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Abstract. The conception of an ontology is a complex task influenced
by numerous factors like the point of view of the authors or the level of
details. Consequently, several ontologies have been developed to model
identical or related domains leading to partially overlapping represen-
tations. This divergence of conceptualization requires the study of on-
tologies merging in order to create a common repository of knowledge
and integrate various sources of information. In this paper, we propose
a formal approach for merging ontologies using typed graph grammars.
This method relies on the algebraic approach to graph transformations,
SPO (Simple PushOut) which allows a formal representation and en-
sures the consistence of the results. Furthermore, a new ontologies merg-
ing algorithm called GROM (Graph Rewriting for Ontology Merging) is
presented.

Keywords: Ontologies Merging, Typed Graph Grammars, Algebraic
Graph Transformations, GROM.

1 Introduction

With the emergence of ontologies [1] and their wider use, several ontologies
have been developed to model identical or related domains leading to partially
overlapping representations. As an example, we can cite the domain of Large
Biomedical Ontologies which contains more than 3701 ontologies with some fa-
mous ontologies : Foundational Model of Anatomy (FMA) [2], SNOMED CT2,
National Cancer Institute Thesaurus3 (NCI), etc. This multitude of ontologies
motivates the study of their merging to integrate and compose the different
sources of knowledge.

Merging ontologies becomes more and more necessary and represents an im-
portant area of research. It is defined by Klein [3] as “Creating a new ontology
from two or more existing ontologies with overlapping parts, which can be either

1 http://bioportal.bioontology.org
2 http://www.ihtsdo.org/snomed-ct
3 http://ncit.nci.nih.gov
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virtual or physical”. The creation of the new ontology (also called the global on-
tology) is generally a complex task and requires considerable adaptation and a
rigorous formalism to control the various steps of the construction. In this con-
text, this paper proposes a formal approach for merging ontologies using typed
graph grammars with algebraic graph transformations. Typed Graph Grammars
(TGG) are a mathematical formalism which permits to represent and manage
graphs. They are used in several fields of computer science such as software sys-
tems modelling, pattern recognition and formal language theory [4]. Recently,
they started to be used in the ontology field, in particular for the formaliza-
tion of the operations on ontologies like the alignment, merge and evolution
[5,6,7,8,9,10]. In our previous work [10], we used TGG to formalize and imple-
ment ontology changes. They allow, thanks to their application conditions, to
control the evolution process and to avoid inconsistencies.

In this paper, we use the same formalism to describe a formal approach of
ontologies merging. The proposed approach has been implemented and a new
tool called GROM (Graph Rewriting for Ontology Merging) is introduced. An
application is presented on two ontologies developed in the frame of the CCAlps
European project. Thus, the main contribution of this work is to take advantage
of the graph grammars domain and the algebraic graph transformations to define
and implement the process of merging ontologies.

The rest of this paper is structured as follows: Section 2 presents an overview
of the typed graph grammars and algebraic graph transformations. Section 3
proposes an approach of ontology merging. Section 4 presents an example of ap-
plication. Section 5 discusses some properties of the proposed approach. Section
6 shows some related work. Finally, a conclusion summarizes the presented work
and gives some perspectives.

2 Typed Graph Grammars

This section reviews the fundamental notions involved in typed graph grammars
and algebraic graph transformations.

Definition 1 (Typed graph grammars). A typed graph grammar is a formal-
ism that is composed of a type graph (TG), a start graph (G also called host
graph) and a set of production rules (P ) called graph rewriting rules (or graph
transformations). In this article, we consider the typed attributed graphs. Thus,
TGG = (G,TG,P ) where:

– G = (N,E, src : E → N, tgt : N → E, att : N ∪ E → P (att)) is a graph
composed of : 1) a set of nodes (N); 2) a set of edges (E); 3) two functions,
src and tgt, which specify the source and target of an edge; 4) a set of
attributes (att) which are associated to the edges and nodes.

– TG = (NT , ET , src : ET → NT , tgt : NT → ET , attT ) is a graph which
represents the type of the elements of the graph G. The typing of a graph
G over TG is given by a total graph morphism t : G → TG defined by 3
functions tE : E → ET , tN : N → NT and tatt : att→ attT . Figure 1 shows
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an example of type graph and host graph. The TG represents two nodes
“Conference” and “Emplacement” which have respectively two attributes
“name” and “description” and linked by an edge “hasPlace”. The host graph
G represents an instance of the TG.

– P is a set of production rules which permit the replacement of one sub-graph
by another. It is defined by a pair of graphs patterns (LHS, RHS) where:

• LHS (Left Hand Side) represents the preconditions of the rewriting rule
and describes the structure that has to be found in G.

• RHS (Right Hand Side) represents the postconditions of the rule and
must replaces LHS in G.

TG
Description: String

Emplacement

name: String

Conference

Description:  Cyprus 
E1

name: MEDI
C1

G

instanceOf
 

tE

 
tN

 
tN

hasPlace

hasPlace

 
tatt

Fig. 1: Example of Type Graph and Host Graph.

Moreover, the rules are allowed to have negative application conditions (NACs).
A NAC is another graph pattern that specify the graph that should not occur
when matching a rule. This means that rewriting rule cannot be applied if NAC
exists in G. In this way, a graph transformation defines how a graph G can be
transformed to a new graph G′. More precisely, there must exist a morphism
that replaces LHS by RHS to obtain G′. To apply this replacement, different
graph transformations approaches are proposed [11]. In this work, we use the al-
gebraic approach [12] based on Category Theory [13] with the pushout concept.

Definition 2 (Category Theory). A category [14] is a structure consisting of:
1) a collection of objects O; 2) a set of arrows (also called morphism M) and
a function s : M → O × O such as s(f) = (A,B) is written f : A → B;
3) a binary operation called composition of morphisms (◦) : M × M → M ;
4) an identity morphism for each object id : O → O. The composition oper-
ator is associative and id(O) is the neutral element, i.e. if m : A → B then
m ◦ id(A) = m = id(B) ◦ m. In our work, we consider the category of Graph
where the objects are the graphs and the arrows are the graph morphisms.

Definition 3 (Pushout). Given three objects A, B and C and two morphisms
f : A→ B and g : A→ C, the pushout of B and C consists of: 1) an object D
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and two morphisms f ′ : B → D and g′ : C → D where f ′ ◦ f = g′ ◦ g; 2) for any
morphisms f ′′ : B → E and g′′ : C → E such that f ◦ f ′′ = g ◦ g′′, there is a
unique morphism k : D → E such that f ′ ◦ k = f ′′ and g′ ◦ k = g′′.

Algebraic approaches are divided into two categories: the Single PushOut,
SPO [15] and the Double PushOut, DPO [16]. Applying a rewriting rule to an
initial graph (G) with the SPO method consists in (Figure 2):

1. Finding a matching of LHS in G by defining a morphism m : LHS → G.
2. Deleting m(LHS)−m(LHS ∩RHS) from G.
3. Adding m(RHS)−m(LHS ∩RHS) to G to give new version G′.

r

Remove Dangling Edge 

LHS RHS

G G'

m

N1 N2

N3

N1 N2

N3 N4

N1 N2

N5

N1 N2

N5

N4

N6

N6

N1 N2

N4

Fig. 2: Graph rewriting rule with SPO.

The DPO approach consists of two pushouts and requires an additional condi-
tion called the dangling condition. This condition states that the transformation
is applicable only if its application will not lead to dangling edges. For example,
for the host graph G of the Figure 2, the rewriting rule is forbidden by the DPO
approach because it breaks the dangling condition. If we want to apply this rule,
the host graph G should not contain the edge E(N3, N4). In the SPO approach,
the dangling edges are removed. This allows to write transformations that do
not allow DPO approach which is limited by the dangling condition. For this
reason, we only consider the SPO approach in this work.

3 Merging ontologies with Typed Graph Grammar

3.1 Ontologies with Typed Graph Grammars

As mentioned above, a typed graph grammar is defined by TGG = (TG,G, P ).
By adapting this definition to the ontology field, we obtain:

– G is the host graph which represents the ontology. Figure 3 shows two ex-
amples of host graphs. They are sub-ontologies from the EOCCAlps (Event
Ontology CCAlps) and COCCAlps (Company Ontology CCAlps) which are
developed in the frame of the European project CCAlps4. The EOCCAlps

4 http://www.ccalps.eu

http://www.ccalps.eu
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(a) Extract from EOCCAlps
ontology (O1)

(b) Extract from
COCCAlps ontology (O2)

Fig. 3: Example of ontologies represented as a host graph.

ontology represents events. They can be a “Conference”, “Meeting” or a
“BestComp” and should takes place in the Alpine space. The COCCAlps
ontology represents companies and is used to describe those which will be
participate to the events.

– TG is the type graph which represents the meta-model of the ontology (see
[10]). The OWL meta-model was chosen because it is the standard proposed
by the W3C and the language usually adopted to represent ontologies. Thus,
the types of nodes, NT = {Class, Property, Individual,DataType,Restric-
tion} and the type of edges are the axioms, ET = {subClassOf, domain, ...}.
• Classes (C) model the set of individuals. For example, for EOCCAlps

ontology, C = {“Event”, “Meeting”, “Participant”, ...}.
• Individuals (I) represent the instances of classes, I = {“Lombardy”, “It′s−
Start”}.

• Properties (P ), for each class Ci ∈ C, there exists a set of properties
P (Ci) = DP (Ci)∪OP (Ci), where DP are datatype properties and OP
are object properties. If a property relates a class Ci to an entity Ei

(Class or Datatype), then Ci is called the domain of the property and
Ei is called the range of the property. For example, OP = {“hasTag”},
domain(“hasTag”) = {“Event”}, range(“hasTag”) = {“Tag”}.

• Datatypes (D) represent the type of data value. They can be string,
boolean, etc.

• Restrictions (R), for each property p ∈ P (Ci) there exists a set of re-
strictions on the value or cardinality. For example, there is a value re-
striction on the property “participateTo” which states that some value
for the “participateTo” should be an instance of the class “Participant”.
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• Axioms (A) specify the relations between the ontologies entities. For ex-
ample, subClassOf represents the subsumption relation between classes.

Note that both nodes and the edges can contain attributes. For example,
among the attributes of the nodes of types C, I and P , we found the attribute
name which specifies their local names and the iri which identifies them. In
the figures of this article, the iri has not represented for readability reasons.

– P are the rewriting rules corresponding to the ontology changes (AddClass,
RemoveDataProperty, RenameIndividual, etc.). An ontology change is de-
fined by CH = (Name,NACs, LHS,RHS,DCHs) where: 1) Name spec-
ifies the type of change; 2) NACs define the conditions which must not be
true to apply the rewriting rule; 3) LHS represents the precondition of the
rewriting rule; 4) RHS defines the postcondition of the rewriting rule; 5)
DCHs are the Derived CHanges. They are additional rewriting rules that
are attached to CH to correct its possible inconsistencies.
Figure 4 shows an example of a rewriting rule for the RenameClass change.
This rule renames a node of type Class “Company” to “Enterprise” while
avoiding redundant elements by the NAC.

G

LHS RHS

domain

name="Location"

Class

name="hasLocation"

ObjectProperty

name="Company"

1:Class

name="Entreprise"

1:Class

NAC

name="Entreprise"

Class

RenameClass

m

name="Company"
Class

range

G'

domain

name="Location"

Class

name="hasLocation"

ObjectProperty

name="Entreprise"
Class

range

Fig. 4: Rewriting rule for the RenameClass change.

After introducing how to use typed graph grammars to represent ontologies
and their changes, we present now an approach for merging ontologies. This
consists mainly of three steps presented in the following sections: 3.2) similarity
search; 3.3) merging ontologies; 3.4) global ontology adaptation (Figure 5).

3.2 Similarity Search

In order to establish a correspondence between the ontologies, it is necessary
to identify the relationship (similarity) between their entities. In the literature,
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O1 O2

Step1: Similarity search

Step 2:  Merge

Step 3: Adaptation

CO O2

O1 GO GO'

LHSCH RHSCH

SPO

SPO*

Fig. 5: Approach of merging ontologies with algebraic graph transformations.

several techniques have been proposed to determine these similarities [17]. They
can be divided into five categories:

1. lexical techniques, consider the name of the entities and compare them as
String, e.g. Levenshtein distance [18];

2. structural techniques, consider the structure of the ontologies to detect the
subsumption relations, e.g. Children and Leaves [19];

3. strategies that use an external resource like ontology linguistic (e.g. Wordnet
[20]), dictionary, thesaurus or other ontology for the same domain;

4. strategies that compare ontologies through their usage traces (ex. annota-
tions of the same resources);

5. combination of the previous techniques.

Despite this multitude of techniques, the domain of similarity search has
still several challenges [21]. Thus, considering that our main goal is merging on-
tologies, we chose to work with a simple, but efficient, combination of lexical
techniques and external resource. Thus, Levenshtein distance is used for detect-
ing the common and equivalent terms and WordNet is used to recognize the
semantic correspondences essentially the synonym terms. The subsumption re-
lations (IsaN) are defined manually. Then, the process of the similarity search
takes two ontologies (O1 and O2) as input and compares their components (class
by class, property by property and individual by individual). Then, it generates:

– CN = {Ni|(Ni ∈ N(O1)) ∧ (∃Nj ∈ N(O2) · (NiT = NjT ) ∧
(Levenshtein(Ni.name,Nj .name) = 0))} is the set of common nodes be-
tween the nodes of ontology O1 (N(O1)) and those of ontology O2 (N(O2))
where the type of nodes can be Class, Property (DP or OP ) or Individual;

– EN = {(Ni, Nj)|(Ni ∈ N(O1)) ∧ (Nj ∈ N(O2)) ∧ (NiT = NjT ) ∧
(Levenshtein(Ni.name,Nj .name) < threshold))} is the set of the equiva-
lent nodes;

– SN = {(Ni, Nj)|(Ni ∈ N(O1)) ∧ (Nj ∈ N(O2)) ∧ (NiT = NjT ) ∧
(Ni.name ∈ (synsetWordNet(Nj .name)} is the set of the nodes sharing a
semantic relation.
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3.3 Merging Ontologies

The process of ontologies merging is based on SPO approach which offers a
rigorous and simple way to glue the graphs. It encapsulates the complex details
of the ontologies structures by considering them as objects of a suitable abstract
category. Thus, this step is divided into three sub-steps (see Figure 6). The first
one aims at minimizing the differences between the two ontologies. Thus, its role
is to replace the entities of the ontology 1 by their equivalent in the ontology 2.
This replacement is applied by the rewriting rule RenameNode (Ni, Nj) where
Ni is a node of O1 and Nj is its equivalent in O2. So, for this SPO:

– the host graph is the ontology O1;
– the LHS is the graph composed by the set of nodes {Ni ∈ EN};
– the RHS is the graph composed by {Nj ∈ EN}.

An example of the RenameClass rule is already presented in Figure 4.
Then, the second step consists in creating the Common Ontology (CO). This

is the common sub-graph between the two ontologies. It is constructed by the
common nodes (CN) and the edges that they share.

The third and last step merges the ontologies with the MergeGraph(CO,
O2) rewriting rule. This SPO is defined as following:

– its host graph is the ontology O1 after modification (O′
1);

– its LHS is the Common Ontology CO;
– its RHS is the ontology O2.

The role of this pushout is the merge of the two ontologies by linking them by
their common entities. Thus, this step provides a global ontology (GO) which
will be enriched by the integration of semantic and subsumption relations.

EN{O1} EN{O2}

O1 O'1

CO O2

O'1 GO

(LHS) (RHS)

(G) (G')

(LHS) (RHS)

(G) (G')

O'1 O2

CO

Sub-step1 Sub-step2 Sub-step3

Fig. 6: The three sub-steps of the ontologies merging.

3.4 Global Ontology Adaptation

Given that the graph transformation requires the presence of the match (i.e a
morphism m) between LHS and the host graph, the addition of the semantic and
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the subsumption relations should be applied after the creation of the global on-
tology. Thus, this section presents the AddEquivalentEntity and AddSubClass
rewriting rules which can enrich the global ontology without affecting its consis-
tency. The checking of the inconsistencies is done by using the NACs.

The AddEquivalentEntity rewriting rule adds an equivalent axiom between
two entities (two classes or two properties). Figure 7 presents the rewriting rule
of the AddEquivalentClasses (C1, C2) which is defined:

– NACs :
1. C1 ≡ C2, condition to avoid redundancy;
2. C1 v ¬C2, two classes cannot be disjoint and equivalent at the same

time;
– LHS : {C1, C2}, the classes should exist in the ontology.
– RHS : (C1 ≡ C2), the axiom will be added to the ontology.
– DCH : ∅.

LHS RHSNAC1

2:Class

name="C2"

equivalentTo

1:Class

name="C1"

NAC2

2:Class

name="C2"

disjointWith

1:Class

name="C1"

2:Class

name="C2"

1:Class

name="C1"

2:Class

name="C2"

1:Class

name="C1"

equivalentTo

AddEquivalentClasses

Fig. 7: Rewriting rules for the AddEquivalentClasses change.

The AddSubClass (C1, C2) rewriting rule adds a subClassOf axiom between
two classes (Figure 8) and it is defined by:

– NACs :
1. C1 v C2, to avoid redundancy.
2. C2 v C1, the subsumption relation cannot be symmetric;
3. C1 v ¬C2, classes which share a subsumption relation cannot be disjoint;
4. ∃Ci ∈ C(O) · (C1 v Ci) ∧ (Ci v C2), if exist a class Ci which is the

subClassOf the class C2 and the superClass of C1, then, C1 is already
a subClass of C2;

5. ∃(Ci, Cj) ∈ C(O) · (Ci v C1) ∧ (Cj v C2) ∧ Ci v ¬Cj , classes which
share a subsumption relation cannot have subClasses that are disjoint;

– LHS : {C1, C2}, the classes should exist in the ontology.
– RHS : (C1 v C2), the axiom will be added to the ontology.
– DCH : ∅.
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LHS

1:Class

name="C1"

2:Class

name="C2"

RHS

2:Class

name="C2"

1:Class

name="C1"

NAC1

2:Class

name="C2"

subClassOf

1:Class

name="C1"

NAC2

2:Class

name="C2"

subClassOf

1:Class

name="C1"

NAC5

AddSubClass

NAC3

2:Class

name="C2"

disjointWith

1:Class

name="C1"

NAC4

2:Class

name="C2"

subClassOf

1:Class

name="C1"

Class

subClassOf

1:Class

name="C1"

disjointWith

Class

2:Class

name="C2"

Class

subClassOf subClassOf subClassOf

Fig. 8: Rewriting rule for the AddSubClass change.

4 Implementation and example

In order to implement the proposed method, we have developed a Java pro-
gram called GROM (Graph Rewriting for Ontology Merging). GROM is based
on AGG (Algebraic Graph Grammar) API5 that supports the algebraic graph
transformations (SPO and DPO approaches) and manipulates the typed at-
tributed graph grammars. The tool take as input two ontologies in AGG format
(.ggx), a mapping in XML and outputs the merged ontology in AGG format
(.ggx). Note that the semantic relations, in the mapping process, are identified
by the RitaWN6 that provides access to the WordNet ontology.

The following presents a merging example of the two ontologies presented
in Figure 3. The ontologies were created in OWL using Protégé. They were
converted into AGG graphs using the software OWLToGGx [10]. In the following,
the word ”ontology” is used to refer to its corresponding graph7.

Similarity Search The first step of the proposed approach is the detection of the
similarities between the ontologies entities. By considering the ontologies exam-
ple O1 and O2, the Levenshtein distance returns the following correspondences:

– CN = {“Tag”}; EN = {(“hasTag”, “has Tag”)}.

Wordnet detects the synonym terms:

– SN = {(“Emplacement”, “Location”)}.

The subsumption relations are manually defined:

– IsaN = {(“Company”, “Participant”)}.
5 http://user.cs.tu-berlin.de/~gragra/agg
6 http://rednoise.org/rita/wordnet/documentation
7 All the materials used in this example (ontologies in OWL and in graph (GGX

format) along with the Java implementation) are available for download under open
source licence here: http://mariem-mahfoudh.info/medi2014/

http://user.cs.tu-berlin.de/~gragra/agg
http://rednoise.org/rita/wordnet/documentation
http://mariem-mahfoudh.info/medi2014/
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Merging Ontologies The next step consists in using the set of equivalent nodes
EN to replace the nodes of the ontology O1 by their equivalent in the ontology
O2. Therefore, the rewriting rule RenameObjectProperty is invoked to replace
the name of the object properties (OP ) “hasTag” by “has Tag”. After that, the
common ontology graph (CO) is created. In our example, it is composed of two
nodes (“tag”, “hasTag”) and an edge which linked them (range). To glue the
ontologies, the rewriting rule MergeGraph is executed. It takes the ontology
O1 as a host graph, CO as a LHS and O2 as a RHS. Finally, it returns as an
output the global ontology (GO). Note that all this process if is fully automatic
and only takes as parameter the correspondences found in the previous step.

Global Ontology Adaptation The global ontology does not yet represent the se-
mantic and subsumption relations. Thus, it is necessary to execute the rewriting
rules: 1) AddEquivalentClasses (“Emplacement”, “Location”); 2) AddSubClass
(“Company”, “Participant”). Figure 9 presents the global ontology resulting of
the merging ontologies O1 and O2. Once again, this process is automatic. Finally,
the resulting ontology can be easily converted back to OWL8.

Fig. 9: Result of merging the ontologies O1 & O2.

8 http://mariem-mahfoudh.info/ksem2013

http://mariem-mahfoudh.info/ksem2013
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5 Discussion

Symmetry of the approach Raunich and al. [22], have presented a state of the
art of ontology merging and have distinguished two types of approaches: 1)
Symmetric approaches preserve both input ontologies even the redundant data;
2) Asymmetric approaches take one of the ontologies as the source and merge
the other as a target. In this type of approach, only the concepts of the source
ontology are preserved. Our approach is an asymmetric one with:

Merge(O1, O2) 6= Merge(O2, O1),
Merge(O1, O2) = Merge(O2,Merge(O1, O2) and
Merge(O2, O1) = Merge(O1,Merge(O2, O1).

However, if the set of equivalent nodes is empty (EN = ∅) and there is no
conflicts between the ontologies, then the “sub-step1” of the ontologies merging
is not executed and the approach, in this case, is symmetric. Thus, we have:

Merge(O1, O2) = Merge(O2, O1) = Merge(O1,Merge(O1, O2)) =
Merge(O2,Merge(O1, O2)) = GO.

Coverage The coverage (Cov) is a criteria to evaluate the quality of merge
results. It is is related to the degree of information preservation and measures
the share of input concepts preserved in the result. Coverage values is between
0 and 1 [22]. In our approach, we distinguish two cases:

1. if EN = ∅, then, Cov = 1. All the ontologies concepts are preserved but
with the advantage that the redundant data (e.g. the multiple inheritance)
are dropped (thanks to the application of the NACs in the rewriting rules).

2. if EN 6= ∅, then, Cov = 1− card(EN(O1))
card(N(O1)+N(O2)) . Only the equivalent nodes of

the ontology source (O1) are lost.

Complexity The most demanding step in time and resource is the recognition of
the LHS from the host graph G. This research is an NP-complete problem. More
precisely, a search of a sub-graph composed of k elements in a graph compound of
n elements has a complexity of O(nk). However, the cost of calculation remains
quite acceptable if the size of the LHS graph is limited [23]. In the most examples
of transformations, this condition is satisfied.

Conflicts management In this article, ontologies are expected to be correct and
there is no strong contradictions between them. However, as they conceptualize
identical or related domains, ontologies may have some conflicts. Therefore, an-
other step should be added to detect the possible conflicts. Thus, the addition of
axioms into the target ontology should be sequential and the user intervention
may be required. Several cases can be found. We present in this section how
to add individuals axioms of the target ontology without affecting the source
ontology. In particular, the rewriting rule AddObjectPropertyAssertion(I1, I2,
OP ) is discussed. It adds an ObjectPropertyAssertion between two individuals
and it is defined as follow:
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– NAC :
1. (I1, I2) ∈ OP , to avoid redundancy.
2. ∃Ii ∈ I(O) · (Ii 6= I2) ∧ ((I1, Ii) ∈ OP )9 ∧ (> v 1OP ), if there is an

individual Ii which different to I2 and it is linked to I1 by OP , where
OP is a functional property, then the addition of the assertion is not
allowed;

3. ∃ 6 nOP · (∃Ii ∈ I(O)) ∧ {(I1, Ii) ∈ OP} = n, if there is a restriction
(OP maxCardinality(n)) and the count of the assertion individuals is
equal to n, then, the adding of other assertion is not allowed.

– LHS : {I1, I2, OP}, I1, I2 and OP should exist in the ontology.
– RHS : ((I1, I2) ∈ OP ), the assertion should be added to the ontology.
– DCH : ∅.

6 Related work

A limited number of approaches were proposed for merging ontologies. They
can be classified into two main categories: the approaches based on semantic web
technologies [24,25,26,27,28] and the approaches based on algebraic specification
and Category Theory [29,5,7].

The aim of our work is to present a formal approach for ontologies merging
and show that typed graph grammars can be a good formalism to manage on-
tology changes (evolution and merging). Therefore, we have studied the existing
propositions in the domain of algebraic specifications. Thus, Zimmermann et
al., [5] have presented a categorical approach to formalize ontologies alignment.
They proposed two formalisms: the V-alignment and W-alignment which use
the “span” concept of the Category Theory. This work is an important reference
as it presents the foundations of using categories in the field of semantic web.
However, it is focused on the problem of ontologies alignment and it studied the
merge only as an operation of alignment. Later, Cafezeiro et al., [7] have pro-
posed to use the concepts of Category Theory (“limit”, “colimit” and “pushout”)
to formalize the ontology operations. This work defines merge and composition
operations but only considers ontologies which are composed of classes, hierar-
chies of classes and relations. It does not consider neither the individuals nor
the axioms. Finally, these approaches have not been implemented. In our work,
we use the algebraic approach and category theory in the frame of graph gram-
mars formalism. This allowed us to implement the proposed approach (GROM)
and to benefit the application conditions (e.g. NACs) to avoid inconsistencies.
Furthermore, our approach is more general because it treats individuals and
axioms.

7 Conclusion

In this paper, we presented a formal approach for merging ontologies using typed
graph grammars. It is divided into three steps. The first searches correspondences

9 I1 and Ii are linked by the objectProperty OP .
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between nodes from the ontologies. It is based on lexical techniques (Leven-
shtein distance) and an external resource (the linguistic ontology WordNet). The
second step merges the structures of the ontologies using the correspondences
computed in the previous step, by using the SPO approach. The last step, en-
riches the merged ontology with subsumption and semantic relations. It used for
that the rewriting rules of some basic ontology changes (AddEquivalentEntity,
AddSubClass, etc.). To validate our proposals, we have implemented a new tool,
GROM that given two ontologies and their mapping, it is able to generate the
global ontology automatically. As it is based on the the algebraic graph transfor-
mations, it allows to define a simple and formal way to merge ontologies while
encapsulating the complex details of their structures.

For future work, we intend to study the different conflicts which can affect the
result of the merge. Then, we plan to improve the alignment result and explore
other techniques of similarity search specially the structural techniques. The
current test case study includes small ontologies, we are currently considering
larger ontologies in order to perform a better evaluation of the method.
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