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Abstract— The driving range of electric vehicles is a sensitive 
issue. In simulation, this range is determined by coupling a battery 
model and a traction model of the vehicle. But most of the battery 
models used for such studies are generally without temperature 
dependence on the electrical parameters. In this paper, a battery 
electro-thermal model is dynamically coupled with the traction 
model of a studied electric vehicle. Simulation results are provided 
to show the impact of the temperature on the driving range. The 
initial battery model (without temperature dependence) leads to 
an overestimation of the driving range of 3.3% at -5°C and an 
underestimation of 2.5% at 40°C. 
 

Index Terms— Electric Vehicle; System Modelling; Li-ion 
Battery; Characterization; Electro-Thermal Modelling.  
 
Table 1 Parameters and symbols 

 Parameter Name Value Unit 

C
el

l 

Cell capacity  cAhCell >160  A.h 
Cell nominal voltage uCellNom 3.3 V 
Maximal cell discharge current iCell 480 A 
Cell interconnection resistance RCon 505 µΩ 
Cell weight --- 5.6 kg 
Cell thermal resistance RThCell 2.63 K/W 
Cell thermal capacitance CThCell 2430 J/K 

B
at

te
ry

 Battery config. (series x parallel) nSCells x nPCells 24 x 
1 

cells 

Battery nominal voltage uBatNom 79.2 V 
Battery nominal power pBat 38.0 kW 
Battery mass mBat 134 kg 

E
V

 tr
ac

tio
n 

Aerodynamic drag coefficient cX 0.35 --- 
Front surface  S 1.55 m² 
Air volumic mass φEq 1.3 kg/m3

Road friction f0 150 N 
Wheel radius rWheel 0.26 m 
Reduction coefficient kRed 5.84 --- 
Mechanical efficiency ηMech 0.85 --- 
Electric drive peak power PDriveMax 25 kW 
Electric drive efficiency ηDrive [1] --- 

I. INTRODUCTION 

Electric vehicles (EVs) are a solution for balancing the 
petroleum depletion and reducing the global carbon emissions. 
Nevertheless, the long charging time and the reduced driving 
range are frequent worries for future EV owners [2]. 

Characterization studies  showed that a cold temperature has 
a strong impact on the electrochemical energy storage in a 
battery [3][4][5]. The battery capacity fades and the resistance 
increases at low temperature. In addition, the temperature 
affects the aging of the battery [6], [7]. 

As a consequence many studies focus on the battery thermal 
behaviour for use in  electric vehicles.  

-1) Some allow thermal simulation with fixed electrical 
parameters. That means that, even if the battery model is 
electro-thermal the electrical and the thermal part are not 
coupled (except for the heat power coming from the electrical 
part) [8][9] . 

-2) Some are focused on the characterization of electrical 
parameters at different temperature but no coupling is done with 
a traction chain[10][11][12][13]. In that case the battery model 
is coupled to a current source. An interesting approach  has been 
recently developed for battery modelling in cold weather. In 
[10] a battery electro-thermal model has been developed based 
on multi-temperature characterizations. 

-3) Some are coupling the traction chain of the vehicle with 
a partly temperature dependent electric model of battery (only 
OCV for [14]) but impedence parameters are not dependent of 
temperature. This lack of temperature dependence for 
impedence parameters will underestimate the current 
consumption in low temperature. 

The novelty of this paper is a better estimation of the impact 
of the temperature on driving range  for a coupled electro-
thermal battery model [10] by the coupling it with the traction 
chain [14]. It improves back [14] by adding the full electrical 
parameters dependence developed in [10]. With the proposed 
coupled electro-thermal-traction model current has to adapt to 
the electrical parameters in order to achieve the same velocity 
profile under different temperature and State of Charge (SoC) 
conditions.   

The validation is original as it is not performed in hardware 
in the loop with a vehicle simulator programm [15] [14] or with 
a fixed recorded current cycle [10]. It is performed with 
measures during a real driving cycle in a real vehicle.  

Moreover, this paper presents the model in Energetic 
Macroscopic representation. Contrary to [14] [10] [11], no 
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derivative is used. All the equations are reorganized with 
integrals. This respects the physical causality (output delayed 
compare to input). 

This paper is limited to the impact of the battery temperature 
on the driving range. Anciliaries systems supplied by the 
battery are known for significantly increasing the battery 
current consumption (heating [16] [17] and air conditioning 
[18][19]). They are not considered in this paper.  

In section II the coupled electro-thermal battery model is 
organized in a causal way to be coupled with the traction 
subsystem model of the studied EV. In section III, a cell used 
in the battery of the studied EV is characterized at several 
temperatures. In section IV, the battery model is validated at the 
system level with measurements on board the EV. In section V, 
the impact of the temperature on the driving range is studied 
with simulation.  

II. CAUSAL ORGANIZATION OF THE EV MODEL 

A. Electro-thermal model for one cell 

The electric model (Fig. 1) is a classical equivalent circuit 
model composed of 3 parts [4]: 

 The Open Circuit Voltage (OCVCell) is linked to the 
energy stored by electrochemical mechanisms 
(OCVCell increases with the state of charge SoC).  

 The series resistance (RSCell) represents the sum of the 
conduction, the ionic transport in electrolyte and the 
charge transfer resistances. The double-layer 
capacitance is neglected given the time constants 
considered (greater than few seconds). 

 The phenomena related to the insertion and the 
diffusion of the ions in the battery nanostructure is 
represented by a RDiffCell//CDiffCell parallel equivalent 
circuit instead of a Warburg impedance as in [20]. This 
model is a compromise between accuracy and 
computation time for embedded systems [10].  

In classical approaches, the dependence on the SoC is 
generally taken into account on the OCV. It is less usual to find 
internal temperature effect on electrical parameters (TInt) [14].  

In this paper, the chosen electrical model (Fig. 1) includes 
full SOC and temperature dependence of all the electrical 
parameters [10]  contrary to [21].   

The Peukert effect (i.e. the dependence of the battery 
recoverable capacity with discharge current rate) can be 
neglected for the LFP battery technology (Peukert constant 
between 0.99 and 1.04)[22]. LFP stability with current rate is 
confirmed by previous works [23].  

The thermal model of the battery (Fig. 2) is a standard 
averaged thermal model built with the following hypothesis 
[24]:  
 The thermal capacitance of the cell core (the inside part of 

the cell) CThCell is taken into account. The thermal 
capacitance of the cell surface is neglected as its package 
is very lightweight compared to the core. 

 The equivalent thermal resistance rThCell represents the 
heat transfers between the core to the surface (conduction) 
and the surface to the air (convection). 

The heat power (PHeat) is supposed to come only from the 
joule effect in RSCell and RDiffCell  (1).  

𝑃ு௘௔௧ ൌ 𝑅ௌ஼௘௟௟. 𝑖஼௘௟௟
ଶ ൅ 𝑅஽௜௙௙஼௘௟௟. 𝑖ோ஽௜௙௙஼௘௟௟

ଶ  (1) 

As in [10] the electrical and thermal part of the model are 
coupled by the internal temperature and the heat power (Fig. 3). 
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Fig. 1 Structure of the electric model for one cell 
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Fig. 2 Structure of the thermal model for one cell [21] 
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Fig. 3 Electro-thermal coupling principle 

B. EMR of the cell electro-thermal model 

In order to highlight the coupling of the electrical and the 
thermal parts of the cell model, the EMR (Energetic 
Macroscopic Representation) formalism is used. It will enable 
later an easy coupling of the battery model with the traction 
subsystem model. 

EMR [25] is a functional and graphical description using 
pictograms (see Annex A). EMR highlights the power exchange 
between different multi-domain elements by the action reaction 
variables. In that way, the product of the action and reaction 
variables leads to the instantaneous power. Moreover, EMR is 
based on the causality principle. With causality, the output can 
only be an integral function of the inputs (see Fig. 4), i.e. the 
output can only be a consequence of the inputs, i.e. the outputs 
is obtained after a delay from the input changes. 
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Fig. 4 From classical representation to EMR 

In [10], the electro-thermal model is not organized 
according to the causality principle. In order to better 
understand the interaction between the thermal and electrical 
parts, this model is reorganized in a causal way using EMR 
(Fig. 5). This new organization will enable an easy coupling 
with the traction subsystem model later. 
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Fig. 5 EMR of the dynamical electro-thermal model[21] 

The SoC is calculated from the integration of the current, 
the initial SoC and the discharge capacity of the cell (2).  

𝑆𝑜𝐶ሺ%ሻ ൌ 𝑆𝑜𝐶ூ௡௜௧

െ
100

3600. 𝐶஺௛஼௘௟௟
. න 𝑖஼௘௟௟ 𝑑𝑡

௧಴೓/ವ೎೓

଴
 

(2) 

OCVCell is represented as a source of voltage in EMR (green 
oval). The resistance RSCell is represented as a conversion 
element as there is no delay (integral) between inputs and 
outputs (3). 

𝑂𝐶𝑉஼௘௟௟ െ 𝑅ௌ஼௘௟௟. 𝑖஼௘௟௟ ൌ 𝑢′ (3) 
The series connection is a coupling element i.e. distribution 

of energy (4). 
𝑢′ െ 𝑢ோ஼ ൌ 𝑢஼௘௟௟ (4) 

The parallel connection (current node) is also a coupling 
element (5). 

𝑖஼௘௟௟ െ 𝑖ோ஽௜௙௙஼௘௟௟ ൌ 𝑖஼஽௜௙௙஼௘௟௟ (5) 

CDiffCell is an accumulation element i.e. storage of energy (6). 

𝑢ோ஼ ൌ
1

𝐶஽௜௙௙஼௘௟௟
න 𝑖஼஽௜௙௙஼௘௟௟ 𝑑𝑡

௧

଴
 (6) 

RDiffCell is a conversion element i.e. energy conversion 
without storage (7). 

𝑖ோ஽௜௙௙஼௘௟௟ ൌ
𝑢ோ஼

𝑅஽௜௙௙஼௘௟௟
 (7) 

The thermal part is reorganized to represent the effort and 
the flow variables (Fig. 6). 

For thermal modelling, the effort variable is the temperature 
(K) and the flow variable is the entropy flow qS (in W/K). The 
power P is achieved by multiplying those two variables (8): 

𝑃 ൌ 𝑞ௌ. 𝑇 (8) 
The entropy flows coming from RSCell (9) and RDiffCell (10) 

are summed with a coupling pictogram (11): 

𝑞ௌோௌ஼௘௟௟ ൌ
𝑅ௌ஼௘௟௟. 𝑖஼௘௟௟

ଶ

𝑇ூ௡௧
 (9) 

𝑞ௌோ஽௜௙௙஼௘௟௟ ൌ
𝑅஽௜௙௙஼௘௟௟. 𝑖ோௗ௜௙௙஼௘௟௟

ଶ

𝑇ூ௡௧
 (10) 

𝑞ௌ்௢௧ ൌ 𝑞ௌோௌ஼௘௟௟ ൅ 𝑞ோ஽௜௙௙஼௘௟௟ (11) 
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Fig. 6 Flow and effort variables for thermal model [21] 

The thermal capacitance is an accumulation element as there 
is a differential equation (12). With the works of ludovic 
Horrein [16], this equation is reorganized for EMR, by making 
appar the flow and the effort variables (13) and with the integral 
causality (14). TIntInit is the initial internal temperature of the 
cell. It is supposed to be equal to the ambient temperature. 

 
𝑑𝑇ூ௡௧

𝑑𝑡
ൌ

𝑃ூ௡௧

𝐶்௛஼௘௟௟
  (12) 

⇔
𝑑𝑇ூ௡௧

𝑑𝑡
ൌ

ሺ𝑞ௌ்௢௧஼௘௟௟ െ 𝑞ௌଷሻ. 𝑇௜௡௧

𝐶்௛஼௘௟௟
 (13) 

⇔ 𝑇ூ௡௧ ൌ 𝑇ூ௡௧ூ௡௜௧. 𝑒
ଵ

஼೅೓಴೐೗೗
׬ ሺ௤ೄ೅೚೟಴೐೗೗ି௤ೄయ

೟
బ ሻௗ௧ (14) 

The ambient air is considered as a source of temperature. 
The thermal resistance is a conversion element (15), (16). 

𝑞ௌଷ ൌ
𝑇ூ௡௧ െ 𝑇஺௠௕

ሺ𝑅்௛஼௘௟௟ሻ. 𝑇ூ௡௧
 (15) 

𝑞ௌସ ൌ
𝑇ூ௡௧ െ 𝑇஺௠௕

ሺ𝑅்௛஼௘௟௟ሻ. 𝑇஺௠௕
 (16) 

As RSCell and RDiffCell are present in the thermal and the 
electrical parts, they are represented as multi-physical (electro-
thermal) converters. 

All the electrical parameters (OCVCell, RsCell, RDiffCell, CDiffCell) 
are depending both on the internal temperature and on the SoC 
of the cell. The thermal parameters are constant (they are related 
to geometry and mass of the cell). 

C. Building the battery model  

The battery of the studied EV is composed of 24 cells in 
series. For mass repartition purpose, the battery is divided into 
3 modules (7/10/7 cells). They are placed at different locations 
(2 under the seats and one under the front hood). In a module, 
the cells are placed in line and separated by cooling holes (Fig. 
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7). The corresponding battery model is built with the two 
following assumptions: 
 There is no parameters dispersion between the cells. 
 The cooling holes make the thermal interactions between 

the cells negligible. As a consequence the thermal part of 
the cell model is considered unchanged in this particular 
EV battery. 

These strong assumptions will be validated by comparisons 
between simulation and experimental measurement on the 
vehicle (see section IV). 
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Fig. 7 Module 1 setup in the studied EV [21] 
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Fig. 8 EMR of the Tazzari Zero with control 

 
The value of the connection resistance between cells has 

been estimated to RCon=505 µΩ onboard the vehicle with a 
current peak and the corresponding voltage drop during driving 
the studied EV. It is considered constant during the test. A 
conversion pictogram (17) is added to the cell EMR (Fig 8). 

𝑢஼௘௟௟ െ 𝑅஼௢௡. 𝑖஼௘௟௟ ൌ 𝑢஼௘௟௟஼௢௡ (17) 

Where uCellCon is the voltage for one cell with connections. The 
electrical model is deduced from the cell model (18). In EMR 
it corresponds to an adaptation element i.e. power 
amplification. 

൜
 𝑢஼௘௟௟஼௢௡. 7 ൌ 𝑢ெ௢ௗଵ

𝑖஼௘௟௟ ൌ 𝑖ெ௢ௗଵ
 (18) 

Where uMod1 and iMod1 are the module voltage and current. Then 
a second adaptation element is added (see Fig. 8) to build the 
battery model (19). 

൝ 𝑢ெ௢ௗଵ.
24
7

ൌ 𝑢஻௔௧

𝑖ெ௢ௗଵ ൌ 𝑖஻௔௧

 (19) 

Where uBat and iBat are the battery voltage and current. 

D. Integration of the battery model in the EV model 

The EV used for the test is a Tazzari Zero [26]. This is a 
two-seats urban electric car. Its parameters can be found in 
Table 1. A global efficiency map has been derived from 
measurements [1], including the electric drive efficiency 
(nDrive). Equations (20)-(23) are organized in a causal way to be 
included in the global EMR (see Fig. 8).  
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Drive 

𝑖஻௔௧ ൌ 𝜂஽௥௜௩௘
௞ 𝛺ௗ௥௜௩௘. 𝑇ௗ௥௜௩௘

𝑢஻௔௧
 

k=1 if traction mode 
k=-1 if regenerative braking 

(20) 

Transmission 

⎩
⎨

⎧𝑇஽௥௜௩௘. 𝑘஽௥௜௩௘.
1

𝑟ௐ௛௘௘௟
. ൌ 𝑓 ௥௔௖௧

𝛺஽௥௜௩௘ ൌ
1

𝑟ௐ௛௘௘௟
. 𝑘஽௥௜௩௘. 𝑣

(21) 

Chassis 𝑣 ൌ
1

𝑀்௢௧
න 𝑓 ௥௔௖௧ െ 𝑓ோ௘௦𝑑𝑡

௧

଴
(22) 

Road 𝑓ோ௘௦ ൌ 𝑓଴ ൅
1
2

𝑐௫𝑆𝜑஺௜௥𝑣ଶ (23) 

 
 
 

Where ΩDrive and TDrive are the electric drive speed, and torque. 
ΩWheel and TWheel are the speed, and torque at the wheel. fTract and 
fRes are the traction and resistive forces. vVeh is the velocity of the 
vehicle. Other parameters are defined in Table 1. 

The electric drive is a multi-physical (electro-mechanical) 
converter (20), the mechanical transmission is a mono-physical 
converter (21) and the chassis is an accumulation element (22). 
The road is a source of resistive forces (23). EMR allows to 
settle the control structure by a mirror effect (24), (25). 

The velocity control is achieved by the inversion of the 
chassis and the transmission in order to provide the right 
reference torque to the electric drive (TDriveRef) in order to follow 
the velocity reference (vRef). The control pictograms are 
represented in blue in Fig. 8.  
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Inv. 
Chassis 𝑓 ௥௔௖௧ோ௘௙ ൌ 𝑓ோ௘௦ெ௘௦൅𝐶ሺ𝑠ሻ. ሺ𝑣ோ௘௙ െ 𝑣ெ௘௦ሻ (24) 

Inv.  
Transmission 𝑇஽௥௜௩௘ோ௘௙ ൌ

𝑟ௐ௛௘௘௟

𝑘஽௥௜௩௘
. 𝑓 ௥௔௖௧ோ௘௙ (25) 

III. CHARACTERIZATION OF ONE CELL 

A. Electrical Characterization 

The electrical parameters of the cell are dependent with 
temperature. Consequently they are characterized every 15 °C. 
The characterization temperature range (-5 °C, 55 °C) is an 
acceptable range of temperature for EV battery in temperate 
countries [27]. The characterization protocol is composed of 4 
steps and repeated for all the characterized temperatures.  

1. Recharge @ 25 °C: in order to begin systematically with 
the same amount of stored energy the initial charge is made 
after a minimal rest (i.e. iCell= 0A) of 8h at 25°C. The recharge 
method is a constant current/ constant voltage with a cutoff 
voltage of 4V. The cutoff current is 8A (C/20). This allows to 
have a reproducible reference  SoC (100 %) at the end of this 
step. 

2. Characterization temperature stabilisation: the cell is put 
at rest and the temperature is settled at the characterization 
temperature at least 8h to equalize the cell internal temperature 
with the characterization one. 

3. Pseudo OCV characterization: the discharge/ charge is 
achieved at low C-rate (C/10 = 16 A).  

4. Pulse characterization: the impedance parameters of the 
electrical model are characterized at different SoC levels with 
current pulses (+/-1C). The SoC selected levels are 90 %, 70 %, 
50 %, 30 % and 10 %.  

With the pseudo-OCV characterization, the charge and 
discharge capacity can be extracted (26): 

𝐶஺௛஼௘௟௟ ൌ
1

3600
න |𝑖஼௘௟௟|𝑑𝑡

௧಴೓/ವ೎೓

଴
 (26) 

CAhCell is the cell capacity (A.h). tCh/Dch is the total charge or 
discharge time to achieve the full charge or discharge (from 
2.8 V to 4.0 V). The capacity CAhCell versus temperature 
evolution is presented in Fig. 9. The capacity increases with the 
temperature as in [5]. Above 25 °C, the maximal measured 
capacity (192 A.h) is reached. This value is 20% higher than the 
rated one (160 A.h). It might correspond to the margin of the 
manufacturer to provide at least 160 A.h capacity during the 
whole lifespan of the cell [28]. 

OCVCell = f (SoC) is also characterized during the pseudo-
OCV characterization . Indeed, at low current the measured cell 
voltage uCell is near from OCVCell. A small difference is 
noticeable for OCVCell during charge and discharge (Fig. 10). 
This phenomenon is due to the battery OCV hysteresis [29].  

During the pulse characterization (Fig. 11), a double 
characterization pulse inspired from the HPPC method [30]. 
Although the chosen characterisation method, is leading to 
uncertainties on parameters it is chosen for its simplicity, its 
reproducibility and because the current rates implied are near 
from the real use of the cells in the EV. (+/- 1C) is applied 
during 10 s (Fig. 11). For the sake of simplification, the 
extracted parameters (27)-(29) are an average between charge 
and discharge characterization pulses. The parameters for 
calculation are defined in Fig. 11. 

 

𝑅ௌ஼௘௟௟ ൌ
∆𝑈஼௘௟௟ଵ௦

∆𝑖஼௘௟௟
 (27) 

𝑅஽௜௙௙஼௘௟௟ ൌ ฬ
∆𝑈஼௘௟௟ଵ௦ െ ∆𝑈஼௘௟௟௥

∆𝑖஼௘௟௟
ฬ (28) 

𝐶஽௜௙௙஼௘௟௟ ൌ
𝜏஽௜௙௙

𝑅஽௜௙௙஼௘௟௟
 (29) 

∆𝑈ோ஼ ൌ |∆𝑈஼௘௟௟௥ െ ∆𝑈஼௘௟௟ଵ௦| (30) 

Fig. 12 shows the evolution of the impedance parameters as 
a function of ambient temperature and SoC. For 0 % and 100 % 
SoC, the parameters are extrapolated. The series resistance 
RSCell represents the equivalent effect of the terminals, the 
transports of the ions in the electrolyte and the charge transfer 
mechanisms. When the temperature increases, the electrolyte 
viscosity decreases and the ions movement is easier [31].  

Thus, RSCell is decreasing with the temperature and it is 
independent of the SoC (see Fig. 12). 

At low SoC the positive electrode is nearly saturated with 
lithium. Thus, the insertion and diffusion of ions is more 
difficult causing more concentration gradient (increase of 
RDiffCell). The diffusion capacitance CDiffCell increases with SoC 
and temperature.  
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Fig. 9 Evolution of capacity with ambient temperature 
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Fig. 10 OCV vs. SoC and temperature 
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Fig. 11 Characterization pulses 
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Fig. 12 Impedance parameters with SoC and temperature 

B. Thermal characterization 

The thermal parameters are characterized at 25 °C. They are 
mainly related to the mass of the cell and the thermal exchange 
surface (independent on the ambient temperature). 

The internal temperature of the tested cell is recorded on the 
terminals with thermocouples (closest accessible points to the 
averaged internal cell temperature [24]). Indeed, terminals are 
linked to the core of the cell by metallic foils with high thermal 
conductivity. The ambient temperature of the air around the cell 
is recorded by a supplementary thermocouple. The cell is 
placed in a thermal chamber. The temperature is settled at 25 °C 
for 8h in order to equalize the cell internal temperature (TInt) 
with the ambient temperature. Then the characterization 
process presented in Fig. 13 is applied. 

At first, a characterization current (+/- 160 A) is applied 
until the temperature TInt is stabilized (self-heating step) [24].  

The stabilised temperature difference (∆TStab) can be 
measured. This step is used to identify the value of the RThCell. 

𝑅்௛஼௘௟௟ ൌ
∆𝑇௦௧௔௕

𝑃ு௘௔௧
ൌ 2.60 𝐾. 𝑊ିଵ (31) 

Then the characterization current is turned off and the 
temperature TInt is decreasing (cooling step). The extraction of 
the thermal time constant τTh is achieved (see Fig. 13). The 
thermal capacitance is extracted with (4): 

𝐶்௛஼௘௟௟ ൌ
𝜏்௛

𝑟 ௛஼௘௟௟
ൌ 2.43 10ଷ 𝐽. 𝐾ିଵ (32) 
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Fig. 13 Thermal characterization protocol 

IV. VALIDATION OF THE MODEL 

A. Validation at the cell level (subsystem level in laboratory) 

The tested EV has been instrumented with voltage sensors, 
current sensors and thermocouples. The cell current is recorded 
during a real driving cycle on a campus [32]. As the velocity is 

limited to 30 km/h on the campus, the current as a function of 
time is moderate (Fig.14.a).  

In a second time, in a laboratory, the real current cycle is 
applied to one cell with a high-power programmable supply (0-
30 V -200/+200A) until the minimal cell voltage (i.e. 2.8 V) is 
reached (Fig.14.b). The experimental cell voltage (uCell) and 
temperature (TInt) are recorded. The test is performed for 4 
ambient temperatures (-5 °C, 10 °C, 25 °C, 40 °C) in a thermal 
chamber. 

The experimental results (uCellExp, TIntExp) are compared to 
the simulation outputs (uCellSim, TIntSim) for the same input, i.e. 
the current of the cycle. Two models are considered: 
 the classical model with the parameters characterized at 

25°C (Param @25°C), 
 The second model with the characterizations at different 

temperatures to update the electrical parameters. 
Contrary to [33], no adaptive observer is used to adapt the 

value of parameters. For illustration purpose, the cell voltage 
evolution is presented as a function of time for an ambient 
temperature of - 5 °C (Fig. 14.b). The red curve corresponds to 
the experimental data, the black one to the classical model and 
the blue one to the temperature-dependent model 
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Fig. 14 Real EV current (a) used for electrical (b) and thermal (c) validations of cell model
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Taking into account the impact of temperature on electrical 
parameters brings more accuracy for cell voltage dynamical and 
static behaviour at low temperature.  

The mean absolute error on voltage is then quantified with 
(33) for different temperatures. 

𝐸𝑟𝑟𝑜𝑟 ൌ
1

𝑁ௌ
෍ห𝑢஼௘௟௟ா௫௣ െ 𝑢஼௘௟௟ௌ௜௠ห

ேೄ

ଵ

 (33) 

where NS is the number of samples during the test. 
The model including temperature dependence leads to a an 

average error on uCell (~1%) compared to uCellNom (3.3V) at any 
temperature (Fig. 14.b). The use of a HPPC type  
characterisation and no correction (by adaptative filter for 
instance) leads to uncertainty on the impedance parameters. As 
a consequence, the most part of the average error  occurs when 
current peaks (thus voltage drops) are high (see the zoomed part 
in Fig. 14.b). When the current is near from 0 (from 2.54 h to 
2.58 h in Fig. 14.b) the experimental voltage of the cell and the 
voltage of the coupled electro thermal model are the same. That 
means that the pseudo OCV is estimated with lower error than 
uCell by the model. On the contrary, using the parameters 
characterized at 25 °C induces a 124 mV (3.8% compared to the 
3.3 V nominal voltage) error at -5 °C. The error is increasing 
when temperature is decreasing because of the decrease of the 
capacity and the increase of the series and diffusion resistances. 

Fig. 14.c presents the evolution of cell temperature for 
different ambient temperatures.  

The mean absolute error (34) is also presented:  
 

𝐸𝑟𝑟𝑜𝑟 ൌ
1

𝑁ௌ
෍ห𝑇ூ௡௧ா௫௣ െ 𝑇ூ௡௧ௌ௜௠ห

ேೄ

ଵ

 (34) 

 
For low temperatures (up to 10 °C) the temperature on 

electrical parameters affects the accuracy of the temperature 
estimation (Fig. 14.c). The maximal error is 1.7 °C at – 5°C. For 
temperatures higher than 25 °C the effect of the temperature on 
the electrical parameters has lower impact.  

B. Validation at the system level  

This section aims to validate the battery electro-thermal 
model at the system level (on-board tests on the real EV). That 
means that the full vehicle model (coupling the battery with the 
traction system) is tested here.  

The tested EV is instrumented. The sensors are recorded 
while driving: 
 the battery current (iBatExp), 
 the ambient temperature around the battery (TAmbExp) and 

the battery voltage (uBatExp), 
 the temperature on one terminal of one cell in the battery 

(TTermExp). 
 The vehicle velocity. 

The EV is driven for 6000s. A new velocity cycle is 
recorded (Fig. 15) outside the campus. This cycle is applied as 
a reference for the simulation (Fig. 8). 

The experimental results and the proposed dynamical 
coupled EV model simulation results are compared for thermal 
(Fig. 16) and electrical (Fig. 17) behaviors. The measured 

temperature (TTermExp) is influenced by the internal temperature 
of the cell. Indeed, the terminals are linked to the core of the 
cell by aluminium foils (high thermal conductivity). The 
connection temperature also influences TTermExp.  

As the cell mass is much higher than the connection the cell 
thermal behaviour is slower compared to the connection one. 
As a consequence the internal temperature (TIntEst) is estimated 
by a low pass filter on on the measured terminal temperature. 
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Fig. 15 Recorded velocity of the tested EV 
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Fig. 16 Experimental and simulated battery temperature  
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Fig. 17 Experimental and simulated battery voltage  

The comparison shows negligible errors on the battery 
thermal and electrical behaviors. Of course, the chosen 
assumptions of the battery electro-thermal model depend on the 
pack architectures, the cells and the studied EV. For the chosen 
vehicle, all cells are assumed identical and not thermally 
influenced by the surrounding cells. However, acceptable 
simulation results are obtained with averaged errors of 0.92 °C 
for internal temperature and 1.8 % on battery voltage.  
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V. INTEREST OF THE ELECTRO-THERMAL-TRACTION 

DYNAMICAL COUPLED MODEL 

The right approach to obtain the driving range of a vehicle 
is to couple a battery model with the studied EV traction model 
(simulation at the system level). As a consequence the validated 
EV model as presented in section IV.B is used. The reference 
cycle is a velocity cycle (see Fig 8).  

Thus, two battery models are studied: 
 For the battery classical electrical model the electrical 

parameters are fixed to their values at 25°C (Fig. 1)  
 For the electro-thermal coupled model the electrical 

parameters are dependent on the battery internal 
temperature (TInt).  

The WLTC driving cycle (Fig. 18) is applied to the full EV 
model including its velocity control (Fig. 8). Although 
simulation results are dependent on the model precision, all the 
input parameters can be settled and reproduced. This is not 
possible by driving in real life.Thus, the simulation on a 
validated model is a good way to compare the influence on one 
factor  (the battery model used in the EV model (Fig. 19) , or 
the ambient temperature (Fig. 20)) on the system.   

When the EV traction is coupled, the current is adapted from 
the battery voltage in order to achieve the same velocity cycle. 
The resistive part of the model are influenced by cold 
temperatures(Fig. 12).  

As a consequence, the current consumption is higher at low 
temperature for the proposed model (Fig. 19). The driving range 
is influenced by 5.9 % between -5 °C and 45°C ambient 
temperature (Fig. 20). The classical electrical battery model 
overestimates by 3.3% the driving range at -5 °C and 
underestimates it by 2.5% at 40°C.  
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Fig. 18 WLTC driving cycle 
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Fig. 19 Battery current at -5°C 
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Fig. 20 Driving range as a function of ambient temperature  

VI. CONCLUSION 

A recent electro-thermal battery model is reorganized in a 
causal way to be coupled with the traction model of a 
commercial EV. The electrical part of the battery model is fully 
dependent on the battery internal temperature and the SOC [10].  

Characterization tests are performed on one cell used in the 
studied EV. The battery parameters are thus obtained over a 
large temperature range (-5°C to 55 °C). This range corresponds 
to the EV use in temperate countries.  

The electro-thermal model for one cell is validated at the 
component level in a thermal chamber with a programmable 
current supply. Then, the battery electro-thermal model is 
validated at the system level by comparison of the full EV 
simulation and on-board measurements during driving.  

Finally, a driving range study highlights the interest of the 
electro-thermal model integration for EV simulation. 

Not considering the electro-thermal coupling of the battery 
model (using a pure electrical battery model) overestimates the 
driving range by 2.5% at -5 °C ambient temperature and 
underestimates it by 2.5% at 40 °C. These values depend on the 
electric vehicle and the chosen driving cycle but the trend on 
driving range estimation remains. 

The effect of battery thermal dependence can be coupled to 
the effect of the heating system in winter or air conditioning in 
summer. This model can be also used for studies on the impact 
of the battery preheating or any other thermal management [13] 
before driving. 

The objective of this paper is not to obtain the best battery 
model but it is to enlight the impact of coupling a coupled 
battery electro-thermal model with an EV traction system. A 
driving range study is used to enlight the impact of the external 
temperature on the driving range but also on the traction 
current. The characterization tests have been made in a simple 
way and every parameters can be  linked to physical phenomena 
and are stored in dynamic tables. 

Nevertheless, more complex models for the battery and 
traction system can be investigated ( more complex Thevenin 
models, thermal interractions between cells, cell parameters 
dispersion, variable contact resistance, efficiency map for 
machines..) at the cost of the computation time. 
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