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The high-dimensional and multiscale nature of fusion plasma flows require the development of reduced models to be
implemented in numerical codes capable of capturing the main features of turbulent transport in a sufficiently short
time to be useful during tokamak operation. This paper goes further in the analysis of the dynamics of the κ− ε model
based on the turbulent kinetic energy κ and its dissipation rate ε [Baschetti et al., Nuc. Fus 61, 106020 (2021)] to
improve the predictability of the transverse turbulent transport in simulation codes. Present 1D results show further
capabilities with respect to current models (based on constant effective perpendicular diffusion) and on the standard
quasi-linear approach. The nonlinear dependence of D in κ and ε estimated from two additional transport equations
allow to introduce some non-locality in the transport model. This is illustrated by the existence of parameter ranges
with turbulence spreading. The paper also addresses another issue related to the uncertainties on the inherent free
parameters of such reduced model. The study proposes a new approach in the fusion community based on a variational
data assimilation involving the minimisation of a cost function defined as the distance between the reference data and
the calculated values. The results are good, and show the ability of the data assimilation to reduce uncertainties on the
free parameters, which remains a critical point to ensure the total reliability of such an approach.
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I. INTRODUCTION

Fusion based on magnetic confinement aims at producing
power by using the energy liberated by fusing deuterium and
tritium nuclei at extremely high temperatures (107 − 108K)
within a plasma confined by magnetic fields in machines of
toroidal shape known as tokamaks. This is thus a promising
alternative energy source that could potentially fulll the high
demand for electricity in the next future. The International
Tokamak Experimental Reactor (ITER) has been designed as
the key step between today’s fusion research machines and
tomorrow’s fusion power plants. Regarding the expected ther-
monuclear plasma performance, ITER operation requires an
unprecedented effort on the way to controlling plasma heat
and particle fluxes? , in which numerical simulations play a
critical role to design optimal scenarios.

Despite the exponential growth of computer speed along
with significant improvements in computer technology, the
numerous physics and engineering issues to address as well
as the very large number of degrees of freedom to handle re-
quire the development of a chain of models. This latter ranges
from low to high fidelity models, from simplified models for
optimization and uncertainty propagation to state-of-the-art
first principle models of plasma turbulence transport in rele-
vant plasma conditions. In this context, two-dimensional fluid
transport codes (see exhaustive references in Refs.? ? ) rely
on models in which plasma turbulence has been smoothed
out by averaging to provide relevant information on appro-
priate return times. It is similar to the Reynolds Averaged
Navier–Stokes (RANS) codes commonly used for engineer-

ing applications in computational fluid dynamics (CFD)? .
One of the main issues of these 2D transport codes is the accu-
rate modeling of the transverse turbulent fluxes resulting from
the averaging of stresses due to fluctuations. Although inter-
mittency, long-range correlations and ballistic transport events
have been widely documented in the plasma edge for a long
time? , all current transport codes in the community (see e.g.?

and? ) are still based, for reasons of simplicity and numerical
efficiency, on the assumption that these transverse flows are
driven by local gradients, i.e. by Fick’s laws with constant
effective perpendicular diffusion coefficients. These ad-hoc
coefficients are indeed not determined self-consistently but
are tuned by hand to match experimental data. These turbu-
lent particles diffusion Dt , turbulent viscosity νt and turbulent
heat conductivity ξt (simplicity here Dt = νt = ξt ) give rise
to effective coefficients in the transport equations that must
be determined at each point of the mesh. The issue here
is that these ad-hoc coefficients being flow-dependent differ
from one machine to another, from one pulse to another in the
same device and even from one location to another in a given
discharge? . They must then be considered as free parameters
with an extremely large number of degrees of freedom, which
reduces drastically the predictive capabilities of these codes.

To circumvent this limitation, the option of a direct cou-
pling between a mean-field code and a local (flux-tube)
plasma turbulence code was proposed by Hasenbeck et al.?

for example. In such a scheme, the mean-field code still fol-
lows a gradient-diffusion hypothesis to describe transverse
transport, but the transport coefficients are dynamically and
self-consistently obtained from the output of turbulence sim-
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ulations run in a gradient-driven manner (with local plasma
parameters and gradients used as inputs) at well-chosen sam-
pling positions in time and space. This approach has been
proved successful at reproducing plasma profiles in simple
test cases. However, the application to complex cases remains
to be undertaken. Additionally, a number of fundamental
questions remain in this context, e.g. how to efficiently de-
termine the sampling points and decisive parameters from
the mean-field code for the local turbulence simulations, how
their choice affects the stability, convergence and performance
of such a coupled code system, and if the underlying hypoth-
esis of a scale separation between macroscale (mean-field)
and mesoscale (local turbulence) dynamics always holds in
the regimes and regions of interest to ensure the feasibility
of the approach. Also the physical limitations of this concept
as compared to global turbulence simulations and the com-
putational costs still have to be assessed in depth. Similar
problems arise when local turbulence codes are used to build
a database of transport coefficients depending on the mean-
field code’s input parameters? . To solve the computational
cost issue, another approach consists in completing the model
with equations describing the time and/or space evolution of
the transport coefficients, thus making the call to a turbu-
lence code unnecessary. This approach has already been used
successfully in the frame of 1D models for L-H transition
studies? ? and can potentially be applied to 2D or 3D edge
mean-field models. The consequence is the substitution, as
free parameters, of perpendicular diffusion coefficients with
parameters defining key properties of the underlying transport
mechanisms (e.g., turbulence growth and damping rates). Al-
though this might not lead to a reduction of the number of
free parameters, the new parameters are expected to be more
driven by the underlying transport physics and hence will vary
much less from one machine to the other or from one location
to another in the same plasma. Also, their dependencies with
plasma characteristics can in general be derived or constrained
by theoretical considerations.

Very recently we proposed an innovative path for fusion
plasma simulations inspired from computational fluid dy-
namics, namely from a κ − ε like model developed for the
Reynolds-Averaged Navier–Stokes approach designed in the
70’s? but still largely used today to investigate many engi-
neering flows. The model relies on to the evolution of the
turbulence kinetic energy per unit mass of the fluctuating
transverse velocity κ = 1

2 〈ṽ2〉. ε relates to a damping pro-
cess acting on κ as the dissipation rate in neutral fluids to
determine the turbulent diffusion with Dt = Cκ2/ε , where
C is a proportionality coefficient and v is the drift velocity.
Indeed, the scales of dissipation of the turbulent energy in
plasma being still an open question? , the usual definition as a
rate of dissipation at the Kolmogorov scale is less meaningful
in the context of plasma turbulence, so the field ε is simply
understood as a damping process, or predator of the turbu-
lent energy. The success of this kind of approaches relies on
the fact that these constants are characteristic of fundamen-
tal processes of turbulence, and are hence less dependent on
the plasma discharge in the same tokamak, in contrast to the
initial diffusion coefficient Dt . Results in Baschetti et al.? ?

showed the remarkable potential of this model to capture key
aspects of the physics of turbulent transport throughout the
plasma.

However, as any reduced model the transport equations for
κ and ε induce few free parameters that have to be fixed. In
current version? ? , these parameters are fixed from theoret-
ical considerations based on features of the local dynamics
of the κ − ε system and the known properties of transport as
well as on a dimensional analysis in the frame of the Kol-
mogorov theory for homogeneous isotropic turbulence. All
these considerations have however a limited validity, and the
calibration of these free parameters from available experi-
mental and/or micro-turbulence simulations data of reference
would certainly still improve the predictive capability of the
model. It is then mandatory to identify the model parameters
that will make the computed solution of the model precisely
correspond to the data of reference, and to investigate their
impact on the dynamic of the system.

Typically used in geosciences, oceanography, or meteorology? ?

where the atmospheric model must precisely match current
and past measurements to obtain an accurate forecast, data
assimilation allows to work on models with a very large
number of parameters confronted to observations of differ-
ent accuracy not homogeneously spread in space and time.
The present work is based on a Variational Data Assimilation
(VDA) which involves the minimization of a cost function
defined as the distance between the data of reference and the
computed values by the model? . A successful implementa-
tion of such procedure in current 2D fluid transport codes for
fusion plasmas like SOLEDGE3X? or SOLPS-ITER? would
allow a precise estimation of the remaining free parameters
from the data of reference, or would provide an explicit tra-
jectory for a parameter which could be compared to some
considered closure laws.

In this paper, we go further in the analysis of the dynamical
system composed by the two transport equations for κ and
ε derived in? and reduced to 1D in the radial direction by
averaging in the poloidal and toroidal directions (Section II).
The data assimilation technique is presented in Section III.
Based on an appropriate normalization, the 1D analysis allows
to isolate the fundamental parameters that determine the local
behavior of the dynamical system and then the properties of
the solutions when varying them (Section IV). The potential
of the variational data assimilation is finally illustrated in two
spreading regimes (Section V). Concluding remarks end the
paper (Section VI).

II. REDUCED MODEL

We consider here the κ-ε model reduced to 1-D in the ra-
dial direction following the procedure defined in? (Section 3).
As mentioned in the Introduction, κ = 1

2 〈ṽ
2〉 and ε relates a

damping process acting on κ to determine the turbulent diffu-
sion with Dt = Cκ2/ε , where C is constant. On contrary to
Ref.? , the model is here decoupled from fluid plasma equa-
tions and thus plasma flow variables will be considered as
constant in time in the following.
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A. Transport model for κ and ε

The evolution of the two fields κ-ε is governed by local
dynamics and transverse and parallel transport. Both fields κ

and ε are understood to be proportional to energies and thus
defined to be positive. The radial variable r varies between 0
and a the little radius of the torus, corresponding to the core
boundary of the plasma and the tokamak wall, respectively.
The model equations and (initial, boundary) conditions are
detailed in? and read:

∂τ κ− 1
r

∇r

(
rCκ

D
κ2

ε
∇rκ

)
= γ

κ
s κ− 1

Dω

κ
2− ε−σ

κ

‖ κ, (1a)

∂τ ε− 1
r

∇r

(
rCε

D
κ2

ε
∇rε

)
= γ

ε
s ε− V

κ3/2 ε
2−σ

ε

‖ ε, (1b)

κ(τ = 0,r) = κ0, ∇rκ(τ,r = 0) = 0, κ(τ,r = a) = 0,
ε(τ = 0,r) = ε0, ∇rε(τ,r = 0) = 0, ε(τ,r = a) = 0.

(1c)
The equations include transport terms both in the perpendicu-
lar (i.e. radial) and parallel directions with respect to the mag-
netic field lines. The perpendicular transport is assumed to
be diffusive and govern by coefficients Cκ,ε

D
κ2

ε
. The parallel

transport along the magnetic field lines is here simply mod-
elled by a linear loss operator controlled by the parameters
σ

κ,ε
‖ . On the right hand side the local drives of the turbulence

are expanded up to order 2, with a linear growth of rate γs and
a quadratic restoring term, in each equation. Finally, the term
−ε in the κ-equation identifies the field ε as a rate of damping
for the turbulent energy κ .

The linear growth rates γκ
s and γε

s are labelled s to underline
that they are the source term for turbulence. In? they are equal
and directly given by the linear interchange instability growth
rate γI . Here we will include the parallel dynamic in effective
growth rates as follows:

γκ = γ
κ
s −σ

κ

‖ , (2a)

γε = γ
ε
s −σ

ε

‖ . (2b)

Either considering the hypothesis γκ
s = γε

s or not, we will as-
sume γκ 6= γε . Furthermore, the effective growth rates could
become negative when the parallel stabilization σ‖ exceeds
the instability growth γs, but this case has not been consid-
ered yet, so we will suppose the growth rates positive in the
following.

The quadratic term of the equation for κ insures that the
field has no fixed point at infinity, preventing the divergence
of the local dynamic behavior. It is weighted by the inverse
of the parameter Dω , which is found to be homogeneous to a
viscosity. The subscript ω indicates that it can be linked to a
typical width of the turbulent energy spectrum? ? . Similarly,
the nonlinear term in the equation for ε insures that the dissi-
pation rate of κ eventually decreases when κ tends to 0. Its
exact definition enforces that the fixed points κ∗ and ε∗ respect
ε∗ = κ

3/2
∗ , a typical scaling law of the Kolmogorov turbulence

theory. It is weighted by the parameter V, homogeneous to
a velocity. A closure using a scaling law for the SOL width

gives V ≈ ρ∗cs with ρ∗ the Larmor radius normalised by a and
cs the sound velocity. Finally, two dimensionless coefficients
Cκ

D and Cε
D allow to tune the importance of the diffusion with

regards to the local dynamic, possibly differently for κ and ε .
Before stepping to the normalization of these equations let us
analyse the fixed points behaviour for marginal growth rate
γκ → 0 and γε → 0, to insure that it leads to the vanishing of
the turbulent viscosity D = κ2/ε . We assume that the be-
haviour near marginality is governed by the dimensionless
function g:

γκ = γ0γk g, (3a)
γε = γ0γe ge, (3b)
V =VgV0 gv. (3c)

Here γk, γe and Vg are dimensionless, γ0 being the normalizing
growth rate, and V0 the normalisation of the parameter V. The
non-zero fixed point κ , ε is then determined by:

ε = γeγ0 ge−v κ
3/2

V0Vg
, (4a)

ε = κ

(
γkγ0 g− κ

Dω

)
. (4b)

We then recover the second order equation determining κ
1/2:(

κ
1/2
)2

+ge−v Dω γeγ0

V0Vg
κ

1/2−g γkγ0Dω = 0. (4c)

The positive root is therefore:

κ
1/2 = ge−v Dω γ0γe

2V0Vg

[
−1+

(
1+g1+2v−2e 4γkV 2

0 V 2
g

γ0γ2
e Dω

)1/2]
,

(5a)

κ
1/2 ≈ g1+v−e γk

γe
Vg V0. (5b)

The approximation used here is the limit g1+2v−2e4γkV 2
0 V 2

g /(γ
2
e γ0Dω)�

1. We also obtain:

ε ≈ γkγ0 g3+2v−2e
(

γk

γe
Vg V0

)2
. (5c)

One can then also determine D = κ2/ε for this fixed point:

D =
κ

2

ε
=

V0Vg

γ0γe
gv−e

κ
1/2 ≈

V 2
g γk

γ2
e

g1+2v−2e V 2
0

γ0
. (6)

We remark that the condition used for the approximation can
be written as D� Dω . We may hence determine the condi-
tion on the exponent v such that for g→ 0, one has ε → 0,
κ→ 0 and D→ 0. One readily finds that the condition κ→ 0
enforces ε→ 0, and that the condition D→ 0 enforces κ→ 0.
The constraint v > e− 1/2, on the exponent of g in the ex-
pression of D given in (6), ensures that κ , ε and D exhibit the
right limit as the growth rates approach zero. For the standard
case e≈ 1, one finds therefore that v > 1/2 must be enforced,
what we will achieve setting v = 1, as well as e = 1. We will
even go a step further to simplify the discussion on the impact
of the parameters and their identification, setting for the rest
of this article Vg = γk.
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B. Normalised model

The normalisation of the κ− ε system (Eq. 1) aims to iso-
late the critical parameters that determine the behaviour of
the system, as it will be studied in detail in Section IV. We
set Z = κ/κ0 and Y = ε/ε0 and normalize the radial posi-
tion by the system size, typically the plasma minor radius a,
hence ρ = r/a, thus accounting for radial boundary condi-
tions. Time is normalized by 1/γ0, t = γ0τ where γ0 is the ref-
erence growth rate used in (3). We also normalise the growth
rates : γZ = γκ/γ0 and γY = γε/γ0. With these definitions, the
system (1) now reads:

∂tZ =
1
ρ

∇ρ

(
ρDgBZ

Z2

Y
∇ρ Z

)
+ γZZ−KZ2−Y, (7a)

∂tY =
1
ρ

∇ρ

(
ρDgBY

Z2

Y
∇ρY

)
+ γYY − γZ

Y 2

Z3/2 , (7b)

Z(t = 0,ρ) = Z0, ∇ρ Z(t,ρ = 0) = 0, Z(t,ρ = 1) = 0,
Y (t = 0,ρ) = Y0, ∇ρY (t,ρ = 0) = 0, Y (t,ρ = 1) = 0.

(7c)
Here we have set κ0 = V 2

0 , ε0 = γ0V 2
0 , D0 = V 2

0 /γ0, K =

D0/Dω , DgBZ =Cκ
D/(γ0a2) and DgBY =Cε

D/(γ0a2). This will
be the formulation used for the parameter identification be-
cause all parameters are decoupled, but an alternative notation
will be interesting to study the behaviour of the system, set-
ting γ = γZ , γu = γY , DgB = DgBZ and ∆Y DgB = DgBY . We get
:

∂tZ =
1
ρ

∇ρ

(
ρDgB

Z2

Y
∇ρ Z

)
+ γZ−KZ2−Y (8a)

∂tY =
1
ρ

∇ρ

(
ρ∆Y DgB

Z2

Y
∇ρY

)
+uγY − γ

Y 2

Z3/2 (8b)

Since one expects V0 to scale like the normalised Larmor
radius ρ∗, one then finds DgB ∝ ρ2

∗ , which corresponds with
the so-called gyro-Bohm (gB) scaling.

In the next Section III, we present the algorithm that will be
used to identify those parameters given a target trajectory for
Z and Y .

III. DATA ASSIMILATION ALGORITHM

The fitting procedure is only tested on twin experiments,
fairly virtual cases where the target data are generated by the
model itself, for some parameters that we try to find back. Al-
though avoiding the problem of uncertainty and unavailability
of the observations, it is already a sufficient test to give in-
sights on the good behaviour of the algorithm and its ability
to detect more or less complex sets of parameter values.

A. Definition of the problem

The target data are constituted of two sets of vectors Zob j
i

and Y ob j
i (the exponent ob j stands for objective) containing

approximations of Z and Y at different radial positions for a
given set of times (ti)i∈0,NT separated by the data time step
δ

ob j
t . This data time step is a multiple of the time step (gen-

erally 10 times bigger) used in the numerical solver to gen-
erate the data. Since the data are generated here, they are al-
ready complete, in the right format, and we do not have to
take into account possible differences of confidence on the
different observations. With real data, those problem will be
mostly treated in the definition of the cost function, including
operators to get the generated trajectory in the format of the
data and adding a covariance matrix in the definition of the
cost to account for observation errors. Here, we simply use
an Euclidian scalar product of the difference between the log-
arithm of the generated trajectory and the data. The logarithm
allows to consider a relative error which is more meaningful
here because the variable can have important scale variations
(see for instance in Section IV Figures 12 and 13). For a given
set of parameters p, knowing the target set of vectors (Zob j

i )

and (Y ob j
i ) corresponding to times (ti)i∈0,NT the cost functional

simply reads:

j(p) = ∑
i∈0,NT

1
2

(
|| log((Z(p))(ti))− log(Zob j

i )||22

+ || log((Y (p))(ti))− log(Y ob j
i )||22

)
+Π(p), (9)

where Π is a regularising penalization term, depending di-
rectly on the parameters.

Concerning the parameters to identify, they are 5 in the
model given in (7), namely DgBZ , DgBY , γZ , γY and Z. We
add to these parameters the initial states Z(t0) and Y (t0), sim-
ply written Z0 and Y0. In our case, the initial states are directly
given by the first vectors in the data sets, Zob j

0 and Y ob j
0 . How-

ever, even if the target initial conditions are given in the data, it
is not obvious that the algorithm will easily converge towards
them : at least in an intermediate state of the optimisation al-
gorithm, it may be more advantageous to have the initial state
different from the one given by the data if it allows a reduction
of the distance to the data as a whole. For real physical prob-
lems the data will most likely not be available at any point in
space, and not directly for the turbulent variables κ and ε , so it
is important to show that the initial condition can be identified.

All parameters are considered constant in time -as said
above- and dependent on the radius, except DgBZ and DgBY
which are simple scalars. Although this decision makes sense
considering that the whole point of the model is to evaluate the
viscosity coefficient, so correcting it with an ad-hoc param-
eter at every space point would clearly reduce its interest, it
appears that the gradient with regards to this parameter heav-
ily varies in scale with the discretisation points, making the
problem poorly conditioned and the convergence very slow.
Hence DgBZ and DgBY are simply considered as scalars.

Summing up, we have 7 different parameters (including the
initial conditions), among which 5 vary with the radius, and
all of them are used as unknowns of the inverse problem :

• DgBZ and DgBY ∈ R+ the coefficients of the (nonlinear)
diffusion term, necessarily positive for a physically co-
herent diffusion effect.
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• γZ and γY ∈ L∞([0,1]→ R+) the normalised effective
growth rates. They may vary consequently in scale and
could theoretically change of sign, but this case is not
considered here, even if the PDE solver can marginally
converge for negative values.

• K ∈ L∞([0,1]→R+) the Kubo parameter (also referred
to the Strouhal number) weighting the nonlinear satu-
ration term in the equation (7) for Z. The value of K
is usually fairly negligible between 10−1 and 10−4, but
it is supposed to remain positive to act as a saturation
term.

• Z0 and Y0 ∈ L∞([0,1] → R+) the initial state of the
model. They are supposed positive due to the physical
definition of Z and Y -and the mathematical operations
performed on them make this condition necessary.

Despite the boundaries defined here, most of the parameters
are allowed to take negative values at intermediate states of the
minimisation algorithm, because it improves the convergence
of the chosen minimizer. However their final retrieved values
should indeed be positive.

B. Model solver and discretisation

A partially implicit time discretisation is used in the pa-
rameter fitting procedure to compute the trajectory of the nor-
malised κ and ε to insure the stability for any DgB with a rela-
tively large time step, allowing less iterations in the algorithm.
Actually, only the linear part of the diffusion term is implicitly
computed:

Zn+1−Zn = δt

(
DgBZ

ρ
∇ρ

(
ρDZn,Yn∇ρ Zn+1

)
+ γZZn−KZ2

n −Yn
)
, (10a)

Yn+1−Yn = δt

(
DgBY

ρ
∇ρ

(
ρDZn,Yn∇ρYn+1

)
+ γYYn− γZ

Y 2
n

Z3/2
n

)
. (10b)

The implicit part only adds the inversion of a sparse matrix
(tridiagonal due to the simple spatial discretisation). When
the model reaches a time ti corresponding with recorded data
vectors Zob j

i and Y ob j
i , the squared difference between the log-

arithm of the current value of Z and Y and of the data Zob j
i and

Y ob j
i is added to the cost function. The model solver is derived

by the automatic differentiation tool Tapenade? , mostly as a
proof of concept. For this simple solver the derivative could
have been written directly but an automatic differentiation tool
will be quite useful when extending to more complete models
with substantially more complex solvers.

The scheme is still not stable for any set of parameters : the
model can have very fast dynamics which lead to the change
of sign of its variable in one step of the scheme, and if ei-
ther Z or Y is negative somewhere the model diverges. This

Radial grid spacing Time step Time elapsedbetween two recordings
2.5×10−3 5×10−3 5×10−2

TABLE I. Numerical parameters for the discretisation in the param-
eter fitting procedure

is actually a good test because solvers are rarely expected to
give exploitable results in every regime, so the minimisation
algorithm must be able to cope with some forbidden sets of
parameters.

Table I displays the values of the discretisation parame-
ters used for all tests of the parameter fitting procedure. The
data is generated with the same time step as the one used
by the model solver in the parameter fitting algorithm (δt =
5× 10−3 s), but the solution is recorded every 10 iterations
(each 5×10−2 s ). Using the same time steps ensures that we
effectively consider twin experiments.

Finally, an important factor for the efficiency of the algo-
rithm is the length of the time interval in the cost function.
Since the model is often locally oscillatory, as we will see in
details in the next section, the objective data and the currently
computed trajectory may quickly run out of phase even if the
parameters are relatively close from their target values. Hence
it is interesting to reduce the length of the time interval to at
most a few oscillations, at least as long as the cost is still high,
with the added benefit of a largely reduced computational cost
at each iteration.

C. Minimizer

base avec scaling+.png

FIG. 1. Block scheme of the minimisation algorithm

The complete principle of the algorithm is illustrated in Fig-
ure 1. It is a loop between a nonlinear minimisation routine,
the Fortran routine m1qn3? , and the derived version of the
whole procedure returning the cost, i.e., the 1-D κ− ε model
solver slightly modified to compute the difference with the tar-
get data. Since the gradient is necessarily 0 at the minimum,
the loop stops when the 2-norm of the gradient of the cost
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function has been enough reduced with regards to its initial
value.

Most of the time the whole algorithm is actually launched
two times, modifying between the two launches the penali-
sation function (Π(p) in (9)) and the stopping criterion. The
expected final reduction (after the last launch of the algorithm)
of the gradient with respect to its initial value (before the first
launch of the algorithm) is set to ||∇ j||

||∇ j0||
< εg = 10−7 (the stop-

ping condition threshold).
The m1qn3 routine implements a limited memory BFGS al-

gorithm for unconstrained nonlinear optimisation (see? ). It is
a very efficient numerical minimiser, which converges quickly
in terms of iterations, with a negligible cost in terms of com-
putational time and memory space, compared to the evalua-
tion of the cost and its gradient. One iteration of this min-
imiser can actually require multiple simulations, i.e., evalua-
tions of the cost function and of its gradient, but in general the
number of simulations is rarely more than 30% larger than the
number of iterations? . We use standard m1qn3 parameters
(see? ). However the solver is only guaranteed to converge
-without considering rounding issues- for an unconstrained
variable, and we have multiple constraints on the parameters,
either the necessary positivity of the initial states Z0 and Y0
or the impossibility to compute the cost and gradients for any
arbitrary set of parameters. Thus two regularising strategies
are used to avoid the divergence of the algorithm as well as to
improve its general convergence.

a. Scaling Scaling functions are used to improve the
conditioning of the problem and impose boundaries on some
parameters. Each of the 7 parameters can have a different
scaling function s, defined element-wisely for the non con-
stant parameters. The scaling can be used to impose limits
on a parameter: we just have to use a scaling function whose
image is bounded, typically with a horizontal asymptote.

By default, all the parameters can have a linear scaling x 7→
kx of parameter k, which can be composed either to an ex-
ponential function, or what we choose to call the quasi-linear
positive function? :

s : x 7→ kε

(
− 1

π
+

1
−atan

( x
ε
+ 1

π

)
+ π

2

)
(11)

This scaling function shown on Figure 2 is used to prevent a
parameter from reaching 0 at some points, without adding too
much non-linearity at the other points. The parameter ε is a
good approximation of a threshold for the behaviour of the
function.

b. Penalisation Penalisation terms are added to the cost
function to help keeping expected shapes and values for the
parameters. They directly depend on the parameters and not
on the result of the physical model. For each of them, a scalar
weight balances its contribution to the cost. Two kinds of pe-
nalisation functions are used here on different test cases:

• Gradient penalisation: the quadratic norm of the gradi-
ent of the parameters with respect to the radius is added
to the cost function.

FIG. 2. Plot of the positive quasi-linear scaling function s for ε =
10−1 and k = 1.

• Negative value penalisation: since negative values in
the parameters are either physically incoherent or may
lead to the divergence of the numerical κ − ε model
solver, we will use in some cases a penalization func-
tion which simply adds to the cost one the square of the
parameters at the points where they are negative.

IV. DYNAMICS OF THE κ− ε SYSTEM

We study here the behaviour of the normalised κ − ε sys-
tem (Eq. 8) depending on the different parameters. In Sec-
tions IV B 1 and IV B 2, particular cases will be introduced
and used again as test cases for the parameter fitting proce-
dure in Section 5.

A. Dynamics governed by the local drive

Without the diffusive transport term, the system (7) is
reduced to a system of ordinary differential equations that
writes:

∂tZ = γZ Z−KZ2−Y, (12a)

∂tY = γY Y − γZ
Y 2

Z3/2 . (12b)

In the above model, the number of significant parameters is re-
duced by defining Z̄ = Z

γ2
Z

, Ȳ = Y
γ3

Z
, K̄ = γZK, u = γY

γZ
assuming

that γZ > 0. Normalizing time by γZ finally leads to:

∂t Z̄ = Z̄− K̄Z̄2− Ȳ , (13a)

∂tȲ = u Ȳ − Ȳ 2

Z3/2 . (13b)

One can consider the system Eq. 12 as a predator–prey sys-
tem. For simplicity only in Section IV A, the bar is suppressed
on the normalised variables and parameters.
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1. Fixed points of the local evolution

The fixed points of the local system are solution of the cou-
pled equations:

0 = Z∗−KZ2
∗ −Y∗, (14a)

0 = u Y∗−
Y 2
∗

Z3/2
∗

. (14b)

Equation (14b) yields Y∗ = 0 and Y∗ = uZ3/2
∗ . For Y∗ = 0 one

finds two possible solutions for Z∗ in (14a), that are Z∗ = 0
and Z∗ = 1/K. For positive growth rates these points are not
stable, so they do not really influence the system. For Y∗ 6= 0,
implying u > 0, Z∗ is the positive solution of the second order
equation KZ +uZ1/2−1 = 0 that we write as follows:

0 = Z∗+2
u

2K
Z1/2
∗ −

1
K
, (15a)

Z1/2
∗ =− u

2K
+

√
u2

4K2 +
1
K
. (15b)

Analysing the dependency of the fixed point on the param-
eters K and u we are especially interested in the limit K→ 0,
since it is the expected regime for the κ − ε model, and we
obtain

lim
K→0

Z1/2
∗ =

1
u
. (16)

Therefore Z∗ ≈ 1/u2, and Y∗ = uZ3/2
∗ ≈ 1/u2. This holds so

far that u2 � K, as shown in the plot of u in the parameter
plane u, K (see Figure 3).

Thus in the expected range for K, the normalised fixed point
are mostly determined by the value of the growth rate ratio u.
The actual fixed points are then obtained by multiplying Z by
γ2

Z and Y by γ3
Z , leading to the expected decrease with the value

of γZ .

2. Tangential transform and asymptotic behaviour

We now examine the tangential transform obtained when
linearizing equation (13) in the vicinity of any point (Z,Y ) in
the phase space.

∂t Z̃ = A Z̃− Ỹ , (17a)

∂tỸ =C Z̃ +BỸ , (17b)

A = 1−2KZ ; B = u−2
Y

Z3/2 ; C =
3
2

Y 2

Z5/2 . (17c)

The eigenvalues of this linear equation are solutions of the
second order equation:

λ
2−λ

(
A+B)+AB+C = 0. (18a)

The canonical form of this equation is straightforward:(
λ − A+B

2

)2
= D =

(A+B
2

)2
−AB−C, (19a)

λ± =
A+B

2
±D1/2. (19b)

FIG. 3. Strictly positive fixed point in the control parameter plane u,
K. Top: Z∗; bottom: Y∗.

From equation (19b) we then get the eigenvalues at the fixed
points, which are indicative of the asymptotic behaviour of the
system. Figure 4 displays the real part of the largest eigen-
value and the absolute imaginary part of both roots.

On the top part of Figure 4 the black curve is where the
largest eigenvalue real part crosses 0, separating the zones of
asymptotic stability and instability. In the expected regime
with K small, the system becomes unstable for a value of u
slightly smaller than 1. Concerning the imaginary part, it is
mostly positive except for rather low values of u, leading to a
mostly oscillatory asymptotic behaviour.

The time traces of the variables of the model on Figure 5
are coherent with the linear analysis. On the top for K = 10−2

and u = 0.8, the system is asymptotically unstable, so it does
not converge. The nonlinear terms prevent the system from
reaching extreme values. After some time, the system reaches
a limit cycle: first there is a phase of exponential growth with
Y starting lower than Z until Z reaches a maximum value due
to the saturation term−KZ2; quickly after that, a brutal damp-
ing happens when Y becomes larger than Z and the coupling
comes into play with the predator term −Y in the equation for
Z and then the sink term − Y 2

Z3/2 of the equation for Y .
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FIG. 4. Phase portrait of the fixed point eigenvalues. Real part (top)
and imaginary part (bottom) of the largest eigenvalue.

For K = 10−2 and u = 1.2 (Figure 5 bottom), the model
becomes asymptotically stable and quickly looks like the
pseudo-asymptotic regime of a linear system, since in this
range, the eigenvalues of the linearized system have non zero
imaginary parts.

3. Amplitude and frequency of the limit cycles

The linear analysis is not suited to give much information
on the limit cycles since they are forced by the nonlinear terms
of the system. It provides however a general idea of their de-
pendency on the parameters that will be useful for the next
sections.

Figure 6 shows the estimated amplitude of the limit cycle
of Z with regards to the value of u for two different values
of K. For the lowest value of K = 10−3, it grows approxi-
mately linearly but very quickly to values that are two orders
of magnitude higher than the fixed point. For K = 5× 10−2,
the growth is largely slower and reaches a maximum around
u = 0.7. Indeed it can be expected to have the maximum limit

FIG. 5. Solution of the local system after the establishment of the
stable limit cycle (logarithmic scale). Control parameters K = 10−2,
u = 0.8 (top) and u = 1.2 (bottom).

cycle amplitude to scale as 1
K since it defines an actual limit

for the value of Z (the derivative of Z is necessarily negative
above this value):

Z−KZ2−Y ≥ 0⇒ Z ≤ 1
K
. (20)

However this scaling law must be seen as a zero order approx-
imation which does not take into consideration the coupling.
Either way, big oscillations are at the same time physically
questionable and quite challenging for the numerical solvers
so we will keep K = 5× 10−2 for most of the following ex-
periments.

To conclude on the local system, let us just point out the
influence of u on the period the limit cycles. Figure 7 shows
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FIG. 6. Variation of the amplitude of the limit cycle when observing
u for different values of K. (top) K = 10−3 and (bottom) K = 5.10−2.

for different values of u the mean period of oscillation of Z
computed as the mean interval of time between two maximum
values of Z between γZt = 100 and γZt = 1000 (to avoid the
impact of the transient). The range of value of u gives almost
exclusively a limit cycle behaviour. It is clear that the period
decreases while u increases, contrary to the amplitude which
starts to increase with u (Figure 6 bottom), and for this limited
range, a 1

u dependency should give a good idea of the expected
period value. Considering the parameter identification, if the
frequency of the oscillations is dependent on the parameters,
the result of the simulation for the current situation may have
different local periods of oscillation from the ones of the target
data. And for simulation lengths covering numerous periods
the variables will eventually run out of phase, what will result
in a considerable but not very informative contribution to the

FIG. 7. Variation of the mean period of the oscillations of Z (in
normalised time γZt) for different values of u, with K = 5×10−2.

cost. In addition, local minima may appear when changing
the frequency, if it maximises the number of regions where
the simulation and the data are in phase during the simulation
length. So the simplest solution is to use only a very short
portion of the data, let us say about the length of a period of
oscillation, to retrieve the parameters and avoid any potential
issue of phase.

B. 1-D transport and spreading

Now we get back to the whole system including the dif-
fusive transport term. The normalisation used for the local
model is not applicable here if we want to be able to consider
a variable γZ , so we get back to the reference formulation (7).

Before addressing 1-D simulations, we modify the expres-
sion of diffusive transport in cylindrical geometry to obtain
a form more suitable for numerical implementation based on
finite-difference derivatives:

∇ρ

(
ρDZ,Y ∇ρ X

)
= ρDZ,Y

( 1
ρ
+

∂LogDZ,Y

∂Z
∇ρ Z

+
∂LogDZ,Y

∂Y
∇ρY

)
∇ρ X +ρDZ,Y ∇

2
ρ X . (21)

Here X stands for either Z or Y depending on the chosen trans-
port equation. To ensure a good precision, in this section the
simulations of the system (7) have been performed using a
Runge-Kutta time stepping of order 4 and order 2 finite differ-
ence derivatives in ρ . Although we will use values inferior to
10−2 for DgBZ and DgBY (they should theoretically be of the
order of ρ2

∗ , with ρ∗ the Larmor radius, hence much smaller
than 1) the variable value of the diffusivity DZY = Z2

Y can take
rather high value so the usual CFL condition (see, e.g.,? ) for
the diffusion has to be taken into account. Here, it reads

δ t <
δρ2

max(DgBDZY )
. (22)
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FIG. 8. Radial profile of u (top). Radial profiles of the fixed points
Z∗, Y∗ (bottom). The vertical dashed and dotted lines indicate the
boundary of the tanh shaped transition region. The horizontal dash-
dot line in the top figure indicates the critical value of u between the
stable (u≥ 0.89) and the unstable (u < 0.89) fixed points.

1. Spreading with 1-D variation of u= γY /γZ

Spreading is one of the physical aspects where the κ-ε
model can prove of particular interest compared to the stan-
dard quasi-linear approach to transport used in the fusion
community? . This is also true for the dynamical aspect gov-
erned by the limit cycles. The set-up for the first series of
simulations presented here is for constant γ = γZ and K and
a fixed profile of u = γZ

γY
enforcing limit cycle for the local

solutions except in the vicinity of ρ = 0.55 where the local
analysis predicts convergence. The variation of u is governed

FIG. 9. Contour plot of Y versus time t and radial position ρ towards
the beginning of the simulation for the profile of u shown in Figure
8, with DgB = 10−4, K = 5×10−2, and identical initial conditions at
each point.

by standard tanh-shaped step functions S(ρ,ρb,δρb) and win-
dow function Π(ρ,ρb1,δρb1,ρb2,δρb2) defined, respectively,
as:

S(ρ,ρb,δρb) = 0.5
(

1+ tanh
(ρ−ρb

δρb

))
, (23a)

Π(ρ,ρb1,δρb1,ρb2,δρb2) = 0.5
(

S(ρ,ρb1,δρb1)

−S(ρ,ρb2,δρb2)
)
. (23b)

For the present simulation we have thus set:

u = 0.75+(ut −0.75)Π(ρ,ρb1,δρb,ρb2,δρb). (24a)

The width of the two transition regions is chosen identical for
both step functions, namely:

ut = 1.15 ; ρb1 = 0.5 ; ρb2 = 0.6 ; δρb = 0.05. (24b)

Since the distance ρb2− ρb1 = 2δρb is small, the step func-
tion does reach its target value and ut is adjusted to ensure that
u > 0.89 in the window 0.528≤ ρ ≤ 0.572, reaching u≈ 0.9
at ρ = 0.55 (see Figure 8 top). Given these parameters, the
fixed point Z∗, Y∗ of the local problem can be determined (see
Figure 8 bottom). Since here γZ = 1 we can use directly the
formula (15a). The y-scale is chosen to underline that the vari-
ation of Z∗, Y∗ is small, in particular when compared to the
amplitude of the limit cycles for u = 0.75.

A broad range of values of DgB have been used for the simu-
lations, from DgB = 10−10 to DgB = 10−1. Two effects become
more and more evident as DgB is increased (see Figure 9 with
DgB = 10−4). First the absorbing condition at ρ = 1 obtained
by enforcing Z = 0 and Y = 0 is now coupled with the other
points in the radial profile governing a gradient in the values of
Z and Y . The radial extent of this boundary layer is a measure
of the spreading effect. Furthermore, after a transient period,
the local oscillations have the same period at each radius, but
with a certain delay constant in time. Even the region charac-
terized by stable fixed points exhibits relaxation oscillations
due to the radial coupling induced by the diffusion.

In the scan of the values of DgB one can observe a grad-
ual synchronization effect as DgB is increased by a factor 10
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from 10−9 to 10−5. However the sharpest change and visible
spreading of the relaxation oscillations into the stable region
occurs between DgB = 10−5 and DgB = 10−4.

For values of DgB lower than 10−5, the diffusion is not in-
tense enough to keep the value of Z and Y in phase at all the
radii. For the lowest DgB the diffusion even has an opposite
effect, slightly spreading the stability zone in a region larger
than the one suggested by the local analysis. The contour plot
of Y for DgB = 4× 10−8 in Figure 10 is shown in grey with
a reduced colour range from 0 to 3 to highlight the phase dy-
namics in the system and slightly zoomed in the radial direc-
tion 0.3≤ ρ ≤ 0.8. The uniform grey shape between ρ = 0.5
and ρ = 0.6 is indeed where the model is locally converging,
and it seems to reach out of the zone of local stability corre-
sponding with the radius interval [0.52,0.58].

One can note that the phase difference grows up with time
so that neighbouring points can exhibit opposite phases hence
enhancing transiently the radial gradients. Hence for the lat-
ter times of the simulations, a resolution issue occurs even for
quite precise radial discretisation, with a step of 2.5× 10−3.
This would obviously get worse as DgB decreases if the sim-
ulation was ran long enough. Either way there is no need to
run the simulation very long to obtain good approximation of
the parameters, so we will not need to reduce the radial dis-
cretisation in this case. In Section V we will show how the
parameter fitting procedure handles the different behaviours
linked to the different values of DgB.

2. Spreading with 1-D variation of γ with fixed u= γY /γZ

In this section we address the problem of spreading from a
turbulent region with γY = γZ ≈ 1, into a region with reduced
turbulence, typically γY = γZ ≈ 0.1. This is an interesting test
for the effectiveness of spreading with fixed growth rate, akin
to the assumption of fixed gradient sometimes used in toka-
mak plasma simulations? .

We consider a reminiscent case of the so-called No Man’s
Land problem with three regions in the plasma, the core re-
gion with ρ ≤ 0.4 that for simplicity we shall consider as tur-
bulent with constant growth rate γ = γre f = 1, the gradient
region with 0.4 ≤ ρ ≤ 0.75 where the growth rate switches
to γ = 0.1 and the edge and SOL region with ρ ≥ 0.75 and
γ = 1. Here the growth rate γ stands for γZ = γY since we
consider u = 1. Changing u in this case has little effect on
the important features of dynamical spreading and is there-
fore not addressed. A tanh dependence determines the shape
of the variation of γ , with characteristic width parameter 0.03,
yielding in practice to a transition region of width ≈ 2×0.03
as it can be see in Figure 11. The simulations are performed
with Kubo number K = 5×10−2 and initial conditions deter-
mined by the local steady state Z∗,Y∗. The reference case is
chosen with DgB = 10−3, hence a rather large value that is ex-
pected to enhance the spreading features as well as allowing
for reduced simulation times since transport equilibrium is ex-
pected to occur after typically 1/DgB, hence a normalised time
γre f t ≈ 1000 (the simulation time is set to half of this value).

The evolution of the profile of Z normalised by the local

fixed point value Z∗ is shown on Figures 12 and 13 with log10
scale for ∆Y = 2−6 (top) and ∆Y = 1 (bottom). In the core for
both cases and edge regions Z hardly departs from the steady
state value Z∗. As in the configuration of Section IV B 1,
one can observe a localised decrease towards 0, the boundary
value at the outer edge of the simulation region ( ρ ← 1).

The main difference appears in the No Man’s Land region.
For ∆Y = 1, we have that Z mostly does not move from its ini-
tial value Z∗, and even decreases near the boundaries of the re-
gion so that there is no effective spreading from the surround-
ing more turbulent regions. On the contrary, for ∆Y = 2−6, the
value of Z is generally almost an order of magnitude larger
than Z∗ proving in this case an effective spreading. Moreover,
Z exhibits large oscillations, localised towards the centre of
the No Man’s Land region, typically at ρ ≈ 0.7, with a slowly
damping amplitude. These oscillations are much slower than
what could be found in the previous section, but this is still
coherent with the local model. Indeed, a lower growth rate in
the No Man’s Land means that the time has to be dilated com-
pared with the result of the local normalised model. Precisely,
the time should be divided by the value of the growth rate, that
here corresponds with a multiplication by 10, and the period
goes approximately from 10 in the previous section to 50 here,
so the difference is not too far from expectation. Towards the
two boundaries of the No Man’s Land region steady state val-
ues appear to be reached on short simulation times, both for
∆Y = 2−6 and ∆Y = 1.

The behaviour for log10(Y/Y∗) in Figure 13 is generally
qualitatively similar to the one of log10(Z/Z∗) in both cases.
Interestingly, for ∆Y = 1, the value of Y increases at the bound-
aries of the No Man’s Land region, that leads to the decrease
of the self generated viscosity DZY = Z2

Y (see Figure 14) and
possibly explains the absence of spreading in this case.

As the effective diffusion coefficient used in the fluid equa-
tions, the time average of DZY gives the intensity of the ef-
fective transverse transport caused by turbulences. Figure 14
compares the time averaged DZY with its local fixed point
value. For the standard case ∆Y = 1, the average transport
< D >t is relatively close to the local fixed point, depart-
ing slightly on the borders of the No Man’s Land region and
around the edge boundary due to the homogeneous Dirichlet
boundary condition. For ∆Y = 2−6 however, while the average
transport is lower than D∗ everywhere else, it is consequently
larger in the No Man’s Land. In its middle, where γ = 0.1,
one can even observe values that are larger than that of the
core governed by γ = 1. One finds therefore that for ∆Y = 2−6

the No Man’s Land region generates a long transient with en-
hanced transport.

In order to investigate the properties of this dynamical
spreading behaviour we first scan the value of ∆Y given for
DgB = 10−3. An average of DZ,Y from γre f t = 0 to γre f t = 400
is used to monitor the dynamical spreading (see Figure 15).
One can notice that dynamical spreading increases as ∆Y is
halved, with < DZY >t reaching values 5 times greater at
the center of the No Man’s Land than outside, for the lowest
value of the diffusion coefficient ratio. For ∆Y > 2−2 the av-
erage < DZY >t remains approximately constant at D∗. It is
to be noted that simulations with values of ∆Y larger than 1
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FIG. 10. Contour plot of Y versus time and radial position with a reduced colour range, with DgB = 4×10−8.

FIG. 11. Profile of the growth rate γ used in simulations of dynamical
spreading. Dash-dot vertical line, boundary of the No Man’s Land
with a factor 10 reduction of the growth rate between ρ = 0.4 and
ρ = 0.75, tanh transition with characteristic width 0.1, middle of this
region at ρ = 0.575.

tend to be unstable with the chosen meshing and time step-
ping. The reduced transport of the predator Y therefore yields
the expected effect of enhancing the transport features in the
No Man’s Land region. In the following, we will focus on
cases with an effective transport generated, that is by taking
∆Y = 10−6 as a reference.

Investigating now the dependence of dynamical spreading

on DgB, two phases in the response can be identified, a first
phase with an increase of the oscillation amplitude followed
by the second phase with damping of the oscillations, as in
Figure 16. There is an asymmetry of the amplitude with re-
spect to Z∗ with a larger increase for Z > Z∗ and a smaller
decrease for Z < Z∗.

While the oscillation period exhibits a rather small depen-
dence on DgB, the increase and decay of the oscillation am-
plitude depends on DgB. At small values of DgB, typically
5×10−5, the amplitude evolution is slow. For larger values of
DgB the amplitude variation in time is faster and the oscillation
period becomes shorter. The onset of the oscillations is then
rapid and only the decay phase can be identified, even though
the maximum oscillation amplitude is still considerably larger
for the highest than for the lowest DgB values. Furthermore,
at low values of DgB the trajectories appeared to be cycling
towards the local fixed point Z∗, for larger values of DgB the
convergence point clearly detaches from that fixed point. The
behaviour of Y is qualitatively similar to that of Z and so is the
one of DZY , although its detachment from the fixed point is
less noticeable. Except for the highest values of DgB, we have
that DZ,Y converges to a value quite close to its local minimum
so the increased transport is mostly a transient behaviour.

Finally we investigate the scan of DgB using a different
criterion to evaluate the dynamical spreading achieved with
∆Y = 2−6, namely the maximum and minimum values of
DZ,Y , achieved during the first cycle at ρ = 0.575. Dynamical
spreading behaves as a resonance when drawing the maxi-
mum of DZ,Y , this value being reached at the beginning of
the first relaxation cycle, versus DgB (see Figure 17 top, in
semi-log scale). The same data is presented in Figure 17 bot-
tom with a log-log scale, top curve head-up triangles together
with the minimum of DZ,Y during dynamical spreading, and
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FIG. 12. Time evolutions of the profile of log10(Z/Z∗) for ∆Y = 2−6

(top) and ∆Y = 1 (bottom). Simulations are done with DgB = 10−3,
K = 5×10−2 and the profile of γ shown in Figure 11.

the average in time from γre f t = 0 to γre f t = 400. The black
dashed line represents the value of D∗ at the same radial lo-
cation ρ = 0.575. One finds that there is a threshold at low
values for DZ,Y to detach from D∗. For these small values
of the transport, the local dynamics govern the evolution of
Z and Y and transport has little effect. Conversely, when
DgB is large, the damping rate of the relaxation events, that
is observed to increase with DgB, is fast enough to modify
the initial cycles during which min(DZ,Y ) and max(DZ,Y ) are
reached. The minimum of DZ,Y being reached at later times
than the maximum is the first to exhibit a rapid switch-off. A
similar sharp drop of the maximum would require a still larger
value of DgB.

We have analysed several cases where spreading takes place
with the κ-ε model. It leads to a decoupling of the observed
values of κ and ε from that determined by the local dynamics.
The effect is governed by the self-consistent transport propor-
tional to κ2/ε . A consequence is that transport also deviates

FIG. 13. Time evolutions of the profile of log10(Y/Y∗) for ∆Y = 2−6

(top) and ∆Y = 1 (bottom). Simulations are done with DgB = 10−3,
K = 5×10−2 and the profile of γ shown in Figure 11.

from the expected one. One finds therefore that even in this
model with fixed growth rates, and thus akin to fixed gradient
driven turbulence? , spreading occurs. In the cases of interest
for the analysis of plasma-wall interaction as well as for real-
istic core simulations one must consider the prescribed fluxes.
Varying transport at fixed gradient can only hold with varying
fluxes that adapt to the achieved transport magnitude, which is
not relevant for steady state operation. Stepping to flux driven
simulations, one can then expect that spreading will be more
effective since the modified transport governed by the κ-ε will
also modify the growth rate via the evolution of the gradients,
hence generating a higher dimension phase space where non-
linear effects can drive novel transport phenomena and in par-
ticular enhanced spreading properties.

For now we will see how the parameter identification pro-
cedure behaves on the analysed cases, and how it is influenced
by the weight of the nonlinear diffusion term.
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FIG. 14. Profiles of the time average value < D >t and that of the
local fixed point D∗, for ∆Y = 2−6 (top) and ∆Y = 1 (bottom). Sim-
ulations are done with DgB = 10−3, K = 5×10−2 and the profile of
γ shown in Figure 11.

V. PARAMETER IDENTIFICATION

This section aims to show the potential of the variational
data assimilation procedure introduced in Section III to re-
trieve the parameters used in the two spreading regimes pre-
viously identified, starting from relatively standard initial
guesses.

A. Test case A : spreading with variation of u = γY
γZ

In a first set of tests, the aim is to recover the profile of u =
γY
γZ

(see Figure 18) used in Section IV B 1, assuming the other

FIG. 15. Transition with ∆Y of the transient enhancement of transport
monitored by the time average of DZ,Y at ρ = 0.575 from γre f t = 0
to γre f t = 400, blue curve open circles. Simulation with DgB = 10−3,
K = 0.05 and the profile of γ shown on Figure 11. Black line: D∗ at
the center of the No Man’s Land (ρ = 0.575).

parameters constant in space. The minimisation is tested on
4 sub-cases where only the target values of DgB are changing
from 10−2 to 10−8 (each time DgBZ = DgBY ) usually resulting
in slightly different behaviours of the minimisation algorithm.

The parameters used in Section IV B 1 are mostly flat, so
using the gradient penalization seems a little bit too favourable
as it naturally pushes the parameters to constant values. Hence
instead of trying to recover the flat initial condition for Z and
Y used in Section IV B 1, we let the model run (for the speci-
fied target parameters) and use the shapes of Z and Y , obtained
at a certain normalised time t0, as the initial conditions Z0 and
Y0 to recover. Hence, since the system is autonomous, the data
generated for the assimilation procedure will be equal to those
for the simulation initialized with flat initial conditions in the
time interval [t0, t0+T ], T being the length in time of the gen-
erated data. In the following we will use this time interval
to designate what the data corresponds with, hence defining
the target initial condition and its time length. For this first
case we typically use the time interval [40,50], so that the ini-
tial condition to retrieve will be Z(40) and Y (40) for Y and Z
started at Z(0) = 2 and Y (0) = 2, and the time length of the
data is equal to 10. Figure 19 shows the shapes of the initial
states that will be retrieved by the minimisation procedure,
and the first guesses from where the algorithm starts.

The two last parameters are kept constant at their original
value, that are γZ = 1 and K = 0.05. The initial guesses for
parameters other than Z0 and Y0 are also constant, with the
same values, for each value of Dob j

gB . They are DgBZ = DgBY =

10−5, γZ = 1.2, γY = 0.7, K = 2× 10−2. These values are
chosen so that the first guess presents limit cycles as the target
solution, even though this is probably not necessary for the
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FIG. 16. Time evolutions of Z and Y at the center of the No Man’s
Land, with DgBZ = 7×10−3 (top) and DgBZ = 5×10−5 (bottom).

DgBZ DgBY γZ γY K
Initial guess 10−5 10−5 1.2 0.7 2×10−2

Target value 10−8 to 10−2 DgBZ 1.0 Gaussian
shape 5×10−2

TABLE II. Initial guess and target values of the parameters for the
different configurations (except Z0 and Y0, for which we refer to Fig-
ure 19).

convergence of the algorithm. These values are summarized
in Table II.

Concerning the parameters internal to the minimisation al-
gorithm, some scaling is performed either to introduce a limit
on the value of a parameter, to adapt a gradient value largely
different from the others or to introduce a rough idea of the
proximity of the initial guesses to the target parameters. We
notably used an exponential scaling for DgBZ and DgBY be-
cause the gradient with regard to these parameters is orders of
magnitude larger than that with regard to the other parameters,
and seemingly growing for lower values of DgBZ or DgBY . Fur-
thermore, we only force, with a Positive Quasi Linear (PQL)
scaling function, the positivity of the initial state Z0 and Y0

FIG. 17. Value of DZ,Y during dynamical spreading at ρ = 0.575.
Maximum value of DZ,Y , in semi-log scale (top). Maximum, mini-
mum and average values of DZY , from γre f t = 0 to γre f t = 400, in
log-log scale (bottom). The dashed black line indicates the value of
D∗. Simulations are done with ∆Y = 2−6, K = 5× 10−2 and the
profile of γ shown in Figure 11.

functions because these are the only parameters that must al-
ways remain positive. The minimisation algorithm generally
behaves better without constraints on the parameters. The
scaling are summarized in Table III.

Moreover, although the algorithm works relatively well
without penalisation, we introduce a gradient penalisation to
prevent the apparition of oscillations on the parameters, espe-
cially on the boundaries of the domain. Specifically, we run
the minimisation algorithm twice in a row. A first time, a high
weight for the penalisation wp = 10−2 and a relaxed stopping
condition ‖∇ j‖

‖∇ j0‖
< ε i

p = 10−5 are imposed to prevent the ap-
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FIG. 18. Radial profile of the target γY for the parameter fitting test
case A.

DgBZ DgBY γZ γY K Z0 Y0
type exp. exp. lin. lin. lin. PQL PQL

linear coefficient 5.0 5.0 1.0 1.0 1.0 5.0 5.0
ε coefficient N/A N/A N/A N/A N/A 10.0 10.0

TABLE III. Scaling functions on the different parameters for the test
case A with the time interval [0,10]. Here, exp., lin. and PQL stand,
respectively, for exponential, linear and positive quasi-linear.

parition of big oscillations when the parameters are far from
their targets. Then, a second time, a lower weight w+

p = 10−4

and the original stopping condition ‖∇ j‖
‖∇ j0‖

< εp = 10−7 are
adopted mostly to accelerate the convergence in the cases
where the shapes are harder to recover. The second step can
be useful when dealing with real data, for which a very high
precision cannot be obtained, so a quicker convergence toward
a slightly flattened solution is desirable.

Table IV shows the number of iterations and the final cost
for the different studied configurations, and Figure 20 shows
the evolution of the cost function and norm of its gradient,
versus the number of simulations for some chosen cases. As a
reminder, each simulation consists of one computation of the
cost function and of its gradient and there can be several of
them in one iteration (although as seen in Table IV this is quite
rare for a convergent case). First, let us remark that the cost

Dob j
gB wp Iterations Simulations Final cost

10−8 0 403 412 2.39×10−12

10−8 10−2 507 518 4.01×10−6

10−6 0 541 549 7.93×10−12

10−6 10−2 545 560 2.44×10−5

lightgray 10−4 0 441 542 2.56×10−6

10−4 10−2 710 741 3.24×10−6

10−2 0 976 1060 1.92×10−8

10−2 10−2 1070 1168 3.46×10−8

TABLE IV. Number of iterations and final cost for the test case A
with and without gradient penalization. The gray colour indicates
that the minimiser did not converge because the line search failed.

for the case with penalisation has a very specific shape: we
can see two times in a row a phase of quick decrease followed
by a quasi stagnation of the cost. The stagnation is simply
due to the fact that the penalisation function is not zero when
the parameters are equal to the target parameters, so there is
a threshold under which the cost cannot go. Then the shape
is doubled because when the gradient penalization is used the
minimisation algorithm is launched 2 times, with different pe-
nalization weights and stopping thresholds. The launch of the
second minimisation procedure can also be spotted on the gra-
dient plot where the gradient norm suddenly increases.

In each case the gradient norm is reduced, but the proce-
dure is largely faster for the lowest DgB and, at equal DgB,
slightly faster without gradient penalization. Furthermore, the
cost function is logically more reduced without penalisation,
but while the gap is significative for lower DgB it is largely
reduced for higher ones. Furthermore, the minimiser does not
converge for DgB = 10−4 without the penalisation, because a
satisfactory step cannot be found for the descent direction at
the last iteration. This happens relatively late in the simulation
since the gradient norm is still considerably reduced. Let us
see now how these observations are associated with the error
on the parameters.

Table V shows the final relative error on the parameters and
Figure 21 shows the relative error on the parameters, as func-
tions of the number of simulations, for a chosen subset of con-
figurations. When DgB is small, the algorithm quickly identi-
fies γ , u, K, Z0 and Y0, and then it takes more iterations to
identify DgBZ and DgBY . In the case DgB = 10−8 with penali-
sation, the final value for DgBZ is even still almost the quadru-
ple of its target. The error could probably be corrected with
a more precise stopping condition, but either way it shows
that the identification of DgBZ and DgBZ is quite difficult when
their target value is low, simply because they have a low im-
pact on the behaviour of the model, mostly driven by the local
dynamic. Moreover, for lower target DgB the minimisation
seems clearly faster and notably more precise without the pe-
nalisation.

On the other hand, for higher target DgB the identification of
DgBZ and DgBY is relatively fast, but then the algorithm iden-
tifies very slowly -and with a low final precision- the param-
eters varying with space. A probable explanation is that the
intense diffusion has a blurring effect on Z and Y so that the
shapes of the parameters have less influence on the shapes of
the variables, which makes them harder to identify.

Figure 22 completes the analysis by showing the profile of
the target Z0 and Y0 and of their values retrieved by the min-
imisation algorithm. For higher DgB with the time interval
[40;50] the parameters obtained without the penalization are
indistinguishable from the target values, whereas with the pe-
nalization the points with the higher second spatial derivative
are slightly off (typically at the right boundary for both Z0 and
Y0 and the bumps around the central gap for Y0). This slight
error seems fairly tolerable, and will very likely be negligi-
ble with regards to the imprecision of the model and of the
measurements. Concerning the highest DgB, the penalization
seems rather beneficial specifically on the boundaries. In this
case it appears quite difficult for the algorithm to obtain a pre-
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FIG. 19. Values of the target and first guesses for the initial states Z0 and Y0 for the different DgB. The target are obtained by running the
simulation until γ0t = 40, starting with Z(0) = Y (0) = 2.0 for the given DgB.

FIG. 20. Evolution of the cost and the norm of its gradient versus the number of iterations (computations of the cost function and of its
gradient), for 2 different values of the target DgB of the test case A, with and without gradient penalisation (wp is the weight of the gradient
penalization in the first run of the minimisation algorithm).

Dob j
gB wp DgBZ DgBY γZ γY K Z0 Y0

10−8 0 2.42×10−3 1.24×10−3 1.05×10−6 2.26×10−7 9.27×10−6 3.12×10−6 1.67×10−6

10−8 10−2 3.75×10−0 8.01×10−1 7.44×10−4 3.96×10−4 9.63×10−3 3.57×10−3 4.65×10−3

10−6 0 3.71×10−5 1.05×10−5 1.65×10−6 2.96×10−7 8.82×10−6 2.57×10−5 6.61×10−6

10−6 10−2 4.71×10−1 1.35×10−1 2.12×10−3 9.16×10−4 1.82×10−2 2.40×10−2 1.63×10−2

lightgray 10−4 0 9.36×10−3 2.20×10−2 3.19×10−3 2.66×10−3 1.01×10−1 4.34×10−1 1.24×10−1

10−4 10−2 1.33×10−2 1.00×10−3 9.33×10−4 9.26×10−4 2.65×10−2 7.46×10−2 3.87×10−2

10−2 0 1.08×10−4 6.42×10−6 1.74×10−2 1.51×10−2 5.31×10−1 3.77×10−1 4.66×10−1

10−2 10−2 3.17×10−4 4.70×10−5 3.20×10−3 2.23×10−3 3.81×10−2 1.77×10−1 1.12×10−1

TABLE V. Error on the recovered parameters for the test case A with and without gradient penalization. The gray colour indicates that the
minimiser did not converge.
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FIG. 21. Evolution of the relative error on the parameters versus the number of iterations (computations of the cost function and of its gradient),
for 2 different values of the target DgB of the test case A, with and without gradient penalisation (wp is the weight of the gradient penalization
in the first run of the minimisation algorithm).
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FIG. 22. Identified shapes for Z0 and Y0 and their targets for two different values of the target DgB = 10−6 (top line) and DgB = 10−2 (bottom
line) of the test case A, on the time interval [40;50], with and without penalisation.

cise shape at the right boundary, so the flattened version re-
trieved with the penalization is probably the best that could be
obtained without spending too much iterations (and the case
of DgB = 10−4 shows that they may actually not converge).

In this case the parameter fitting algorithm behaves well
with just a little tuning of the scaling of the parameters. The
inclusion of a penalization on the gradient makes the algo-
rithm robust in every tested case despite a loss on the preci-
sion of the parameters for lower DgB and a slight increase of
the number of iterations, what looks promising for its applica-
tion to real data (i.e. not generated by the model itself).

B. Test case B :
spreading with variation of γY , fixed u and DgBY 6= DgBZ

We now consider as the target of the parameter fitting pro-
cedure the No Man’s Land configuration of Section IV B 2.

This configuration appears to be notably more demanding
than the previous one for the algorithm. Firstly, the large dif-
ferences in scale of some target parameters make them close to
sets of parameters for which the direct solver is unstable, that
could prevent the convergence of the algorithm. Secondly, the
initial state is the fixed point of the local model (without the
diffusion term) which is not far from the fixed point of the
whole model. Hence, Z and Y do not move much outside of
the region with a lower growth rate, what will give few local

information for the computation of the parameters except the
local fixed point. Indeed, there is an infinity of sets of val-
ues for γZ , γY and K which lead to the same local fixed point.
Thirdly, we will mostly consider relatively high values for the
target DgBZ and DgBY , an issue that alone has proven, in Sec-
tion V A, to be more challenging for the algorithm.

Accordingly, we could only obtain the convergence of the
algorithm with the initial guesses for Z0, Y0 quite close to their
target values, specifically with very similar shapes. Otherwise
the algorithm stops quickly at a state where it cannot find a
suitable step along the descent direction, usually because the
set of parameters is too close to a region where the model is
unstable. The first guesses for the initial values Z0 and Y0 are
then simply defined as their target values plus 0.1 (see Fig-
ure 23). It seems also useful to put back their linear scaling
coefficient to 1 (while it was 5 in the previous section), sup-
posing we have a relatively good confidence on those guesses.
The quasi linear positive scaling function for Z0 and Y0 is in-
deed necessary here since the target Z0 and Y0 are very close
to 0. The linear scaling coefficient of DgBZ and DgBY is also
set back to 1.0 because otherwise, their values are moving a
bit too erratically during the first tens of iterations, eventually
reaching values far from the target, from where it is then diffi-
cult to come back. Table VII shows the scaling functions and
their internal arguments that have been used for each parame-
ter.

Except for Z0 and Y0, the first guesses for the parameters are
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FIG. 23. Profile targets and first guesses for the non constant param-
eters in the test case B. From top to bottom, γZ = γY , Z0, Y0.

kept similar to those in the previous case, so most of them are
constant. Table VI summarizes the targets and initial guesses
and Figure 23 shows the profile of non constant parameters.

The penalization on the gradient of the parameters is in this
case necessary for the convergence of the algorithm, because
the apparition of oscillation close to 0 in Z0 and Y0 will quickly
push the solver to the limit of its stability. We keep exactly
the same procedure as for the preceding case with two runs of
the minimiser m1qn3, first with a larger penalisation weight
(wp = 0.01) and a relaxed stopping condition (ε i

g = 10−5), and
a second one with a lower weight (w+

p = 10−4) and a more
precise stopping condition εg = 10−7. We also introduce for
this case the penalisation of negative values on each parame-

DgBZ DgBY γZ γY
Initial guess 10−5 10−5 1.2 0.7

Target value 5×10−3
to 10−4 2−6×DgBZ

NML
shape

NML
shape

Z0 Y0 K
Initial guess target+0.1 target+0.1 2×10−2

Target Value NML shape NML shape 5×10−2

TABLE VI. Initial guess and target values of parameters for the test
case B (the NML shape stands for No Man’s Land shape, see Figure
23 for the non constant parameters).

DgBZ DgBY γZ γY K Z0 Y0
type exp. exp. lin. lin. lin. PQL PQL

params 1.0 1.0 1.0 1.0 1.0 1.0 & 10.0 1.0 & 10.0

TABLE VII. Scaling function for the different parameters for the test
case B. Here, exp., lin. and PQL stand, respectively, for exponential,
linear and positive quasi-linear.

ter (see the paragraph on penalization in Section III B). It is
useful here because in some instances the penalization of the
gradient is stronger than the gradient due to the differences
with the data, so that K is drifting into negative values to com-
pensate for the steep slopes of γZ and γY around the region
with a weaker growth rate. We set the weight of this penali-
sation to 0.1. It does not have to be changed between the two
runs of m1qn3 because it should not influence the precision of
the retrieved parameters (since they should not be negative).

Finally, although the main oscillations of large amplitude
in the No Man’s Land zone have a period clearly longer than
10, longer time intervals do not seem to reduce the number
of iterations overall, so we keep the usual time interval length
of 10. However, since we consider a convergent case and the
initial conditions are not very flat, we have not try to use initial
conditions obtained at later times, at least for the first series of
minimisations. The data then spans on the interval [0,10] of
the simulations of subsection IV B 2.

Tables VIII and IX show the results of the minimisation for
a constant ratio of diffusion coefficient ∆Y = 2−6 and different
target DgB spanning this time only from 10−4 to 5×10−3 be-
cause they lead to the strongest oscillations of the maximum
of DZ,Y (see Figure 17). As it can be seen, the number of it-
erations increases as the target DgB decreases, and accelerates
below 5×10−4. Indeed below this value, Z and Y hardly de-
part from their initial positions even in the No Man’s Land
region, limiting the available information for the evaluation of
the parameters. This is especially true for K because the satu-
ration term (−KZ2) is at least an order of magnitude inferior

target DgB Iterations Simulations Final cost
5×10−3 755 804 8.00×10−8

10−3 876 930 3.59×10−8

5×10−4 1078 1139 2.52×10−8

10−4 2204 2373 2.69×10−8

TABLE VIII. Number of iterations and final cost (without penaliza-
tion) for the test case B over the time interval [0,10].
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Dob j
gB DgBZ DgBZ γZ γY K Z0 Y0

5.00×10−3 1.71×10−5 1.53×10−4 5.56×10−3 3.34×10−2 1.23×10−1 1.31×10−1 2.40×10−3

1.00×10−3 8.60×10−5 1.74×10−4 4.80×10−3 8.28×10−3 1.37×10−1 5.80×10−4 3.45×10−4

5.00×10−4 3.06×10−4 2.61×10−3 1.19×10−2 1.22×10−2 2.70×10−1 2.96×10−4 2.29×10−4

1.00×10−4 4.09×10−4 9.99×10−3 2.67×10−2 2.67×10−2 5.89×10−1 2.29×10−4 3.08×10−4

TABLE IX. Error on the recovered parameters for the test case B over the time interval [0,10].

to the other terms at all time for a simulation with the target
parameters.

Accordingly the error on the retrieved parameters is the
worst for the lowest Dob j

gB and decreases until a minimum is

reached around Dob j
gB = 10−3. For higher Dob j

bB we may have
the same problem of blurring as in the case A but it is also
likely that the gradient norm is not reduced enough to reach
the stopping threshold before the parameters have been pre-
cisely identified. The parameter K generally has a low ac-
curacy, and as shown in Figure 24 the fall of precision is not
only at the boundaries but more or less everywhere in the span
of the radius. This precision may not seem very satisfying,
but mostly shows the low impact of this parameter on the be-
haviour of the κ− ε model in this case.

FIG. 24. Final identified parameter K for the case B and different
target DgB, using the time interval [0,10].

The retrieved parameter γY , displayed in Figure 25 for the
different sub-cases, shows that the parameters are more dif-
ficult to identify around the core boundary (ρ → 0). Indeed,
while at the other boundary the homogeneous Dirichlet condi-
tion bends the initially constant shape, nothing pushes Z and
Y away from the local fixed point where they are initialized
except a very tiny diffusion because the shape is not exactly
constant. It is almost as if only the information of the sta-
tionary limit was available there, and due to its dimension, it
can be obtained with an infinite set of different parameters.
Typically, the shapes of K and γY are very similar at the left
boundary because they compensate each other.

Lastly, it appears that the number of iterations necessary
for the convergence of the algorithm greatly increases with the
lower bound of the time interval on which the cost is computed
as seen in Figure ??: the limit of 3000 iterations is reached
starting from the time interval [20; 30]. This could be ex-

FIG. 25. Final identified parameter γY for the test case B and different
target DgB, using the time interval [0,10], and zoom on the core (left)
boundary.

plained by the fact that in this case the model naturally evolves
towards a stationary limit, so should progressively have less
and less movement. And while the model still shows visible
oscillations at a time of 400, this is only true for the radii in-
side the region of lower growth rate. Hence the model is very
slow to identify the parameters outside of the lower growth
rate region, because the model mostly does not move at those
points.

VI. CONCLUSION

The paper goes further in the analysis of the dynamics of
the reduced κ−ε model, and shows the potential of a data as-
similation technique to estimate the inherent free parameters.
It is of primary importance to be able to accurately estimate
the free parameters of this model in order to increase the relia-



22

FIG. 26. Evolution of the cost and the norm of its gradient for different time intervals, for a target DgBZ of 10−3 of the test case B. The step
in the cost reflects the sudden decrease of the penalisation of the gradient as its weight is changed passing from the first minimisation to the
second.

bility of fluid plasma simulations and the predictive capability
of the codes.

Assuming a Fick’s law for the transverse turbulent trans-
port, this model allows to self-consistently estimate the cross-
field fluxes in the edge and SOL regions of diverted plasma.
The nonlinear dependence of D in κ and ε , both quantities
being estimated from two additional transport equations, al-
lows to introduce some nonlocality in the transport model
and to show the existence of parameter ranges where the tur-
bulence is spread. This feature of the model is important
since stepping to flux driven simulations, one can then expect
that spreading will be more effective. Indeed, the modified
transport governed by the κ-ε will also modify the instability
growth rate via the evolution of the gradients, hence generat-
ing a higher dimension phase space where non-linear effects
can drive novel transport phenomena and in particular en-
hanced spreading properties. The asymptotic behaviour of the
system showed also the existence of limit cycles with ampli-
tude and frequencies depending on the the growth rate ratio
for κ and ε . Such a behaviour has an impact on the parameter
identification since the result of the simulation for the current
situation may have different local periods of oscillation from
the ones of the target data.

Regarding data assimilation, the variationnal approach has
been validated for the estimation of several model parame-
ters on two cases corresponding to limit cycles when varying
u = γε/γκ the growth rate ratio for κ and ε or only γκ . In
the first case, the parameter fitting algorithm behaves well:
the cost function and its gradient are significantly decreased,
and the parameters are very well identified. Adding a penal-
ization term (that makes the gradient more regular) leads to
a robust algorithm with very good results in all cases. In the
second case, the algorithm works again relatively well, but it
usually requires more iterations to converge, and the param-
eters are not as precisely identified as in the first experiment.

It is still satisfying to see that the algorithm can converge on
an arguably more complex case if the first guesses for the ini-
tial states are not too far from their target values. However,
the problems of convergence due to the lack of information
at some points seem to indicate that, in this case, the identifi-
cation of parameters may not be able to efficiently deal with
rarefied data on the radius.

In a future work, we plan to study in detail the sensitivity
of the parameter identification procedure with respect to data
density/sparsity and to noise on data. Then, experimental data
(or data extracted from model simulations with a more com-
plex model) could be considered.
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