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I. INTRODUCTION

Fusion based on magnetic confinement aims at producing power by using the energy liberated by fusing deuterium and tritium nuclei at extremely high temperatures (10 7 -10 8 K) within a plasma confined by magnetic fields in machines of toroidal shape known as tokamaks. This is thus a promising alternative energy source that could potentially fulll the high demand for electricity in the next future. The International Tokamak Experimental Reactor (ITER) has been designed as the key step between today's fusion research machines and tomorrow's fusion power plants. Regarding the expected thermonuclear plasma performance, ITER operation requires an unprecedented effort on the way to controlling plasma heat and particle fluxes ? , in which numerical simulations play a critical role to design optimal scenarios.

Despite the exponential growth of computer speed along with significant improvements in computer technology, the numerous physics and engineering issues to address as well as the very large number of degrees of freedom to handle require the development of a chain of models. This latter ranges from low to high fidelity models, from simplified models for optimization and uncertainty propagation to state-of-the-art first principle models of plasma turbulence transport in relevant plasma conditions. In this context, two-dimensional fluid transport codes (see exhaustive references in Refs. ? ? ) rely on models in which plasma turbulence has been smoothed out by averaging to provide relevant information on appropriate return times. It is similar to the Reynolds Averaged Navier-Stokes (RANS) codes commonly used for engineer-ing applications in computational fluid dynamics (CFD) ? . One of the main issues of these 2D transport codes is the accurate modeling of the transverse turbulent fluxes resulting from the averaging of stresses due to fluctuations. Although intermittency, long-range correlations and ballistic transport events have been widely documented in the plasma edge for a long time ? , all current transport codes in the community (see e.g. ? and ? ) are still based, for reasons of simplicity and numerical efficiency, on the assumption that these transverse flows are driven by local gradients, i.e. by Fick's laws with constant effective perpendicular diffusion coefficients. These ad-hoc coefficients are indeed not determined self-consistently but are tuned by hand to match experimental data. These turbulent particles diffusion D t , turbulent viscosity ν t and turbulent heat conductivity ξ t (simplicity here D t = ν t = ξ t ) give rise to effective coefficients in the transport equations that must be determined at each point of the mesh. The issue here is that these ad-hoc coefficients being flow-dependent differ from one machine to another, from one pulse to another in the same device and even from one location to another in a given discharge ? . They must then be considered as free parameters with an extremely large number of degrees of freedom, which reduces drastically the predictive capabilities of these codes.

To circumvent this limitation, the option of a direct coupling between a mean-field code and a local (flux-tube) plasma turbulence code was proposed by Hasenbeck et al. ? for example. In such a scheme, the mean-field code still follows a gradient-diffusion hypothesis to describe transverse transport, but the transport coefficients are dynamically and self-consistently obtained from the output of turbulence sim-ulations run in a gradient-driven manner (with local plasma parameters and gradients used as inputs) at well-chosen sampling positions in time and space. This approach has been proved successful at reproducing plasma profiles in simple test cases. However, the application to complex cases remains to be undertaken. Additionally, a number of fundamental questions remain in this context, e.g. how to efficiently determine the sampling points and decisive parameters from the mean-field code for the local turbulence simulations, how their choice affects the stability, convergence and performance of such a coupled code system, and if the underlying hypothesis of a scale separation between macroscale (mean-field) and mesoscale (local turbulence) dynamics always holds in the regimes and regions of interest to ensure the feasibility of the approach. Also the physical limitations of this concept as compared to global turbulence simulations and the computational costs still have to be assessed in depth. Similar problems arise when local turbulence codes are used to build a database of transport coefficients depending on the meanfield code's input parameters ? . To solve the computational cost issue, another approach consists in completing the model with equations describing the time and/or space evolution of the transport coefficients, thus making the call to a turbulence code unnecessary. This approach has already been used successfully in the frame of 1D models for L-H transition studies ? ? and can potentially be applied to 2D or 3D edge mean-field models. The consequence is the substitution, as free parameters, of perpendicular diffusion coefficients with parameters defining key properties of the underlying transport mechanisms (e.g., turbulence growth and damping rates). Although this might not lead to a reduction of the number of free parameters, the new parameters are expected to be more driven by the underlying transport physics and hence will vary much less from one machine to the other or from one location to another in the same plasma. Also, their dependencies with plasma characteristics can in general be derived or constrained by theoretical considerations.

Very recently we proposed an innovative path for fusion plasma simulations inspired from computational fluid dynamics, namely from a κε like model developed for the Reynolds-Averaged Navier-Stokes approach designed in the 70's ? but still largely used today to investigate many engineering flows. The model relies on to the evolution of the turbulence kinetic energy per unit mass of the fluctuating transverse velocity κ = 1 2 ṽ2 . ε relates to a damping process acting on κ as the dissipation rate in neutral fluids to determine the turbulent diffusion with D t = Cκ 2 /ε, where C is a proportionality coefficient and v is the drift velocity. Indeed, the scales of dissipation of the turbulent energy in plasma being still an open question ? , the usual definition as a rate of dissipation at the Kolmogorov scale is less meaningful in the context of plasma turbulence, so the field ε is simply understood as a damping process, or predator of the turbulent energy. The success of this kind of approaches relies on the fact that these constants are characteristic of fundamental processes of turbulence, and are hence less dependent on the plasma discharge in the same tokamak, in contrast to the initial diffusion coefficient D t . Results in Baschetti et al. ? ? showed the remarkable potential of this model to capture key aspects of the physics of turbulent transport throughout the plasma.

However, as any reduced model the transport equations for κ and ε induce few free parameters that have to be fixed. In current version ? ? , these parameters are fixed from theoretical considerations based on features of the local dynamics of the κε system and the known properties of transport as well as on a dimensional analysis in the frame of the Kolmogorov theory for homogeneous isotropic turbulence. All these considerations have however a limited validity, and the calibration of these free parameters from available experimental and/or micro-turbulence simulations data of reference would certainly still improve the predictive capability of the model. It is then mandatory to identify the model parameters that will make the computed solution of the model precisely correspond to the data of reference, and to investigate their impact on the dynamic of the system.

Typically used in geosciences, oceanography, or meteorology ? ? where the atmospheric model must precisely match current and past measurements to obtain an accurate forecast, data assimilation allows to work on models with a very large number of parameters confronted to observations of different accuracy not homogeneously spread in space and time. The present work is based on a Variational Data Assimilation (VDA) which involves the minimization of a cost function defined as the distance between the data of reference and the computed values by the model ? . A successful implementation of such procedure in current 2D fluid transport codes for fusion plasmas like SOLEDGE3X ? or SOLPS-ITER ? would allow a precise estimation of the remaining free parameters from the data of reference, or would provide an explicit trajectory for a parameter which could be compared to some considered closure laws.

In this paper, we go further in the analysis of the dynamical system composed by the two transport equations for κ and ε derived in ? and reduced to 1D in the radial direction by averaging in the poloidal and toroidal directions (Section II). The data assimilation technique is presented in Section III. Based on an appropriate normalization, the 1D analysis allows to isolate the fundamental parameters that determine the local behavior of the dynamical system and then the properties of the solutions when varying them (Section IV). The potential of the variational data assimilation is finally illustrated in two spreading regimes (Section V). Concluding remarks end the paper (Section VI).

II. REDUCED MODEL

We consider here the κ-ε model reduced to 1-D in the radial direction following the procedure defined in ? (Section 3). As mentioned in the Introduction, κ = 1 2 ṽ2 and ε relates a damping process acting on κ to determine the turbulent diffusion with D t = Cκ 2 /ε, where C is constant. On contrary to Ref. ? , the model is here decoupled from fluid plasma equations and thus plasma flow variables will be considered as constant in time in the following.

A. Transport model for κ and ε

The evolution of the two fields κ-ε is governed by local dynamics and transverse and parallel transport. Both fields κ and ε are understood to be proportional to energies and thus defined to be positive. The radial variable r varies between 0 and a the little radius of the torus, corresponding to the core boundary of the plasma and the tokamak wall, respectively. The model equations and (initial, boundary) conditions are detailed in ? and read:

∂ τ κ - 1 r ∇ r rC κ D κ 2 ε ∇ r κ = γ κ s κ - 1 D ω κ 2 -ε -σ κ κ, (1a) ∂ τ ε - 1 r ∇ r rC ε D κ 2 ε ∇ r ε = γ ε s ε - V κ 3/2 ε 2 -σ ε ε, (1b) 
κ(τ = 0, r) = κ 0 , ∇ r κ(τ, r = 0) = 0, κ(τ, r = a) = 0, ε(τ = 0, r) = ε 0 , ∇ r ε(τ, r = 0) = 0, ε(τ, r = a) = 0.
(1c) The equations include transport terms both in the perpendicular (i.e. radial) and parallel directions with respect to the magnetic field lines. The perpendicular transport is assumed to be diffusive and govern by coefficients C κ,ε D κ 2 ε . The parallel transport along the magnetic field lines is here simply modelled by a linear loss operator controlled by the parameters σ κ,ε . On the right hand side the local drives of the turbulence are expanded up to order 2, with a linear growth of rate γ s and a quadratic restoring term, in each equation. Finally, the term -ε in the κ-equation identifies the field ε as a rate of damping for the turbulent energy κ.

The linear growth rates γ κ s and γ ε s are labelled s to underline that they are the source term for turbulence. In ? they are equal and directly given by the linear interchange instability growth rate γ I . Here we will include the parallel dynamic in effective growth rates as follows:

γ κ = γ κ s -σ κ , (2a) 
γ ε = γ ε s -σ ε . (2b)
Either considering the hypothesis γ κ s = γ ε s or not, we will assume γ κ = γ ε . Furthermore, the effective growth rates could become negative when the parallel stabilization σ exceeds the instability growth γ s , but this case has not been considered yet, so we will suppose the growth rates positive in the following.

The quadratic term of the equation for κ insures that the field has no fixed point at infinity, preventing the divergence of the local dynamic behavior. It is weighted by the inverse of the parameter D ω , which is found to be homogeneous to a viscosity. The subscript ω indicates that it can be linked to a typical width of the turbulent energy spectrum ? ? . Similarly, the nonlinear term in the equation for ε insures that the dissipation rate of κ eventually decreases when κ tends to 0. Its exact definition enforces that the fixed points κ * and ε * respect ε * = κ 3/2 * , a typical scaling law of the Kolmogorov turbulence theory. It is weighted by the parameter V, homogeneous to a velocity. A closure using a scaling law for the SOL width gives V ≈ ρ * c s with ρ * the Larmor radius normalised by a and c s the sound velocity. Finally, two dimensionless coefficients C κ D and C ε D allow to tune the importance of the diffusion with regards to the local dynamic, possibly differently for κ and ε. Before stepping to the normalization of these equations let us analyse the fixed points behaviour for marginal growth rate γ κ → 0 and γ ε → 0, to insure that it leads to the vanishing of the turbulent viscosity D = κ 2 /ε. We assume that the behaviour near marginality is governed by the dimensionless function g:

γ κ = γ 0 γ k g, (3a) 
γ ε = γ 0 γ e g e , (3b) 
V = V g V 0 g v . ( 3c 
)
Here γ k , γ e and V g are dimensionless, γ 0 being the normalizing growth rate, and V 0 the normalisation of the parameter V. The non-zero fixed point κ, ε is then determined by:

ε = γ e γ 0 g e-v κ 3/2 V 0 V g , (4a) 
ε = κ γ k γ 0 g - κ D ω . ( 4b 
)
We then recover the second order equation determining κ 1/2 :

κ 1/2 2 + g e-v D ω γ e γ 0 V 0 V g κ 1/2 -g γ k γ 0 D ω = 0. ( 4c 
)
The positive root is therefore:

κ 1/2 = g e-v D ω γ 0 γ e 2V 0 V g -1 + 1 + g 1+2v-2e 4γ k V 2 0 V 2 g γ 0 γ 2 e D ω 1/2 , ( 5a 
)
κ 1/2 ≈ g 1+v-e γ k γ e V g V 0 . (5b) 
The approximation used here is the limit g 1+2v-2e 4γ k V 2 0 V 2 g /(γ 2 e γ 0 D ω ) 1. We also obtain:

ε ≈ γ k γ 0 g 3+2v-2e γ k γ e V g V 0 2 . ( 5c 
)
One can then also determine D = κ 2 /ε for this fixed point:

D = κ 2 ε = V 0 V g γ 0 γ e g v-e κ 1/2 ≈ V 2 g γ k γ 2 e g 1+2v-2e V 2 0 γ 0 . (6) 
We remark that the condition used for the approximation can be written as D D ω . We may hence determine the condition on the exponent v such that for g → 0, one has ε → 0, κ → 0 and D → 0. One readily finds that the condition κ → 0 enforces ε → 0, and that the condition D → 0 enforces κ → 0. The constraint v > e -1/2, on the exponent of g in the expression of D given in (6), ensures that κ, ε and D exhibit the right limit as the growth rates approach zero. For the standard case e ≈ 1, one finds therefore that v > 1/2 must be enforced, what we will achieve setting v = 1, as well as e = 1. We will even go a step further to simplify the discussion on the impact of the parameters and their identification, setting for the rest of this article V g = γ k .

B. Normalised model

The normalisation of the κε system (Eq. 1) aims to isolate the critical parameters that determine the behaviour of the system, as it will be studied in detail in Section IV. We set Z = κ/κ 0 and Y = ε/ε 0 and normalize the radial position by the system size, typically the plasma minor radius a, hence ρ = r/a, thus accounting for radial boundary conditions. Time is normalized by 1/γ 0 , t = γ 0 τ where γ 0 is the reference growth rate used in (3). We also normalise the growth rates : γ Z = γ κ /γ 0 and γ Y = γ ε /γ 0 . With these definitions, the system (1) now reads:

∂ t Z = 1 ρ ∇ ρ ρD gBZ Z 2 Y ∇ ρ Z + γ Z Z -KZ 2 -Y, (7a) 
∂ t Y = 1 ρ ∇ ρ ρD gBY Z 2 Y ∇ ρ Y + γ Y Y -γ Z Y 2 Z 3/2 , (7b) 
Z(t = 0, ρ) = Z 0 , ∇ ρ Z(t, ρ = 0) = 0, Z(t, ρ = 1) = 0, Y (t = 0, ρ) = Y 0 , ∇ ρ Y (t, ρ = 0) = 0, Y (t, ρ = 1) = 0. (7c) Here we have set κ 0 = V 2 0 , ε 0 = γ 0 V 2 0 , D 0 = V 2 0 /γ 0 , K = D 0 /D ω , D gBZ = C κ D /(γ 0 a 2 ) and D gBY = C ε D /(γ 0 a 2
). This will be the formulation used for the parameter identification because all parameters are decoupled, but an alternative notation will be interesting to study the behaviour of the system, setting γ = γ Z , γu = γ Y , D gB = D gBZ and ∆ Y D gB = D gBY . We get :

∂ t Z = 1 ρ ∇ ρ ρD gB Z 2 Y ∇ ρ Z + γZ -KZ 2 -Y (8a) ∂ t Y = 1 ρ ∇ ρ ρ∆ Y D gB Z 2 Y ∇ ρ Y + uγY -γ Y 2 Z 3/2 (8b)
Since one expects V 0 to scale like the normalised Larmor radius ρ * , one then finds D gB ∝ ρ 2 * , which corresponds with the so-called gyro-Bohm (gB) scaling.

In the next Section III, we present the algorithm that will be used to identify those parameters given a target trajectory for Z and Y .

III. DATA ASSIMILATION ALGORITHM

The fitting procedure is only tested on twin experiments, fairly virtual cases where the target data are generated by the model itself, for some parameters that we try to find back. Although avoiding the problem of uncertainty and unavailability of the observations, it is already a sufficient test to give insights on the good behaviour of the algorithm and its ability to detect more or less complex sets of parameter values.

A. Definition of the problem

The target data are constituted of two sets of vectors Z ob j i and Y ob j i (the exponent ob j stands for objective) containing approximations of Z and Y at different radial positions for a given set of times (t i ) i∈0,N T separated by the data time step δ ob j t . This data time step is a multiple of the time step (generally 10 times bigger) used in the numerical solver to generate the data. Since the data are generated here, they are already complete, in the right format, and we do not have to take into account possible differences of confidence on the different observations. With real data, those problem will be mostly treated in the definition of the cost function, including operators to get the generated trajectory in the format of the data and adding a covariance matrix in the definition of the cost to account for observation errors. Here, we simply use an Euclidian scalar product of the difference between the logarithm of the generated trajectory and the data. The logarithm allows to consider a relative error which is more meaningful here because the variable can have important scale variations (see for instance in Section IV Figures 12 and13). For a given set of parameters p, knowing the target set of vectors (Z ob j i ) and (Y ob j i ) corresponding to times (t i ) i∈0,N T the cost functional simply reads:

j(p) = ∑ i∈0,N T 1 2 || log((Z(p))(t i )) -log(Z ob j i )|| 2 2 + || log((Y (p))(t i )) -log(Y ob j i )|| 2 2 + Π(p), (9) 
where Π is a regularising penalization term, depending directly on the parameters.

Concerning the parameters to identify, they are 5 in the model given in (7), namely D gBZ , D gBY , γ Z , γ Y and Z. We add to these parameters the initial states Z(t 0 ) and Y (t 0 ), simply written Z 0 and Y 0 . In our case, the initial states are directly given by the first vectors in the data sets, Z ob j 0 and Y ob j 0 . However, even if the target initial conditions are given in the data, it is not obvious that the algorithm will easily converge towards them : at least in an intermediate state of the optimisation algorithm, it may be more advantageous to have the initial state different from the one given by the data if it allows a reduction of the distance to the data as a whole. For real physical problems the data will most likely not be available at any point in space, and not directly for the turbulent variables κ and ε, so it is important to show that the initial condition can be identified.

All parameters are considered constant in time -as said above-and dependent on the radius, except D gBZ and D gBY which are simple scalars. Although this decision makes sense considering that the whole point of the model is to evaluate the viscosity coefficient, so correcting it with an ad-hoc parameter at every space point would clearly reduce its interest, it appears that the gradient with regards to this parameter heavily varies in scale with the discretisation points, making the problem poorly conditioned and the convergence very slow. Hence D gBZ and D gBY are simply considered as scalars.

Summing up, we have 7 different parameters (including the initial conditions), among which 5 vary with the radius, and all of them are used as unknowns of the inverse problem :

• D gBZ and D gBY ∈ R + the coefficients of the (nonlinear) diffusion term, necessarily positive for a physically coherent diffusion effect.

• γ Z and γ Y ∈ L ∞ ([0, 1] → R + )
the normalised effective growth rates. They may vary consequently in scale and could theoretically change of sign, but this case is not considered here, even if the PDE solver can marginally converge for negative values.

• K ∈ L ∞ ([0, 1] → R + )
the Kubo parameter (also referred to the Strouhal number) weighting the nonlinear saturation term in the equation ( 7) for Z. The value of K is usually fairly negligible between 10 -1 and 10 -4 , but it is supposed to remain positive to act as a saturation term.

• Z 0 and Y 0 ∈ L ∞ ([0, 1] → R + ) the initial state of the model. They are supposed positive due to the physical definition of Z and Y -and the mathematical operations performed on them make this condition necessary.

Despite the boundaries defined here, most of the parameters are allowed to take negative values at intermediate states of the minimisation algorithm, because it improves the convergence of the chosen minimizer. However their final retrieved values should indeed be positive.

B. Model solver and discretisation

A partially implicit time discretisation is used in the parameter fitting procedure to compute the trajectory of the normalised κ and ε to insure the stability for any D gB with a relatively large time step, allowing less iterations in the algorithm. Actually, only the linear part of the diffusion term is implicitly computed:

Z n+1 -Z n = δ t D gBZ ρ ∇ ρ ρD Z n ,Y n ∇ ρ Z n+1 + γ Z Z n -KZ 2 n -Y n , (10a) 
Y n+1 -Y n = δ t D gBY ρ ∇ ρ ρD Z n ,Y n ∇ ρ Y n+1 + γ Y Y n -γ Z Y 2 n Z 3/2 n . ( 10b 
)
The implicit part only adds the inversion of a sparse matrix (tridiagonal due to the simple spatial discretisation). When the model reaches a time t i corresponding with recorded data vectors Z ob j i and Y ob j i , the squared difference between the logarithm of the current value of Z and Y and of the data Z ob j i and Y ob j i is added to the cost function. The model solver is derived by the automatic differentiation tool Tapenade ? , mostly as a proof of concept. For this simple solver the derivative could have been written directly but an automatic differentiation tool will be quite useful when extending to more complete models with substantially more complex solvers.

The scheme is still not stable for any set of parameters : the model can have very fast dynamics which lead to the change of sign of its variable in one step of the scheme, and if either Z or Y is negative somewhere the model diverges. This Radial grid spacing Time step Time elapsed between two recordings 2.5 × 10 -3 5 × 10 -3 5 × 10 -2 TABLE I. Numerical parameters for the discretisation in the parameter fitting procedure is actually a good test because solvers are rarely expected to give exploitable results in every regime, so the minimisation algorithm must be able to cope with some forbidden sets of parameters.

Table I displays the values of the discretisation parameters used for all tests of the parameter fitting procedure. The data is generated with the same time step as the one used by the model solver in the parameter fitting algorithm (δ t = 5 × 10 -3 s), but the solution is recorded every 10 iterations (each 5 × 10 -2 s ). Using the same time steps ensures that we effectively consider twin experiments.

Finally, an important factor for the efficiency of the algorithm is the length of the time interval in the cost function. Since the model is often locally oscillatory, as we will see in details in the next section, the objective data and the currently computed trajectory may quickly run out of phase even if the parameters are relatively close from their target values. Hence it is interesting to reduce the length of the time interval to at most a few oscillations, at least as long as the cost is still high, with the added benefit of a largely reduced computational cost at each iteration.

C. Minimizer

FIG. 1. Block scheme of the minimisation algorithm

The complete principle of the algorithm is illustrated in Figure 1. It is a loop between a nonlinear minimisation routine, the Fortran routine m1qn3 ? , and the derived version of the whole procedure returning the cost, i.e., the 1-D κε model solver slightly modified to compute the difference with the target data. Since the gradient is necessarily 0 at the minimum, the loop stops when the 2-norm of the gradient of the cost function has been enough reduced with regards to its initial value.

Most of the time the whole algorithm is actually launched two times, modifying between the two launches the penalisation function (Π(p) in ( 9)) and the stopping criterion. The expected final reduction (after the last launch of the algorithm) of the gradient with respect to its initial value (before the first launch of the algorithm) is set to ||∇ j|| ||∇ j 0 || < ε g = 10 -7 (the stopping condition threshold).

The m1qn3 routine implements a limited memory BFGS algorithm for unconstrained nonlinear optimisation (see ? ). It is a very efficient numerical minimiser, which converges quickly in terms of iterations, with a negligible cost in terms of computational time and memory space, compared to the evaluation of the cost and its gradient. One iteration of this minimiser can actually require multiple simulations, i.e., evaluations of the cost function and of its gradient, but in general the number of simulations is rarely more than 30% larger than the number of iterations ? . We use standard m1qn3 parameters (see ? ). However the solver is only guaranteed to converge -without considering rounding issues-for an unconstrained variable, and we have multiple constraints on the parameters, either the necessary positivity of the initial states Z 0 and Y 0 or the impossibility to compute the cost and gradients for any arbitrary set of parameters. Thus two regularising strategies are used to avoid the divergence of the algorithm as well as to improve its general convergence.

a. Scaling Scaling functions are used to improve the conditioning of the problem and impose boundaries on some parameters. Each of the 7 parameters can have a different scaling function s, defined element-wisely for the non constant parameters. The scaling can be used to impose limits on a parameter: we just have to use a scaling function whose image is bounded, typically with a horizontal asymptote.

By default, all the parameters can have a linear scaling x → kx of parameter k, which can be composed either to an exponential function, or what we choose to call the quasi-linear positive function ? :

s : x → kε - 1 π + 1 -atan x ε + 1 π + π 2 (11)
This scaling function shown on Figure 2 is used to prevent a parameter from reaching 0 at some points, without adding too much non-linearity at the other points. The parameter ε is a good approximation of a threshold for the behaviour of the function.

b. Penalisation Penalisation terms are added to the cost function to help keeping expected shapes and values for the parameters. They directly depend on the parameters and not on the result of the physical model. For each of them, a scalar weight balances its contribution to the cost. Two kinds of penalisation functions are used here on different test cases:

• Gradient penalisation: the quadratic norm of the gradient of the parameters with respect to the radius is added to the cost function. • Negative value penalisation: since negative values in the parameters are either physically incoherent or may lead to the divergence of the numerical κε model solver, we will use in some cases a penalization function which simply adds to the cost one the square of the parameters at the points where they are negative.

IV. DYNAMICS OF THE κε SYSTEM

We study here the behaviour of the normalised κε system (Eq. 8) depending on the different parameters. In Sections IV B 1 and IV B 2, particular cases will be introduced and used again as test cases for the parameter fitting procedure in Section 5.

A. Dynamics governed by the local drive

Without the diffusive transport term, the system ( 7) is reduced to a system of ordinary differential equations that writes:

∂ t Z = γ Z Z -KZ 2 -Y, (12a) 
∂ t Y = γ Y Y -γ Z Y 2 Z 3/2 . ( 12b 
)
In the above model, the number of significant parameters is re-

duced by defining Z = Z γ 2 Z , Ȳ = Y γ 3 Z , K = γ Z K, u = γ Y γ Z assuming that γ Z > 0.
Normalizing time by γ Z finally leads to:

∂ t Z = Z -K Z2 -Ȳ , (13a) 
∂ t Ȳ = u Ȳ - Ȳ 2 Z 3/2 . ( 13b 
)
One can consider the system Eq. 12 as a predator-prey system. For simplicity only in Section IV A, the bar is suppressed on the normalised variables and parameters.

Fixed points of the local evolution

The fixed points of the local system are solution of the coupled equations:

0 = Z * -KZ 2 * -Y * , (14a) 0 = u Y * - Y 2 * Z 3/2 * . ( 14b 
)
Equation ( 14b) yields Y * = 0 and Y * = uZ 3/2 * . For Y * = 0 one finds two possible solutions for Z * in (14a), that are Z * = 0 and Z * = 1/K. For positive growth rates these points are not stable, so they do not really influence the system. For Y * = 0, implying u > 0, Z * is the positive solution of the second order equation KZ + uZ 1/2 -1 = 0 that we write as follows:

0 = Z * + 2 u 2K Z 1/2 * - 1 K , ( 15a 
)
Z 1/2 * = - u 2K + u 2 4K 2 + 1 K . ( 15b 
)
Analysing the dependency of the fixed point on the parameters K and u we are especially interested in the limit K → 0, since it is the expected regime for the κε model, and we obtain lim

K→0 Z 1/2 * = 1 u . ( 16 
)
Therefore Z * ≈ 1/u 2 , and Y * = uZ 3/2 * ≈ 1/u 2 . This holds so far that u 2 K, as shown in the plot of u in the parameter plane u, K (see Figure 3).

Thus in the expected range for K, the normalised fixed point are mostly determined by the value of the growth rate ratio u. The actual fixed points are then obtained by multiplying Z by γ 2 Z and Y by γ 3 Z , leading to the expected decrease with the value of γ Z .

Tangential transform and asymptotic behaviour

We now examine the tangential transform obtained when linearizing equation ( 13) in the vicinity of any point (Z,Y ) in the phase space.

∂ t Z = A Z -Y , (17a) 
∂ t Y = C Z + B Y , (17b) 
A = 1 -2KZ ; B = u -2 Y Z 3/2 ; C = 3 2 Y 2 Z 5/2 . ( 17c 
)
The eigenvalues of this linear equation are solutions of the second order equation:

λ 2 -λ A + B) + AB +C = 0. ( 18a 
)
The canonical form of this equation is straightforward: From equation (19b) we then get the eigenvalues at the fixed points, which are indicative of the asymptotic behaviour of the system. Figure 4 displays the real part of the largest eigenvalue and the absolute imaginary part of both roots.

λ - A + B 2 2 = D = A + B 2 2 -AB -C, (19a) 
λ ± = A + B 2 ± D 1/2 . ( 19b 
On the top part of Figure 4 the black curve is where the largest eigenvalue real part crosses 0, separating the zones of asymptotic stability and instability. In the expected regime with K small, the system becomes unstable for a value of u slightly smaller than 1. Concerning the imaginary part, it is mostly positive except for rather low values of u, leading to a mostly oscillatory asymptotic behaviour.

The time traces of the variables of the model on Figure 5 are coherent with the linear analysis. On the top for K = 10 -2 and u = 0.8, the system is asymptotically unstable, so it does not converge. The nonlinear terms prevent the system from reaching extreme values. After some time, the system reaches a limit cycle: first there is a phase of exponential growth with Y starting lower than Z until Z reaches a maximum value due to the saturation term -KZ 2 ; quickly after that, a brutal damping happens when Y becomes larger than Z and the coupling comes into play with the predator term -Y in the equation for Z and then the sink term -Y 2 Z 3/2 of the equation for Y . For K = 10 -2 and u = 1.2 (Figure 5 bottom), the model becomes asymptotically stable and quickly looks like the pseudo-asymptotic regime of a linear system, since in this range, the eigenvalues of the linearized system have non zero imaginary parts.

Amplitude and frequency of the limit cycles

The linear analysis is not suited to give much information on the limit cycles since they are forced by the nonlinear terms of the system. It provides however a general idea of their dependency on the parameters that will be useful for the next sections.

Figure 6 shows the estimated amplitude of the limit cycle of Z with regards to the value of u for two different values of K. For the lowest value of K = 10 -3 , it grows approximately linearly but very quickly to values that are two orders of magnitude higher than the fixed point. For K = 5 × 10 -2 , the growth is largely slower and reaches a maximum around u = 0.7. Indeed it can be expected to have the maximum limit cycle amplitude to scale as 1 K since it defines an actual limit for the value of Z (the derivative of Z is necessarily negative above this value):

Z -KZ 2 -Y ≥ 0 ⇒ Z ≤ 1 K . ( 20 
)
However this scaling law must be seen as a zero order approximation which does not take into consideration the coupling. Either way, big oscillations are at the same time physically questionable and quite challenging for the numerical solvers so we will keep K = 5 × 10 -2 for most of the following experiments.

To conclude on the local system, let us just point out the influence of u on the period the limit cycles. Figure 7 shows cost. In addition, local minima may appear when changing the frequency, if it maximises the number of regions where the simulation and the data are in phase during the simulation length. So the simplest solution is to use only a very short portion of the data, let us say about the length of a period of oscillation, to retrieve the parameters and avoid any potential issue of phase.

B. 1-D transport and spreading

Now we get back to the whole system including the diffusive transport term. The normalisation used for the local model is not applicable here if we want to be able to consider a variable γ Z , so we get back to the reference formulation (7).

Before addressing 1-D simulations, we modify the expression of diffusive transport in cylindrical geometry to obtain a form more suitable for numerical implementation based on finite-difference derivatives:

∇ ρ ρD Z,Y ∇ ρ X = ρD Z,Y 1 ρ + ∂ LogD Z,Y ∂ Z ∇ ρ Z + ∂ LogD Z,Y ∂Y ∇ ρ Y ∇ ρ X + ρD Z,Y ∇ 2 ρ X. ( 21 
)
Here X stands for either Z or Y depending on the chosen transport equation. To ensure a good precision, in this section the simulations of the system (7) have been performed using a Runge-Kutta time stepping of order 4 and order 2 finite difference derivatives in ρ. Although we will use values inferior to 10 -2 for D gBZ and D gBY (they should theoretically be of the order of ρ 2 * , with ρ * the Larmor radius, hence much smaller than 1) the variable value of the diffusivity D ZY = Z 2 Y can take rather high value so the usual CFL condition (see, e.g., ? ) for the diffusion has to be taken into account. Here, it reads Spreading is one of the physical aspects where the κ-ε model can prove of particular interest compared to the standard quasi-linear approach to transport used in the fusion community ? . This is also true for the dynamical aspect governed by the limit cycles. The set-up for the first series of simulations presented here is for constant γ = γ Z and K and a fixed profile of u = γ Z γ Y enforcing limit cycle for the local solutions except in the vicinity of ρ = 0.55 where the local analysis predicts convergence. The variation of u is governed by standard tanh-shaped step functions S(ρ, ρ b , δ ρ b ) and window function Π(ρ, ρ b1 , δ ρ b1 , ρ b2 , δ ρ b2 ) defined, respectively, as:

δt < δ ρ 2 max(D gB D ZY ) . (22) 
S(ρ, ρ b , δ ρ b ) = 0.5 1 + tanh ρ -ρ b δ ρ b , (23a) 
Π(ρ, ρ b1 , δ ρ b1 , ρ b2 , δ ρ b2 ) = 0.5 S(ρ, ρ b1 , δ ρ b1 ) -S(ρ, ρ b2 , δ ρ b2 ) . ( 23b 
)
For the present simulation we have thus set:

u = 0.75 + (u t -0.75)Π(ρ, ρ b1 , δ ρ b , ρ b2 , δ ρ b ). ( 24a 
)
The width of the two transition regions is chosen identical for both step functions, namely: Since the distance ρ b2ρ b1 = 2δ ρ b is small, the step function does reach its target value and u t is adjusted to ensure that u > 0.89 in the window 0.528 ≤ ρ ≤ 0.572, reaching u ≈ 0.9 at ρ = 0.55 (see Figure 8 top). Given these parameters, the fixed point Z * , Y * of the local problem can be determined (see Figure 8 bottom). Since here γ Z = 1 we can use directly the formula (15a). The y-scale is chosen to underline that the variation of Z * , Y * is small, in particular when compared to the amplitude of the limit cycles for u = 0.75. A broad range of values of D gB have been used for the simulations, from D gB = 10 -10 to D gB = 10 -1 . Two effects become more and more evident as D gB is increased (see Figure 9 with D gB = 10 -4 ). First the absorbing condition at ρ = 1 obtained by enforcing Z = 0 and Y = 0 is now coupled with the other points in the radial profile governing a gradient in the values of Z and Y . The radial extent of this boundary layer is a measure of the spreading effect. Furthermore, after a transient period, the local oscillations have the same period at each radius, but with a certain delay constant in time. Even the region characterized by stable fixed points exhibits relaxation oscillations due to the radial coupling induced by the diffusion.

In the scan of the values of D gB one can observe a gradual synchronization effect as D gB is increased by a factor 10 from 10 -9 to 10 -5 . However the sharpest change and visible spreading of the relaxation oscillations into the stable region occurs between D gB = 10 -5 and D gB = 10 -4 .

For values of D gB lower than 10 -5 , the diffusion is not intense enough to keep the value of Z and Y in phase at all the radii. For the lowest D gB the diffusion even has an opposite effect, slightly spreading the stability zone in a region larger than the one suggested by the local analysis. The contour plot of Y for D gB = 4 × 10 -8 in Figure 10 is shown in grey with a reduced colour range from 0 to 3 to highlight the phase dynamics in the system and slightly zoomed in the radial direction 0.3 ≤ ρ ≤ 0.8. The uniform grey shape between ρ = 0.5 and ρ = 0.6 is indeed where the model is locally converging, and it seems to reach out of the zone of local stability corresponding with the radius interval [0.52, 0.58].

One can note that the phase difference grows up with time so that neighbouring points can exhibit opposite phases hence enhancing transiently the radial gradients. Hence for the latter times of the simulations, a resolution issue occurs even for quite precise radial discretisation, with a step of 2.5 × 10 -3 . This would obviously get worse as D gB decreases if the simulation was ran long enough. Either way there is no need to run the simulation very long to obtain good approximation of the parameters, so we will not need to reduce the radial discretisation in this case. In Section V we will show how the parameter fitting procedure handles the different behaviours linked to the different values of D gB .

Spreading with 1-D variation of γ with fixed

u = γ Y /γ Z
In this section we address the problem of spreading from a turbulent region with γ Y = γ Z ≈ 1, into a region with reduced turbulence, typically γ Y = γ Z ≈ 0.1. This is an interesting test for the effectiveness of spreading with fixed growth rate, akin to the assumption of fixed gradient sometimes used in tokamak plasma simulations ? .

We consider a reminiscent case of the so-called No Man's Land problem with three regions in the plasma, the core region with ρ ≤ 0.4 that for simplicity we shall consider as turbulent with constant growth rate γ = γ re f = 1, the gradient region with 0.4 ≤ ρ ≤ 0.75 where the growth rate switches to γ = 0.1 and the edge and SOL region with ρ ≥ 0.75 and γ = 1. Here the growth rate γ stands for γ Z = γ Y since we consider u = 1. Changing u in this case has little effect on the important features of dynamical spreading and is therefore not addressed. A tanh dependence determines the shape of the variation of γ, with characteristic width parameter 0.03, yielding in practice to a transition region of width ≈ 2 × 0.03 as it can be see in Figure 11. The simulations are performed with Kubo number K = 5 × 10 -2 and initial conditions determined by the local steady state Z * ,Y * . The reference case is chosen with D gB = 10 -3 , hence a rather large value that is expected to enhance the spreading features as well as allowing for reduced simulation times since transport equilibrium is expected to occur after typically 1/D gB , hence a normalised time γ re f t ≈ 1000 (the simulation time is set to half of this value).

The evolution of the profile of Z normalised by the local fixed point value Z * is shown on Figures 12 and 13 with log 10 scale for ∆ Y = 2 -6 (top) and ∆ Y = 1 (bottom). In the core for both cases and edge regions Z hardly departs from the steady state value Z * . As in the configuration of Section IV B 1, one can observe a localised decrease towards 0, the boundary value at the outer edge of the simulation region ( ρ ← 1).

The main difference appears in the No Man's Land region. For ∆ Y = 1, we have that Z mostly does not move from its initial value Z * , and even decreases near the boundaries of the region so that there is no effective spreading from the surrounding more turbulent regions. On the contrary, for ∆ Y = 2 -6 , the value of Z is generally almost an order of magnitude larger than Z * proving in this case an effective spreading. Moreover, Z exhibits large oscillations, localised towards the centre of the No Man's Land region, typically at ρ ≈ 0.7, with a slowly damping amplitude. These oscillations are much slower than what could be found in the previous section, but this is still coherent with the local model. Indeed, a lower growth rate in the No Man's Land means that the time has to be dilated compared with the result of the local normalised model. Precisely, the time should be divided by the value of the growth rate, that here corresponds with a multiplication by 10, and the period goes approximately from 10 in the previous section to 50 here, so the difference is not too far from expectation. Towards the two boundaries of the No Man's Land region steady state values appear to be reached on short simulation times, both for ∆ Y = 2 -6 and ∆ Y = 1.

The behaviour for log 10 (Y /Y * ) in Figure 13 is generally qualitatively similar to the one of log 10 (Z/Z * ) in both cases. Interestingly, for ∆ Y = 1, the value of Y increases at the boundaries of the No Man's Land region, that leads to the decrease of the self generated viscosity D ZY = Z 2 Y (see Figure 14) and possibly explains the absence of spreading in this case.

As the effective diffusion coefficient used in the fluid equations, the time average of D ZY gives the intensity of the effective transverse transport caused by turbulences. Figure 14 compares the time averaged D ZY with its local fixed point value. For the standard case ∆ Y = 1, the average transport < D > t is relatively close to the local fixed point, departing slightly on the borders of the No Man's Land region and around the edge boundary due to the homogeneous Dirichlet boundary condition. For ∆ Y = 2 -6 however, while the average transport is lower than D * everywhere else, it is consequently larger in the No Man's Land. In its middle, where γ = 0.1, one can even observe values that are larger than that of the core governed by γ = 1. One finds therefore that for ∆ Y = 2 -6 the No Man's Land region generates a long transient with enhanced transport.

In order to investigate the properties of this dynamical spreading behaviour we first scan the value of ∆ Y given for D gB = 10 -3 . An average of D Z,Y from γ re f t = 0 to γ re f t = 400 is used to monitor the dynamical spreading (see Figure 15). One can notice that dynamical spreading increases as ∆ Y is halved, with < D ZY > t reaching values 5 times greater at the center of the No Man's Land than outside, for the lowest value of the diffusion coefficient ratio. For ∆ Y > 2 -2 the average < D ZY > t remains approximately constant at D * . It is to be noted that simulations with values of ∆ Y larger than 1 tend to be unstable with the chosen meshing and time stepping. The reduced transport of the predator Y therefore yields the expected effect of enhancing the transport features in the No Man's Land region. In the following, we will focus on cases with an effective transport generated, that is by taking ∆ Y = 10 -6 as a reference.

Investigating now the dependence of dynamical spreading on D gB , two phases in the response can be identified, a first phase with an increase of the oscillation amplitude followed by the second phase with damping of the oscillations, as in Figure 16. There is an asymmetry of the amplitude with respect to Z * with a larger increase for Z > Z * and a smaller decrease for Z < Z * .

While the oscillation period exhibits a rather small dependence on D gB , the increase and decay of the oscillation amplitude depends on D gB . At small values of D gB , typically 5 × 10 -5 , the amplitude evolution is slow. For larger values of D gB the amplitude variation in time is faster and the oscillation period becomes shorter. The onset of the oscillations is then rapid and only the decay phase can be identified, even though the maximum oscillation amplitude is still considerably larger for the highest than for the lowest D gB values. Furthermore, at low values of D gB the trajectories appeared to be cycling towards the local fixed point Z * , for larger values of D gB the convergence point clearly detaches from that fixed point. The behaviour of Y is qualitatively similar to that of Z and so is the one of D ZY , although its detachment from the fixed point is less noticeable. Except for the highest values of D gB , we have that D Z,Y converges to a value quite close to its local minimum so the increased transport is mostly a transient behaviour. We have analysed several cases where spreading takes place with the κ-ε model. It leads to a decoupling of the observed values of κ and ε from that determined by the local dynamics. The effect is governed by the self-consistent transport proportional to κ 2 /ε. A consequence is that transport also deviates from the expected one. One finds therefore that even in this model with fixed growth rates, and thus akin to fixed gradient driven turbulence ? , spreading occurs. In the cases of interest for the analysis of plasma-wall interaction as well as for realistic core simulations one must consider the prescribed fluxes. Varying transport at fixed gradient can only hold with varying fluxes that adapt to the achieved transport magnitude, which is not relevant for steady state operation. Stepping to flux driven simulations, one can then expect that spreading will be more effective since the modified transport governed by the κ-ε will also modify the growth rate via the evolution of the gradients, hence generating a higher dimension phase space where nonlinear effects can drive novel transport phenomena and in particular enhanced spreading properties.

For now we will see how the parameter identification procedure behaves on the analysed cases, and how it is influenced by the weight of the nonlinear diffusion term. 

V. PARAMETER IDENTIFICATION

This section aims to show the potential of the variational data assimilation procedure introduced in Section III to retrieve the parameters used in the two spreading regimes previously identified, starting from relatively standard initial guesses.

A. Test case A : spreading with variation of

u = γ Y γ Z
In a first set of tests, the aim is to recover the profile of u = γ Y γ Z (see Figure 18) used in Section IV B 1, assuming the other The parameters used in Section IV B 1 are mostly flat, so using the gradient penalization seems a little bit too favourable as it naturally pushes the parameters to constant values. Hence instead of trying to recover the flat initial condition for Z and Y used in Section IV B 1, we let the model run (for the specified target parameters) and use the shapes of Z and Y , obtained at a certain normalised time t 0 , as the initial conditions Z 0 and Y 0 to recover. Hence, since the system is autonomous, the data generated for the assimilation procedure will be equal to those for the simulation initialized with flat initial conditions in the time interval [t 0 ,t 0 + T ], T being the length in time of the generated data. In the following we will use this time interval to designate what the data corresponds with, hence defining the target initial condition and its time length. For this first case we typically use the time interval [40,50], so that the initial condition to retrieve will be Z(40) and Y (40) for Y and Z started at Z(0) = 2 and Y (0) = 2, and the time length of the data is equal to 10. Figure 19 shows the shapes of the initial states that will be retrieved by the minimisation procedure, and the first guesses from where the algorithm starts.

The two last parameters are kept constant at their original value, that are γ Z = 1 and K = 0.05. The initial guesses for parameters other than Z 0 and Y 0 are also constant, with the same values, for each value of D ob j gB . They are D gBZ = D gBY = 10 -5 , γ Z = 1.2, γ Y = 0.7, K = 2 × 10 -2 . These values are chosen so that the first guess presents limit cycles as the target solution, even though this is probably not necessary for the Target value 10 -8 to 10 -2 D gBZ 1.0 Gaussian shape 5 × 10 -2 convergence of the algorithm. These values are summarized in Table II.

Concerning the parameters internal to the minimisation algorithm, some scaling is performed either to introduce a limit on the value of a parameter, to adapt a gradient value largely different from the others or to introduce a rough idea of the proximity of the initial guesses to the target parameters. We notably used an exponential scaling for D gBZ and D gBY because the gradient with regard to these parameters is orders of magnitude larger than that with regard to the other parameters, and seemingly growing for lower values of D gBZ or D gBY . Furthermore, we only force, with a Positive Quasi Linear (PQL) scaling function, the positivity of the initial state Z 0 and Y 0 functions because these are the only parameters that must always remain positive. The minimisation algorithm generally behaves better without constraints on the parameters. The scaling are summarized in Table III.

Moreover, although the algorithm works relatively well without penalisation, we introduce a gradient penalisation to prevent the apparition of oscillations on the parameters, especially on the boundaries of the domain. Specifically, we run the minimisation algorithm twice in a row. A first time, a high weight for the penalisation w p = 10 -2 and a relaxed stopping condition ∇ j ∇ j 0 < ε i p = 10 -5 are imposed to prevent the ap- parition of big oscillations when the parameters are far from their targets. Then, a second time, a lower weight w + p = 10 -4 and the original stopping condition ∇ j ∇ j 0 < ε p = 10 -7 are adopted mostly to accelerate the convergence in the cases where the shapes are harder to recover. The second step can be useful when dealing with real data, for which a very high precision cannot be obtained, so a quicker convergence toward a slightly flattened solution is desirable.

Table IV shows the number of iterations and the final cost for the different studied configurations, and Figure 20 shows the evolution of the cost function and norm of its gradient, versus the number of simulations for some chosen cases. As a reminder, each simulation consists of one computation of the cost function and of its gradient and there can be several of them in one iteration (although as seen in Table IV for the case with penalisation has a very specific shape: we can see two times in a row a phase of quick decrease followed by a quasi stagnation of the cost. The stagnation is simply due to the fact that the penalisation function is not zero when the parameters are equal to the target parameters, so there is a threshold under which the cost cannot go. Then the shape is doubled because when the gradient penalization is used the minimisation algorithm is launched 2 times, with different penalization weights and stopping thresholds. The launch of the second minimisation procedure can also be spotted on the gradient plot where the gradient norm suddenly increases.

In each case the gradient norm is reduced, but the procedure is largely faster for the lowest D gB and, at equal D gB , slightly faster without gradient penalization. Furthermore, the cost function is logically more reduced without penalisation, but while the gap is significative for lower D gB it is largely reduced for higher ones. Furthermore, the minimiser does not converge for D gB = 10 -4 without the penalisation, because a satisfactory step cannot be found for the descent direction at the last iteration. This happens relatively late in the simulation since the gradient norm is still considerably reduced. Let us see now how these observations are associated with the error on the parameters.

Table V shows the final relative error on the parameters and Figure 21 shows the relative error on the parameters, as functions of the number of simulations, for a chosen subset of configurations. When D gB is small, the algorithm quickly identifies γ, u, K, Z 0 and Y 0 , and then it takes more iterations to identify D gBZ and D gBY . In the case D gB = 10 -8 with penalisation, the final value for D gBZ is even still almost the quadruple of its target. The error could probably be corrected with a more precise stopping condition, but either way it shows that the identification of D gBZ and D gBZ is quite difficult when their target value is low, simply because they have a low impact on the behaviour of the model, mostly driven by the local dynamic. Moreover, for lower target D gB the minimisation seems clearly faster and notably more precise without the penalisation.

On the other hand, for higher target D gB the identification of D gBZ and D gBY is relatively fast, but then the algorithm identifies very slowly -and with a low final precision-the parameters varying with space. A probable explanation is that the intense diffusion has a blurring effect on Z and Y so that the shapes of the parameters have less influence on the shapes of the variables, which makes them harder to identify.

Figure 22 completes the analysis by showing the profile of the target Z 0 and Y 0 and of their values retrieved by the minimisation algorithm. For higher D gB with the time interval [40;50] the parameters obtained without the penalization are indistinguishable from the target values, whereas with the penalization the points with the higher second spatial derivative are slightly off (typically at the right boundary for both Z 0 and Y 0 and the bumps around the central gap for Y 0 ). This slight error seems fairly tolerable, and will very likely be negligible with regards to the imprecision of the model and of the measurements. Concerning the highest D gB , the penalization seems rather beneficial specifically on the boundaries. In this case it appears quite difficult for the algorithm to obtain a pre- 
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In this case the parameter fitting algorithm behaves well with just a little tuning of the scaling of the parameters. The inclusion of a penalization on the gradient makes the algorithm robust in every tested case despite a loss on the precision of the parameters for lower D gB and a slight increase of the number of iterations, what looks promising for its application to real data (i.e. not generated by the model itself). This configuration appears to be notably more demanding than the previous one for the algorithm. Firstly, the large differences in scale of some target parameters make them close to sets of parameters for which the direct solver is unstable, that could prevent the convergence of the algorithm. Secondly, the initial state is the fixed point of the local model (without the diffusion term) which is not far from the fixed point of the whole model. Hence, Z and Y do not move much outside of the region with a lower growth rate, what will give few local information for the computation of the parameters except the local fixed point. Indeed, there is an infinity of sets of values for γ Z , γ Y and K which lead to the same local fixed point. Thirdly, we will mostly consider relatively high values for the target D gBZ and D gBY , an issue that alone has proven, in Section V A, to be more challenging for the algorithm.

Accordingly, we could only obtain the convergence of the algorithm with the initial guesses for Z 0 , Y 0 quite close to their target values, specifically with very similar shapes. Otherwise the algorithm stops quickly at a state where it cannot find a suitable step along the descent direction, usually because the set of parameters is too close to a region where the model is unstable. The first guesses for the initial values Z 0 and Y 0 are then simply defined as their target values plus 0.1 (see Figure 23). It seems also useful to put back their linear scaling coefficient to 1 (while it was 5 in the previous section), supposing we have a relatively good confidence on those guesses. The quasi linear positive scaling function for Z 0 and Y 0 is indeed necessary here since the target Z 0 and Y 0 are very close to 0. The linear scaling coefficient of D gBZ and D gBY is also set back to 1.0 because otherwise, their values are moving a bit too erratically during the first tens of iterations, eventually reaching values far from the target, from where it is then difficult to come back. Table VII shows the scaling functions and their internal arguments that have been used for each parameter.

Except for Z 0 and Y 0 , the first guesses for the parameters are kept similar to those in the previous case, so most of them are constant. Table VI summarizes the targets and initial guesses and Figure 23 shows the profile of non constant parameters. The penalization on the gradient of the parameters is in this case necessary for the convergence of the algorithm, because the apparition of oscillation close to 0 in Z 0 and Y 0 will quickly push the solver to the limit of its stability. We keep exactly the same procedure as for the preceding case with two runs of the minimiser m1qn3, first with a larger penalisation weight (w p = 0.01) and a relaxed stopping condition (ε i g = 10 -5 ), and a second one with a lower weight (w + p = 10 -4 ) and a more precise stopping condition ε g = 10 -7 . We also introduce for this case the penalisation of negative values on each parame- ter (see the paragraph on penalization in Section III B). It is useful here because in some instances the penalization of the gradient is stronger than the gradient due to the differences with the data, so that K is drifting into negative values to compensate for the steep slopes of γ Z and γ Y around the region with a weaker growth rate. We set the weight of this penalisation to 0.1. It does not have to be changed between the two runs of m1qn3 because it should not influence the precision of the retrieved parameters (since they should not be negative).

Finally, although the main oscillations of large amplitude in the No Man's Land zone have a period clearly longer than 10, longer time intervals do not seem to reduce the number of iterations overall, so we keep the usual time interval length of 10. However, since we consider a convergent case and the initial conditions are not very flat, we have not try to use initial conditions obtained at later times, at least for the first series of minimisations. The data then spans on the interval [0, 10] of the simulations of subsection IV B 2.

Tables VIII andIX show the results of the minimisation for a constant ratio of diffusion coefficient ∆ Y = 2 -6 and different target D gB spanning this time only from 10 -4 to 5 × 10 -3 because they lead to the strongest oscillations of the maximum of D Z,Y (see Figure 17). As it can be seen, the number of iterations increases as the target D gB decreases, and accelerates below 5 × 10 -4 . Indeed below this value, Z and Y hardly depart from their initial positions even in the No Man's Land region, limiting the available information for the evaluation of the parameters. This is especially true for K because the saturation term (-KZ 2 ) is at least an order of magnitude inferior Y 0 5.00 × 10 -3 1.71 × 10 -5 1.53 × 10 -4 5.56 × 10 -3 3.34 × 10 -2 1.23 × 10 -1 1.31 × 10 -1 2.40 × 10 -3 1.00 × 10 -3 8.60 × 10 -5 1.74 × 10 -4 4.80 × 10 -3 8.28 × 10 -3 1.37 × 10 -1 5.80 × 10 -4 3.45 × 10 -4 5.00 × 10 -4 3.06 × 10 -4 2.61 × 10 -3 1.19 × 10 -2 1.22 × 10 -2 2.70 × 10 -1 2.96 × 10 -4 2.29 × 10 -4 1.00 × 10 -4 4.09 × 10 -4 9.99 × 10 -3 2.67 × 10 -2 2.67 × 10 -2 5.89 × 10 -1 2.29 × 10 -4 3.08 × 10 -4 to the other terms at all time for a simulation with the target parameters.

Accordingly the error on the retrieved parameters is the worst for the lowest D ob j gB and decreases until a minimum is reached around D ob j gB = 10 -3 For higher D ob j bB we may have the same problem of blurring as in the case A but it is also likely that the gradient norm is not reduced enough to reach the stopping threshold before the parameters have been precisely identified. The parameter K generally has a low accuracy, and as shown in Figure 24 the fall of precision is not only at the boundaries but more or less everywhere in the span of the radius. This precision may not seem very satisfying, but mostly shows the low impact of this parameter on the behaviour of the κε model in this case. The retrieved parameter γ Y , displayed in Figure 25 for the different sub-cases, shows that the parameters are more difficult to identify around the core boundary (ρ → 0). Indeed, while at the other boundary the homogeneous Dirichlet condition bends the initially constant shape, nothing pushes Z and Y away from the local fixed point where they are initialized except a very tiny diffusion because the shape is not exactly constant. It is almost as if only the information of the stationary limit was available there, and due to its dimension, it can be obtained with an infinite set of different parameters. Typically, the shapes of K and γ Y are very similar at the left boundary because they compensate each other.

Lastly, it appears that the number of iterations necessary for the convergence of the algorithm greatly increases with the lower bound of the time interval on which the cost is computed as seen in Figure ??: the limit of 3000 iterations is reached starting from the time interval [20; 30]. This could be ex- plained by the fact that in this case the model naturally evolves towards a stationary limit, so should progressively have less and less movement. And while the model still shows visible oscillations at a time of 400, this is only true for the radii inside the region of lower growth rate. Hence the model is very slow to identify the parameters outside of the lower growth rate region, because the model mostly does not move at those points.

VI. CONCLUSION

The paper goes further in the analysis of the dynamics of the reduced κε model, and shows the potential of a data assimilation technique to estimate the inherent free parameters. It is of primary importance to be able to accurately estimate the free parameters of this model in order to increase the relia- Assuming a Fick's law for the transverse turbulent transport, this model allows to self-consistently estimate the crossfield fluxes in the edge and SOL regions of diverted plasma. The nonlinear dependence of D in κ and ε, both quantities being estimated from two additional transport equations, allows to introduce some nonlocality in the transport model and to show the existence of parameter ranges where the turbulence is spread. This feature of the model is important since stepping to flux driven simulations, one can then expect that spreading will be more effective. Indeed, the modified transport governed by the κ-ε will also modify the instability growth rate via the evolution of the gradients, hence generating a higher dimension phase space where non-linear effects can drive novel transport phenomena and in particular enhanced spreading properties. The asymptotic behaviour of the system showed also the existence of limit cycles with amplitude and frequencies depending on the the growth rate ratio for κ and ε. Such a behaviour has an impact on the parameter identification since the result of the simulation for the current situation may have different local periods of oscillation from the ones of the target data.

Regarding data assimilation, the variationnal approach has been validated for the estimation of several model parameters on two cases corresponding to limit cycles when varying u = γ ε /γ κ the growth rate ratio for κ and ε or only γ κ . In the first case, the parameter fitting algorithm behaves well: the cost function and its gradient are significantly decreased, and the parameters are very well identified. Adding a penalization term (that makes the gradient more regular) leads to a robust algorithm with very good results in all cases. In the second case, the algorithm works again relatively well, but it usually requires more iterations to converge, and the parameters are not as precisely identified as in the first experiment.

It is still satisfying to see that the algorithm can converge on an arguably more complex case if the first guesses for the initial states are not too far from their target values. However, the problems of convergence due to the lack of information at some points seem to indicate that, in this case, the identification of parameters may not be able to efficiently deal with rarefied data on the radius.

In a future work, we plan to study in detail the sensitivity of the parameter identification procedure with respect to data density/sparsity and to noise on data. Then, experimental data (or data extracted from model simulations with a more complex model) could be considered.
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 2 FIG. 2. Plot of the positive quasi-linear scaling function s for ε = 10 -1 and k = 1.

  FIG. 3. Strictly positive fixed point in the control parameter plane u, K. Top: Z * ; bottom: Y * .

FIG. 4 .

 4 FIG. 4. Phase portrait of the fixed point eigenvalues. Real part (top) and imaginary part (bottom) of the largest eigenvalue.

FIG. 5 .

 5 FIG.5. Solution of the local system after the establishment of the stable limit cycle (logarithmic scale). Control parameters K = 10 -2 , u = 0.8 (top) and u = 1.2 (bottom).

FIG. 6 .

 6 FIG. 6. Variation of the amplitude of the limit cycle when observing u for different values of K. (top) K = 10 -3 and (bottom) K = 5.10 -2 .

FIG. 8 .

 8 FIG. 8. Radial profile of u (top). Radial profiles of the fixed points Z * , Y * (bottom). The vertical dashed and dotted lines indicate the boundary of the tanh shaped transition region. The horizontal dashdot line in the top figure indicates the critical value of u between the stable (u ≥ 0.89) and the unstable (u < 0.89) fixed points.

FIG. 9 .

 9 FIG. 9. Contour plot of Y versus time t and radial position ρ towards the beginning of the simulation for the profile of u shown in Figure 8, with D gB = 10 -4 , K = 5 × 10 -2 , and identical initial conditions at each point.

  u t = 1.15 ; ρ b1 = 0.5 ; ρ b2 = 0.6 ; δ ρ b = 0.05. (24b)

  FIG. 10. Contour plot of Y versus time and radial position with a reduced colour range, with D gB = 4 × 10 -8 .

Finally

  FIG. 12. Time evolutions of the profile of log 10 (Z/Z * ) for ∆ Y = 2 -6 (top) and ∆ Y = 1 (bottom). Simulations are done with D gB = 10 -3 , K = 5 × 10 -2 and the profile of γ shown in Figure 11.

FIG. 13 .

 13 FIG. 13. Time evolutions of the profile of log 10 (Y /Y * ) for ∆ Y = 2 -6 (top) and ∆ Y = 1 (bottom). Simulations are done with D gB = 10 -3 , K = 5 × 10 -2 and the profile of γ shown in Figure 11.

FIG. 14 .

 14 FIG. 14. Profiles of the time average value < D > t and that of the local fixed point D * , for ∆ Y = 2 -6 (top) and ∆ Y = 1 (bottom). Simulations are done with D gB = 10 -3 , K = 5 × 10 -2 and the profile of γ shown in Figure 11.

  FIG. 15. Transition with ∆ Y of the transient enhancement of transport monitored by the time average of D Z,Y at ρ = 0.575 from γ re f t = 0 to γ re f t = 400, blue curve open circles. Simulation with D gB = 10 -3 , K = 0.05 and the profile of γ shown on Figure 11. Black line: D * at the center of the No Man's Land (ρ = 0.575).

FIG. 16 .

 16 FIG. 16. Time evolutions of Z and Y at the center of the No Man's Land, with D gBZ = 7 × 10 -3 (top) and D gBZ = 5 × 10 -5 (bottom).

FIG. 17 .

 17 FIG. 17. Value of D Z,Y during dynamical spreading at ρ = 0.575. Maximum value of D Z,Y , in semi-log scale (top). Maximum, minimum and average values of D ZY , from γ re f t = 0 to γ re f t = 400, in log-log scale (bottom). The dashed black line indicates the value of D * . Simulations are done with ∆ Y = 2 -6 , K = 5 × 10 -2 and the profile of γ shown in Figure 11.

FIG. 18 .

 18 FIG. 18. Radial profile of the target γ Y for the parameter fitting test case A.

  FIG. 19. Values of the target and first guesses for the initial states Z 0 and Y 0 for the different D gB . The target are obtained by running the simulation until γ 0 t = 40, starting with Z(0) = Y (0) = 2.0 for the given D gB .

FIG. 21 .

 21 FIG. 21. Evolution of the relative error on the parameters versus the number of iterations (computations of the cost function and of its gradient), for 2 different values of the target D gB of the test case A, with and without gradient penalisation (w p is the weight of the gradient penalization in the first run of the minimisation algorithm).

B

  . Test case B : spreading with variation of γ Y , fixed u and D gBY = D gBZ We now consider as the target of the parameter fitting procedure the No Man's Land configuration of Section IV B 2.

FIG. 23 .

 23 FIG. 23. Profile targets and first guesses for the non constant parameters in the test case B. From top to bottom, γ Z = γ Y , Z 0 , Y 0 .

  .1 target+0.1 2 × 10 -2 Target Value NML shape NML shape 5 × 10 -2 TABLE VI. Initial guess and target values of parameters for the test case B (the NML shape stands for No Man's Land shape, see Figure 23 for the non constant parameters). D gBZ D gBY γ Z γ Y K Z 0 Y 0 type exp. exp. lin. lin. lin. PQL PQL params 1.0 1.0 1.0 1.0 1.0 1.0 & 10.0 1.0 & 10.0 TABLE VII. Scaling function for the different parameters for the test case B. Here, exp., lin. and PQL stand, respectively, for exponential, linear and positive quasi-linear.

FIG. 24 .

 24 FIG. 24. Final identified parameter K for the case B and different target D gB , using the time interval [0,10].

FIG. 25 .

 25 FIG. 25. Final identified parameter γ Y for the test case B and different target D gB , using the time interval [0,10], and zoom on the core (left) boundary.

FIG. 26 .

 26 FIG. 26. Evolution of the cost and the norm of its gradient for different time intervals, for a target D gBZ of 10 -3 of the test case B. The step in the cost reflects the sudden decrease of the penalisation of the gradient as its weight is changed passing from the first minimisation to the second.

TABLE II .

 II Initial guess and target values of the parameters for the different configurations (except Z 0 and Y 0 , for which we refer to Figure 19).

TABLE III .

 III Scaling functions on the different parameters for the test case A with the time interval [0,10]. Here, exp., lin. and PQL stand, respectively, for exponential, linear and positive quasi-linear.

  this is quite rare for a convergent case). First, let us remark that the cost

	D ob j gB	w p Iterations Simulations Final cost
	10 -8	0	403	412 2.39 × 10 -12
	10 -8	10 -2	507	518 4.01 × 10 -6
	10 -6	0	541	549 7.93 × 10 -12
	10 -6	10 -2	545	560 2.44 × 10 -5
	lightgray 10 -4 0	441	542 2.56 × 10 -6
	10 -4	10 -2	710	741 3.24 × 10 -6
	10 -2	0	976	1060 1.92 × 10 -8
	10 -2	10 -2	1070	1168 3.46 × 10 -8

TABLE IV .

 IV Number of iterations and final cost for the test case A with and without gradient penalization. The gray colour indicates that the minimiser did not converge because the line search failed.

TABLE V .

 V Error on the recovered parameters for the test case A with and without gradient penalization. The gray colour indicates that the minimiser did not converge.

TABLE VIII .

 VIII Number of iterations and final cost (without penalization) for the test case B over the time interval [0,10].

	D	ob j gB	D gBZ	D gBZ	γ Z	γ Y	K	Z 0

TABLE IX .

 IX Error on the recovered parameters for the test case B over the time interval [0,10].
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