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Abstract

Implementing structural health monitoring (SHM) techniques with a high Tech-
nology Readiness Level (TRL) is still challenging due to several practical require-
ments and assumptions to apply the fundamental methods. Between them, two issues
earn some special attention: the linearity hypothesis and the robustness to the natu-
ral variability of data. The first point to overcome is that many structural engineer-
ing systems inherently behave nonlinearly during operation, even in a healthy state.
Here, the assumption of linearity is typically inaccurate, eliminating large classes of
feature extraction techniques. This issue is more complicated when the Damage also
induces additional nonlinearities, e.g., cracking. The second aspect is the need to
quantify the parameters’ variation and uncertainties and signal data to interrogate
the structural state. This chapter proposes introducing these challenges and some
examples of addressing them in this context.

Keywords: nonlinearities; uncertainty quantification; damage detection

1 Introduction

Implementing a Structural Health Monitoring (SHM) strategy is essential to avoid and prevent
catastrophic failures in civil, mechanical, and aeronautical systems. Different paradigms utilize
physics-based methods (numerical models coupled with model updating, for example) and data-
driven methods (where models or trends are inferred from the data alone). Regardless of approach,
SHM requires sensors to be deployed on the structure to measure raw information from which it
is necessary to extract features sensitive to whatever target Damage mechanisms are of interest.
These features are then subject to some sort of classification or discrimination process to make
informed decisions about the state of the Damage. Damage is a mechanism that modifies the
properties of mass, damping, stiffness, connectivity, or boundary conditions, individually or mu-
tually, that prevent the structure from performing its intended design functions. The primary issue



is that the variation observed in these properties can be caused by several different sources, not
necessarily only by the presence of Damage. This is a lack of specificity. Furthermore, data itself
contains many sources of noise that corrupt the measurements and propagate the error into the
features and the decision space; this leads to a lack of sensitivity. These combined challenges of
specificity and sensitivity are problematic for practical, long-term SHM applications, reducing its
potential performance.

Among all practical limitations, this chapter focuses on two issues that may decrease the per-
formance of an SHM method, which we have been investigating for the last ten years. The first
is the inherent nonlinear behavior of the vibration motion of flexible and light structures. A non-
linear behavior that leads to the breaking of the superposition principle can be induced when a
linear system is subjected to the presence of some types of Damage. That is the case when a
crack is presented in a simple clamped-free beam when the level of force excitation is low. When
the Damage is propagated, a breathing crack causes a bilinear effect that violates the system’s
linearity and manifests in the data vibration. Modern engineering systems are manufactured with
advanced materials, which demands constitutive equations that are more complex than traditional
ones breaking the assumptions of linearity even in a healthy state. Consequently, an algorithm of
SHM is required to separate the nonlinear effects induced by damaged from the inherent nonlin-
earities.

The second challenge to overcome is the presence of uncertainties in structure monitoring. The
measured data may include heavy noise and systemic uncertainties caused by boundary condition
variations, property change not caused by Damage, variation in the parameters caused by tempera-
ture changes, etc. Consequently, the features extracted from measured signals can be corrupted to
compute the damage indices. On the other hand, the models built to monitor the structures are also
full of uncertainties in the definition of their parameters and the assumptions and simplifications
adopted throughout the modeling. Therefore, to ensure statistical reliability in the results obtained,
such uncertainties must be considered in the construction and testing stage of the methodologies.

Both limitations severely harm damage detection because they can increase the level of false
alarms and reduce the reliability of the diagnosis. It is essential to simultaneously develop and ap-
ply an SHM methodology to deal with these concerns. The key idea to get around these problems
is to choose features that are insensitive to these variations, use projections and transformations,
or use extensive data for learning purposes, increasing the amount of available measured data.
Unfortunately, both options can be problematic and non-trivial to be quickly implemented. This
chapter introduces these challenges by exploiting two benchmarks examples in simple beam struc-
tures with nonlinear behavior and uncertainties. Data of both setups are shared to allow the reader
to deal with methods to observe the effects of nonlinearities and uncertainties in the performance
degradation of the SHM algorithms.

Section 2 introduces general concepts of uncertainty quantification (UQ) and demonstrates
how these natural variabilities can harm the damage-sensitive features used in traditional SHM
algorithms. Section 3 illustrates a general approach for integrating the assumptions and concepts
of uncertainty quantification and nonlinear system identification in damage detection for SHM
purposes in nonlinear systems. First, the section presents an overview of data-driven modeling
and system identification (ID) to detect and understand, based on data, the systems’ nonlinear
behavior. Many different ID models could be chosen, but a nonparametric approach based on the
Volterra series is selected because this series is a straightforward generalization of the convolution
concept of linear systems and strongly correlates with the frequency response functions for higher-
order components. Section 4 provides two examples of applying the described methodology using
experimental data. Firstly, under conditions where a deterministic model is enough to guarantee



the detection of structural variations, where the variability of the data is small. And then a more
interesting experiment, involving a more significant data variability, where the stochastic approach
is needed to ensure good performance (closer to the real world). Finally, the Section 5 provides
the main conclusions and propositions for future work.

2 Overview in Uncertainty Quantification (UQ) and its relevance to SHM

2.1 General definitions

The uncertainties can be classified into two main groups [Soize, 2012, 2017]:

• Data uncertainties: also known as aleatory, these uncertainties are intrinsic to scenarios
with variabilities, such as noise in the measured data (experimental data) and variations
concerning the nominal configuration of the structures, due to geometric imperfections,
manufacturing irregularities, environmental conditions, etc. These uncertainties can not be
eliminated, only better characterized;

• Model uncertainties: also known as epistemic, these uncertainties result from the limited
knowledge about the model structure to be used, i.e., ignorance about the system’s physics.
These uncertainties can be mitigated or even eliminated by increasing knowledge about the
behavior of the system in analysis.

Dealing with model uncertainty is no simple task. Although they can be reduced as the models
are improved, it is practically impossible to build models that are totally faithful to the physical
phenomena involved. In this case, it is interesting that the model can provide some level of infor-
mation about the uncertainties involved in its own prediction estimation process. Physical models
encounter great difficulty in performing this kind of estimation, which is much more common
when considering machine learning-based models. In the context of this work, we assume that
model uncertainties can be neglected, although we know that in reality, they will be present. This
simplification is made by assuming that the chosen baseline nonlinear model (the Volterra series)
is efficient enough to describe the phenomena under study, so those model uncertainties will not
have much influence on the final result. The results obtained experimentally support this belief.

On the other hand, as mentioned, data uncertainties cannot be eliminated, but they can be
better characterized. A better characterization of this type of uncertainty can give the model the
ability to predict the behavior of the dynamic systems under study with a certain level of statistical
reliability. When dealing with experiments where data variability can be significant (almost all
real-world applications), this capability can improve the performance of the monitoring metrics
adopted. The most usual way to consider data uncertainties in estimating a numerical model is
to apply a parametric probabilistic approach [Soize, 2017], that considers the model parameters
sensitive to the presence of uncertainties as random objects (such as random variables, random
vectors or random processes). After characterizing the joint-distribution of these parameters, the
underlying uncertainties can be propagated through the model using the well-known Monte Carlo
(MC) method, and statistics of the model output can be obtained. Experimental applications will
make clearer the advantage of adopting this kind of approach when estimating stochastic models
in the context of damage detection.

2.2 The problem of data variation in the context of SHM

As mentioned before, in the context of SHM, the presence of data variation can confuse the deter-
ministic metrics, as shown in Villani et al. [2019b], being the use of probabilistic models necessary



to improve the results. Figure 1 highlights how the data variation can complicate the implemen-
tation of classical SHM methodologies. Modal parameters are standard features to consider in
the damage detection problem because Damage induces variations in structural properties, which
are reflected in the vibration modes of the structures. It is interesting to observe that depending
on the level of data variation in the measured signals and extension of the Damage, it is difficult
to observe the presence of Damage when the modal parameters are used as the damage-sensitive
feature. There is a superposition between the features calculated on reference condition and under
damage I condition. Therefore, if we use the modal parameters directly as damage indicators in a
deterministic approach or even using powerful machine learning algorithms, we will not be able
to detect damage condition I, under these circumstances. The details about the data can be found
in Villani et al. [2019c].

When dealing with data analysis directly (data-based monitoring), it is possible to project these
features in dimensions where the variability of the measured data is reduced or try to compensate
the variability using a reference parameter, the temperature, for example. It is also possible to
extract features from the signals that may be less influenced by data variability and implement
more powerful classification algorithms. However, when dealing with SHM based on prediction
models, as is the case where nonlinear behavior is involved, some statistical certification for the
model is always necessary because the presence of uncertainties also influences the parameters of
the models. Therefore, these uncertainties must be characterized and incorporated into the model
identification step to build stochastic models capable of performing the prediction with statistical
reliability.
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Figure 1: Uncertainties induced by variations in the measured data.

3 An integrated SHM approach using Nonlinearities and UQ

3.1 Nonlinear system identification

There are two main ways to handle the presence of nonlinear phenomena in SHM problems
[Nichols and Todd, 2009]:

• The healthy structures present linear behavior: Damage induces the linear structure to
present nonlinear phenomena in its behavior. The Damage can be detected by observing



nonlinear behavior in the measured systems’ output signals. When we want to achieve
higher steps of SHM, usually, a nonlinear model is necessary to predict the structure’s
output signals in damaged conditions. Many works were developed in this sense, aiming to
detect delaminations [Ghrib et al., 2018], breathing cracks [Rébillat et al., 2014], unbalance
in rotor systems [Xia et al., 2016], and others;

• The structures present nonlinear behavior even in healthy conditions: the structure
presents nonlinear phenomena in its output signal in the reference condition, and this be-
havior can be confused with damages when the approaches described previously are applied
[Bornn et al., 2010]. This situation makes necessary the use of more sophisticated methods
that can differentiate the effects caused by the damages and the ones caused by the inherent
nonlinearities.

The second scenario is more critical. Figure 2 shows an example of the situation described; the
data used was measured considering a magneto-elastic nonlinear structure exposed to the presence
of a structural change that emulates the behavior of a breathing crack. The presence of multiple
harmonics in the responses suggests nonlinear oscillatory behavior. The structure presents linear
behavior when a low energy level is applied; however, when high amplitudes are achieved, it
manifests nonlinear phenomena. Moreover, the structure is exposed to the presence of a breathing
crack that induces nonlinear behavior. When dealing with the second scenario, the construction
of a model capable of predicting the intrinsically nonlinear behavior of the system and providing
information that allows differentiating the intrinsic phenomena of the system from that caused by
Damage is of great relevance. Many nonlinear models could be proposed to solve this issue, and
the reader is invited to see Kerschen et al. [2007], Worden et al. [2007] for exploring this vast
universe.
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Figure 2: Time-frequency diagram of the system’s output exemplifying the
presence of nonlinear phenomena.

The authors decided to use the Volterra series nonlinear data-driven model for dealing with
the intrinsically nonlinear behavior of such systems. The choice is based on the capability of the
Volterra series to separate linear and nonlinear contributions to the predicted response since this
model represents a generalization of the linear convolution concept.

Consider a discrete-time causal nonlinear system with a single output k ∈ Z+ 7→ y(k) caused
by a single input k ∈ Z+ 7→ u(k), with Z+ representing the set of nonnegative integers. Through
the discrete-time Volterra series, nonlinear system’s output can be written in the form

y(k) =

∞∑
η=1

N1∑
n1=1

. . .

Nη∑
nη=1

Hη(n1, . . . , nη)
η∏
i=1

u(k − ni) = y1(k)︸ ︷︷ ︸
linear

+ y2(k) + · · ·+ yη(k)︸ ︷︷ ︸
nonlinear

, (1)



where (n1, .., nη) ∈ Zη+ 7→ Hη(n1, . . . , nη) represents the η-order Volterra kernel, N the number
of input lags considered in each kernel, and k ∈ Z+ 7→ {y1(k), y2(k), . . . , yη(k)} represent,
respectively, the first kernel (linear) contribution, the second kernel (quadratic) contribution, and
the η-order kernel contribution [Schetzen, 1980].

The main disadvantage of the approach is the challenge in achieving the convergence when
a high number of terms is used [Shiki et al., 2017, Villani et al., 2019a]. In order to reduce
the number of terms necessary to obtain a good approximation, the Volterra kernels Hη can be
expanded into an orthonormal basis, such as the Kautz functions [Kautz, 1954]. In this way, the
series can be rewritten according to the approximation

y(k) ≈
∞∑
η=1

J1∑
i1=1

. . .

Jη∑
iη=1

Bη (i1, . . . , iη)

η∏
j=1

lη,ij (k) , (2)

where J represents the number of Kautz functions used in each orthonormal projections of the
Volterra kernels, (i1, . . . , iη) ∈ Zη+ 7→ Bη(i1, . . . , iη) represents the η-order Volterra kernel ex-
panded in the orthonormal basis, k ∈ Z+ 7→ lη,ij (k) is a simple filtering of the input signal u(k)
by the Kautz function ψη,ij related to each kernel. Information about the Kautz functions can be
found in da Silva et al. [2010]. The kernels’ coefficients can be estimated using linear regression
algorithms, such as the least-squares method [Shiki et al., 2017].

The classical version of the Volterra series expanded using Kautz filters is a useful determin-
istic nonlinear model. However, as mentioned before, practical applications involving real-world
data deal with the presence of uncertainties. If the experimental data present small variability,
related to a low level of noise in the measurements, the deterministic version of the model is suffi-
cient to monitor the system, on the other hand, if the data present high variability, related to noise
and operational conditions, the model can be rewritten to take into account data uncertainties.
The model uncertainties are not considered here, which means that we assume that the nonlinear
model is able to describe the nonlinearities considered in the analysis performed. A parametric
probabilistic approach is employed, meaning that the model parameters subjected to uncertainties
are described as random variables or random processes [Soize, 2017]. The stochastic version of
the Volterra-Kautz model can be described as

y(θ, k) ≈
∞∑
η=1

J1∑
i1=1

. . .

Jη∑
iη=1

Bη (θ, i1, . . . , iη)

η∏
j=1

lη,ij (θ, k) , (3)

where, in this new version, the random process (θ, k) ∈ Θ×Z+ 7→ y(θ, k) represents the stochas-
tic nonlinear system’s output, (θ, n1, .., nη) ∈ Θ × Zη+ 7→ Bη (θ, i1, . . . , iη) represents the ran-
dom version of the η-order Volterra kernel expanded in the Kautz basis, and the random process
(θ, k) ∈ Θ × Z+ 7→ lij (θ, k) is a simple filtering of the deterministic input signal u(k) by the
random Kautz function Ψη,ij , i.e.,

lη,ij (θ, k) =

Jη∑
ni=0

Ψη,ij (θ, ni)u(k − ni). (4)

Estimating the random kernels (the random coefficients) can be done based on the determin-
istic method described before and Monte Carlo simulations [Kroese et al., 2011, Cunha Jr et al.,
2014]. Since we have the random kernels computed when a new input signal is applied, the output
signal can be obtained using the uncertainty propagation through the model (again implementing



Monte Carlo simulations). The stochastic model is versatile and can be used to describe a vari-
ety of polynomial nonlinearities, considering data variation. Additionally, the component filtering
characteristic of the model enables the comparison between the use of linear and nonlinear metrics
and the extraction of nonlinear features sensitive to the presence of nonlinear behavior induced by
Damage. More details can be obtained in Villani et al. [2019c].

3.2 Extraction of features sensitive to Damage

With the method described in the previous section, it is possible to identify a model represent-
ing a structural system’s linear and nonlinear dynamics. One can use the discrepancies detected
in a measured output yexp concerning the Volterra series considering η terms in the expansion
described in Eq. 1. The η-th order prediction error can then be defined by

eη = yexp −
η∑

m=1

ym . (5)

It is expected that the prediction error presents an important change in its statistical properties
when the system is subjected to damage. To summarize the deviation of a structure in an unknown
structural state, a λη damage index is applied

λη =
σ (eη,unk)

σ (eη,ref )
, (6)

where σ denotes the sample standard deviation, eη,unk and eη,ref are the prediction errors mea-
sured in an unknown structural condition and the baseline state, respectively. This index is similar
to the one used in the article of Sohn and Farrar [2001] used to detect nonlinear Damage in an
initially linear system. A pure linear dynamics can represent the λη index for η = 1 in the case
where the Volterra expansion matches a simple linear convolution [Peng et al., 2021], or it can take
into account higher-order contributions of the Volterra series expansion for η > 1. This property is
used in the present chapter to evaluate possible issues that might appear when using linear models
to represent and monitor inherently nonlinear structures.

It is worth mentioning that the features described above make use of the deterministic version
of the Volterra series model and are very effective for applications where the uncertainties have
low influence, as will be demonstrated in the experimental example. When dealing with a higher
level of variability, such features can fail in detecting the variations only related to the presence of
Damage, and new features should be determined, considering the nonlinear stochastic model.

Let’s assume that the first three kernels are enough to describe the nonlinearity of the mon-
itored system. The stochastic model represented by Eq. 3 can be estimated with the system
operating under healthy conditions. This model provides a family of models, through MC simu-
lations, that represent the mechanical system in the reference state. This family of models can be
used to formulate a new damage index, stochastic in this case, as follows

Ilin = [Λlin(θ, i1) Clin(θ, npca)](Ns×(J1+npca)) , (7)

for the linear components, and

Inlin = [Λqua(θ, i1 = i2) Λcub(θ, i1 = i2 = i3) . . .

. . . Cqua(θ, npca) Ccub(θ, npca)](Ns×(J2+J3+2npca)) , (8)



for the nonlinenar ones, where Ns represents the number of MC simulations used. These indices
take into account the identified coefficients of each kernel {Λlin(θ, i1), Λqua(θ, i1 = i2) and
Λcub(θ, i1 = i2 = i3)} and the principal components of the contributions of each kernel to the
total output calculated using the stochastic model

ylin(θ, k)� PCA� Clin(θ, 1), ... ,Clin(θ, npca) ,

yqua(θ, k)� PCA� Cqua(θ, 1), ... ,Cqua(θ, npca) , (9)

ycub(θ, k)� PCA� Ccub(θ, 1), ... ,Ccub(θ, npca) ,

where npca represents the number of principal components to be used. This is a brief description
and more information about the mathematical formulation can be found in Villani et al. [2019c].
The main advantage here is that the damage index in the reference condition takes into account
the natural variability of the experimental data, reducing the probability of false positives in the
analysis while separating out the effect of nonlinearities in the system dynamics. When the me-
chanical system operates in an unknown condition a new index can be calculated and compared
with this reference stochastic model using supervised methods, described below.

3.3 Classification of structural states by using supervised methods

For the index calculated using Eq. 6, a simple outlier analysis using thresholds is enough to differ-
entiate the damage states from the reference condition because the index is uni-dimensional. For
doing so, simply define a theoretical distribution to represent the index in the reference condition
and use the probability measures of false alarms to define the threshold value.

However, for the stochastic indices (Eqs. 7 and 8), this direct procedure is not possible. There
are several ways to approach multivariate data classification. One simple and effective way is
to use metrics based on distance measures to generate a uni-dimensional index that can also be
represented by a theoretical distribution. In this sense, the Mahalanobis distance can be used

D2
m = [Im − µIm ]T Σ-1

Im [Im − µIm ] , (10)

where the sub-index m represents both linear and nonlinear features, ΣIm and µIm are the co-
variance matrix and the mean vector of the feature vector completed considering the reference
condition (using Eqs. 7 and 8), and Im represents the index vector calculated with the mechanical
system in an unknown condition. This metric calculates the distance between Im and the mean
of Im taken into account the dispersion and correlation of Im. Now, a theoretical probability dis-
tribution can be proposed for D2

m and an outlier analysis can be implemented through threshold
definition.

It is worth mentioning that different machine learning methods could be used to monitor the
structural condition through the proposed damage indices. The choice depends on the ability to
separate the data for the features. Since the features calculated here can remarkably separate the
different conditions, a simple outlier analysis using one-dimensional metrics is enough to detect
the occurrence of Damage. For states considering more incipient Damage, more robust methods
may be needed.

3.4 Definition of thresholds: statistical approaches for hypothesis tests

By considering the deterministic approach with the λη index (Eq. 6), it is possible to define a
statistical methodology assuming that the prediction errors have a Gaussian distribution [Shiki
et al., 2017]. With this, the λη indicator can be related to a F distribution which describes the



ratio between the variances of two random variables [Bendat and Piersol, 2011]. In this sense, the
expected probability density function P (λ) is given by

P (λ) =
2
[
v1
v2

] v1
2
λv1−1

β
(
v1
2 ,

v2
2

) [
1 + v1

v2
λ2
]( v1+v2

2

) , (11)

where v1 and v2 are the number of degrees of freedom for the prediction errors in the unknown
and reference conditions respectively and β is the function:

β (a1, a2) =
(a1 − 1)! (a2 − 1)!

(a1 + a2 − 1)!
, (12)

where a1 and a2 are the input arguments of the β function. In this sense, using the deterministic
version of the Volterra series, the damage detection process can be summarized by a statistical
hypothesis test to detect a significant increase in the prediction error under a significance level α:{

H0 : σ (eη,unk) = σ (eη,ref ) ,
H1 : σ (eη,unk) > σ (eη,ref ) ,

(13)

where H0 is the null hypothesis which represents the condition where it is likely that the system is
still in the reference condition, and H1 is the alternative hypothesis that represents the case where
the standard deviation presented a significant increase due to some modification in the system
behavior. This means that in this formulation, it is considered that no other effects are changing
the system’s response (e.g., environmental variations or uncertainties effects).

When using the Mahalanobis distance calculated (Eq. 10) it is necessary to propose a new
hypothesis test. In this regard, we can assume that the Mahalanobis distance can be described by
a chi-square distribution when calculated in the reference condition. Within that assumption, we
need to ensure the premise of independence and normality in the underlying multivariate features
used to calculate the distance measure [Yeager et al., 2019]. Therefore, by integrating the chi-
square PDF, we can calculate the probability of a new distance value to belong the theoretical
distribution [Grimmett and Welsh, 2014]

pm = F (D2
m|ν) =

∫ D2
m

0

t(ν−2)/2e−t/2

2ν/2Γ(ν/2)
dt , (14)

where pm is the probability of the value D2
m belonging to the chi-square distribution, ν is the

number of degrees-of-freedom, and Γ(.) is the Gamma function.
At last, we can propose a probability threshold value to decide if the sample belongs or not

to the theoretical distribution. This sensitivity value depends on the probability of false alarms
tolerated in the specific application. At this point, the hypothesis test can be rewritten{

H0 : pm ≥ ε ,
H1 : pm < ε ,

(15)

where ε represents the value of sensitivity chosen. The definition of α and ε depends on the practi-
cal application and for laboratory studies, various values can be examined to test the performance
of the methods.



3.5 Probability of false alarm and ROC curve

With the statistical procedure presented in the subsection 3.4, it is possible to accept or reject the
null hypothesis, which can give an insight into the structural state of the dynamic system. The
threshold for this binary classification is governed by the significance level of the hypothesis test.

The performance of this classification can be carried out by evaluating the false alarm rate,
which represents the number of false positives indicated by a damage index, against the true de-
tection rate, which reflects the sensitivity of the proposed methodology. These two metrics are
mapped for different threshold values in a receiver-operating characteristic (ROC) curve, which
illustrates the false alarm rates against true detection rates [Farrar and Worden, 2012].

4 Experimental applications

This section presents two case studies to highlight various aspects of damage detection involving
nonlinear and uncertain systems. The first one in subsection 4.1 illustrates a nonlinear magneto-
elastic system subjected to linear structural changes and a lower level of data variation related to
uncertainties. In this situation, deterministic metrics can be applied. In subsection 4.2, the second
one presents an uncertainty-robust damage detection scheme in a magneto-elastic system with
nonlinear damage scenarios and a higher level of data variation imposed during the experiments.

4.1 Linear damage detection in a nonlinear magneto-elastic system

The first case study was performed in the MAGNetO-eLastIc beAm (MAGNOLIA1) by the SHM
Group from UNESP [Shiki et al., 2017]. It was mainly composed of a cantilever aluminum beam
with 300 × 19 × 3.2 [mm] and a steel mass attached to its free end. This mass interacted with
a permanent neodymium magnet distant 2 [mm] for the steel end in a mono-stable configuration.
Similar systems were already investigated in the literature exploring their rich nonlinear behavior
in the bi-stable format with multiple magnets [Barton et al., 2010, Erturk and Inman, 2011].

A Modal Shop 2004E electrodynamic shaker was attached 50 [mm] away from the clamped
end with a Dytran load cell model 1022V. A Polytec OFV-525/-5000-S laser vibrometer was used
to measure the velocity in the beam’s free end. A picture of the experimental setup is presented
in Figure 3 (a). The nonlinearity in this system comes from the magnetic interactions between the
permanent magnet and the steel mass placed in the beam’s free end. The magnet is positioned to
attract the beam in the axial direction and during the bending movement. Considering the gap of
2 [mm] in this system, a hardening behavior was observed during the experimental tests in this
structure. A frequency response curve to a stepped sine input with a shaker-controlled input of
0.01 V and 0.15 V highlights the hardening behavior of the first mode of this system.

Also, a single bolt with 4 nuts (with 2 grams each) was placed in the middle of the beam to
simulate mass variations. In this sense, this case study fits the damage detection problems where
the structure is nonlinear in the reference state. Still, the Damage was simulated as a simple mass
variation that mainly affects linear parameters of this kind of system.

To identify the Volterra model representing the baseline condition of the nonlinear system, a
chirp input with two levels: 0.01 and 0.15 V was configured in the shaker to sweep the frequency
range from 10 to 50 Hz with 4096 samples acquired with a sampling frequency of 1024 Hz. Figure
4 shows the short Fourier transform of these signals. It is possible to observe the appearance of
odd and even harmonics, especially with higher levels of force.

1The complete dataset can be obtained on the website of the UNESP SHM Research Group: https:
//github.com/shm-unesp/UNESP-MAGNOLIA



(a) Experimental setup.

Frequency [Hz]

50 100 150 200 250 300 350 400

A
m

p
li

tu
d
e 

[m
.s

-1
/V

]

10
-1

10
0

10
1

(b) Stepped sine response. and represents the re-
sponse to an input of 0.01 V and 0.15 V respectively.

Figure 3: Setup and nonlinear behavior of the MAGNOLIA system.
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Figure 4: Time-frequency representation of the vibration of the MAGNOLIA
system under low and high levels of excitation.

With these signals, we identified the Volterra kernels using the procedure described in section
3.1. Since both second and third-order harmonics were detected, the Volterra model was consid-
ered to be presented by the first three kernels. A convergence simulation was performed to set
the order of the Kautz filters by calculating the prediction error for different model orders. This
resulted in the choice of J1 = 2, J2 = 2 and J3 = 8. Figure 5 illustrates the convergence study
and the main diagonals of the first three kernels identified to represent the MAGNOLIA system.

The identified model is a nonparametric representation of the MAGNOLIA system in the
baseline condition with 4 masses in the bolt in the middle of the structure. To simulate a linear
kind of Damage, these masses were removed one by one and placed back in the system simulating
the 8 structural states presented in Table 1. The tests for each structural state were repeated 40
times to check the damage indices’ repeatability.

Figures 6 and 7 shows the Volterra-based linear and nonlinear damage indices for all the 8
structural conditions using low and high level chirp input. As shown in Figure 4, higher levels of
displacement tend to cause stronger nonlinear effects shown by the presence of harmonics in the
response. In this sense, the λ1 linear index shows to be sensitive to the Damage only in the linear
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Figure 5: Volterra model representing the MAGNOLIA system.

Table 1: Structural states simulated in the MAGNOLIA system.

State Condition
1 4 masses (baseline)
2 3 masses (damaged)
3 2 masses (damaged)
4 1 mass (damaged)
5 1 mass (repair)
6 2 masses (repair)
7 3 masses (repair)
8 4 masses (repair)

regime of the MAGNOLIA system. Meanwhile, the nonlinear index λ3 shows to be sensitive to
mass variations in both regimes. This simple example clarifies the possible issues when adopting
linear damage indicators for monitoring structures with inherent nonlinear behavior.

Tables 2 and 3 illustrate the results of the Volterra-based damage detection for the low and
high-level input amplitude for different values of the significance level of the hypothesis test.
By the Table 2 it is visible that both λ1 and λ3 indexes were able to accurately detect structural
variations without any false alarms. However, Table 3 illustrating the results of the nonlinear
regime shows that the linear index fails to detect variations while presenting no false alarms. The
nonlinear index presents a true high detection for every case, while false alarms can be minimized
by using lower values of significance levels.

The behavior of the hypothesis test for different values of significance levels α is illustrated
through the ROC curve for both the linear and nonlinear indices. From this analysis, it is clear that
the linear indicator can only increase the detection rate through an increase in the false alarm rate
during the nonlinear regime of the system. Meanwhile, the nonlinear index presents high values
of detection rate without being affected by the nonlinear structural regime.
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Figure 6: Linear damage index under two different input levels for the
MAGNOLIA system. The continuous line represents the indexes during the
damage appplications (states 1 to 4) while represents the indexes during the

repair (states 5 to 8).
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(a) Low level input (0.01 V).
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Figure 7: Nonlinear damage index under two different input levels for the
MAGNOLIA system. The continuous line represents the indexes during the
damage appplications (states 1 to 4) while represents the indexes during the

repair (states 5 to 8).

Table 2: Results of the hypothesis tests for different significance levels under low
level input (0.01 V) on the MAGNOLIA system.

α[%]
Linear index (λ1) Nonlinear index (λ3)

False alarm [%] True detection [%] False alarm [%] True detection [%]
2 0 100 0 100
1 0 100 0 100
0.5 0 100 0 100



Table 3: Results of the hypothesis tests for different significance levels under high
level input (0.15 V) on the MAGNOLIA system.

α[%]
Linear index (λ1) Nonlinear index (λ3)

False alarm [%] True detection [%] False alarm [%] True detection [%]
2 0 0 34.6 100
1 0 0 17.9 100
0.5 0 0 3.85 100

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

False alarm rate

T
ru

e
 d

e
te

c
ti

o
n
 r

a
te

 

 

(a) Linear index.
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(b) Nonlinear index.

Figure 8: ROC curves of the damage indexes for the MAGNOLIA system. -4- is
the curve for the low level input (0.01 V) and -�- is the curve for the high level input

(0.15 V).

4.2 Nonlinear damage in a magneto-elastic beam

The second case study was performed in the nonlineAr Damage in a magnEto-eLastic bEam
(ADELE2) by the SHM Group from UNESP [Villani et al., 2019c]. This is a more challenging
benchmark since data variation was induced throughout the experimental tests and the emulated
Damage having nonlinear behavior characteristics. The stochastic formulation becomes necessary
in this situation to deal with the uncertainties.

The main characteristics of the experimental setup used is presented in Fig. 9, with the struc-
ture in the reference condition (without Damage). Figure 9 (a) shows the structure composed of
a cantilever beam, constructed by gluing four beams of Lexan together, 2.4 × 24 × 240 [mm3]
each one. At the free boundary, two steel masses are affixed and interact with a magnet, gen-
erating a nonlinear behavior in the system response that third-order harmonics can verify in the
Time-frequency diagram presented in Fig. 9 (b). The experimental setup uses an Electrodynamic
Transducer Labworks Inc. (ET-132) to apply forces to the structure (close to the clamp), an Ac-
celerometer PCB PIEZOTRONICS (352C22) to measure the structure output (close to the free
end), and a National Instruments acquisition system to convert and save data. Once again, two
levels of input were considered during the experimental tests. A low input amplitude level (1 V
RMS) ensures the system oscillates in a linear vibration regime, and a high input amplitude level
(6 V RMS) ensures the excitation of the system’s nonlinearities.

2The complete dataset can be obtained on the website of the UNESP SHM Research Group:
https://github.com/shm-unesp/ADELE
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(b) Time-frequency diagram of the
system response.

Figure 9: Setup and nonlinear behavior of the ADELE system.

The Damage introduced to the mechanical system aims to simulate a breathing crack behavior.
Therefore, four different configurations were constructed:

1. Training beam: 4 intact Lexan beams glued, used to train the model (see Fig. 10 (a));

2. Test beam: 4 intact Lexan beams glued, used to test the model (see Fig. 10 (a));

3. Damage I: 3 intact and 1 cut beams glued (see Fig. 10 (a) and (b));

4. Damage II: 2 intact and 2 cut beams glued (see Fig. 10 (a) and (b));

(a) All beams constructed. (b) Damaged beams (zoom).

Figure 10: Structural conditions examined.

This kind of structural change can emulate a breathing crack behavior, inducing a nonlinear
quadratic behavior in the system that can be verified by observing the results of Fig. 11. The results
show that a quadratic harmonic was introduced for the Damage I condition compared with Fig. 9
(b). In contrast, the first and third harmonics are not visually affected. For Damage condition II,
all harmonics are altered because of the large extent of Damage.

Furthermore, the data variation was induced by varying the distance between the magnet and
the structure. This variation generates great variability in the modal parameters of the structure
and of the nonlinear components too. The effect of such variation can be seen in Fig. 1. In this
situation, we need to estimate a stochastic model that can represent such variability under reference
conditions and separate the nonlinear contributions generated by the presence of the magnet and
those generated by the presence of Damage.

For doing so, we can identify a stochastic model using the formulation of Eq. 3, and use this
family of models to estimate the indices of Eqs. 7 and 8 that represents the structure in the healthy
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(a) Damage I.
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(b) Damage II.

Figure 11: Time-frequency diagram obtained with the structure damaged.

condition. In this step we considered: a chirp input signal varying the excitation frequency from
25 to 40 Hz (first mode shape region) with two levels of amplitude, as mentioned before, J1 = 2,
J2 = 4, J3 = 6, and 200 experimental realizations for each structural condition. More information
about the step-by-step model estimation procedure can be found in Villani et al. [2019c].

Once the stochastic model is estimated, it can be used to monitor the system. Im can be
estimated, and in an unknown condition, a new model can be identified to calculate Im. Finally,
the Mahalanobis distance (Eq. 10) is calculated and plotted in Fig. 12 for different structural
conditions. It can be noted that the linear index can not detect the nonlinear behavior induced by
Damage at the beginning of the propagation (Damage condition I), as expected. When the Damage
also changes the linear components (Damage condition II), the linear index values grow. Since the
characteristic of the Damage is to induce nonlinear behavior in the structure, the nonlinear index
shows an interesting ability to separate the nonlinearities generated by the presence of the magnet
from those induced by the presence of the Damage, even at the beginning of the propagation
(Damage condition I). Therefore, it is expected that when applying the proposed hypothesis test
(Eq. 15) the nonlinear index will show a more robust behavior, even considering the variability of
the data.
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Figure 12: Evolution of the Mahalanobis distance.

Table 4 shows the results obtained for both linear and nonlinear indices when applying the



Table 4: Hypothesis test results for ADELE system.

False detection [%] True detection [%]
ε Training Beam Test Beam Damage I Damage II

Linear Index
10−2 0.5 15.5 34.5 100
10−4 0 0 5 100
10−6 0 0 0 100
10−12 0 0 0 75

Nonlinear Index
10−2 4.5 12.5 100 100
10−4 1 7 100 100
10−6 0 4.5 100 100
10−12 0 1.0 96.5 100

hypothesis test. The test is applied using various values for the sensitivity (ε). Despite presenting
a higher level of false positives because of its high sensitivity, the nonlinear index has a consid-
erably better performance in detecting this type of Damage, even considering the great variability
of the data. It is worth remembering that a false positive error can generate less catastrophic
consequences than a false negative error, as is seen in the case of the linear index. This ratio be-
tween false positives and false negatives could be controlled by choosing the value of ε optimally,
depending on the level of reliability and cost that the error may cause in each practical application.

Finally, we can study the degree of separability of the data that these indices generate by
varying the sensitivity of the hypothesis test and constructing the ROC curve. Figure 13 shows the
results obtained. The results revealed that monitoring the nonlinear components of the structure
output signal, depicted by the second and third-order kernel coefficients and contributions used to
fill the feature vector, is an interesting methodology to be deployed in damage detection problems,
mainly when the Damage exhibits nonlinear characteristics. Additionally, when data variation
represents an issue, the use of the stochastic reference model can improve the capability of the
method to distinguish the changes related to the presence of Damage from the ones related to
the presence of uncertainties. Knowing that the closer to the point (0,1), the better the index’s
performance, we can conclude that the nonlinear index performed better.
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Figure 13: ROC curves of the damage indexes for ADELE system. ◦ represents the
linear index and4 represents the nonlinear index.



5 Final Remarks

This chapter has demonstrated by some simple illustrative examples how nonlinear vibration and
operation regimes with parameter uncertainty can compromise the correct diagnosis of the struc-
tural state of a system. Some methods of dealing with these difficulties were presented based on
systems identification techniques that seek to filter linear and nonlinear components in a stochas-
tic way and group the effects according to their causes and effects. The results confirmed that the
procedure’s robustness is increased when both effects are mitigated.

It is evident that when not assumed, the possibility of propagating uncertainties and identifying
and separating the nonlinear behavior from damage and operation confounded the detection. On
the other hand, these techniques demand more knowledge from the SHM engineer to identify these
sources and the requirement of implementing some strategy to allow the correct classification.
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