj0

)
+ d
(
yj0 , yj0−1

)
6 4r + 8r = 12r ,

we deduce that B(x?, 16r) ⊃ B(yj0−1, 4r), whence∣∣(C \R) ∩B(x?, 16r)
∣∣ > v > (1− β) v ,

concluding the proof of the Lemma.

6.2 The metastability phenomenon

By the metastability phenomenon we mean that, starting from everyone active inside a set C ∈ C0,
during the stabilization of C the configuration escapes and returns an exponentially large number
of times in the set of configurations with “many” active particles. This Lemma is used again
when d > 3 (see section 4), taking r = +∞ (with the convention that Υd(∞) = limr→∞Υd(r)).
Recall the definition of toppling procedures which was given in section 2.5.

Lemma 6.2. Let d, v > 1, let λ, α > 0, β ∈ (0, 1) and r ∈ N ∪ {∞} \ {0} such that

λ
(
eα − 1

)
6 Υd(16r)

(
1− eα(1−(1−β)v)

)
. (6.3)

For every n > 1 and every subset A ⊂ Zdn, if (Aj , Cj)j6J is a dormitory hierarchy on A such
that |C ∩ B(x, 4r)| > v for every C ∈ C0 and every x ∈ C, then, for every C ∈ C0 there exists
a C-toppling procedure f such that, considering the set of configurations

B =
{
R ⊂ A : |R ∩ C| > β|C|

}
,

the number NB of visits of this set B during the stabilization of C (i.e., one plus the number of
returns to B from a configuration out of B) dominates a geometric random variable with param-
eter exp

(
− α bβ|C|c

)
. Moreover, this domination is uniform with respect to the first configura-

tion R /∈ B reached by the system, that is to say, writing, for every t ∈ N,

(Rt, ht, `t) =
(
ΦC

)(t)
(A, 0, 0) =

(
ΦC

)(t)
(C, 0, 0)

and defining τ = inf{t ∈ N : Rt /∈ B}, then for every R ⊂ A such that P(Rτ = R) > 0, conditionally
on {Rτ = R}, we have the aforementioned stochastic domination.

Proof. With the notation of the statement, Lemma 6.1 (which remains true if r =∞) tells us that
there exists a function f0 : P(C) \ {∅} → C such that, for every R ⊂ C with 0 < |R| 6 β|C| (for
the other configurations, the value of f0 can be chosen arbitrarily), we have f0(R) ∈ R and∣∣(C \R) ∩B(f0(R), 16r

)∣∣ > (1− β) v . (6.4)
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We now turn this function into a C-toppling procedure f by adding the rule that that the distin-
guished vertex is toppled in priority: thus, for every configuration R ∈ P(C) \ {∅}, we set

f(R) =

{
x?C if x?C ∈ R ,
f0(R) otherwise.

Namely, we topple the distinguished particle if it is awaken, else if at least a fraction 1−β is sleeping
we topple a particle surrounded by many sleeping particles, and otherwise we topple whatever active
particle. Let us consider the “boundary” set:

∂B =
{
R ⊂ A \ {x?C} : |R ∩ C| =

⌊
β|C|

⌋}
. (6.5)

We claim that P(Rτ ∈ ∂B) = 1, that is to say, when we exit from B we necessarily arrive in ∂B.
Indeed, one can only exit from B when a particle falls asleep. If this site x which falls asleep when
exiting from B is not x?C , it implies that x?C was already sleeping, because otherwise x?C would have
been toppled instead of x (recall that the distinguished vertex has priority over all other sites).
Therefore, when we exit from B, the distinguished vertex is always sleeping.

Thus, to prove the result, we may consider the stabilization of C starting from a deterministic
initial configuration R0 ∈ ∂B and, for every t ∈ N, we write

(Rt, ht, `t) =
(
ΦC

)(t)
(R0, 0, 0) ,

overriding the notation of the statement, and we prove that, starting from the initial configuration,
one plus the number of visits of B dominates a geometric variable. The toppling procedure defines
a Markov chain on the state space P(A), and we consider the two following stopping times of this
Markov chain:

TB = inf
{
t ∈ N : Rt ∈ B

}
and Tsleep = inf

{
t ∈ N : Rt ∩ C = ∅

}
.

Let us now show that the process

Mt = 1{t<TB} e
−αNt where Nt =

∣∣Rt ∩ C \ {x?C}∣∣
is a supermartingale with respect to the filtration (Ft)t∈N generated by (Rt)t∈N.

First, note that if Rt ∈ B or Rt∩C = ∅, then we have Mt+1 = Mt. Besides, recall that, as soon
as the distinguished vertex x?C is active, it is toppled in priority. Yet, the distinguished vertex is not
counted in Nt, and it cannot wake up anyone in C, because w(x?C , j)∩C = ∅ for all j ∈ N, following
our definition (2.5) of w (which indicates which sites can be awaken by the loops of colour j). Hence,
if x?C ∈ Rt then we necessarily have Nt+1 = Nt. What’s more, since the distinguished vertex cannot
wake up anyone in C, if x?C ∈ Rt and Rt /∈ B then we still have Rt+1 /∈ B. Thus, we proved the
implication {

Rt ∈ B
}
∪
{
Rt ∩ C = ∅

}
∪
{
x?C ∈ Rt

}
⊂
{
Mt+1 = Mt

}
. (6.6)

Let us now assume that Rt /∈ B, Rt∩C 6= ∅ and x?C /∈ Rt, and let us write x = f(Rt) = f0(Rt), which
is the next site to be toppled. Recall that I

(
x, ht(x)

)
is the Bernoulli variable which decides if x falls

asleep or performs a loop, in which case this loop covers the set Γ
(
x, `t(x), j

)
with j = J

(
x, `t(x)

)
.

Recalling that, since x 6= x?C , we have w(x, j) = C0(x) = C, we can write

Nt+1 −Nt = −I(x, ht(x)) +
(
1− I(x, ht(x))

)
×
∣∣Γ(x, `t(x), j

)
∩
(
C \ (Rt ∪ {x?C})

)∣∣
> −I(x, ht(x)) +

(
1− I(x, ht(x))

) ∑
y ∈B(x, 16r)∩C\(Rt∪{x?C})

1{y∈Γ(x, `t(x), j)} .
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Recall now that the lower bound (6.4) ensures that the above sum contains at least d(1− β)v − 1e
terms. Besides, each of these terms dominates a Bernoulli variable with parameter Υd(16r),
where Υd is the function which was defined in (2.11). Even though these variables may not be
independent, we have the following result whose elementary proof is deferred to the appendix A.6.

Lemma 6.3. Let n ∈ N and let X1, . . . , Xn be Bernoulli random variables with parameter p ∈ [0, 1]
(non necessarily independent). Then, for every c > 0, we have

E
[
e−c(X1+···+Xn)

]
6 1− p+ pe−cn .

Using this result, we deduce that, on the event
{
Rt /∈ B

}
∩
{
Rt ∩ C 6= ∅

}
∩
{
x?C /∈ Rt

}
, we have

E
(
Mt+1

∣∣Ft) 6 Mt × E
(
e−α(Nt+1−Nt)

∣∣Ft) 6 Mt

(
λ

1 + λ
eα +

1−Υd(16r)
(
1− eα(1−(1−β)v)

)
1 + λ

)

= Mt

(
1 +

λ
(
eα − 1

)
−Υd(16r)

(
1− eα(1−(1−β)v)

)
1 + λ

)
6 Mt ,

using our assumption (6.3). Recalling (6.6), we deduce that (Mt) is a supermartingale with respect
to (Ft). Hence, using Doob’s Theorem and using that R0 ∈ ∂B, we obtain that, for every m > 0,

E
[
MTB∧Tsleep∧m

]
6 M0 = exp

(
− α|R0 ∩ C|

)
= exp

(
− α

⌊
β|C|

⌋)
,

which implies by Fatou’s Lemma that

E
[
MTB∧Tsleep

]
= E

[
lim inf
m→∞

MTB∧Tsleep∧m

]
6 lim inf

m→∞
E
[
MTB∧Tsleep∧m

]
6 exp

(
− α

⌊
β|C|

⌋)
,

whence
P
(
Tsleep < TB

)
= E

[
MTB∧Tsleep

]
6 exp

(
− α

⌊
β|C|

⌋)
.

This being true for all starting configurations R0 ∈ ∂B, the result follows.

6.3 Concluding proof of Lemma 3.4

Let λ > 1, and let r and α0 be defined by (3.4). Let D ∈ (N \ {0})N, let n > 1, let A ⊂ Z2
n

and assume that (Aj , Cj)j6J is a (r2, D)-dormitory hierarchy on A such that every set C ∈ C0

is 8r-connected and satisfies (3.3).

We wish to apply Lemma 6.2 with α = 3α0/2, β = 5/6 and v = r2. To do so, we need to
check that the condition (6.3) is satisfied, at least for λ large enough. Replacing α0 and r by their
expressions given by (3.4), we have

exp
[
α
(
1− (1− β)v

)]
= exp

[
3α0

2

(
1− r2

6

)]
6 exp

[
3K

2λ lnλ

(
1− 64λ(lnλ)2

6K

)]
λ→∞∼ 1

λ16
,

whence eα(1−(1−β)v) 6 1/8 for λ large enough. Combining this with the lower bound on Υ2 given
by Lemma 2.5, we deduce that, for λ large enough,

λ
(
eα − 1

)
−Υ2(16r)

(
1− eα(1−(1−β)v)

)
6 λ

[
exp

(
3K

2λ lnλ

)
− 1

]
− (7/8)K

ln r + ln 16
. (6.7)
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Using now that ln r ∼ (lnλ)/2 when λ→∞, we may write

λ

[
exp

(
3K

2λ lnλ

)
− 1

]
− (7/8)K

ln r + ln 16

λ→∞∼ 3K

2 lnλ
− 7K

4 lnλ
= − K

4 lnλ
< 0 .

Plugging this into (6.7), we deduce that the condition (6.3) necessary to apply Lemma 6.2 is
satisfied for λ large enough. Thus, using this Lemma we deduce that for every C ∈ C0 there exists
a C-toppling procedure f such that NB, the number of visits of the set B defined in the statement
of Lemma 6.2, dominates a geometric variable of parameter

exp

(
−3α0

2

⌊
5|C|

6

⌋)
.

Recalling that |C| > r2 with r →∞ when λ→∞, we have b5|C|/6c > 3|C|/4 provided that that λ
is chosen large enough so that r2 > 12. Thus, for λ large enough, for every C ∈ C0, the variable NB
dominates a geometric random variable with parameter exp

(
− 9α0|C|/8

)
.

Now it remains to deduce a lower bound on the number of sleeps performed by the distinguished
vertex before stabilization. As in the proof of Lemma 6.2, we consider the process starting from a
fixed initial configuration R0 ∈ ∂B, with ∂B given by (6.5), so that the number of visits of B from
this initial configuration is NB − 1. Let us introduce two new random times: first,

T? = inf
{
t ∈ N : x?C ∈ Rt

}
,

which is the first time when the distinguished vertex is awaken (recall that x?C /∈ R0 because we
start from R0 ∈ ∂B), and, for t ∈ N,

T tB = inf
{
t′ > t : Rt′ ∈ B

}
.

We also define a deterministic time t0 = b2|C| ln |C|/ lnλc, and we now look for a lower bound on
the probability of the event that, starting from R0, we wake up the distinguished particle before t0
and, after doing this, we visit B before stabilization, that is to say,

E =
{
T? 6 t0

}
∩
{
T T?B < Tsleep

}
. (6.8)

To this end, we write

P
(
Ec
)

= P
({
T? > t0

}
∪
{
T T?B > Tsleep

})
= P

({
T? > t0

}
∪
{
T T?B =∞

})
6 P

({
T? > t0

}
∪
{
T t0B =∞

})
6 P

(
Tsleep 6 t0

)
+ P

({
T? > t0

}
∩
{
t0 < Tsleep

})
+ P

({
T t0B =∞

}
∩
{
t0 < Tsleep

})
. (6.9)

We now control each of these terms. To deal with the first term, we note that Tsleep > NB, which
we proved to dominate a geometric variable with parameter exp

(
− 9α0|C|/8

)
, whence

P
(
Tsleep 6 t0

)
6 P

(
NB 6 t0

)
6 t0 exp

(
−9α0|C|

8

)
.

To deal with the third term, we note that, if NB > t0, that is to say, we have at least t0 returns
to B, then at least one of these returns must occur after time t0, whence

P
({
T t0B =∞

}
∩
{
t0 < Tsleep

})
6 P

(
NB 6 t0

)
6 t0 exp

(
−9α0|C|

8

)
.
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To deal with the second term, we note that, C being 8r-connected, we have diamC 6 8r|C|.
Thus, as long as the distinguished vertex sleeps, at each step, the probability to wake it up is at
least Υ2

(
8r|C|

)
/(1 + λ). Therefore, we have

P
({
T? > t0

}
∩
{
t0 < Tsleep

})
6

(
1−

Υ2

(
8r|C|

)
1 + λ

)t0
.

Plugging these three bounds into (6.9) and using the lower bound on Υ2 given by Lemma 2.5, we
get

P
(
Ec
)

6 2t0 e
−9α0|C|/8 +

(
1−

Υ2

(
8r|C|

)
1 + λ

)t0
6

4|C| ln |C|
lnλ

e−9α0|C|/8 + exp

(
−2|C| ln |C|

lnλ
× 1

1 + λ
× K

ln 8 + ln r + ln |C|

)
6

4|C|2

lnλ
e−9α0|C|/8 + exp

(
− 4K|C| ln r

(1 + λ) lnλ(3 ln 2 + 3 ln r)

)
=

e−α0|C|

2λ
×

[
8λ|C|2

lnλ
e−α0|C|/8 + 2λ exp

(
α0|C| −

4K|C| ln r
3(1 + λ) lnλ(ln 2 + ln r)

) ]
.

We now wish to show that, for λ large enough, for every |C| > r2, the quantity between the brackets
is smaller than 1. Defining

M = sup
x>0

(
x2e−x/16

)
,

we may write

2λP
(
Ec
)

e−α0|C|
6

8Mλ3 lnλ

K2
e−α0r2/16 + 2λ exp

[(
K

λ lnλ
− 4K ln r

3(1 + λ) lnλ
(

ln 2 + ln r
))|C|] . (6.10)

On the one hand, we have

8Mλ3 lnλ

K2
e−α0r2/16 >

8Mλ3 lnλ

K2
e−4 lnλ =

8M lnλ

K2λ

λ→∞−→ 0 . (6.11)

On the other hand, we have

K

λ lnλ
− 4K ln r

3(1 + λ) lnλ
(

ln 2 + ln r
) λ→∞∼ K

λ lnλ
− 4K

3λ lnλ
= − K

3λ lnλ
,

whence, for λ large enough,

K

λ lnλ
− 4K ln r

3(1 + λ) lnλ
(

ln 2 + ln r
) 6 − K

6λ lnλ
,

implying that, for |C| > r2,

2λ exp

[(
K

λ lnλ
− 4K ln r

3(1 + λ) lnλ
(

ln 2 + ln r
))|C|] 6 2λ exp

(
− K

6λ lnλ
× 64λ(lnλ)2

K

)
=

2

λ29/3

λ→∞−→ 0 . (6.12)

34



Plugging (6.11) and (6.12) into (6.10), we deduce that, for λ large enough, for every |C| > r2, we
have

P
(
Ec
)

6
1

2λ
exp

(
− α0|C|

)
.

Recalling the definition (6.8) of the event E , note that, if E is realized, it means that, starting
from R0 ∈ ∂B, the distinguished particle is waken up, after which we visit B and, sooner or later,
we reach ∂B again, which implies that the distinguished particle fell asleep. Since our estimate on E
is valid uniformly over all the initial configurations R0 ∈ ∂B, we have a renewal sequence, and we
deduce that S(C), which denotes the number of x?C-sleeps during the stabilization of C, dominates
a geometric random variable with parameter exp

(
− α0|C|

)
/(2λ).

To conclude our proof, there only remains to translate this result into a lower bound on the
number of loops of colour 0. Following Lemma 2.3, we have the stochastic domination

L(C, 0) �
S(C)∑
i=1

(Xi − 1) ,

where the variables (Xi) are i.i.d. geometric variables with parameter b = 2λ/(2λ + 1) and are
independent of S(C). Using now Lemma 2.4, we deduce that 1 + L(C, 0) dominates a geometric
variable with parameter

b exp
(
− α0|C|

)
/(2λ)

1− b+ b exp
(
− α0|C|

)
/(2λ)

=
exp

(
− α0|C|

)
1 + exp

(
− α0|C|

) 6 exp
(
− α0|C|

)
,

concluding the proof of P(0).

7 Inductive step: proof of Lemma 3.1

Let d, λ, v, (Dj), (αj), n, A, (Aj , Cj) be as in the statement. We assume that 0 6 j < J is such
that the property P(j) holds, and we wish to establish the property P(j + 1), that is to say, we
need to pass from a statement about the loops of colour j produced by the clusters of Cj to a
statement about the loops of colour j + 1 produced by the clusters of Cj+1, with the constant αj
being replaced with αj+1.

We start by translating our aim into a statement about the number of loops of colour j. Namely,
we show that, to establish P(j + 1), it is enough to prove the stochastic domination:

∀C ∈ Cj+1 1 + L(C, j) � Geom(a) where a =
1

2j+2(1 + λ)
exp

(
− αj+1|C|

)
. (7.1)

Indeed, it follows from Lemma 2.3 that

∀C ∈ Cj+1 1 + L(C, j + 1)
d
=

S(C)+L(C, 0)+···+L(C, j)∑
i=1

(Xi − 1) >
1+L(C, j)∑

i=1

(Xi − 1) ,

where the variables (Xi)i∈N are i.i.d. geometric variables with parameter

b =
2j+2(1 + λ)− 2

2j+2(1 + λ)− 1
.
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Thus, using Lemma 2.4 about the sum of a geometric number of geometrics minus one, the state-
ment (7.1) would imply that, for every C ∈ Cj+1, the variable 1+L(C, j+1) dominates a geometric
variable with parameter

ab

1− b+ ab
6

ab

1− b
=
(
2j+2(1 + λ)− 2

)
a 6 2j+2(1 + λ) a = exp

(
− αj+1|C|

)
,

which is precisely P(j + 1). Thus, there only remains to prove (7.1).

We now turn to the study of the number of loops of colour j produced by a cluster C ∈ Cj+1.
We start by distinguishing between two cases. First, if C ∈ Cj then, since |C| > 2b(j+1)/2cv > 2j/2v,
the claim (7.1) follows from our assumption (3.1) on the sequence (αj), which entails that

exp
(
− αj |C|

)
6 exp

[
− (αj − αj+1)2j/2v − αj+1|C|

]
6

1

2j+2(1 + λ)
exp

(
− αj+1|C|

)
= a .

Hence, we now assume that C ∈ Cj+1 \ Cj . In this case, following property (ii) of the hierarchy,
we have diamC 6 Dj and we can write C = C0 ∪ C1 with C0, C1 ∈ Cj . To simplify the notation,
we simply write x?0 = x?C0

and x?1 = x?C1
. Upon exchanging the names C0 and C1, we may assume

that |C0| > |C1| and x?C = x?0 (recall that, as explained in section 2.3, the distinguished vertex of the
union of two clusters is the distinguished vertex of the largest of the two clusters). For k ∈ {0, 1},
let us write qk = exp

(
− αj |Ck|

)
, so that our induction hypothesis P(j) tells us that 1 + L(C0, j)

and 1 + L(C1, j) respectively dominate geometric random variables of parameter q0 and q1.

Some notation. Recall the ping-pong mechanism described in section 2.6. To shorten notation,
we write

ε : i ∈ N 7−→ i mod. 2 =

{
0 if i is even,

1 otherwise.

Thus, the stabilization of C = C0∪C1 is composed of a series of stabilizations where, during the i-th
stabilization (the numbering starting at 0), we stabilize the set Cε(i). Let us write R0 = C (since
the configuration out of C has no impact on the stabilization of C, we could as well take R0 = A)
and h0 = `0 = 0, and let us define recursively, for every i ∈ N,

(Ri+1, hi+1, `i+1) = StabCε(i)
(Ri, hi, `i) , (7.2)

where Stab is the stabilization operator defined by (2.6). Note that if i ∈ N is such that Ri∩C = ∅
(i.e., both sets are stabilized), then this definition gives (Rj , hj , `j) = (Ri, hi, `i) for all j > i. For
every i ∈ N, we denote by Li the the number of loops of colour j produced by the distinguished
vertex x?ε(i) during the i-th stabilization. Formally, for every i ∈ N, we have

Li =
∣∣∣{ ` ∈ {`i(x?ε(i)), . . . , `i+1

(
x?ε(i)

)
− 1
}

: J
(
x?ε(i), `

)
= j

}∣∣∣ .
Note that the variables (Li)i∈N are not independent because, for example, the second stabilization
of C0 (which produces L2 loops at x?0) depends on the configuration which results from the previous
stabilizations, in particular it depends on the sites of C0 which have been reactivated during the
stabilization of C1.

Number of good stabilizations. We now define the random number

N = inf
{
i > 1 : C0 6⊂ R2i or C1 6⊂ R2i+1

}
. (7.3)
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When 1 6 i < 2N − 1, after the i-th stabilization (during which the set Cε(i) is stabilized), the
other set Cε(i+1) is fully active. This means that the loops of colour j produced by the distinguished
vertex x?ε(i) during the i-th stabilization have entirely covered the other set (recall that only these

loops are allowed to wake up the sites in the other set, as explained in section 2.4).

Thus, each of the first N stabilizations of C0 and C1 starts with the corresponding set fully
active. Note that we do not require anything on the first stabilization of C0 because, in any
case, since C1 is already fully active at the beginning of the procedure, it is still active after the
first stabilization of C0, so that this first stabilization of C0 does not need to wake up C1 for the
mechanism of reciprocal activation to be able to go on.

The induction relation. The key inequality which yields the induction property is

L(C, j) =
+∞∑
i=0

L2i >
N−1∑
i=0

L2i . (7.4)

Note that we only count the loops produced during the even steps because we are only interested
in the number of loops emerging from x?0.

Our aim: a geometric sum of i.i.d. geometric variables. We will show later that N is a
geometric variable, and we want to show that the sum in (7.4) dominates a geometric variable.
If the variables 1 + L2i were i.i.d. geometric variables independent of N , we could conclude using
Lemma 2.4 that 1 + L(C, j) dominates a geometric variable, whose parameter has an explicit
expression in the two parameters.

A first issue is that the variables 1 + L2i are not i.i.d. geometric variables, and this family not
even dominates a family of i.i.d. geometrics. Even though it follows from the induction hypothesis
that 1+L0 dominates a geometric with parameter q0, this is not the case of the subsequent variables,
because for i > 2N some stabilizations may start from a set which is not fully active. In fact with
probability 1 we even have Li = 0 for i large enough. To solve this problem, we show below
that we can replace this sequence L with another sequence L′ which does dominate a sequence of
independent geometrics.

An infinite “Sisyphus” sequence. It is convenient to consider another sequence L′ = (L′i)i∈N
which is defined similarly, with the only difference that, after each stabilization, we proceed with
the next stabilization assuming that all sites of the other set have been awaken. Formally, we start
with the same initial parameters R′0 = R0 = C, h′0 = h0 = 0 and `′0 = `0 = 0 and we define
recursively, for i ∈ N, (

R′i+1, h
′
i+1, `

′
i+1

)
= StabCε(i)

(
Cε(i), h

′
i, `
′
i

)
.

Note that the only difference with respect to the previous definition (7.2) is that as first argument
of the stabilization operator Stab we have Cε(i) instead of Ri, which means that we start the i-
th stabilization with the set Cε(i) fully active, regardless of what happened during the previous
stabilizations. We then also define L′i to be the number of loops of colour j produced by the
distinguished vertex of Cε(i) during the i-th stabilization, that is to say,

L′i =
∣∣∣{ ` ∈ {`′i(x?ε(i)), . . . , `′i+1

(
x?ε(i)

)
− 1
}

: J
(
x?ε(i), `

)
= j

}∣∣∣ ,
and we define N ′ exactly as N was defined in (7.3) but replacing R with R′. One can then notice
that, by definition of N , for every i < 2N , we have L′i = Li and R′i+1 = Ri+1.
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We claim that we also have N ′ = N . On the one hand, if C0 6⊂ R2N = R′2N then by def-
inition we have N ′ = N . Otherwise, if C0 ⊂ R2N = R′2N , then we also have L′2N = L2N
whence R′2N+1 = R2N+1 6⊃ C1, which also implies that N ′ = N . Therefore, in both cases we
have N ′ = N .

We may now rewrite the induction relation (7.4) as

L(C, j) >
N−1∑
i=0

L2i =
N ′−1∑
i=0

L′2i . (7.5)

The dependency we want to get rid of. With (7.5), the problem is now much simplified,
because the variables (L′i) are independent, and for every i ∈ N, we have that 1 +L′2i is distributed
as 1 + L(C0, j) which, by the induction hypothesis, dominates a geometric random variable with
parameter q0.

However, this sequence L′ is not independent of N ′. Yet, this dependency can be controlled,
and we show below that L′ and N ′ are positively correlated.

The key independence property thanks to the coloured loops. An important property
of this new sequence L′ is that it is independent of the loops of colour j produced by the two
distinguished vertices:

(L′i)i∈N ⊥
(
Γ(x?k, `, j)

)
k∈{0,1}, `∈N (7.6)

because, among the loops emitted by x?0 and x?1, only those of colour 0, . . . , j − 1 can affect the
internal stabilizations of C0 and C1, while the loops of colour j emitted by x?0 are only used to wake
up sites of C1 during the stabilizations of C0, and vice versa. Thus, since this new sequence L′
is constructed precisely by ignoring which sites of the other cluster are reactivated during each
stabilization, we have the above independence property.

This means that, conditioned on L′, we know the number of loops of colour j that can reactivate
the other set, but we have no information about the shapes of these loops of colour j, so that these
loops still behave as i.i.d. excursions. This property would not have hold if we had not coloured
the loops.

Why distinguished vertices ? Along with the above independence property (7.6) which follows
from our colouring of the loops, it is also important that the loops devoted to reactivating C1

(resp. C0) all have the same starting point x?0 (resp. x?1). Indeed, it is crucial to have in each set a
distinguished vertex which is the only one able to wake up the other set.

Otherwise, if we had coloured all the loops but with all the vertices allowed to wake up the other
set (that is to say, if the loops emanating from any point x ∈ C0 could reactivate the sites in C1 if and
only if they are of colour j), then it would be harder to control the correlation between L′2i and the
probability that C1 is fully reactivated by the loops emerging from C0 during the i-th stabilization
of C0, because we would not know how the starting points of these loops are distributed.

Hence our choice to select one distinguished vertex in each set and to devote the job of reac-
tivating the other set only to the loops emerging from this vertex. Doing so, conditioned on L′,
we know how many loops we have at our disposal to wake up the other set, and we know exactly
where these loops start, while we have no information about the shapes of these loops. Using these
ingredients, we now show that there is a positive correlation between L′ and N ′.
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Positive correlation. We now decompose (7.5) over the different possible values of N ′, writing

P
(
L(C, j) > m

)
>

+∞∑
k=1

P

({
k−1∑
i=0

L′2i > m

}
∩
{
N ′ = k

})

=

+∞∑
k=1

P

({
k−1∑
i=0

L′2i > m

}
∩
{
N ′ > k

}
∩
{
C0 6⊂ R′2k or C1 6⊂ R′2k+1

})
.

In the above three events, the two first ones only depend on L′0, . . . , L′2k−2 and R′2, . . . , R
′
2k−1,

and are therefore independent of the third event, leading to

P
(
L(C, j) > m

)
>

+∞∑
k=1

P

({
k−1∑
i=0

L′2i > m

}
∩
{
N ′ > k

})
P
(
C0 6⊂ R′2k or C1 6⊂ R′2k+1

)
. (7.7)

To show that the two first events are positively correlated, we write

P
(
N ′ > k

∣∣ L′ ) = P

( ⋂
16 i< k

{
C0 ⊂ R′2i

}
∩
{
C1 ⊂ R′2i+1

} ∣∣∣∣∣ L′
)

= P

( ⋂
16 i6 2k−2

{
Cε(i+1) ⊂ Ui

} ∣∣∣∣∣ L′
)
, (7.8)

where the set Ui is given by

Ui =
⋃

`′i(x
?
ε(i)

)6 `< `′i+1(x?
ε(i)

)

J(x?
ε(i)

, `) = j

Γ
(
x?ε(i), `, j

)
.

Now note that, following the key independence property (7.6), the loops involved in the above
union are independent of L′, while the number of loops involved in the union is by definition L′i.
Thus, conditioned on L′, the events in the intersection in (7.8) are independent and we simply have

P
(
N ′ > k

∣∣ L′ ) =
∏

16 i6 2k−2

P

(
Cε(i+1) ⊂

⋃
06 `<L′i

Γ
(
x?ε(i), `, j

) ∣∣∣∣∣ L′
)

=
∏

16 i6 2k−2

ψε(i)
(
L′i
)
, (7.9)

where the function ψ0 is defined by

ψ0 : x ∈ N 7−→ P

(
C1 ⊂

⋃
06 `<x

Γ
(
x?0, `, j

))

and ψ1 is defined similarly, replacing C1 with C0 and x?0 with x?1. Clearly, these functions are
increasing, implying that the two events {N ′ > k} and {

∑k−1
i=0 L′2i > m} are positively correlated.

Thus, coming back to (7.7), we deduce that

P
(
L(C, j) > m

)
>

+∞∑
k=1

P

(
k−1∑
i=0

L′2i > m

)
P
(
N ′ > k

)
P
(
C0 6⊂ R′2k or C1 6⊂ R′2k+1

)
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=
+∞∑
k=1

P

(
k−1∑
i=0

L′2i > m

)
P
(
N ′ = k

)
= P

( N ′′−1∑
i=0

L′2i > m

)
,

where N ′′ is a copy of N ′ which is independent of L′ (with a slight abuse of notation, we keep the
notation P for the new probability measure). Now notice that if follows from our computation (7.9)
that N ′ (and hence also N ′′) is a geometric random variable with parameter p0p1, where

p0 = E
[
ψ0(L′0)

]
and p1 = E

[
ψ0(L′1)

]
. (7.10)

At this point, recalling that, for every i ∈ N, the variable 1 + L′i is distributed as 1 + L(Cε(i), j),
which by the induction hypothesis dominates a geometric variable of parameter qε(i), and using
Lemma 2.4 about the sum of a geometric number of geometric variables (minus one), we deduce
that 1 + L(C, j) dominates a geometric variable with parameter

q′ =
(1− p0p1)q0

1− p0p1q0
6

(1− p0p1)q0

1− q0
. (7.11)

Bound on the parameter of the geometric variable. We now estimate p0 and p1 introduced
in (7.10). For every x ∈ N, we have

1− ψ0(x) = P

(
C1 6⊂

⋃
06 `<x

Γ
(
x?0, `, j

))
6

∑
y∈C1

P

(
y /∈

⋃
06 `<x

Γ
(
x?0, `, j

))

=
∑
y∈C1

P
(
y /∈ Γ(x?0, 0, j)

)x
6 |C1|

(
1−Υd(Dj)

)x
,

using the decreasing function Υd defined by (2.11), and the fact that diamC 6 Dj . Note that, in
the one-dimensional case, the above estimate could be easily improved because, in dimension 1, if
a loop visits both ends of a cluster, then it wakes up everyone in this cluster.

In order to estimate p0, we replace x with L′0 and recall once again that 1 + L′0 dominates a
geometric random variable with parameter q0, yielding

1− p0 = E
[
1− ψ0(L′0)

]
6

+∞∑
m=0

q0(1− q0)m
(
1− ψ0(m)

)
6 |C1|q0

+∞∑
m=0

(1− q0)m
(
1−Υd(Dj)

)m
=

|C1|q0

1− (1− q0)
(
1−Υd(Dj)

) =
|C1|q0

Υd(Dj) + q0

(
1−Υd(Dj)

) 6
|C1|q0

Υd(Dj)
.

A similar bound holds for p1, replacing |C1|q0 with |C0|q1. Using these bounds, we deduce that the
parameter q′ defined in (7.11) is bounded by

q′ 6

[
(1− p0) + p0(1− p1)

]
q0

1− q0
6

(
|C1|q0 + |C0|q1

)
q0

(1− q0)Υd(Dj)
6

|C| q1q0

(1− q0)Υd(Dj)
,

where in the last inequality we used that q0 6 q1. Noting now that

q0q1 = exp
(
− αj |C0| − αj |C1|

)
= exp

(
− αj |C|

)
,

this becomes

q′ 6
|C| exp

(
− αj |C|

)
(1− q0)Υd(Dj)

6
|C| exp

(
− (αj − αj+1)|C|

)(
1− e−αjv

)
Υd(Dj)

exp
(
− αj+1|C|

)
.
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Writing u = αj − αj+1 and noting that the function z : x 7→ x e−ux is decreasing on [1/u, ∞) and
that the property (i) of the hierarchy together with our assumption (3.1) on (αj) ensure that

|C| > 2b(j+1)/2cv > 2j/2v >
1

u
,

we deduce that z
(
|C|
)
6 z
(
2j/2v

)
, whence

q′ 6
2j/2v exp

(
− (αj − αj+1)2j/2v

)(
1− e−αjv

)
Υd(Dj)

exp
(
− αj+1|C|

)
.

Using our assumption (3.1), we deduce that q′ 6 exp
(
− αj+1|C|

)
/
(
2j+2(1 + λ)

)
, which proves our

goal estimate (7.1), concluding the inductive step.

A Appendix: proofs of the technical Lemmas

A.1 Sufficient conditions for activity: proof of Lemmas 2.1 and 2.2

We start with the proof of the sufficient condition formulated in terms of the number of topplings,
which is a mere combination of ingredients of [FG22]:

Proof of Lemma 2.1. Let d > 1, λ > 0, µ ∈ (0, 1) and let a > 0, b > ψ(µ) and n0 > 1 be such
that (2.4) holds for every n > n0 and every A ⊂ Zdn with |A| =

⌈
µnd

⌉
. Let n > n0 and let us fix an

initial configuration η : Zdn → N such that |η| =
∑

x∈Zd
n
η(x) =

⌈
µnd

⌉
. Writing M for the number

of topplings necessary to stabilize, recalling that MA denotes the number of topplings on the sites
of A, and writing Afinal for the random set where the particles eventually settle, we can write, as
in section 3.8 of [FG22]:

Pλµ
(
M 6 ean

d
∣∣∣ η0 = η

)
=

∑
|A|=dµnde

Pλµ
({
M 6 ean

d} ∩ {Afinal = A
} ∣∣∣ η0 = η

)
6

∑
|A|=dµnde

Pλ,Aµ
(
MA 6 ean

d
∣∣∣ η0 = η

)
6

∑
|A|=dµnde

Pλ,Aµ
(
MA 6 ean

d
∣∣∣ η0 = 1A

)
6

(
nd

dµnde

)
e−bn

d
,

where we used Lemma 5 of [FG22] in the first inequality, Lemma 6 of [FG22] in the second inequality,
and our assumption (2.4) in the last inequality. Then, using the fact that(

nd

dµnde

)
= O

(
eψ(µ)nd

)
,

which follows from Stirling’s formula, we deduce that

sup
η∈NZdn : |η|=dµnde

Pλµ
(
M 6 ean

d
∣∣∣ η0 = η

)
= O

(
e−(b−ψ(µ))nd

)
,

implying that, taking 0 < c < min
(
a, b− ψ(µ)

)
, for n large enough, we have

sup
η∈NZdn : |η|=dµnde

Pλµ
(
M 6 ecn

d
∣∣∣ η0 = η

)
< e−cn

d
,
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which, by the monotonicity of the number of topplings with respect to the initial configuration,
implies that

Pλµ
(
M 6 ecn

d
∣∣∣ |η0| > µnd

)
< e−cn

d
.

We then proceed as in sections 3.9 and 3.10 of [FG22], dealing with the Poisson initial distribution
and with the exponential toppling clocks, to deduce that, for every µ′ > µ, there exists c′ > 0 such
that the fixation time Tn of the continuous-time ARW model on Zdn satisfies

∀n > 1 Pλµ′
(
Tn 6 ec

′nd
)

6 e−c
′nd

,

which, by Theorem 4 of [FG22], implies that µ′ > µc(λ). This being true for every µ′ > µ, we
deduce that µ > µc(λ).

We now translate this sufficient condition in the context of our loop representation, where some
waking up events are ignored.

Proof of Lemma 2.2. Let d > 1, λ > 0, µ ∈ (0, 1) and κ as in the statement. Let us recall that our
representation described in section 2.5, which consists in storing a pile of loops above each vertex,
differs from the classical site-wise representation of the ARW model in that the number of topplings
necessary to stabilize is not abelian: it depends on the order with which the sites are toppled, as
explained in section 2.7. Yet, it follows from the construction of our toppling strategy that the two
representations can be coupled in the following way.

Let n large enough, let A ⊂ Zdn with |A| =
⌈
µnd

⌉
, and let (Aj , Cj)j6J be a dormitory hierarchy

on A and (fC)C∈C0 a collection of toppling procedures such that the assumption (2.7) holds.

Draw a stack of toppling instructions τ = (τ(x, h))x∈Zd
n, h∈N distributed according to Pλ,A, as

defined in [FG22], that is to say, for every x ∈ A and h ∈ N, the instruction τ(x, h) is a sleep
instruction with probability λ/(1+λ) and otherwise it is a jump instruction to one of the neighbours
of x chosen uniformly, while if x ∈ Zdn\A and h ∈ N, the instruction τ(x, h) cannot be a sleep and is
a jump instruction to a uniform neighbour of x, the instructions being independent. Independently,
for every x ∈ A and every ` ∈ N, we draw an independent variable 1 + J(x, `) which is geometric
with parameter 1/2.

Then, follow our toppling strategy to stabilize the set AJ as described in section 2.6, but
reading the instructions from τ and the colours from J , and storing the instructions used in a stack
of sleep instructions I and a stack of loops Γ, so that I(x, h) ∈ {0, 1} indicates whether the h-th
step at x is a sleep or a loop while Γ(x, `, j) ⊂ Zdn is the support of the `-th loop produced at x,
where j = J(x, `) is the colour of this loop. At the end of the stabilization of AJ , we complete
the obtained stack I with i.i.d. Bernoulli variables with parameter λ/(1 + λ) and the stack Γ with
independent supports of excursions. Since the choice of the next site to topple using a toppling
procedure (as defined in section 2.5) only depends on the present configuration of the model (and
not for example on the instructions which have not been used yet), the stacks (I, J, Γ) that we
obtain have the distribution described in section 2.5. Thus, we obtain a coupling between, on the
one hand, the site-wise representation of the ARW model, constructed with the stack of toppling
instructions (jumps or sleeps) and with no sleeps out of A, that we call henceforth the A-ARW
model, and our model constructed with the stacks of sleeps, of colours and of loops, in which we
ignore some reactivation events depending on the colours of the loops.

Along this construction, one may execute the toppling instructions in the two models in parallel.
Recall that the two models do not only differ by the notation but also in the fact that, in our model
with loops, we ignore some reactivations (while both models share the constraint that particles
cannot sleep out of A). Thus, with the coupling described above, the two models do not follow the
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same evolution. However, one can show that, at any time of the procedure, if a site of A is active
in the loop model, then it is also active in the A-ARW model. Therefore, our toppling strategy
with coloured loops yields a legal toppling sequence (as defined in [Rol20]) in the A-ARW model,
meaning that, at the end of the stabilization of AJ , it might be that some sites of AJ are not
sleeping in the A-ARW model, but at least we can guarantee that we only toppled sites which
were active in both models. In a certain sense, our model stabilizes faster because we ignore some
reactivation events.

Thus, we have the stochastic domination MA � H(AJ ). Therefore, our assumption (2.7) im-
plies that MA also dominates a geometric variable with parameter exp(−κnd). Now, to conclude
by applying Lemma 2.1, there only remains to see that, if X is a geometric variable with parame-
ter exp(−κnd), then, choosing b such that ψ(µ) < b < κ and writing a = κ− b, we have

P
(
X 6 ean

d
)

= P
(
X 6

⌈
ean

d⌉)
= 1−

(
1− e−κnd)deande

6 1− exp
(⌈
ean

d⌉
ln
(
1− e−κnd))

6 −
⌈
ean

d⌉
ln
(
1− e−κnd) n→∞∼ e−bn

d
,

implying that, for n large enough, we have

PλA
(
MA 6 ean

d
)

6 P
(
H(AJ ) 6 ean

d
)

6 e−bn
d
,

which allows us to deduce that µ > µc(λ) by virtue of Lemma 2.1.

A.2 Correlation between loop colours: proof of Lemma 2.3

Proof of Lemma 2.3. Let d, n > 1 and let A ⊂ Zdn equipped with (Aj , Cj)j6J a dormitory hierarchy
on A and toppling procedures (fC)C∈C0 .

Let us describe an alternative construction of our model with exponential clocks behind the
Bernoulli and geometric variables I(x, h)x, h and J(x, `)x, ` defined in section 2.5. For every x ∈ A
and every h ∈ N, we consider an exponential variable Ts(x, h) with parameter ps = λ and, for
every j ∈ N, an exponential variable Tj(x, h) with parameter pj = 2−(j+1), all these exponential
clocks being independent. Then, for every x ∈ A and h ∈ N, writing

Tmin(x, h) = min
(
Ts(x, h), inf

j∈N
Tj(x, h)

)
,

we define, for x ∈ A, h ∈ N and ` ∈ N,

I(x, h) = 1{Tmin(x, h) =Ts(x, h)} and J(x, `) = 1{Tmin(x, h(`)) =Tj(x, h(`))} ,

where h(`) is the index of the `-th zero in the sequence I(x, h)h∈N, that is to say:{
h(0) = min{h > 0 : I(x, h) = 0} ,
∀ ` > 1 , h(`) = min

{
h > h(`− 1) : I(x, h) = 0

}
.

With I and J defined in this way, the h-th toppling of the site x is a sleep if the clock Ts(x, h)
rings before all the clocks Tj(x, h), j ∈ N, which happens with probability λ/(1 + λ), and it is
a loop of colour j if the first of these clocks to ring is Tj(x, h), which happens with probabil-
ity 1/(2j+1(1 + λ)). Thus, the variables I(x, h)x, h defined above are i.i.d. Bernoulli variables with
parameter λ/(1 + λ) and the variables J(x, `)x, ` are i.i.d. geometric variables with parameter 1/2,
independent of I(x, h)x, h, that is to say, they are distributed as in the construction of our model
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described in section 2.5. Thus, to prove the result we may assume that the model is constructed
with these exponential clocks.

Now let j 6 J and C ∈ Cj , and recall that the loops of colour j which are performed by the
distinguished vertex x?C are not allowed to wake up anyone in C: when x?C produces a loop of
colour j, the configuration inside C is not affected. Thus, since our toppling strategy to stabilize C
only looks at the configuration inside C (recalling the definition of the toppling procedures in
section 2.5), this implies that, after a x?C-loop of colour j, this distinguished vertex x?C is toppled
again, as if this loop had not occurred.

Now, call the x?C-sleeps and the x?C-loops of colour 0, . . . , j − 1 the useful topplings of x?C , and
call useless topplings of x?C the x?C-loops of colour at least j, and write T = S(C) +L(C, 0) + · · ·+
L(C, j− 1) for the total number of useful topplings performed by x?C during the stabilization of C.
As the useless topplings do not impact the stabilization of C, the sequence of useful topplings of x?C
performed during the stabilization of C is independent of the useless topplings which are performed
between any two useful topplings. Thus, the variable T = S(C) + L(C, 0) + · · · + L(C, j − 1) is
independent of the sequence of exponential clocks

(
Tj(x

?
C , h)

)
h∈N.

Let us now define inductively h0 = 0 and, for every i > 1,

hi = min
{
h > hi−1 : Tmin(x?C , h) = Ts(x

?
C , h) or Tmin(x?C , h) = Tk(x

?
C , h) for some k < j

}
,

so that for every i ∈ {1, . . . , T }, hi is the number of useless topplings of x?C which are produced
between the (i − 1)-th and the i-th useful toppling of x?C . Let us write Xi − 1 for the number of
loops of colour j among these useless topplings. Namely, for every i > 1, we write

Xi = 1 +
∣∣∣{h ∈ {hi−1 + 1, . . . , hi − 1} : Tmin(x?C , h) = Tj(x

?
C , h)

}∣∣∣ .
With these variables, we have the relation (2.8), the variables (Xi)i>1 are i.i.d., and X1 − 1 is
distributed as the number of times that a Poisson point process with intensity pj fires before an
exponential clock of parameter ps + p0 + · · · + pj−1 rings. Thus, X1 is a geometric variable with
parameter given by the computation (2.10). Also, it follows from the above considerations that T
is independent of (Xi)i>1, since the loops of colour j are irrelevant for the stabilization of C.
Therefore, the variables Xi are independent of T , and the result follows.

A.3 An elementary property of geometric sums: proof of Lemma 2.4

Proof of Lemma 2.4. The characteristic function of a geometric variable reads

φN (t) = E
(
eitN

)
=

+∞∑
n=1

a(1− a)n−1eitn =
aeit

1− (1− a)eit
.

Using this, we compute

φS(t) = eit E
[
E
(
eit

∑N
n=1(Xn−1)

∣∣∣ N)] = eit E

[ (
φX1(t)

eit

)N ]
= eit φN

(
φX1(t)

eit

)
= eit φN

(
b

1− (1− b)eit

)
= eit

ab

1− (1− b)eit
1

1− (1−a)b
1−(1−b)eit

=
abeit

1− eit + beit − b+ ab

=
abeit

1− b+ ab− (1− b)eit
=

ceit

1− (1− c)eit

with c as in the statement of the Lemma, concluding the proof.
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A.4 Hitting probabilities on the torus: proof of Lemma 2.5

Proof. The case d = 1 is simply the gambler’s ruin estimate, see for example Proposition 5.1.1
of [LL10]. Assume now that d > 2 (in fact the proof below also works in dimension 1, but it does
not give the explicit constant 1/2).

The key ingredient of our proof is Harnack’s principle, as stated in Theorem 6.3.9 of [LL10].
Let us consider the open set U and the compact set K given by

U =
(
− 1, 1

)d \ [−1

2
,

1

2

]d
and K =

[
−5

6
,

5

6

]d
\
(
−2

3
,

2

3

)d
.

Harnack’s principle tells us that there exists a constant C > 0 and an integer r0 > 1 such that, for
every r > r0, writing Ur = r U ∩ Zd and Kr = rK ∩ Zd, for every function f : Ur → [0, ∞) which
is harmonic on Ur, we have f(x) > Cf(y) for every x, y ∈ Kr (where Ur denotes the set of vertices
of Zd which are in Ur or have at least one neighbour in Ur).

For every r > 1, let us write
ur = P0

(
T∂Λr < T+

0

)
,

which is the probability that a simple symmetric random walk on Zd started at the origin exits
from the box Λr = {−r, . . . , r} before returning to the origin.

We now let n > 1 and x, y ∈ Zdn with x 6= y, and let r = d(x, y). Recall that we work
with the “infinite-norm distance” on the torus, defined by (2.1). By definition of this distance,
writing πn : Zd → Zdn for a standard projection, we may take a, b ∈ Zd with ‖a− b‖∞ = r such
that πn(a) = x and πn(b) = y. Note also that we always have r 6 n/2.

Upon decreasing the constant K which appears in the result of the Lemma, we may assume
that r > 6 ∨ r0 and that a− b has all its coordinates even, so that m = (a+ b)/2 ∈ Zd.

We then consider the function

f : z ∈ Ur 7−→ Pπn(m+z)

(
Ty < Tx

)
,

where the random walk considered is on the torus Zdn. This function f is harmonic on Ur because

(m+ Ur) ∩
[
(a+ nZd) ∪ (b+ nZd)

]
= ∅ .

Therefore, Harnack’s principle ensures that inf f(Kr) > C sup f(Kr) (note that Kr 6= ∅ because
we assumed that r > 6). Yet, since the two points x and y play symmetric roles and since Kr is
symmetric, we have f(−z) = 1− f(z) for every z ∈ Kr, whence sup f(Kr) > 1/2. Thus, we deduce
that inf f(Kr) > C/2.

The result then follows by writing

Px
(
Ty < T+

x

)
> Px

(
Tπn(m+Kr) < T+

x

)
× inf f(Kr) >

C

2
Pa
(
Tm+Kr < T+

a

)
>

Cu2r

2

and by using the classical lower bounds on ur (see for example section 4.6 of [LL10]).

A.5 Pairings in graphs: proof of Lemma 5.2

Lemma 5.2 is a corollary of the following Lemma:

Lemma A.1. For every finite connected undirected graph G = (V, E) with |V | > 2, there exists a
partition of V into sets of cardinality 2 or 3 and diameter (for the graph distance on G) at most 2.
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Proof. We proceed by induction on |V |. The result is obvious if |V | = 2 or |V | = 3. We now
let n > 4 and we assume that the result is true for all the connected undirected graphs containing
between 2 and n− 1 vertices. Let G = (V, E) be a finite connected undirected graph with |V | = n.

The graph G being connected, we can consider a rooted covering tree of G. Let x ∈ V be a leaf
of this covering tree with maximal distance to the root.

If this leaf has a “sister” y (i.e., another leaf which has the same parent), then the induced
subgraph on V \ {x, y} is still connected. Applying the induction hypothesis to this subgraph
yields a partition Π of V \ {x, y}, and then Π ∪

{
{x, y}

}
is a solution of the problem, since the

graph distance on G between x and y is at most 2 (because it equals 2 on the covering tree).

Otherwise, if the leaf x has no sister, then we consider its parent z, and, noticing that the
induced subgraph on V \ {x, z} remains connected, we can apply the induction hypothesis to this
subgraph.

A.6 Sums of dependent Bernoulli variables: proof of Lemma 6.3

Proof. Let p ∈ [0, 1] and c > 0. We proceed by induction on n. The result is obvious if n = 0.
Assume that the result is valid for n ∈ N, and let X1, . . . , Xn+1 be Bernoulli random variables
with parameter p. Conditioning on the last variable, we can write

E
[
e−c(X1+···+Xn+1)

]
= pe−c E

[
e−c(X1+···+Xn)

∣∣∣Xn+1 = 1
]

+ (1− p)E
[
e−c(X1+···+Xn)

∣∣∣Xn+1 = 0
]

= pE
[
e−c(X1+···+Xn)

∣∣∣Xn+1 = 1
]

+ (1− p)E
[
e−c(X1+···+Xn)

∣∣∣Xn+1 = 0
]

− p
(
1− e−c

)
E
[
e−c(X1+···+Xn)

∣∣∣Xn+1 = 1
]

= E
[
e−c(X1+···+Xn)

]
− p
(
1− e−c

)
E
[
e−c(X1+···+Xn)

∣∣∣Xn+1 = 1
]

6 E
[
e−c(X1+···+Xn)

]
− p
(
1− e−c

)
e−cn

Plugging the induction hypothesis in the above formula then yields the desired result.
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