
HAL Id: hal-03811535
https://hal.science/hal-03811535

Submitted on 11 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Time Warping Averaging of Time Series allows
Faster and more Accurate Classification

Francois Petitjean, Germain Forestier, Geoffrey Webb, Ann Nicholson,
Yanping Chen, Eamonn Keogh

To cite this version:
Francois Petitjean, Germain Forestier, Geoffrey Webb, Ann Nicholson, Yanping Chen, et al.. Dy-
namic Time Warping Averaging of Time Series allows Faster and more Accurate Classification. 2014
IEEE International Conference on Data Mining (ICDM), Dec 2014, Shenzhen, China. pp.470-479,
�10.1109/ICDM.2014.27�. �hal-03811535�

https://hal.science/hal-03811535
https://hal.archives-ouvertes.fr

Dynamic Time Warping Averaging of Time Series

 allows Faster and more Accurate Classification
François Petitjean

1
, Germain Forestier

2
, Geoffrey I. Webb

1
,

 Ann E. Nicholson
1
, Yanping Chen

3
 and Eamonn Keogh

3

1
Faculty of IT, Monash University, Melbourne, Australia, firsname.lastname@monash.edu

2
 MIPS (EA 2332), Université de Haute Alsace, Mulhouse, France, germain.forestier@uha.fr

3
 Computer Science and Engineering Dpt, University of California, Riverside, USA {ychen053,eamonn}@cs.ucr.edu

Abstract—Recent years have seen significant progress in

improving both the efficiency and effectiveness of time series

classification. However, because the best solution is typically

the Nearest Neighbor algorithm with the relatively expensive

Dynamic Time Warping as the distance measure, successful

deployments on resource constrained devices remain elusive.

Moreover, the recent explosion of interest in wearable devices,

which typically have limited computational resources, has

created a growing need for very efficient classification

algorithms. A commonly used technique to glean the benefits

of the Nearest Neighbor algorithm, without inheriting its

undesirable time complexity, is to use the Nearest Centroid

algorithm. However, because of the unique properties of

(most) time series data, the centroid typically does not

resemble any of the instances, an unintuitive and

underappreciated fact. In this work we show that we can

exploit a recent result to allow meaningful averaging of

“warped” times series, and that this result allows us to create

ultra-efficient Nearest “Centroid” classifiers that are at least

as accurate as their more lethargic Nearest Neighbor cousins.

I. INTRODUCTION

There is increasing acceptance that the Nearest Neighbor

(NN) algorithm with Dynamic Time Warping (DTW) as

the distance measure is the technique of choice for most

time series classification problems. The NN-DTW

algorithm has been shown to be competitive or superior in

domains as diverse as gesture recognition, robotics and

ECG classification [1]. Moreover recent comprehensive

studies have validated this idea:

• In [1] we compare NN-DTW to nearly all of the

most highly cited distance measures in the literature on

dozens of datasets. They found that no distance measure

consistently beats DTW, but DTW almost always

outperforms most methods that were originally touted as

superior, based on less complete empirical evaluations.

• In [2] (and to a lesser extent [3]) the authors test

the assumption that the Nearest Neighbor classifier is the

best technique and consider other classifiers, including

neural networks and decision trees. Once again, the

evidence strongly suggests that the structure of time series

(autocorrelated values, high apparent but low intrinsic

dimensionality) lends itself to Nearest Neighbor algorithm

and to NN-DTW in particular.

These results have meant that the most recent research

has simply assumed the utility of NN-DTW and focused on

mitigating the oft-lamented drawback of DTW: its time

complexity. Here there has also been recent significant

progress, with [4] showing that nearest neighbor queries

under DTW can be answered in time that is no worse than

twice that of the Euclidean distance.

However we argue that there are still situations where

DTW (or for that matter, Euclidian distance) has severe

tractability issues. The accuracy of NN is a function of the

size of the training set, but unlike eager learners, the

classification time is also a function of the size of the

training set. In order to obtain a required level of accuracy,

we may have to compare the incoming exemplar to dozens

or hundreds of training objects. While the optimizations in

[4][5][6] can help mitigate the time needed somewhat, NN-

DTW may still be untenable in some circumstances. This is

especially true for resource constrained devices such as

wearable computers and embedded medical devices.

An obvious fix is to reduce the size of the training set to

the largest size we can search at each time interval. In [3] it

is shown that by adapting classic data editing techniques it

is possible to create a “smart” subset that has an error-rate

as low as a much larger random subset. Nevertheless, this

result only partly mitigates the problem.

The Nearest Centroid Classifier (NCC) is an apparent

solution to this problem. It allows us to avail of the

strengths of the NN algorithm, while bypassing the latter’s

substantial space and time requirements. Unfortunately, the

centroid is defined only for simple metrics, which DTW is

not. This is not a trivial semantic point. As Figure 1 shows,

even if we consider only objects that have a very low

mutual DTW distance, if we attempt to average them the

result will typically be “neither fish nor fowl”, resembling

none of the parent objects.

Figure 1: top) Three examples of daily patterns at an oil refinery [7].

middle) When averaged under the Euclidean distance the resulting
centroid has an additional peak that is in none of the original time series.

bottom) When averaged using the DTW based method proposed in this

work, the “centroid” is more intuitive.

In this work we leverage off and extend a little known

recent result that allows us to meaningfully define

“centroid” under DTW [8]. As we shall show, this allows

0

0.3

0 12 24

Hours

Oil Refinery:

Pressure-13

Euclidean averaging produces a

spurious secondary peak

The proposed DTW averaging

produces an intuitive prototype

To be published in Proceedings of the IEEE International Conference on Data

Mining 2014. Copyright © IEEE 2014.

2

us to condense large datasets into much smaller (as small as

a single instance per class) dataset that can produce the

same accuracy as the original dataset. Less intuitively, in

some domains the reduced datasets may allow greater

accuracy, because the averaging combines evidence from

all exemplars to produce prototypes that are more like the

classes platonic ideal than any individual instance.

The rest of this paper is organized as follows. In Section

II we review related and background work. In Section III

we introduce the necessary definitions and formally define

the problem to be solved, allowing us to introduce our

solution in Section IV. Section V sees a forceful empirical

validation of our claims, and we offer conclusions and

directions for future work in Section VI.

II. RELATED WORK AND BACKGROUND

The idea that the mean of a set of objects may be more

representative than any individual object from that set dates

back at least a century to a famous observation of Francis

Galton. Galton noted that the crowd at a county fair

accurately guessed the weight of an ox when their

individual guesses were averaged [9]. Galton realized that

the average was closer to the ox's true weight than the

estimates of most crowd members, and also much closer

than any of the separate estimates made by cattle experts.

This idea is frequently exploited in machine learning.

For example the Nearest centroid classifier [10] generalizes

the Nearest neighbor classifier by replacing the set of

neighbors with their centroid. It should be noted that there

are two separate motivations for using the nearest centroid

classifier. Most obviously it is faster, being O(1) rather

than O(n). However, and less intuitively, it is also known

that some circumstances, the Nearest centroid classifier is

more accurate than the Nearest neighbor classifier (NN)

[11].

Because it may be counterintuitive that the nearest

centroid classifier can be more accurate than NN, we will

demonstrate this in an intuitive setting. Consider a domain

in which all exemplars are uniformly distributed in the unit

square, with objects having an X-value less than 0.5

assigned the label A, otherwise B. Figure 2 illustrates an

example in which there are just three instances per class.

Figure 2: A simple classification problem in which the concept is the left

vs. right side of the unit square. This instance of the problem has three

points per class. left) Here NN has error-rate of 12.60%, while the Nearest

Centroid classifier (right) with the same instances achieves an error-rate of

just 5.22%

For balanced dataset sizes from 2 to 4,000, we

compared the error rates of the NN and the Nearest centroid

classifier (NCC) on this domain, each time averaging over

1,000 runs. The results are shown in Figure 3.

Figure 3: The error rate of two algorithms for increasingly large training

data sizes of “left vs. right side of the unit square” problem.

Without any experiments we would realize that the two

algorithms must agree on the far left side of the figure,

since the centroid of a single point is that point, the two

algorithms are identical here. A little more introspection

tells us that the algorithms will also agree on the far right

side of the figure. What is less obvious is that the Nearest

centroid classifier is more accurate in between those two

extremes. The effect is small, but is statistically significant.

It is important to note that the Nearest centroid

classifier is not guaranteed to be more accurate than the NN

classifier in general. For example, consider the “Japanese

flag” dataset (adapted from [35]) shown in Figure 4, here

the NN algorithm approaches zero error-rate for large

training dataset sizes, in contrast the Nearest centroid

classifier steadfastly achieves just the default rate.

Figure 4: A two-class problem in which objects within 1.2 of the origin are
in class A, otherwise they are in class B. With enough training data the

NN classier can learn this concept very well; however the nearest centroid

classifier is condemned to perform at the default rate.

In spite of the existence of such pathological cases, the

Nearest centroid classifier often outperforms the NN

algorithm on real datasets, especially if one is willing (as

we are) to generalize it slightly; for example, by using

clustering to allow a small number of centroids, rather than

just one. Thus our claim is simply:

 Sometimes NCC and NN can have approximately the

same accuracy, in such cases we prefer NCC because it

is faster and requires less memory.

 Sometimes NCC can be more accurate than NN, in

such cases we prefer NCC because of the accuracy

0 0.5 1

0

1

0 0.5 1

0

1

CentroidCentroid

Decision
Boundary

Decision
Boundary

100 101 102 103 1040

0.1

0.2

Nearest Neighbor Algorithm

Nearest Centroid Algorithm

E
rr

o
r-

R
at

e

-3 0 3

-3

0

3

3

gains, and the reduced computational requirements

come “for free”.

The above discussion at first may appear to be moot for

time series, because the concept of “centroid” for warped

time series is ill-defined. It is the central contribution of

this paper to show that we can take the “centroid” for

warped time series in a principled manner that allows us to

achieve both improvements in accuracy and reduced

computational requirements at run time.

In the last decade the cognitive science community has

presented strong evidence that the visual systems

remarkable abilities stem, at least in part, from its ability to

represent sets of objects by a “gist” or “ensemble”1, which

may be simply the average of the objects [12]. A recent

paper notes that the major research direction of the

cognitive science community is devoted simply to

“determining how these (average) representations are

computed, why they are computed and where they are

coded in the brain” [13].

The difficulty faced by the cognitive scientists is similar

to the pragmatic difficulty we face here. In some cases

averages may be well defined, for example, the average

height of Norwegian man. However, for some objects it is

much less clear how to represent and compute averages.

For example, computing an average face has been pursued

since at least 1883 (again, Francis Galton, using composite

photography) but significant progress has only been made

in the last decade. Tellingly, this progress in face averaging

was exploited to produce dramatic improvements in

classification accuracy with a Science paper boasting

“100% Accuracy in Automatic Face Recognition” (this is

the paper’s title [14]).

Compared to the complexity inherent in faces, time

series seem like they would be simple to average, however

as Figure 1 hints at, the classic definition of centroid for

time series usually produces a prototype which is not

typical of the data.

III. DEFINITIONS AND PROBLEM STATEMENT

We present the definitions of key terms that we use in
this work. For our problem, each object in the data set is a
time series, which may be of different length.

A. Definitions

Definition 1: Time Series. A time series 𝑇 = (𝑡1, … , 𝑡𝐿)
is an ordered set of real values. The total number of real
values is equal to the length of the time series (𝐿). A dataset
𝑫 = {𝑇1, … , 𝑇𝑁} is a collection of 𝑁 such time series.

B. Averaging under time warping – related work

Computational biologists have long known that

averaging under time warping is a very complex problem,

because it directly maps onto a multiple sequence

1 Note that the cognitive science use of “ensemble” is unrelated to

the more familiar machine learning meaning.

alignment: the “Holy Grail” of computational biology [15].

Finding the multiple alignment of a set of sequences, or its

average sequence (often called consensus sequence in

biology) is a typical chicken-and-egg problem: knowing the

average sequence provides a multiple alignment and vice

versa. Finding the solution to the multiple alignment

problem (and thus finding of an average sequence) has

been shown to be NP-complete [16] with the exact solution

requiring 𝑂(𝐿𝑁) operations for N sequences of length L.

This is clearly not feasible with more than a dozen

sequences (just 45 sequences of length 100 would require

more operations than the number of particles in the

universe).

Finding the average of a set is best seen as an

optimization problem, as explained by the definition below.

Definition 2: Average object. Given a set of objects
𝑂 = {𝑂1, … , 𝑂𝑁} in a space 𝐸 induced by a measure 𝑑, the
average object 𝑜̅ is the object that minimizes the sum of the
squares to the set:

arg min
𝑜̅∈𝐸

∑ 𝑑²(𝑜̅, 𝑂𝑖)

𝑁

𝑖=1

 (1)

This definition demonstrates that finding the average of

a set is intrinsically linked to the measure that is used to

compare the data. This means that the average method has

to be specifically designed for every measure that is used to

compare data.

In our case, the objects are time series and the measure

is DTW. We can thus now define what the average

sequence should be to be consistent with Dynamic Time

Warping.

Definition 3: Average time series for DTW. Given a set
of time series 𝑫 = {𝑇1, … , 𝑇𝑁} in a space 𝐸 induced by

Dynamic Time Warping, the average time series 𝑇̅ is the
time series that minimizes:

arg min
𝑇̅∈𝐸

∑ DTW²(𝑇̅, 𝑇𝑖)

𝑁

𝑖=1

 (2)

Many attempts at finding an averaging method for

DTW have been made since the 1990s [17], [18], [19],

[20]. Researchers have exploited the idea that the exact

average of two time series can be computed in 𝑂(𝐿2).

These papers have proposed different tournament schemes

(the guide trees in computational biology) in which the

sequences should be averaged first. Interestingly, none of

these authors appear to have made the connection with the

multiple sequence alignment problem; the most advanced

method in 2009, PSA [19], heuristically averages the

closest objects first, which corresponds to an idea proposed

some 20 years earlier in computational biology [21].

There is a limit, however, to which the comparison

between biological sequences and time series can be

pushed. Ultimately, time series are sequences of real-

4

valued numbers and not of discrete symbols like

DNA/RNA sequences. While two genes coding for

hemoglobin have almost certainly evolved from a common

ancestor (although homoplasy can almost never be

completely ruled out), no such lineage is present for time

series. Nevertheless, we can sometimes imagine a domain

in which there is an idealized platonic prototype, of which

we can only see corrupted (i.e. “warped”) examples. In this

view, DTW based averaging can be seen as an attempt to

recover the “ancestor” state. For example, the platonic

prototype may be an individual’s internal (muscle memory)

representation of her golf swing or her rendition of a song,

of which we can only observe external performance

approximations.

C. DBA: the best-so-far method to average time series for

Dynamic Time Warping

DTW Barycenter Averaging (DBA), introduced in [8],

exploits the parallels between time series and

computational biology, while taking account of the unique

properties of the former. We have shown in [8] that DBA

outperforms all existing averaging techniques on all

datasets of the UCR Archive [22]. In particular it always

obtained lower residuals (Equation 2) than the state-of-the-

art methods, with a typical margin of about 30%, making it

the best method to date for time series averaging for DTW.

DBA iteratively refines an average sequence 𝑇̅ and

follows an expectation-maximization scheme:

1. Consider 𝑇̅ fixed and find the best multiple

alignment2 𝑀 of the set of sequences 𝑫 consistently

with 𝑇̅.

2. Now consider 𝑀 fixed and update 𝑇̅ as the best

average sequence consistent with 𝑀.

Table I gives the pseudocode of DBA; an implementation

in Matlab and Java is available at [23].

This paper extends the definition of DBA by providing

a proof of its convergence, i.e., that the sum of the squares

(Equation 2) always decreases between two iterations (or

refinements). This proof is provided in Appendix A.

In Figure 1 we showed an example of the algorithm’s

output on three examples of a pattern associated with an oil

refinery process.

IV. OBSERVATIONS AND ALGORITHMS

In recent years there has been an increasing interest in

using anytime algorithms for data mining [3], [24].

However the variant known as contract algorithms have

received less attention. Contract algorithms are a special

type of anytime algorithms that require the amount of run-

time to be determined prior to their activation. In other

words, contract algorithms offer a tradeoff between

computation time and quality of results, but they are not

interruptible.

2 It actually finds the compact multiple alignment [27].

TABLE I. GENERAL ALGORITHM FOR DBA

Algorithm 1. DBA(𝑫 , I)

Require: 𝑫: the set of sequences to average
Require: 𝐼: the number of iterations

1:
2:
3:

𝑇̅ = medoid(𝑫) // get the medoid of the set of sequences 𝑫
do 𝐼 times 𝑇̅ = DBA_update(𝑇̅ , 𝑫)
return 𝑇̅

Algorithm 2. DBA_update(𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅ , 𝑫)

Require: 𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅ : the average sequence to refine (of length L)

Require: 𝑫: the set of sequences to average

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:

// Step #1: compute the multiple alignment for 𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅

alignment = [∅, ⋯ , ∅] // array of L empty sets
for each S in 𝑫 do

alignment_for_S = DTW_multiple_alignment (𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅ , S)

for i=1 to L do
alignment[i] = alignment[i] ∪ alignment_for_S[i]

done
done
// Step #2: compute the multiple alignment for the alignment
let 𝑇̅ be a sequence of length L
for i=1 to L do

𝑇̅(𝑖) = mean(alignment[i]) //arithmetic mean on the set
done
return 𝑇̅

Algorithm 3. DTW_multiple_alignment (𝑆𝑟𝑒𝑓 , S)

Require: 𝑆𝑟𝑒𝑓: the sequence for which the alignment is computed

Require: S: the sequence to align to 𝑆𝑟𝑒𝑓 using DTW

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

// Step #1: compute the accumulated cost matrix of DTW
cost = DTW(𝑆𝑟𝑒𝑓 , S)

// Step #2: store the elements associated to 𝑆𝑟𝑒𝑓

L = length(𝑆𝑟𝑒𝑓)

alignment = [∅, ⋯ , ∅] // array of L empty sets
𝑖 = rows(cumul_cost) // i iterates over the elements of 𝑆𝑟𝑒𝑓

𝑗 = columns(cumul_cost) //j iterates over the elements of S
while (𝑖 > 1) && (𝑗 > 1) do

alignment[𝑖] = alignment[𝑖] ∪ 𝑆(𝑗)
if 𝑖 == 1 then 𝑗 = 𝑗 − 1
else if 𝑗 == 1 then 𝑖 = 𝑖 − 1
else

score = min(cost[i-1][j-1] , cost[i][j-1] , cost[i-1][j])
if score = = cost[i-1][j-1] then

𝑖 = 𝑖 − 1
j = 𝑗 − 1

else if score = = cost[i-1][j] then 𝑖 = 𝑖 − 1
else 𝑗 = 𝑗 − 1
end if

end if
done
return alignment

Problem Statement Contract Time Series Classification:

Given (1) a large time series training dataset, (2) the

maximum amount of computation resources available, and

(3) as much training time as needed, produce the most

accurate classifier possible.

 We assume that the computational resource constraint

will be time, not space, and that it will be given to us in the

form of the number of CPU cycles available each second.

5

For ease of exposition we assume that the constraint will be

given as a positive integer C, which is the number of

exemplars per class that we can examine when asked to

classify a new object. Figure 5 illustrates this problem

statement.

Figure 5: A visual intuition of an instance of our problem statement: Given
the Oil-13 time series training dataset (left), and a user constraint C, here

‘1’. Produce a new dataset with C items per class (right), such that the

accuracy on future data is maximized.

As we explained in the introduction, based on the

consensus of the literature and our own experiments, we

believe that the best solution will be a variant of Nearest

Neighbor classification. While decision trees and Bayesian

classifiers are very efficient, the fact that no competitively

accurate classifiers for time series based on these methods

have been produced [2], [3], in a research area as active and

competitive as time series classification, is very telling.

What then, is the space of techniques we can explore?

After exhausting all known optimization techniques (early

abandoning, removing the unnecessary square root

calculation, lower bounding, etc.) we can consider

manipulating the following:

 Reducing the data cardinality, and doing NN-DTW on

the reduced cardinality data. While classification on

suitable reduced cardinality data has little effect on

accuracy [25], it only helps scalability on specialized

hardware. We are hoping for a general solution.

 Reducing the data dimensionality, and doing NN-DTW

on the reduced dimensionality data. This idea has been

in the literature for at least two decades, and seems to

have been rediscovered many times. The idea works

well when the raw data is oversampled. For example,

some bedside machines report electrocardiograms at

up to 4,096Hz, yet there is little evidence that anything

above 256Hz is needed for classification. However

here we assume that the data we are given is sampled

at an appropriate rate.

 Reducing the number of objects the nearest neighbor

algorithm must see. This can be done by selecting a

subset of the data (which is known as data editing or

condensing) or aggregating the data.

As the reader will have intuited by now, it is the last

idea we intend to pursue. There are several obvious ways to

reduce the number of objects the nearest neighbor

algorithm must see, and several variants of intelligent data

editing have been proposed [3]. However to the best of our

knowledge no one has considered data aggregation. Or

rather, it may have been considered, but the artifacts

produced by averaging methods for Dynamic Time

Warping, such as the one hinted at in Figure 1 and

acknowledged in the literature by [8], [27] and particularly

by [28], make this an unpromising avenue to explore.

However, as noted above, aggregation methods

(including, but not limited to the Nearest Centroid

Classifier) have certain properties that seem very desirable.

In particular, they provide a condensed model of the

aggregated set, allowing speed up, and they weight

information from every training instance, potentially

allowing improved accuracy.

However, as we explain in the next section, simply

averaging all the objects in each class is unlikely to work

well in most domains, and this motivates a clustering-based

data condensing approach.

A. Why K-Means Based Approach

While it is possible that for some datasets, a single

prototype may capture the “essence” of a class, for other

datasets it may require a small number of prototypes.

Moreover, a single dataset may exhibit both possibilities on

a class-by-class basis. For example for the “Japanese flag”

dataset shown in Figure 4, a single centroid is clearly

optimal for the circle/red class, but we would need, say

eight suitably arranged examples from the green/square

class arranged in an octagon to carve out a decision

boundary that approximates the true circular decision

boundary. To give a more concrete example in a domain

we explore in this work, consider the case study in insect

surveillance in Section V.A. Here we may have what

appears to be a single class, Culex stigmatosoma, the

mosquito that spreads West Nile virus. However, this

insect, like most mosquitoes, is highly sexually dimorphic.

If we try to create a single template to represent both males

and females we are condemned to have a template that

represents neither. However, by clustering each individual

class, we hope to be able to account for any natural

polymorphism within the class. In Table II we show such a

clustering-based approach to condensing a dataset.

It is important to note, however, that we see our main

contribution as proposing a warping-invariant-averaging

based condensation framework, of which Table II is simply

one concrete and straightforward partitional clustering

example. To further reinforce this notation in our

experimental section we also consider a warping-invariant-

averaging hierarchical clustering based condensation

framework.

TABLE II. ALGORITHM TO CONDENSE TRAINING DATASET

Algorithm 1. Reduce(Data, C)
Require: Data: dataset; C: The number of exemplars per class

1:
2:
3:
4:
5:
6:
7:

// partition the data into C sets of time series
Clusters = do_clustering(Data,C) //for example with K-means
Condensed_Data = ()
for each Cluster in Clusters do

Condensed_Data.add(DBA(Cluster))
done
return Condensed_Data

Condesed_Oil=Reduce(Oil-13,1)

Oil-13

Condesed_Oil

6

V. EXPERIMENTAL EVALUATION

In this section, we assess the performance of our

averaging-based reduction methods for time series

classification, over the state-of-the-art data condensing

methods (which do not average time series). Note that the

distance measure used for all experiments is DTW.

We compare the following algorithms; the last two of

which exploit our averaging technique:

 Random Selection: Here we randomly sample the

training data, selecting as many samples as we can use

under the contract time.

 Drop{X}: There has been significant work on data

editing (numerosity reduction/condensing) for nearest

neighbor classification [29]. All these algorithms

create some list of nearest neighbors, of both the same

class (associates) and of different classes (enemies),

and use a weighted scoring function based on this list

to determine the worst exemplar. We compare to three

variants; Drop1, Drop2 and Drop 3, see [29] for full

details on their subtle differences.

 Simple Rank (SR): This method gives to each

instance a rank according to its contribution to the

classification [30]. A leave-one-out 1-NN

classification is performed on the training set, and the

rank of the instance is calculated as the following

formula:

𝑟𝑎𝑛𝑘(𝑥) = ∑ {
1 𝑖𝑓 𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑐𝑙𝑎𝑠𝑠(𝑥𝑖)

−2
(#𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 1)⁄ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

𝑖

where 𝑥𝑗 are associates of 𝑥. The ties are broken by

sorting the instances according to their distance to their

nearest “enemy” (standard terminology).

 K-Medoids: This well-known method, also known as

“partitioning around medoids”, aims at minimizing the

intra-cluster sum of squares, by using the proximity of

objects to the medoids of the clusters formed by the

algorithm. Note that the medoid of a set is the object

from the set itself, that minimizes the sum of the

squares (same objective as Equation 2, with the

additional condition that 𝑇̅ ∈ 𝑫). K-medoid thus does

not use any average object.

And finally, our two proposed methods:

 K-Means: Similar to K-medoids, this well-known

method aims at minimizing the intra-cluster sum of

squares. The clusters are formed by using the

proximity of objects to the average objects (or

centroids) of the different clusters. We use DBA as the

average method associated to DTW.

 AHC with Ward’s criterion: Starting with every

object in its own cluster, agglomerative hierarchical

clustering (AHC) progressively merges the most

similar clusters until all the objects are part of the same

cluster. Similar to K-means and K-medoids in its

objective, the Ward’s criterion ranks the pairs of

clusters with regard to the increase in the weighted

intra-cluster sum of squares. Here again we use DBA

as the average method associated to DTW.

We consider situations where we can only visit a small

handful of exemplars, as few as just one per class; this is

the defining characteristic of our problem setting. In any

case, we expect (and empirically demonstrate) that all

algorithms converge as we allow the size of the reduced

dataset used to increase. That is to say, if we randomly

sample as many time series as there are in the training set,

we actually obtain the full training set, which is logically

equivalent to the 1-NN classifier. The behavior is similar

for the other techniques: the reduced sets of time series all

tend to the initial training set as their sizes increase.

Our experiments will be divided into three parts:

A. We begin with a case study, to ground the utility of our

ideas in the real world.

B. Having shown that average-based methods outperform

sampling-based ones on our case study, we further

assess the performance of the different methods on a

full-scale experiment with 42 datasets. We demonstrate

the clear superiority of average-based methods for

condensing the model of the class into a handful of

exemplars.

C. We show that not only do average-based methods

provide better solutions than the state of the art for

reducing the size of the training set, but also that they

make it possible to improve on the classification

accuracy, compared to the full 1-NN classifier.

A. Case Study in Insect Surveillance

Recent work has shown that it is possible to classify

flying insects with high accuracy by converting the audio

of their flight (i.e. the familiar “buzz” of bees) to an

amplitude spectrum [31], which, as shown in Figure 6 can

essentially be considered a “time series”.

Figure 6: top) An audio snippet of an insect flight sound can be converted

into a pseudo time series (bottom) and used to allow classification

All previous work on insect classification had assumed

that a single feature extracted from the amplitude spectrum,

the wingbeat frequency, was the only useful feature in the

amplitude spectrum. However [31] forcefully demonstrates

8000 12000 16000

A mosquito flying

past the sensor

Background noise

400 800 12000

Wingbeat

frequency

at 354Hz
Harmonics

Single-Sided Amplitude Spectrum

7

that using the entire spectrum, and treating the problem as a

time series classification problem, significantly reduces the

error rate. In retrospect this is not surprising. A G note on a

piano and an open string G note on a guitar have the same

frequency of 196Hz (about the same frequency as a honey

bee), but are easy to tell apart.

The ability to automatically classify insects has

potential implications for agricultural and human health, as

many plant/human diseases are vectored by insects. The

promising results presented in [31] are demonstrated in the

laboratory settings, and exploit large training datasets to

archive high accuracy. However, field deployments must

necessarily be on inexpensive resource-constrained

hardware, which may not have the ability to allow nearest-

neighbor search on large training datasets, up to hundreds

of times a second. Thus we see this situation as an ideal

application for our work.

We recorded the flying sound of male and female

insects of the species Culex stigmatosoma, which is a

vector of several diseases such as the West Nile Virus and

Western Equine Encephalitis [32]. Being able to classify

male vs. female mosquitoes is important because only the

females actually spread disease, and different interventions

are used to control females (to reduce biting now) and

males (to reduce biting one generation hence).

Using our pseudo-acoustic sensor [31], we recorded

about 10,000 flights and created a dataset by randomly

choosing 200 examples of each class (male/female). We

then randomly split this dataset into two balanced train/test

datasets of same size.

As we can see in Figure 7, our algorithm is able to

achieve a lower error-rate using just two items per class,

than by using the entire training dataset. This is an

astonishing result. The curves for the other approaches are

more typical for data condensing techniques [3][29], where

we expect to pay a cost (in accuracy) for the gains in speed.

Figure 7: (best viewed in color) The error rate of various data condensing

techniques for every output training size from 1 per class to 100 per class.
The curves are slightly smoothed for visual clarity; the raw data

spreadsheets are available at [33].

The error rate for our approach is minimized at 19 items

per class, suggesting we can benefit for some diversity in

the training data. This diversity probably reflects the

diversity of temperatures, as we record 24 hours a day over

several days. However even if we kept just one pair of

exemplars from each class, we would have an error-rate of

just 0.13, which is still better than using all the data. These

results are significant in this domain, where a low powered

device may have to classify up to hundreds insects per

second with limited computational resources.

We now proceed with the rest of the experiments, in

order to assess the generality of the two observations that

we have made on this case study:

1. The average-based methods condense better the

information about the class than the state-of-the-

art methods (detailed in the next sub-section: B).

2. Not only are average-based methods better at

reducing the size of the training set, but they can

also improve the accuracy of the classifier. This

has been observed in Figure 7 where reducing the

training set with the K-means algorithm allows us

to derive a classifier that performs better than 1-

NN using the full training set (error rate of 0.092

vs 0.14). This observation will be assessed in sub-

section C.

Finally, note that all the raw material generated by our

experiments (for example, the charts similar to Figure 7 for

all the datasets, but also the rankings used in the reminder

of this section) cannot be included in the paper due to space

limitations, but are available at [33].

B. Condensing the model of the class to a handful of

exemplars

To demonstrate that the results in the case study

represent typical improvements over the rival methods, we

will test on a very diverse collection of datasets. We have

compared our approach on all the datasets in the UCR time

series archive [22]3. A description of a representative

sample of these datasets is given in TABLE III.

TABLE III: PRESENTATION OF A SAMPLE OF THE DATASETS USED

Name Length Size train/test # classes

Gun-Point 150 50/150 2

Swedish Leaf 128 500/625 15

TwoPatterns 128 1,000/5,000 4

FaceAll 131 560/1,690 14

Coffee 286 28/28 2

Haptics 1,092 155/308 5

Inline Skate 1,882 100/550 7

WordsSyn. 270 267/638 25

3 We use 42 datasets, i.e. all but two of the datasets of the archive;

we have excluded the StarLightCurve and FetalECG for

computational reasons.

0 20 40 60 80 1000

Kmeans

0.1

0.2

0.3

AHC

Drop2
KMEDOIDS

Drop3

random

Drop1

SR

E
rr

o
r-

R
a
te

The minimum error-rate
is 0.092, with 19 pairs

of objects

The full dataset error-
rate is 0.14, with 100

pairs of objects

Items per class in reduced training set

8

We want to compare the performance of the different

methods when they are authorized (under the “contract”) to

use, say, 1 prototype per class (or #𝑐𝑙𝑎𝑠𝑠𝑒𝑠 prototypes for

Random, DropX and SimpleRank). To this end, we follow

the standard practices for the statistical comparison of

classifiers [34] and use the average ranking of each method

over all the datasets. This will allow us to assess what

algorithm exhibits, on average, the best classification

performances under the contract restriction.

For every dataset and every algorithm, we compute the

error-rate when constrained to use a reduced set of 𝑘

prototypes per class only. Then, for every dataset, we rank

the methods by error-rates: rank 1 is assigned to the best

method; rank 8 is assigned to the worst one.4

We then compute the average rank for every method

(see [34 – Section 3.2.2]). Let 𝑟𝑖
𝑗
 be the rank of the 𝑗𝑡ℎ of 𝐴

algorithms on the 𝑖𝑡ℎ of 𝑁𝑑 datasets. The average rank for

algorithm 𝑗 is computed as 𝑅𝑗 =
1

𝑁𝑑
∑ 𝑟𝑖

𝑗
𝑖 .

This gives a direct general assessment of all the

algorithms: the lowest rank corresponds to the method that,

on average, obtains the best error-rate for the considered

“contract”.

TABLE IV shows the average rank of all

algorithms over the datasets of [22] (again, the raw results

giving the error rate and rank for every method and every

dataset is available at [33]). These results show

unanimously that the methods that use an average sequence

(K-means and AHC) significantly outperform the prior

state of the art.

In addition, we test the statistical significance of these

results. We want to assess if 42 datasets is a large enough

sample to state that this difference in the ranking is

statistically significant.

TABLE IV: AVERAGE RANKING OF THE CONDENSING METHODS FOR 1 TO 5

PROTOTYPES PER CLASS

Algorithm Average rank 𝑹𝒋 using 𝑘 prototypes per

class (or equivalent)

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5

Random 4.70 5.06 4.81 5.46 5.01

Drop1 6.38 3.32 6.13 5.71 5.63

Drop2 5.37 5.37 5.32 5.14 5.20

Drop3 6.37 6.62 6.68 6.56 6.80

Simple rank 5.23 5.35 5.42 5.02 5.14

K-medoids 3.67 3.45 3.71 3.82 3.81

K-means 2.14 1.96 2.13 2.13 2.36

AHC 2.14 1.92 1.98 2.08 2.13

𝜒𝐹
2 141 166 149 135 128

Rmed-𝑅𝑚𝑒𝑎𝑛 1.52 1.49 1.58 1.69 1.45

4 In case of ties, we assign the average (or fractional) ranking. For

example, if there is one winner, two seconds and a loser

[1,2,2,4], then the fractional ranking will be [1,2.5,2.5,4].

We first perform a Friedman test [34], in order to assess

if the results are significantly different. This test is used to

evaluate if there is enough evidence to confidently state

that the different methods are not performing equally.

𝜒𝐹
2 =

12𝑁𝑑

𝐴(𝐴 + 1)
[∑ 𝑅𝑗

2 −
𝐴(𝐴 + 1)2

4
𝑗

] (3)

The values are reported in the second-to-last line of TABLE

IV; given that the Friedman test follows a 𝜒2 distribution

with 𝐴 − 1 degrees of freedom, these results yield a highly

significant difference between the methods (𝑝 < 10−16).

Having rejected the null hypothesis, we can proceed

with a detailed comparison of the methods. Again, we

follow standard practices for classifier comparison [34] and

perform a two-tailed Bonferronni-Dunn test to compare

pairs of methods. Because our aim is not to show the

prevalence of any algorithm in particular, but that using the

average yields better performance for time series

classification, we compare K-means to K-medoids. This

pair of methods constitutes an excellent test-bed, because

K-medoids appears to be the best performing method in the

group of methods that do not use the average time series,

while K-means appears to be the “worst” performing

method in the group of methods that do use the average

time series. In addition, these two methods are functionally

comparable, because they have the same objective function

to minimize the intra-cluster sum of squares. In this way,

we are comparing the methods in the least advantageous

way for averaging-based methods, in order to be extra-

conservative in the assessment of average-based methods

vs. state-of-the-art methods. Comparing 8 methods over 42

datasets, [34] shows that, to be statistically significant

(𝛼 = 0.05) the difference between the average rankings has

to be greater than:

CD = 𝑞0.05 ⋅ √
𝐴(𝐴+1)

6𝑁𝑑
= 2.690 ⋅ √

72

252
≈ 1.438.

We report the difference between the average rank

obtained by K-medoids and the one obtained by K-means

over the 42 datasets in the last line of TABLE IV. It shows

that the difference is greater than the critical one CD,

regardless of the number of prototypes used. As a result, we

can confidently conclude that the K-means algorithm is

statistically significantly better than K-medoids, and thus

that the use of averaging-based methods yield better results

than state-of-the-art methods.

C. Classifying faster and more accurately

We have seen in the case study on insect surveillance

that average-based methods manage, with a reduced set of

time series, to outperform the classification accuracy of the

1-NN classifier on the full training set. This result may be

counterintuitive, so in this section we will assess this

phenomenon on a wide variety of datasets.

9

To this end, we start by performing a standard 1-NN

classifier using the full training set for classification. This

gives us the reference error-rate against which we compare

the results of different methods. We then progressively

restrict the allowed size of the reduced set (𝑘), until we find

the smallest value of 𝑘 for which the error-rate is smaller

than the reference full 1-NN algorithm.

Then, for each dataset (and similar to the experiment in

the last section), we rank the methods by size of their

reduced sets that are able to “beat” the full 1-NN classifier.

The results of these experiments are reported in TABLE V;

note that for fairness in the ranking, we do not include the

Random sampling strategy because, on average, it cannot

beat the results of the full 1-NN classifier.

A first look at TABLE V shows that average-based

methods again outperform the prior state of the art, with the

K-means algorithm obtaining an average rank of 1.57 better

than the K-medoids algorithm. Moreover, on average, the

K-means method is able to condense the training set by

71%. This means that on average over the archive of

datasets, our method using the K-means algorithm achieves

equal or better performance that the full 1-NN classifier,

while only requiring 29% of the computational complexity.

This is an extraordinary result.

TABLE V: AVERAGE RANKING OF THE CONDENSING METHODS ON THE SIZE

OF THE DATASET REQUIRED TO BEAT THE FULL 1-NN CLASSIFIER

Algorithm Average

rank

𝑹𝒋

Average size of

the reduced set

(in % of the

training set)

Drop1 5.89 86%

Drop2 5.07 76%

Drop3 5.45 80%

Simple rank 4.31 69%

K-medoids 3.41 52%

K-means 1.84 29%

AHC 2.73 39%

We can now assess the statistical significance of the

superiority of K-means over K-medoids (the best method

that does not average time series).

Similar to the last sub-section, we start by computing a

Friedman test over the ranking presented in the first column

of TABLE V, which yields a highly significant difference

between the methods (𝜒𝐹
2 > 173 which gives 𝑝 < 10−18).

We can thus proceed with a detailed assessment of the

performance of K-means versus the reference K-medoids.

The critical difference (CD) for this experiment is:

 CD = 𝑞0.05 ⋅ √
𝐴(𝐴+1)

6𝑁𝑑
= 2.638 ⋅ √

56

252
≈ 1.244.

Moreover, we have:

RKMedoids − RKMeans ≈ 1.571 > 1.244

As this difference is far greater than the critical value,

we can conclude confidently that the K-means algorithm

requires significantly fewer prototypes than the K-medoids

algorithm to “beat” the full 1-NN classifier.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that an obscure result on averaging

“warped” time series can be augmented to allow us to

create much faster and/or more accurate time series

classifiers. Our results may be particularly useful for

resource constrained situations, such as wearable devices

and “in-sensor” classifiers [30]. We have demonstrated the

utility of our ideas on more than 40 datasets, and made all

code and data freely available to allow independent

confirmation and extensions of our work [33].

Note that the classic data condensing methods such as

Drop{X} occasionally do reasonably well, at least at some

levels of condensation. Further note that the only operator

in their search space, the deletion of items, is completely

orthogonal to our proposed methods. This suggests that we

may be able to further improve our search space by

expanding our search space to include deletion. We

propose to consider this avenue in future work.

ACKNOWLEDGMENT

This research was supported by the ARC DP120100553,
the NSF IIS-1161997, the Bill and Melinda Gates
Foundation and Vodafone's Wireless Innovation Project.

REFERENCES

[1] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and

E. Keogh, “Experimental comparison of representation methods and

distance measures for time series data,” Data Mining and Knowledge
Discovery, vol. 26, no. 2, pp. 275–309, 2013.

[2] A. Bagnall and J. Lines, “An experimental evaluation of nearest

neighbour time series classification. technical report #CMP-C14-
01,” Department of Computing Sciences, University of East Anglia,

Tech. Rep., 2014.

[3] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana,
“Fast time series classification using numerosity reduction,” in Int.

Conf. on Machine Learning, 2006, pp. 1033–1040.

[4] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh, “Searching and mining trillions of

time series subsequences under dynamic time warping,” in Int. Conf.
on Knowledge Discovery and Data Mining, 2012, pp. 262–270.

[5] I. Assent, M. Wichterich, R. Krieger, H. Kremer, and T. Seidl,

“Anticipatory DTW for efficient similarity search in time series
databases,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp.

826–837, 2009.

[6] H. Kremer, S. Günnemann, A.-M. Ivanescu, I. Assent, and T. Seidl,
“Efficient processing of multiple DTW queries in time series

databases,” in Scientific and Statistical Database Management.

Springer, 2011, pp. 150–167.

[7] D. E. Zhuang, G. C. Li, and A. K. Wong, “Discovery of temporal

associations in multivariate time series,” IEEE Transactions on

Knowledge and Data Engineering, 2014.

[8] F. Petitjean, A. Ketterlin, and P. Gançarski, “A global averaging

method for dynamic time warping, with applications to clustering,”

Pattern Recognition, vol. 44, no. 3, pp. 678–693, 2011.

10

[9] F. Galton, “Vox populi,” Nature, vol. 75, no. 1949, pp. 450–451,

1907.

[10] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, “Diagnosis of

multiple cancer types by shrunken centroids of gene expression,”

National Academy of Sciences, vol. 99, no. 10, pp. 6567–6572, 2002.

[11] J. Gou, Z. Yi, L. Du, and T. Xiong, “A local mean-based k-nearest

centroid neighbor classifier,” The Computer Journal, vol. 55, no. 9,

pp. 1058–1071, 2012.

[12] D. Ariely, “Seeing sets: Representation by statistical properties,”

Psychological Science, vol. 12, no. 2, pp. 157–162, 2001.

[13] G. A. Alvarez, “Representing multiple objects as an ensemble
enhances visual cognition,” Trends in cognitive sciences, vol. 15,

no. 3, pp. 122–131, 2011.

[14] R. Jenkins and A. Burton, “100% accuracy in automatic face

recognition,” Science, vol. 319, no. 5862, pp. 435–435, 2008.

[15] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology, Cambridge University Press,
January 1997, ch. 14 Multiple String Comparison – The Holy Grail,

pp. 332–367.

[16] L. Wang and T. Jiang, “On the complexity of multiple sequence
alignment,” Journal of Computational Biology, vol. 1, no. 4, pp.

337–348, 1994.

[17] L. Gupta, D. L. Molfese, R. Tammana, and P. G. Simos, “Nonlinear
alignment and averaging for estimating the evoked potential,” IEEE

Transactions on Biomedical Engineering, vol. 43, no. 4, pp. 348–

356, 1996.
[18] K. Wang, T. Gasser et al., “Alignment of curves by dynamic time

warping,” The Annals of Statistics, vol. 25, no. 3, pp. 1251–1276,
1997.

[19] V. Niennattrakul and C. A. Ratanamahatana, “Shape averaging

under time warping,” in Int. Conf. on Electrical
Engineering/Electronics, Computer, Telecommunications and

Information Technology, IEEE, vol. 2, 2009, pp. 626–629.

[20] S. Ongwattanakul and D. Srisai, “Contrast enhanced dynamic time
warping distance for time series shape averaging classification,” in

Int. Conf. on Interaction Sciences: Information Technology, Culture

and Human, ACM, 2009, pp. 976–981.
[21] D.-F. Feng and R. F. Doolittle, “Progressive sequence alignment as a

prerequisitetto correct phylogenetic trees,” Journal of Molecular

Evolution, vol. 25, no. 4, pp. 351–360, 1987.

[22] E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana, “The UCR

time series classification/clustering homepage,”

http://www.cs.ucr.edu/~eamonn/time_series_data/, 2011.

[23] F. Petitjean, “Matlab and java source code for DBA,”

doi:10.5281/zenodo.10432, 2014.

[24] P. Kranen and T. Seidl, “Harnessing the strengths of anytime
algorithms for constant data streams,” Data Mining and Knowledge

Discovery, vol. 19, no. 2, pp. 245–260, 2009.

[25] B. Hu, T. Rakthanmanon, Y. Hao, S. Evans, S. Lonardi, and
E. Keogh, “Discovering the intrinsic cardinality and dimensionality

of time series using mdl,” in Int. Conf. on Data Mining, IEEE, 2011,

pp. 1086–1091.

[26] C. A. Ratanamahatana and E. Keogh, “Three myths about dynamic

time warping data mining,” in SIAM Int. Conf. on Data Mining,

2005, pp. 506–510.

[27] F. Petitjean and P. Gançarski, “Summarizing a set of time series by

averaging: From steiner sequence to compact multiple alignment,”

Theoretical Computer Science, vol. 414, no. 1, pp. 76–91, 2012.
[28] V. Niennattrakul and C. A. Ratanamahatana, “Inaccuracies of shape

averaging method using dynamic time warping for time series data,”

in Int. Conf. on Computational Science. Springer, 2007, pp. 513–

520.
[29] E. Pekalska, R. P. Duin, and P. Paclìk, “Prototype selection for

dissimilarity-based classifiers,” Pattern Recognition, vol. 39, no. 2,

pp. 189–208, 2006.
[30] K. Ueno, X. Xi, E. Keogh, and D.-J. Lee, “Anytime classification

using the nearest neighbor algorithm with applications to stream

mining,” in Int. Conf. on Data Mining, IEEE, 2006, pp. 623–632.
[31] Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh, “Flying

insect classification with inexpensive sensors,” Journal of Insect

Behavior, vol. 27, no. 5, pp. 657-677, 2014.
[32] L. B. Goddard, A. E. Roth, W. K. Reisen, T. W. Scott et al., “Vector

competence of california mosquitoes for west nile virus,” Emerging

infectious diseases, vol. 8, no. 12, pp. 1385–1391, 2002.

[33] “Additional material,” http://www.tiny-

clues.eu/Research/ICDM2014-DTW/index.php.

[34] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” The Journal of Machine Learning Research, vol. 7, pp. 1–30,

2006.

[35] X. Xi, K. Ueno, E. Keogh, and D.-J. Lee, “Converting non-
parametric distance-based classification to anytime algorithms,”

Pattern Analysis and Applications, vol. 11, no. 3-4, pp. 321–336,

2008.

APPENDIX A. PROOF OF CONVERGENCE OF DBA

We want to prove that, at each iteration, DBA provides a

better average sequence 𝑇̅, i.e. has a lower sum of squares

(Equation 2). DTW guarantees to find the minimum

alignment between two sequences, which proves optimality

for the first step of DBA (Table I - Algorithm 2 – lines 1 –

8). Proving convergence thus requires to show for a given

multiple alignment 𝑀, the computed 𝑇̅ is optimal.

Let us note 𝑀 = 𝐷𝑇𝑊_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒_𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡(𝑇̅, 𝑫)

(Table I – Algorithm 3) and 𝑀ℓ = 𝑀[ℓ]. We start by

rewriting the objective function (sum of squares – SS):

SS(𝑇̅, 𝑫) = ∑ DTW2(𝑇̅, 𝑇𝑖)

𝑁

𝑖=0

= ∑ ∑ (𝑇̅(ℓ) − 𝑒)2

𝑒∈𝑀ℓ

𝐿

ℓ=1

 (4)

Note that 𝑒 is an element of a sequence of 𝑫 that has been

“linked” to the ℓ𝑡ℎ element of 𝑇̅ by Dynamic Time

Warping. Given that this function has no maximum, it is

minimized when its partial derivative is 0:

 𝜕SS(𝑇̅, 𝑫)

𝜕𝑇̅(ℓ)
 = 0

⇒ ∑ 2 ⋅ (𝑇̅(ℓ) − 𝑒)

𝑒∈𝑀ℓ

 = 0

⇒ 𝑇̅(ℓ) =
1

|𝑀ℓ|
∑ 𝑒

𝑒∈𝑀ℓ

 (5)

This leads to SS(𝑇̅, 𝑫) being minimized when every

element ℓ of 𝑇̅ is positioned as the mean of |𝑀ℓ|. ∎

http://www.cs.ucr.edu/~eamonn/time_series_data/
http://www.tiny-clues.eu/Research/ICDM2014-DTW/index.php
http://www.tiny-clues.eu/Research/ICDM2014-DTW/index.php

