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Abstract—Recent years have seen significant progress in 

improving both the efficiency and effectiveness of time series 

classification. However, because the best solution is typically 

the Nearest Neighbor algorithm with the relatively expensive 

Dynamic Time Warping as the distance measure, successful 

deployments on resource constrained devices remain elusive. 

Moreover, the recent explosion of interest in wearable devices, 

which typically have limited computational resources, has 

created a growing need for very efficient classification 

algorithms. A commonly used technique to glean the benefits 

of the Nearest Neighbor algorithm, without inheriting its 

undesirable time complexity, is to use the Nearest Centroid 

algorithm. However, because of the unique properties of 

(most) time series data, the centroid typically does not 

resemble any of the instances, an unintuitive and 

underappreciated fact. In this work we show that we can 

exploit a recent result to allow meaningful averaging of 

“warped” times series, and that this result allows us to create 

ultra-efficient Nearest “Centroid” classifiers that are at least 

as accurate as their more lethargic Nearest Neighbor cousins. 

I. INTRODUCTION 

There is increasing acceptance that the Nearest Neighbor 

(NN) algorithm with Dynamic Time Warping (DTW) as 

the distance measure is the technique of choice for most 

time series classification problems. The NN-DTW 

algorithm has been shown to be competitive or superior in 

domains as diverse as gesture recognition, robotics and 

ECG classification [1]. Moreover recent comprehensive 

studies have validated this idea: 

• In [1] we compare NN-DTW to nearly all of the 

most highly cited distance measures in the literature on 

dozens of datasets. They found that no distance measure 

consistently beats DTW, but DTW almost always 

outperforms most methods that were originally touted as 

superior, based on less complete empirical evaluations.  

• In [2] (and to a lesser extent [3]) the authors test 

the assumption that the Nearest Neighbor classifier is the 

best technique and consider other classifiers, including 

neural networks and decision trees. Once again, the 

evidence strongly suggests that the structure of time series 

(autocorrelated values, high apparent but low intrinsic 

dimensionality) lends itself to Nearest Neighbor algorithm 

and to NN-DTW in particular. 

These results have meant that the most recent research 

has simply assumed the utility of NN-DTW and focused on 

mitigating the oft-lamented drawback of DTW: its time 

complexity. Here there has also been recent significant 

progress, with [4] showing that nearest neighbor queries 

under DTW can be answered in time that is no worse than 

twice that of the Euclidean distance.  

However we argue that there are still situations where 

DTW (or for that matter, Euclidian distance) has severe 

tractability issues. The accuracy of NN is a function of the 

size of the training set, but unlike eager learners, the 

classification time is also a function of the size of the 

training set. In order to obtain a required level of accuracy, 

we may have to compare the incoming exemplar to dozens 

or hundreds of training objects. While the optimizations in 

[4][5][6] can help mitigate the time needed somewhat, NN-

DTW may still be untenable in some circumstances. This is 

especially true for resource constrained devices such as 

wearable computers and embedded medical devices. 

An obvious fix is to reduce the size of the training set to 

the largest size we can search at each time interval. In [3] it 

is shown that by adapting classic data editing techniques it 

is possible to create a “smart” subset that has an error-rate 

as low as a much larger random subset. Nevertheless, this 

result only partly mitigates the problem.  

The Nearest Centroid Classifier (NCC) is an apparent 

solution to this problem. It allows us to avail of the 

strengths of the NN algorithm, while bypassing the latter’s 

substantial space and time requirements. Unfortunately, the 

centroid is defined only for simple metrics, which DTW is 

not. This is not a trivial semantic point. As Figure 1 shows, 

even if we consider only objects that have a very low 

mutual DTW distance, if we attempt to average them the 

result will typically be “neither fish nor fowl”, resembling 

none of the parent objects.  

 
Figure 1: top) Three examples of daily patterns at an oil refinery [7]. 

middle) When averaged under the Euclidean distance the resulting 
centroid has an additional peak that is in none of the original time series.  

bottom) When averaged using the DTW based method proposed in this 

work, the “centroid” is more intuitive.  

In this work we leverage off and extend a little known 

recent result that allows us to meaningfully define 

“centroid” under DTW [8]. As we shall show, this allows 
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us to condense large datasets into much smaller (as small as 

a single instance per class) dataset that can produce the 

same accuracy as the original dataset. Less intuitively, in 

some domains the reduced datasets may allow greater 

accuracy, because the averaging combines evidence from 

all exemplars to produce prototypes that are more like the 

classes platonic ideal than any individual instance. 

The rest of this paper is organized as follows. In Section 

II we review related and background work. In Section III 

we introduce the necessary definitions and formally define 

the problem to be solved, allowing us to introduce our 

solution in Section IV.  Section V sees a forceful empirical 

validation of our claims, and we offer conclusions and 

directions for future work in Section VI.  

II. RELATED WORK AND BACKGROUND  

The idea that the mean of a set of objects may be more 

representative than any individual object from that set dates 

back at least a century to a famous observation of Francis 

Galton. Galton noted that the crowd at a county fair 

accurately guessed the weight of an ox when their 

individual guesses were averaged [9]. Galton realized that 

the average was closer to the ox's true weight than the 

estimates of most crowd members, and also much closer 

than any of the separate estimates made by cattle experts.  

This idea is frequently exploited in machine learning. 

For example the Nearest centroid classifier [10] generalizes 

the Nearest neighbor classifier by replacing the set of 

neighbors with their centroid. It should be noted that there 

are two separate motivations for using the nearest centroid 

classifier. Most obviously it is faster, being O(1) rather 

than O(n). However, and less intuitively, it is also known 

that some circumstances, the Nearest centroid classifier is 

more accurate than the Nearest neighbor classifier (NN) 

[11]. 

Because it may be counterintuitive that the nearest 

centroid classifier can be more accurate than NN, we will 

demonstrate this in an intuitive setting. Consider a domain 

in which all exemplars are uniformly distributed in the unit 

square, with objects having an X-value less than 0.5 

assigned the label A, otherwise B. Figure 2 illustrates an 

example in which there are just three instances per class. 

 
Figure 2: A simple classification problem in which the concept is the left 

vs. right side of the unit square. This instance of the problem has three 

points per class. left) Here NN has error-rate of 12.60%, while the Nearest 

Centroid classifier (right) with the same instances achieves an error-rate of 

just 5.22%  

For balanced dataset sizes from 2 to 4,000, we 

compared the error rates of the NN and the Nearest centroid 

classifier (NCC) on this domain, each time averaging over 

1,000 runs. The results are shown in Figure 3. 

 
Figure 3: The error rate of two algorithms for increasingly large training 

data sizes of “left vs. right side of the unit square” problem. 

Without any experiments we would realize that the two 

algorithms must agree on the far left side of the figure, 

since the centroid of a single point is that point, the two 

algorithms are identical here. A little more introspection 

tells us that the algorithms will also agree on the far right 

side of the figure. What is less obvious is that the Nearest 

centroid classifier is more accurate in between those two 

extremes. The effect is small, but is statistically significant. 

It is important to note that the Nearest centroid 

classifier is not guaranteed to be more accurate than the NN 

classifier in general. For example, consider the “Japanese 

flag” dataset (adapted from [35]) shown in Figure 4, here 

the NN algorithm approaches zero error-rate for large 

training dataset sizes, in contrast the Nearest centroid 

classifier steadfastly achieves just the default rate.   

 
Figure 4: A two-class problem in which objects within 1.2 of the origin are 
in class A, otherwise they are in class B. With enough training data the 

NN classier can learn this concept very well; however the nearest centroid 

classifier is condemned to perform at the default rate. 

In spite of the existence of such pathological cases, the 

Nearest centroid classifier often outperforms the NN 

algorithm on real datasets, especially if one is willing (as 

we are) to generalize it slightly; for example, by using 

clustering to allow a small number of centroids, rather than 

just one. Thus our claim is simply: 

 Sometimes NCC and NN can have approximately the 

same accuracy, in such cases we prefer NCC because it 

is faster and requires less memory. 

 Sometimes NCC can be more accurate than NN, in 

such cases we prefer NCC because of the accuracy 
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gains, and the reduced computational requirements 

come “for free”. 

The above discussion at first may appear to be moot for 

time series, because the concept of “centroid” for warped 

time series is ill-defined. It is the central contribution of 

this paper to show that we can take the “centroid” for 

warped time series in a principled manner that allows us to 

achieve both improvements in accuracy and reduced 

computational requirements at run time. 

In the last decade the cognitive science community has 

presented strong evidence that the visual systems 

remarkable abilities stem, at least in part, from its ability to 

represent sets of objects by a “gist” or “ensemble”1, which 

may be simply the average of the objects [12]. A recent 

paper notes that the major research direction of the 

cognitive science community is devoted simply to 

“determining how these (average) representations are 

computed, why they are computed and where they are 

coded in the brain” [13]. 

The difficulty faced by the cognitive scientists is similar 

to the pragmatic difficulty we face here. In some cases 

averages may be well defined, for example, the average 

height of Norwegian man. However, for some objects it is 

much less clear how to represent and compute averages. 

For example, computing an average face has been pursued 

since at least 1883 (again, Francis Galton, using composite 

photography) but significant progress has only been made 

in the last decade. Tellingly, this progress in face averaging 

was exploited to produce dramatic improvements in 

classification accuracy with a Science paper boasting 

“100% Accuracy in Automatic Face Recognition” (this is 

the paper’s title [14]). 

Compared to the complexity inherent in faces, time 

series seem like they would be simple to average, however 

as Figure 1 hints at, the classic definition of centroid for 

time series usually produces a prototype which is not 

typical of the data.  

III. DEFINITIONS AND PROBLEM STATEMENT 

We present the definitions of key terms that we use in 
this work. For our problem, each object in the data set is a 
time series, which may be of different length. 

A. Definitions 

Definition 1: Time Series. A time series 𝑇 = (𝑡1, … , 𝑡𝐿)  
is an ordered set of real values. The total number of real 
values is equal to the length of the time series (𝐿). A dataset 
𝑫 = {𝑇1, … , 𝑇𝑁} is a collection of 𝑁 such time series. 

B. Averaging under time warping – related work 

Computational biologists have long known that 

averaging under time warping is a very complex problem, 

because it directly maps onto a multiple sequence 

                                                           
1 Note that the cognitive science use of “ensemble” is unrelated to 

the more familiar machine learning meaning.  

alignment: the “Holy Grail” of computational biology [15]. 

Finding the multiple alignment of a set of sequences, or its 

average sequence (often called consensus sequence in 

biology) is a typical chicken-and-egg problem: knowing the 

average sequence provides a multiple alignment and vice 

versa. Finding the solution to the multiple alignment 

problem (and thus finding of an average sequence) has 

been shown to be NP-complete [16] with the exact solution 

requiring 𝑂(𝐿𝑁) operations for N sequences of length L. 

This is clearly not feasible with more than a dozen 

sequences (just 45 sequences of length 100 would require 

more operations than the number of particles in the 

universe).  

Finding the average of a set is best seen as an 

optimization problem, as explained by the definition below.  

Definition 2: Average object. Given a set of objects 
𝑂 = {𝑂1, … , 𝑂𝑁} in a space 𝐸 induced by a measure 𝑑, the 
average object 𝑜̅ is the object that minimizes the sum of the 
squares to the set:  

arg min
𝑜̅∈𝐸

∑ 𝑑²(𝑜̅, 𝑂𝑖)

𝑁

𝑖=1

 (1) 

This definition demonstrates that finding the average of 

a set is intrinsically linked to the measure that is used to 

compare the data. This means that the average method has 

to be specifically designed for every measure that is used to 

compare data.   

In our case, the objects are time series and the measure 

is DTW. We can thus now define what the average 

sequence should be to be consistent with Dynamic Time 

Warping.  

Definition 3: Average time series for DTW. Given a set 
of time series 𝑫 = {𝑇1, … , 𝑇𝑁} in a space 𝐸 induced by 

Dynamic Time Warping, the average time series 𝑇̅ is the 
time series that minimizes:   

arg min
𝑇̅∈𝐸

∑ DTW²(𝑇̅, 𝑇𝑖)

𝑁

𝑖=1

 (2) 

Many attempts at finding an averaging method for 

DTW have been made since the 1990s [17], [18], [19], 

[20]. Researchers have exploited the idea that the exact 

average of two time series can be computed in 𝑂(𝐿2). 

These papers have proposed different tournament schemes 

(the guide trees in computational biology) in which the 

sequences should be averaged first. Interestingly, none of 

these authors appear to have made the connection with the 

multiple sequence alignment problem; the most advanced 

method in 2009, PSA [19], heuristically averages the 

closest objects first, which corresponds to an idea proposed 

some 20 years earlier in computational biology [21].  

There is a limit, however, to which the comparison 

between biological sequences and time series can be 

pushed. Ultimately, time series are sequences of real-
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valued numbers and not of discrete symbols like 

DNA/RNA sequences. While two genes coding for 

hemoglobin have almost certainly evolved from a common 

ancestor (although homoplasy can almost never be 

completely ruled out), no such lineage is present for time 

series. Nevertheless, we can sometimes imagine a domain 

in which there is an idealized platonic prototype, of which 

we can only see corrupted (i.e. “warped”) examples. In this 

view, DTW based averaging can be seen as an attempt to 

recover the “ancestor” state. For example, the platonic 

prototype may be an individual’s internal (muscle memory) 

representation of her golf swing or her rendition of a song, 

of which we can only observe external performance 

approximations.   

C. DBA: the best-so-far method to average time series for 

Dynamic Time Warping 

DTW Barycenter Averaging (DBA), introduced in [8], 

exploits the parallels between time series and 

computational biology, while taking account of the unique 

properties of the former. We have shown in [8] that DBA 

outperforms all existing averaging techniques on all 

datasets of the UCR Archive [22]. In particular it always 

obtained lower residuals (Equation 2) than the state-of-the-

art methods, with a typical margin of about 30%, making it 

the best method to date for time series averaging for DTW.  

DBA iteratively refines an average sequence 𝑇̅ and 

follows an expectation-maximization scheme: 

1. Consider 𝑇̅ fixed and find the best multiple 

alignment2 𝑀 of the set of sequences 𝑫 consistently 

with 𝑇̅.  

2. Now consider 𝑀 fixed and update 𝑇̅ as the best 

average sequence consistent with 𝑀.  

Table I gives the pseudocode of DBA; an implementation 

in Matlab and Java is available at [23].  

This paper extends the definition of DBA by providing 

a proof of its convergence, i.e., that the sum of the squares 

(Equation 2) always decreases between two iterations (or 

refinements). This proof is provided in Appendix A.  

In Figure 1 we showed an example of the algorithm’s 

output on three examples of a pattern associated with an oil 

refinery process.  

IV. OBSERVATIONS AND ALGORITHMS 

In recent years there has been an increasing interest in 

using anytime algorithms for data mining [3], [24]. 

However the variant known as contract algorithms have 

received less attention. Contract algorithms are a special 

type of anytime algorithms that require the amount of run-

time to be determined prior to their activation. In other 

words, contract algorithms offer a tradeoff between 

computation time and quality of results, but they are not 

interruptible. 

                                                           
2 It actually finds the compact multiple alignment [27].  

TABLE I. GENERAL ALGORITHM FOR DBA 

Algorithm 1. DBA( 𝑫 , I )  

Require: 𝑫: the set of sequences to average 
Require: 𝐼: the number of iterations 

1: 
2: 
3: 

𝑇̅ = medoid( 𝑫 ) // get the medoid of the set of sequences 𝑫 
do 𝐼 times 𝑇̅ = DBA_update( 𝑇̅ , 𝑫 ) 
return 𝑇̅    

Algorithm 2. DBA_update( 𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅  , 𝑫 )  

Require: 𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅ : the average sequence to refine (of length L) 

Require: 𝑫: the set of sequences to average 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 

// Step #1: compute the multiple alignment for  𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅  

alignment  = [ ∅, ⋯ , ∅ ] // array of L empty sets 
for each S in 𝑫 do 

alignment_for_S = DTW_multiple_alignment ( 𝑇𝑖𝑛𝑖𝑡
̅̅ ̅̅ ̅̅  , S ) 

for i=1 to L do 
alignment[i] = alignment[i] ∪ alignment_for_S[i] 

done 
done 
// Step #2: compute the multiple alignment for the alignment 
let 𝑇̅ be a sequence of length L 
for i=1 to L do 

𝑇̅(𝑖) = mean( alignment[i] ) //arithmetic mean on the set 
done 
return 𝑇̅    

Algorithm 3. DTW_multiple_alignment ( 𝑆𝑟𝑒𝑓  , S )  

Require: 𝑆𝑟𝑒𝑓: the sequence for which the alignment is computed 

Require: S: the sequence to align to 𝑆𝑟𝑒𝑓 using DTW 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 

// Step #1: compute the accumulated cost matrix of DTW 
cost = DTW( 𝑆𝑟𝑒𝑓 , S ) 

// Step #2: store the elements associated to 𝑆𝑟𝑒𝑓 

L = length( 𝑆𝑟𝑒𝑓  ) 

alignment  = [ ∅, ⋯ , ∅ ] // array of L empty sets 
𝑖 = rows( cumul_cost )  // i iterates over the elements of 𝑆𝑟𝑒𝑓 

𝑗 = columns( cumul_cost )  //j iterates over the elements of S 
while (𝑖 > 1) && (𝑗 > 1) do 

alignment[𝑖] = alignment[𝑖] ∪ 𝑆(𝑗) 
if 𝑖 == 1 then 𝑗 = 𝑗 − 1  
else if 𝑗 == 1 then 𝑖 = 𝑖 − 1  
else 

score = min( cost[i-1][j-1] , cost[i][j-1] , cost[i-1][j] ) 
if score = = cost[i-1][j-1] then 

𝑖 = 𝑖 − 1 
j = 𝑗 − 1 

else if  score = = cost[i-1][j] then 𝑖 = 𝑖 − 1 
else 𝑗 = 𝑗 − 1 
end if 

end if 
done 
return alignment 

Problem Statement Contract Time Series Classification: 

Given (1) a large time series training dataset, (2) the 

maximum amount of computation resources available, and 

(3) as much training time as needed, produce the most 

accurate classifier possible.  

 We assume that the computational resource constraint 

will be time, not space, and that it will be given to us in the 

form of the number of CPU cycles available each second. 



 

5 

For ease of exposition we assume that the constraint will be 

given as a positive integer C, which is the number of 

exemplars per class that we can examine when asked to 

classify a new object. Figure 5 illustrates this problem 

statement.  

 
Figure 5: A visual intuition of an instance of our problem statement: Given 
the Oil-13 time series training dataset (left), and a user constraint C, here 

‘1’. Produce a new dataset with C items per class (right), such that the 

accuracy on future data is maximized.   

As we explained in the introduction, based on the 

consensus of the literature and our own experiments, we 

believe that the best solution will be a variant of Nearest 

Neighbor classification. While decision trees and Bayesian 

classifiers are very efficient, the fact that no competitively 

accurate classifiers for time series based on these methods 

have been produced [2], [3], in a research area as active and 

competitive as time series classification, is very telling.  

What then, is the space of techniques we can explore? 

After exhausting all known optimization techniques (early 

abandoning, removing the unnecessary square root 

calculation, lower bounding, etc.) we can consider 

manipulating the following: 

 Reducing the data cardinality, and doing NN-DTW on 

the reduced cardinality data. While classification on 

suitable reduced cardinality data has little effect on 

accuracy [25], it only helps scalability on specialized 

hardware. We are hoping for a general solution. 

 Reducing the data dimensionality, and doing NN-DTW 

on the reduced dimensionality data. This idea has been 

in the literature for at least two decades, and seems to 

have been rediscovered many times. The idea works 

well when the raw data is oversampled. For example, 

some bedside machines report electrocardiograms at 

up to 4,096Hz, yet there is little evidence that anything 

above 256Hz is needed for classification. However 

here we assume that the data we are given is sampled 

at an appropriate rate. 

 Reducing the number of objects the nearest neighbor 

algorithm must see. This can be done by selecting a 

subset of the data (which is known as data editing or 

condensing) or aggregating the data. 

As the reader will have intuited by now, it is the last 

idea we intend to pursue. There are several obvious ways to 

reduce the number of objects the nearest neighbor 

algorithm must see, and several variants of intelligent data 

editing have been proposed [3]. However to the best of our 

knowledge no one has considered data aggregation. Or 

rather, it may have been considered, but the artifacts 

produced by averaging methods for Dynamic Time 

Warping, such as the one hinted at in Figure 1 and 

acknowledged in the literature by [8], [27] and particularly 

by [28], make this an unpromising avenue to explore.  

However, as noted above, aggregation methods 

(including, but not limited to the Nearest Centroid 

Classifier) have certain properties that seem very desirable. 

In particular, they provide a condensed model of the 

aggregated set, allowing speed up, and they weight 

information from every training instance, potentially 

allowing improved accuracy.  

However, as we explain in the next section, simply 

averaging all the objects in each class is unlikely to work 

well in most domains, and this motivates a clustering-based 

data condensing approach.  

A. Why K-Means Based Approach 

While it is possible that for some datasets, a single 

prototype may capture the “essence” of a class, for other 

datasets it may require a small number of prototypes. 

Moreover, a single dataset may exhibit both possibilities on 

a class-by-class basis. For example for the “Japanese flag” 

dataset shown in Figure 4, a single centroid is clearly 

optimal for the circle/red class, but we would need, say 

eight suitably arranged examples from the green/square 

class arranged in an octagon to carve out a decision 

boundary that approximates the true circular decision 

boundary. To give a more concrete example in a domain 

we explore in this work, consider the case study in insect 

surveillance in Section V.A. Here we may have what 

appears to be a single class, Culex stigmatosoma, the 

mosquito that spreads West Nile virus. However, this 

insect, like most mosquitoes, is highly sexually dimorphic. 

If we try to create a single template to represent both males 

and females we are condemned to have a template that 

represents neither. However, by clustering each individual 

class, we hope to be able to account for any natural 

polymorphism within the class. In Table II we show such a 

clustering-based approach to condensing a dataset. 

It is important to note, however, that we see our main 

contribution as proposing a warping-invariant-averaging 

based condensation framework, of which Table II is simply 

one concrete and straightforward partitional clustering 

example. To further reinforce this notation in our 

experimental section we also consider a warping-invariant-

averaging hierarchical clustering based condensation 

framework. 

TABLE II. ALGORITHM TO CONDENSE TRAINING DATASET 

Algorithm 1. Reduce(Data, C)  
Require: Data: dataset; C: The number of exemplars per class 

1: 
2: 
3: 
4: 
5: 
6: 
7: 

// partition the data into  C sets of time series 
Clusters = do_clustering(Data,C) //for example with K-means 
Condensed_Data = () 
for each Cluster in Clusters do 

Condensed_Data.add(DBA(Cluster)) 
done 
return Condensed_Data  

Condesed_Oil=Reduce(Oil-13,1)

Oil-13

Condesed_Oil
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V. EXPERIMENTAL EVALUATION 

In this section, we assess the performance of our 

averaging-based reduction methods for time series 

classification, over the state-of-the-art data condensing 

methods (which do not average time series). Note that the 

distance measure used for all experiments is DTW.  

We compare the following algorithms; the last two of 

which exploit our averaging technique: 

 Random Selection: Here we randomly sample the 

training data, selecting as many samples as we can use 

under the contract time. 

 Drop{X}: There has been significant work on data 

editing (numerosity reduction/condensing) for nearest 

neighbor classification [29]. All these algorithms 

create some list of nearest neighbors, of both the same 

class (associates) and of different classes (enemies), 

and use a weighted scoring function based on this list 

to determine the worst exemplar. We compare to three 

variants; Drop1, Drop2 and Drop 3, see [29] for full 

details on their subtle differences. 

 Simple Rank (SR): This method gives to each 

instance a rank according to its contribution to the 

classification [30]. A leave-one-out 1-NN 

classification is performed on the training set, and the 

rank of the instance is calculated as the following 

formula: 

𝑟𝑎𝑛𝑘(𝑥) = ∑ {
1 𝑖𝑓 𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑐𝑙𝑎𝑠𝑠(𝑥𝑖)

−2
(#𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 1)⁄ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

𝑖

 

where 𝑥𝑗 are associates of 𝑥. The ties are broken by 

sorting the instances according to their distance to their 

nearest “enemy” (standard terminology).  

 K-Medoids: This well-known method, also known as 

“partitioning around medoids”, aims at minimizing the 

intra-cluster sum of squares, by using the proximity of 

objects to the medoids of the clusters formed by the 

algorithm. Note that the medoid of a set is the object 

from the set itself, that minimizes the sum of the 

squares (same objective as Equation 2, with the 

additional condition that 𝑇̅ ∈ 𝑫). K-medoid thus does 

not use any average object.  

And finally, our two proposed methods: 

 K-Means: Similar to K-medoids, this well-known 

method aims at minimizing the intra-cluster sum of 

squares. The clusters are formed by using the 

proximity of objects to the average objects (or 

centroids) of the different clusters. We use DBA as the 

average method associated to DTW. 

 AHC with Ward’s criterion: Starting with every 

object in its own cluster, agglomerative hierarchical 

clustering (AHC) progressively merges the most 

similar clusters until all the objects are part of the same 

cluster. Similar to K-means and K-medoids in its 

objective, the Ward’s criterion ranks the pairs of 

clusters with regard to the increase in the weighted 

intra-cluster sum of squares. Here again we use DBA 

as the average method associated to DTW. 

We consider situations where we can only visit a small 

handful of exemplars, as few as just one per class; this is 

the defining characteristic of our problem setting. In any 

case, we expect (and empirically demonstrate) that all 

algorithms converge as we allow the size of the reduced 

dataset used to increase. That is to say, if we randomly 

sample as many time series as there are in the training set, 

we actually obtain the full training set, which is logically 

equivalent to the 1-NN classifier. The behavior is similar 

for the other techniques: the reduced sets of time series all 

tend to the initial training set as their sizes increase.  

Our experiments will be divided into three parts:  

A. We begin with a case study, to ground the utility of our 

ideas in the real world.  

B. Having shown that average-based methods outperform 

sampling-based ones on our case study, we further 

assess the performance of the different methods on a 

full-scale experiment with 42 datasets. We demonstrate 

the clear superiority of average-based methods for 

condensing the model of the class into a handful of 

exemplars.  

C. We show that not only do average-based methods 

provide better solutions than the state of the art for 

reducing the size of the training set, but also that they 

make it possible to improve on the classification 

accuracy, compared to the full 1-NN classifier.  

A. Case Study in Insect Surveillance 

Recent work has shown that it is possible to classify 

flying insects with high accuracy by converting the audio 

of their flight (i.e. the familiar “buzz” of bees) to an 

amplitude spectrum [31], which, as shown in Figure 6 can 

essentially be considered a “time series”. 

 
Figure 6: top) An audio snippet of an insect flight sound can be converted 

into a pseudo time series (bottom) and used to allow classification  

All previous work on insect classification had assumed 

that a single feature extracted from the amplitude spectrum, 

the wingbeat frequency, was the only useful feature in the 

amplitude spectrum. However [31] forcefully demonstrates 

8000 12000 16000

A mosquito flying 

past the sensor

Background noise

400 800 12000

Wingbeat

frequency 

at 354Hz
Harmonics

Single-Sided Amplitude Spectrum
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that using the entire spectrum, and treating the problem as a 

time series classification problem, significantly reduces the 

error rate. In retrospect this is not surprising. A G note on a 

piano and an open string G note on a guitar have the same 

frequency of 196Hz (about the same frequency as a honey 

bee), but are easy to tell apart. 

The ability to automatically classify insects has 

potential implications for agricultural and human health, as 

many plant/human diseases are vectored by insects. The 

promising results presented in [31] are demonstrated in the 

laboratory settings, and exploit large training datasets to 

archive high accuracy. However, field deployments must 

necessarily be on inexpensive resource-constrained 

hardware, which may not have the ability to allow nearest-

neighbor search on large training datasets, up to hundreds 

of times a second. Thus we see this situation as an ideal 

application for our work. 

We recorded the flying sound of male and female 

insects of the species Culex stigmatosoma, which is a 

vector of several diseases such as the West Nile Virus and 

Western Equine Encephalitis [32]. Being able to classify 

male vs. female mosquitoes is important because only the 

females actually spread disease, and different interventions 

are used to control females (to reduce biting now) and 

males (to reduce biting one generation hence). 

Using our pseudo-acoustic sensor [31], we recorded 

about 10,000 flights and created a dataset by randomly 

choosing 200 examples of each class (male/female). We 

then randomly split this dataset into two balanced train/test 

datasets of same size.  

As we can see in Figure 7, our algorithm is able to 

achieve a lower error-rate using just two items per class, 

than by using the entire training dataset. This is an 

astonishing result. The curves for the other approaches are 

more typical for data condensing techniques [3][29], where 

we expect to pay a cost (in accuracy) for the gains in speed.  

 
Figure 7:  (best viewed in color) The error rate of various data condensing 

techniques for every output training size from 1 per class to 100 per class. 
The curves are slightly smoothed for visual clarity; the raw data 

spreadsheets are available at [33]. 

The error rate for our approach is minimized at 19 items 

per class, suggesting we can benefit for some diversity in 

the training data. This diversity probably reflects the 

diversity of temperatures, as we record 24 hours a day over 

several days.  However even if we kept just one pair of 

exemplars from each class, we would have an error-rate of 

just 0.13, which is still better than using all the data. These 

results are significant in this domain, where a low powered 

device may have to classify up to hundreds insects per 

second with limited computational resources.  

We now proceed with the rest of the experiments, in 

order to assess the generality of the two observations that 

we have made on this case study:  

1. The average-based methods condense better the 

information about the class than the state-of-the-

art methods (detailed in the next sub-section: B).  

2. Not only are average-based methods better at 

reducing the size of the training set, but they can 

also improve the accuracy of the classifier. This 

has been observed in Figure 7 where reducing the 

training set with the K-means algorithm allows us 

to derive a classifier that performs better than 1-

NN using the full training set (error rate of 0.092 

vs 0.14). This observation will be assessed in sub-

section C.  

Finally, note that all the raw material generated by our 

experiments (for example, the charts similar to Figure 7 for 

all the datasets, but also the rankings used in the reminder 

of this section) cannot be included in the paper due to space 

limitations, but are available at [33].   

B. Condensing the model of the class to a handful of 

exemplars 

To demonstrate that the results in the case study 

represent typical improvements over the rival methods, we 

will test on a very diverse collection of datasets. We have 

compared our approach on all the datasets in the UCR time 

series archive [22]3. A description of a representative 

sample of these datasets is given in TABLE III.  

TABLE III: PRESENTATION OF A SAMPLE OF THE DATASETS USED 

Name Length Size train/test # classes 

Gun-Point 150 50/150 2 

Swedish Leaf 128 500/625 15 

TwoPatterns 128 1,000/5,000 4 

FaceAll 131 560/1,690 14 

Coffee 286 28/28 2 

Haptics 1,092 155/308 5 

Inline Skate 1,882 100/550 7 

WordsSyn. 270 267/638 25 

 

                                                           
3 We use 42 datasets, i.e. all but two of the datasets of the archive; 

we have excluded the StarLightCurve and FetalECG for 

computational reasons.  
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We want to compare the performance of the different 

methods when they are authorized (under the “contract”) to 

use, say, 1 prototype per class (or #𝑐𝑙𝑎𝑠𝑠𝑒𝑠 prototypes for 

Random, DropX and SimpleRank). To this end, we follow 

the standard practices for the statistical comparison of 

classifiers [34] and use the average ranking of each method 

over all the datasets. This will allow us to assess what 

algorithm exhibits, on average, the best classification 

performances under the contract restriction.  

For every dataset and every algorithm, we compute the 

error-rate when constrained to use a reduced set of 𝑘 

prototypes per class only. Then, for every dataset, we rank 

the methods by error-rates: rank 1 is assigned to the best 

method; rank 8 is assigned to the worst one.4  

We then compute the average rank for every method 

(see [34 – Section 3.2.2]). Let 𝑟𝑖
𝑗
 be the rank of the 𝑗𝑡ℎ of 𝐴 

algorithms on the 𝑖𝑡ℎ of 𝑁𝑑 datasets. The average rank for 

algorithm 𝑗 is computed as 𝑅𝑗 =  
1

𝑁𝑑
∑ 𝑟𝑖

𝑗
𝑖 . 

This gives a direct general assessment of all the 

algorithms: the lowest rank corresponds to the method that, 

on average, obtains the best error-rate for the considered 

“contract”.  

TABLE IV shows the average rank of all 

algorithms over the datasets of [22] (again, the raw results 

giving the error rate and rank for every method and every 

dataset is available at [33]). These results show 

unanimously that the methods that use an average sequence 

(K-means and AHC) significantly outperform the prior 

state of the art. 

In addition, we test the statistical significance of these 

results. We want to assess if 42 datasets is a large enough 

sample to state that this difference in the ranking is 

statistically significant.  

TABLE IV: AVERAGE RANKING OF THE CONDENSING METHODS FOR 1 TO 5 

PROTOTYPES PER CLASS 

Algorithm Average rank 𝑹𝒋 using 𝑘 prototypes per 

class (or equivalent) 

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 

Random 4.70 5.06 4.81 5.46 5.01 

Drop1 6.38 3.32 6.13 5.71 5.63 

Drop2 5.37 5.37 5.32 5.14 5.20 

Drop3 6.37 6.62 6.68 6.56 6.80 

Simple rank 5.23 5.35 5.42 5.02 5.14 

K-medoids 3.67 3.45 3.71 3.82 3.81 

K-means 2.14 1.96 2.13 2.13 2.36 

AHC 2.14 1.92 1.98 2.08 2.13 

𝜒𝐹
2 141 166 149 135 128 

Rmed-𝑅𝑚𝑒𝑎𝑛 1.52 1.49 1.58 1.69 1.45 

                                                           
4 In case of ties, we assign the average (or fractional) ranking. For 

example, if there is one winner, two seconds and a loser 

[1,2,2,4], then the fractional ranking will be [1,2.5,2.5,4].  

We first perform a Friedman test [34], in order to assess 

if the results are significantly different. This test is used to 

evaluate if there is enough evidence to confidently state 

that the different methods are not performing equally.  

𝜒𝐹
2 =

12𝑁𝑑

𝐴(𝐴 + 1)
[∑ 𝑅𝑗

2 −
𝐴(𝐴 + 1)2

4
𝑗

] (3) 

The values are reported in the second-to-last line of TABLE 

IV; given that the Friedman test follows a 𝜒2 distribution 

with 𝐴 − 1 degrees of freedom, these results yield a highly 

significant difference between the methods (𝑝 < 10−16).  

Having rejected the null hypothesis, we can proceed 

with a detailed comparison of the methods. Again, we 

follow standard practices for classifier comparison [34] and 

perform a two-tailed Bonferronni-Dunn test to compare 

pairs of methods. Because our aim is not to show the 

prevalence of any algorithm in particular, but that using the 

average yields better performance for time series 

classification, we compare K-means to K-medoids. This 

pair of methods constitutes an excellent test-bed, because 

K-medoids appears to be the best performing method in the 

group of methods that do not use the average time series, 

while K-means appears to be the “worst” performing 

method in the group of methods that do use the average 

time series. In addition, these two methods are functionally 

comparable, because they have the same objective function 

to minimize the intra-cluster sum of squares. In this way, 

we are comparing the methods in the least advantageous 

way for averaging-based methods, in order to be extra-

conservative in the assessment of average-based methods 

vs. state-of-the-art methods. Comparing 8 methods over 42 

datasets, [34] shows that, to be statistically significant 

(𝛼 = 0.05) the difference between the average rankings has 

to be greater than: 

CD = 𝑞0.05 ⋅ √
𝐴(𝐴+1)

6𝑁𝑑
= 2.690 ⋅ √

72

252
≈ 1.438. 

We report the difference between the average rank 

obtained by K-medoids and the one obtained by K-means 

over the 42 datasets in the last line of TABLE IV. It shows 

that the difference is greater than the critical one CD, 

regardless of the number of prototypes used. As a result, we 

can confidently conclude that the K-means algorithm is 

statistically significantly better than K-medoids, and thus 

that the use of averaging-based methods yield better results 

than state-of-the-art methods.  

C. Classifying faster and more accurately 

We have seen in the case study on insect surveillance 

that average-based methods manage, with a reduced set of 

time series, to outperform the classification accuracy of the 

1-NN classifier on the full training set. This result may be 

counterintuitive, so in this section we will assess this 

phenomenon on a wide variety of datasets.  
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To this end, we start by performing a standard 1-NN 

classifier using the full training set for classification. This 

gives us the reference error-rate against which we compare 

the results of different methods. We then progressively 

restrict the allowed size of the reduced set (𝑘), until we find 

the smallest value of 𝑘 for which the error-rate is smaller 

than the reference full 1-NN algorithm.  

Then, for each dataset (and similar to the experiment in 

the last section), we rank the methods by size of their 

reduced sets that are able to “beat” the full 1-NN classifier. 

The results of these experiments are reported in TABLE V; 

note that for fairness in the ranking, we do not include the 

Random sampling strategy because, on average, it cannot 

beat the results of the full 1-NN classifier.  

A first look at TABLE V shows that average-based 

methods again outperform the prior state of the art, with the 

K-means algorithm obtaining an average rank of 1.57 better 

than the K-medoids algorithm. Moreover, on average, the 

K-means method is able to condense the training set by 

71%. This means that on average over the archive of 

datasets, our method using the K-means algorithm achieves 

equal or better performance that the full 1-NN classifier, 

while only requiring 29% of the computational complexity. 

This is an extraordinary result.  

TABLE V: AVERAGE RANKING OF THE CONDENSING METHODS ON THE SIZE 

OF THE DATASET REQUIRED TO BEAT THE FULL 1-NN CLASSIFIER 

Algorithm Average 

rank 

𝑹𝒋 

Average size of 

the reduced set 

(in % of the 

training set) 

Drop1 5.89 86% 

Drop2 5.07 76% 

Drop3 5.45 80% 

Simple rank 4.31 69% 

K-medoids 3.41 52% 

K-means 1.84 29% 

AHC 2.73 39% 

We can now assess the statistical significance of the 

superiority of K-means over K-medoids (the best method 

that does not average time series). 

Similar to the last sub-section, we start by computing a 

Friedman test over the ranking presented in the first column 

of TABLE V, which yields a highly significant difference 

between the methods (𝜒𝐹
2 > 173 which gives 𝑝 < 10−18).  

We can thus proceed with a detailed assessment of the 

performance of K-means versus the reference K-medoids. 

The critical difference (CD) for this experiment is: 

 CD = 𝑞0.05 ⋅ √
𝐴(𝐴+1)

6𝑁𝑑
= 2.638 ⋅ √

56

252
≈ 1.244.  

Moreover, we have: 

RKMedoids − RKMeans ≈ 1.571 > 1.244 

As this difference is far greater than the critical value, 

we can conclude confidently that the K-means algorithm 

requires significantly fewer prototypes than the K-medoids 

algorithm to “beat” the full 1-NN classifier.  

VI. CONCLUSIONS AND FUTURE WORK 

We have shown that an obscure result on averaging 

“warped” time series can be augmented to allow us to 

create much faster and/or more accurate time series 

classifiers. Our results may be particularly useful for 

resource constrained situations, such as wearable devices 

and “in-sensor” classifiers [30]. We have demonstrated the 

utility of our ideas on more than 40 datasets, and made all 

code and data freely available to allow independent 

confirmation and extensions of our work [33]. 

Note that the classic data condensing methods such as 

Drop{X} occasionally do reasonably well, at least at some 

levels of condensation. Further note that the only operator 

in their search space, the deletion of items, is completely 

orthogonal to our proposed methods. This suggests that we 

may be able to further improve our search space by 

expanding our search space to include deletion. We 

propose to consider this avenue in future work. 
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APPENDIX A. PROOF OF CONVERGENCE OF DBA 

We want to prove that, at each iteration, DBA provides a 

better average sequence 𝑇̅, i.e. has a lower sum of squares 

(Equation 2). DTW guarantees to find the minimum 

alignment between two sequences, which proves optimality 

for the first step of DBA (Table I - Algorithm 2 – lines 1 – 

8). Proving convergence thus requires to show for a given 

multiple alignment  𝑀, the computed 𝑇̅ is optimal.  

Let us note 𝑀 = 𝐷𝑇𝑊_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒_𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡(𝑇̅, 𝑫) 

(Table I – Algorithm 3) and 𝑀ℓ = 𝑀[ℓ]. We start by 

rewriting the objective function (sum of squares – SS):  

SS(𝑇̅, 𝑫) = ∑ DTW2(𝑇̅, 𝑇𝑖)

𝑁

𝑖=0

= ∑ ∑ (𝑇̅(ℓ) − 𝑒)2

𝑒∈𝑀ℓ

𝐿

ℓ=1

 (4) 

Note that 𝑒 is an element of a sequence of 𝑫 that has been 

“linked” to the ℓ𝑡ℎ element of 𝑇̅ by Dynamic Time 

Warping. Given that this function has no maximum, it is 

minimized when its partial derivative is 0:   

 𝜕SS(𝑇̅, 𝑫)

𝜕𝑇̅(ℓ)
 = 0  

⇒ ∑ 2 ⋅ (𝑇̅(ℓ) − 𝑒)

𝑒∈𝑀ℓ

 = 0  

⇒ 𝑇̅(ℓ) = 
1

|𝑀ℓ|
∑ 𝑒

𝑒∈𝑀ℓ

 (5) 

This leads to SS(𝑇̅, 𝑫) being minimized when every 

element ℓ of  𝑇̅ is positioned as the mean of |𝑀ℓ|. ∎ 
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