
HAL Id: hal-03811271
https://hal.science/hal-03811271

Submitted on 11 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Estimation of missing building height in OpenStreetMap
data: a French case study using GeoClimate 0.0.1

Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François
Leconte, Valéry Masson

To cite this version:
Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, Valéry Masson.
Estimation of missing building height in OpenStreetMap data: a French case study using GeoClimate
0.0.1. Geoscientific Model Development, 2022, 15 (19), pp.7505-7532. �10.5194/gmd-15-7505-2022�.
�hal-03811271�

https://hal.science/hal-03811271
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Geosci. Model Dev., 15, 7505–7532, 2022
https://doi.org/10.5194/gmd-15-7505-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odelevaluation

paperEstimation of missing building height in OpenStreetMap data:
a French case study using GeoClimate 0.0.1
Jérémy Bernard1,3, Erwan Bocher2, Elisabeth Le Saux Wiederhold3, François Leconte4, and Valéry Masson5

1University of Gothenburg, Department of Earth Sciences, Sweden
2CNRS, Lab-STICC, UMR 6285, Vannes, France
3Université Bretagne Sud, Lab-STICC, UMR 6285, Vannes, France
4Université de Lorraine, INRAE, LERMaB, 88000, Épinal, France
5Météo-France and CNRS, CNRM, UMR3589, Toulouse 31057, France

Correspondence: Jérémy Bernard (jeremy.bernard@zaclys.net)

Received: 21 December 2021 – Discussion started: 20 April 2022
Revised: 18 July 2022 – Accepted: 3 September 2022 – Published: 11 October 2022

Abstract. Information describing the elements of urban
landscapes is required as input data to study numerous phys-
ical processes (e.g., climate, noise, air pollution). However,
the accessibility and quality of urban data is heterogeneous
across the world. As an example, a major open-source ge-
ographical data project (OpenStreetMap) demonstrates in-
complete data regarding key urban properties such as build-
ing height. The present study implements and evaluates a
statistical approach that models the missing values of build-
ing height in OpenStreetMap. A random forest method is ap-
plied to estimate building height based on a building’s clos-
est environment. A total of 62 geographical indicators are
calculated with the GeoClimate tool and used as indepen-
dent variables. A training dataset of 14 French communes
is selected, and the reference building height is provided by
the BDTopo IGN. An optimized random forest algorithm
is proposed, and outputs are compared with an evaluation
dataset. At building scale for all cities, at least 50 % of the
buildings have their height estimated with an error of less
than 4 m (the cities’ median building heights range from 4.5
to 18 m). Two communes (Paris and Meudon) demonstrate
building height results that deviate from the main trend due
to their specific urban fabrics. Putting aside these two com-
munes, when building height is averaged at a regular grid
scale (100m× 100 m), the median absolute error is 1.6 m,
and at least 75 % of the cells of any city have an error
lower than 3.2 m. This level of magnitude is quite reason-
able when compared to the accuracy of the reference data
(at least 50 % of the buildings have a height uncertainty

equal to 5 m). This work offers insights about the estima-
tion of missing urban data using statistical methods and con-
tributes to the use of open-source datasets based on open-
source software. The software used to produce the data is
freely available at https://doi.org/10.5281/zenodo.6372337
(Bocher et al., 2021b), and the dataset can be freely ac-
cessed at https://doi.org/10.5281/zenodo.6855063 (Bernard
et al., 2021).

1 Introduction

The topography – defined as the spatial distribution of natu-
ral and artificial land use features – has a significant influence
on the microclimate. This is clearly visible in urban areas,
where the great heterogeneity of forms, materials and land
uses induces high variability in temperature, wind speed and
humidity (Oke, 2002). Thus an in-depth knowledge about the
topography of a location would lead to a better understand-
ing and more accurate modeling of its climate as well as of
other physical processes, such as noise propagation and air
pollution (Tang and Wang, 2007; Bocher et al., 2019).

There are currently no standard geographical data to study
the urban climate worldwide. However, urban data tend to
increase under both closed license and open-source. A key
open-source data approach is the OpenStreetMap (OSM)1

project. Data from the latter have several features: they are

1https://www.openstreetmap.org (last access: 19 Septem-
ber 2022)
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expected to be available worldwide, and the most impor-
tant objects needed for urban climate studies (building foot-
prints, isolated tree locations, water, vegetation and imper-
vious patches) are available, well located and described us-
ing a great diversity of tags (Mocnik et al., 2017). Moreover,
OSM has a free tagging system that allows users to improve
the current tags (key, value) with their own information (an
OSM user can describe a building object with the tags such as
the following: “building”=“house”, “height”=“10”, “build-
ing:levels”:“2”).

However, information concerning building height is not
available worldwide, neither in OSM nor in any other
database (Masson et al., 2020). Lao et al. (2018) reported
that less than 3 % of buildings globally have a height value,
and less than 4 % have a number-of-levels value. For the city
of Paris (where this information is known to be quite well in-
formed), the values are only 0.1 % and 51.2 %, respectively.
This is a major shortcoming, since the urban climate is often
characterized by spatial indicators based on the third dimen-
sion:

– The sky view factor (SVF), which is calculated accord-
ing to terrain level variations, building and tree locations
and heights, is related to effective albedo (Bernabé et al.,
2015) and is strongly correlated to temperature (Lind-
berg, 2007) and wind speed (Johansson et al., 2016).

– The building height variability within an area affects the
vertical and horizontal wind speed (Hanna and Britter,
2010).

– The roughness length of an area, often calculated us-
ing facade density, is used to estimate the wind speed
vertical profile of the urban canopy (Hanna and Britter,
2010).

The objective of this study is to develop a method to es-
timate the height of a building from its topographical con-
text using only data available in OSM. Modeling building
footprints and their height value has been largely covered by
remote sensing. It can cover large areas at once quite effi-
ciently, and the resulting datasets can be updated quite easily
with a repetitive coverage. Different techniques for building
height extraction have been developed based on photogram-
metric processing (Fradkin et al., 1999; Zeng et al., 2014),
analysis of point clouds from airborne light detection and
ranging (Sohn et al., 2008; Shan and Toth, 2018), shadow
detection (Song et al., 2013; Shao et al., 2011) and, more re-
cently, a deep learning approach (Cao and Huang, 2021).

In the meantime, the recent and global movement regard-
ing open data – specifically for vector topographic databases
such as OSM – offers new opportunities to estimate build-
ing height. The geography of a territory and the pattern of
the topographic elements are criteria that can be used as a
proxy to identify the urban forms and therefore the distri-
bution of building heights. Biljecki et al. (2017) have used

building footprints and their corresponding attributes to de-
rive building heights for the city of Rotterdam, the Nether-
lands. They have tested several random forest models us-
ing building properties characterizing its geometry footprint
(size, shape and number of neighbors), other attributes (use,
age and number of levels), and information concerning the
inhabitants (the number and their levels of income) as inde-
pendent variables. Milojevic-Dupont et al. (2020) have pro-
posed a random forest approach to estimate building height
using 152 features. These independent variables are related
to buildings (e.g., footprint geometry), streets (e.g., closest
street, closest intersection), street-based blocks (e.g., number
of blocks in a given radius) and cities (e.g., total city area).
For the base case, the training dataset includes the building
heights of the Netherlands, the region of Friuli Venezia Giu-
lia in Italy and five French urban areas, and the validation
dataset includes the building heights of the state of Branden-
burg in Germany.

A major limitation of these studies is the obstacle of re-
producibility for experts and practitioners. Indeed, the algo-
rithms are not fully available. Moreover, input datasets re-
quire many preprocessing steps, since the format and the ac-
cess differ between city models (e.g., French 3D city mod-
els in Milojevic-Dupont et al., 2020). The method presented
in the next sections uses a random forest approach and can
be easily reproduced using the GeoClimate software with-
out any preprocessing steps, since it is based exclusively on
OSM data. The main spatial indicators used by the urban cli-
mate communities are also calculated using reference and es-
timated building heights. Compared to each other, they pro-
vide urban climate researchers with a good level of magni-
tude in terms of the impact of the estimated height on these
indicators. OSM data do not contain as much detailed infor-
mation about buildings as that seen in Biljecki et al. (2017)
(number of levels, age, number of inhabitants), but other in-
formation describing the environment of the buildings will
be used (roads, vegetation, rail, etc.).

In order to make OSM data available to urban cli-
mate researchers, the GeoClimate tool has been developed
(E. Bocher et al., 2021; Bocher et al., 2021a). It is an easy
way (i) to download most of the information needed for ur-
ban climate studies, (ii) to estimate building height from the
topographical context, and (iii) to calculate spatial indica-
tors (such as SVF, building height variability or roughness
length) that are useful as input for parametric climate mod-
els. This paper focuses on the second item, namely how to
estimate building height in OSM when the information is
missing. First, the data and the methodology used to esti-
mate the building height are presented (Sect. 2), and second,
the accuracy of these estimations is analyzed (Sect. 3).

Geosci. Model Dev., 15, 7505–7532, 2022 https://doi.org/10.5194/gmd-15-7505-2022
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2 Data and method

This study presents a method to estimate values of building
height when the information is missing in OSM. The height
of a building is determined according to a regression-based
statistical model (e.g., random forest model) using a set of
spatial indicators – including the building’s shape, the build-
ing’s relation to its neighbors, and the organization and mor-
phology of the building’s environment – as independent vari-
ables. The true building height values come from the BD-
Topo V2.2 (BDT) provided by the French National Geo-
graphic Institute (IGN). These values are defined as reference
height. Two datasets have been considered for this study,
namely a training dataset to build the random forest algo-
rithm and a validation dataset to compare the outputs of the
optimized random forest algorithm with reference heights.
The overall methodology is illustrated in Fig. 1 and consists
of the following steps:

1. Building characterization. Each building and its en-
vironment (limited to the topographical spatial units
(TSU) it belongs to – defined in Sect. 2.2.1) are char-
acterized by spatial indicators (building area, number of
buildings neighbors, vegetation fraction, etc.). These in-
dicators are the independent variables of the statistical
model.

2. Building height attribution. The reference building
heights (BDT building heights) are attributed to each
OSM building according to their footprints. The result-
ing height in the OSM dataset is the dependent variable
of the statistical model.

3. Statistical analysis. The random forest model is built
based on the training dataset. In this step, parameters
that maximize the performance of the random forest
model are identified.

4. Performance evaluation. Outputs of the optimized ran-
dom forest model are evaluated against the reference
heights of the validation dataset.

Each step is described further in Sect. 2.2.

2.1 Study area

Building organization and height may differ a lot throughout
the world, limiting the ability to model the height of a build-
ing based on the characteristics of its environment. Thus, al-
though the method can be used to estimate the height of any
building in the world, the application area of this preliminary
work is limited to the French territory. The training and eval-
uation areas are selected to cover

– all types of communes (from small villages to large
conurbations)

Table 1. The four commune types defined by INSEE (2020).

Commune type Definition

Main urban area Commune centre of the urban attraction cluster
Secondary urban area Other commune of the urban attraction cluster
Peripheral urban area Commune in the attraction area of the urban cluster
Rural area Commune outside of any urban attraction area

– a large part of France (Fig. 2), increasing the probability
of having cultural and/or historical differences inducing
urbanistic heterogeneities

– the main geographical constraints for construction
(nearby mountains – Annecy, La Thuile, Corbonod –
and nearby sea – La Rochelle).

To fulfill the first need, the communes have been chosen to
cover each of the four French commune types defined by the
French National Institute of Statistics and Economic Stud-
ies (INSEE, 2020): main urban area, secondary urban area,
peripheral urban area, rural area. According to the French
2020 census data, the types are defined based on the follow-
ing commune characteristics: number of inhabitants, density
of population, number of employees, and population flow be-
tween households and workplaces. They are used to define
the urban attraction cluster. The definitions of each type are
given in Table 1.

The training and the evaluation datasets contain 14 and 8
communes, respectively. The location of each commune is
shown Fig. 2, while further information concerning each ter-
ritory is in given Tables 2 and 3 (for training and evaluation
datasets, respectively).

2.2 Methodology

2.2.1 Building characterization

Data from OSM are used to characterize the building and
its environment: building footprint, vegetation footprint and
type, water footprint, impervious footprint, rail and road
footprint. The free and open-source GeoClimate software
(E. Bocher et al., 2021; Bocher et al., 2021a) is used to com-
pute the spatial indicators at three different scales:

– building scale

– block scale, defined as the aggregation of all buildings
touching each other

– topographical spatial unit (TSU) scale, defined accord-
ing to the central lines of roads and rails, commune
boundaries, and water and vegetation boundaries when
their area is higher than 2500 and 10 000 m2, respec-
tively (Fig. 3).

Each building is described by a total of 62 spatial indica-
tors (note that all characteristics are calculated in two dimen-

https://doi.org/10.5194/gmd-15-7505-2022 Geosci. Model Dev., 15, 7505–7532, 2022
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Figure 1. Overall methodology – the use of dashed arrows means that only the training dataset is used.

Table 2. Information and statistics about the training dataset.

Commune type Commune name Inhabitants (2017) Number of buildings∗ INSEE code

Main urban area Paris (6th, 11th and 2 187 526 (40 525, 145 903, 15 964 75 056 (75 106, 75 111,
18th districts) 193 665) 75 118)
Toulouse 479 553 103 368 31 555
Nantes 309 346 57 550 44 109
Annecy 126 924 21 153 74 010
Avignon 91 921 29 113 84 007
La Rochelle 75 735 31 194 17 300

Main peripheral Nanterre 95 105 10 851 92 050
urban area Meudon 45 352 5430 92 048

Blagnac 24 517 9286 31 069

Secondary La Haie-Fouassière 4659 2323 44 070
peripheral Gratentour 4158 2938 31 230
urban area Staffelfelden 3959 2254 68 321

Bourgneuf 1275 782 17 059
Lathuile 1016 732 74 147

∗ Only buildings that have a height value higher than 3 m in the BDT (cf. Sect. 2.2.2) have been conserved for this evaluation.

sions only, since most OSM data do not have height informa-
tion). Four types of indicators are used (see Table 4) and the
list of all indicators is given in Appendix A. Indicator values
calculated at block and TSU scales are then attributed to each
building (a building within a given block or TSU embeds the
indicator values of the block and the TSU it belongs to).

2.2.2 Reference building heights attribution

In order to train and evaluate the statistical model, a refer-
ence height used as a true value should be assigned to each
OSM building. Most of the OSM buildings do not have any
information concerning their height. The few buildings with
height information could have been considered as training
and evaluation datasets; however, these buildings are sparse
and not representative of common buildings (since most of
them are filled out by OSM users because they are well-
known buildings with specificities). Therefore, the training
and evaluation datasets are created only with OSM buildings

that have no height. The reference height is set using the BDT
data. However, a single building in OSM may match with
several buildings in the BDT (Fig. 4).

Thus, the height of an OSM building used as a reference
(Hosm,true) is calculated from the height of all intersecting
BDT buildings according to Eq. (1). This equation is applied
for both the training and the validation datasets.

Hosm,true =

∑n
i=1Ai ·HBDTi∑n

i=1Ai

, (1)

with Ai being the area of the intersection between an OSM
building and a BDT building i, and HBDTi

being the height
of the BDT building i intersecting the OSM building.

In the example presented in Fig. 4, if BDT building 1 is
much taller than the others (BDT buildings 2 and 3), this in-
formation is lost (smoothed by the averaging) and could then
lead to a bias in the learning process. To keep track of this
potential bias, a simple index is proposed to characterize the
proportion of the intersection between a BDT building and

Geosci. Model Dev., 15, 7505–7532, 2022 https://doi.org/10.5194/gmd-15-7505-2022
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Table 3. Information and statistics about the validation dataset.

Commune type Commune name Inhabitant (2017) Number of buildings∗ INSEE code

Main urban area
Rennes 216 815 30 527 35 238
Dijon 156 920 23 044 21 231

Main peripheral urban area
Charnay-lès-Macon 7376 3574 71 105
Saint-Nicolas de Redon 3179 2515 44 185

Secondary peripheral urban area
Allaire 3854 2744 56 001
Pont-de-Veyle 1625 729 1306

Rural area
Corbonod 1264 1115 1118
Saint-Ganton 424 469 35 268

∗ Only buildings that have a height value higher than 3 m in the BDT (cf Sect. 2.2.2) have been conserved for this evaluation.

Table 4. Types of spatial indicators used to define the main characteristics of each unit scale.

Indicators type Scale of application Examples of indicators

Building Block TSU

Type and use x Building type, building use
Form and size x x x Area, form factor, fraction of courtyard, etc.
Spatial relations x Minimum distance to another building, fraction of wall shared

with other buildings, minimum distance to road, etc.
Planar density x Building fraction, vegetation fraction, etc.
Aggregated statistics from lower scale x x Mean building area, standard deviation building form factor, etc.

an OSM building. This index, called uniqueness value (UV),
is defined in Eq. (2):

UV=
maxi∈1..nAi∑n

i=1Ai

. (2)

The uniqueness value considers only the BDT building
that demonstrates the largest intersection area with a given
OSM building. The higher the UV, the more unique the BDT
building intersecting the OSM building. UV is not impacted
by the fraction of the OSM building shared with other BDT
buildings. If only one BDT building overlaps only a small
fraction of an OSM building, the uniqueness value will be 1.

2.2.3 Design and optimization of the random forest
statistical model

For the statistical analysis, the OSM building height (refer-
ence height Hosm,true) is defined as the dependent variable,
while spatial indicators are defined as independent variables.
Only the training dataset (see Table 2) is used for this step.
To obtain an optimal model, the methodology illustrated in
Fig. 5 is applied.

The random forest (RF) approach is chosen for several rea-
sons: (i) it is simple to implement, (ii) it deals with quantita-
tive and qualitative variables, and (iii) it is appropriate when
using a large number of variables (Hastie et al., 2001). In or-
der to limit overfitting and a high correlation between trees,

Figure 2. Location of the 22 communes used as training or evalu-
ation data. ©OpenStreetMap contributors 2021. Distributed under
the Open Data Commons Open Database License (ODbL) v1.0.

all combinations of the following RF regressor parameters
are investigated:

– number of trees: 100, 350, 500, 650 (note that prelimi-
nary analysis showed lower accuracy when the number

https://doi.org/10.5194/gmd-15-7505-2022 Geosci. Model Dev., 15, 7505–7532, 2022
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Figure 3. Example of topographical spatial unit calculation.

Figure 4. Example of the overlap between OSM and BDT build-
ings.

of trees was lower than 100 and no significant improve-
ment when greater than 650);

– minimum node size (minimum fraction of the sample
used to create a new node): 0.0001 %, 0.001 %, 0.005 %,
0.01 % (the whole sample size includes 345 418 individ-
uals – note that preliminary analysis showed decreasing
performance over 0.01 %);

– maximum variables per tree (maximum fraction of vari-
ables used in a tree): 20 %, 35 %, 50 % (of a total of 62
variables – note that preliminary analysis showed de-
creasing performance when the fraction was lower than
20 % and no significant improvement over 40 %);

– maximum leaf nodes (maximum number of leaves in a
tree): 300, 500, 800, 1100 (note that preliminary analy-
sis showed no significant improvement over 1100 while
increasing the complexity and thus potentially the over-
fitting).

For a default combination of 500 trees, 0.001 % minimum
node size and 30 % maximum variables per tree, the effect of
UV on the accuracy is studied, keeping only buildings having
a UV above 30 %, 70 %, 90 % and 95 %.

A total of 70 % of the training data are randomly drawn
to construct the RF. The accuracy is calculated using the
remaining 30 % of the data. This process is performed 10

times for each combination Ci and uniqueness value UVi.
The scikit-learn Python algorithm is used for this investiga-
tion.

The optimized combination Copt and uniqueness value
UVopt leading to the lowest mean absolute error (MAE) are
used to construct the final RF model used in GeoClimate. For
this purpose, the entire training dataset is used as input for the
Smile library algorithm (since GeoClimate is Java-based).

2.2.4 Performance evaluation

The optimized RF model obtained in the previous step is
run over the eight communes of the validation dataset to
calculate the missing height values of the OSM buildings.
For each building, the heights estimated with the optimized
RF model (ĤOSM,model) are then compared to the reference
height (HOSM,true). The model error Errmodel is defined for
heights estimated by the random forest model:

Errmodel = ĤOSM,model−HOSM,true. (3)

The building height values filled out by the OSM users
(ĤOSM,user) are also compared to the reference height. If the
user filled only the number of storeys, the building height is
simply calculated by multiplying the storey number by 3 m.
Even though the storey height may vary quite a lot between
construction age and building type (see Biljecki et al., 2017
– Fig. 5), 3 m seems to be a reasonable value according to
the one observed in the literature (ranging from 2.8 to 3.5 m
– see Biljecki et al., 2017; Sect. 2.2.1). The user error Erruser
is defined for heights filled by the users (Eq. 4).

Erruser = ĤOSM,user−HOSM,true (4)

In parametric urban climate models, parameters such as
building height are aggregated within each square cell of
a regular grid. Therefore, four indicators are calculated for
a grid of 100 m width square: the mean building height
and standard deviation, the roughness length (as defined by
Hanna and Britter, 2010), and the SVF (as defined in Bernard
et al., 2018).

3 Results and discussions

The dataset produced by the methodology de-
scribed in Sect. 2.2 can be freely downloaded at
https://doi.org/10.5281/zenodo.6855063 (Bernard et al.,
2021). In this section, cells that have no building with
an estimated height are not considered for the statistical
calculations.

3.1 Optimized configuration of random forest
characteristics

Very little accuracy difference is observed between all com-
binations described in Sect. 2.2.3. For all studied configura-
tions, the median RMSE ranges between 2.05 and 2.2 m. The

Geosci. Model Dev., 15, 7505–7532, 2022 https://doi.org/10.5194/gmd-15-7505-2022
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Figure 5. Method to train and optimize the random forest model. Only the training dataset is used at this step.

minimum node size and the number of trees (when greater
than 100) have the least significant impact on the accuracy.
The highest accuracy is reached when the maximum vari-
ables per tree is 50 % and the maximum leaf nodes is 1100.
Thus, the RF scenario chosen for GeoClimate has 350 trees,
40 % maximum variables per tree (based on previous results
showing little difference between 40 % and 50 %) to mini-
mize the correlation between trees, 0.01 % minimum node
size, and 1100 maximum leaf node to minimize the poten-
tial of overfitting (Hastie et al., 2001). Since the maximum
tree depth obtained in Python for this configuration is 33,
this value is also applied to the GeoClimate RF algorithm.
The uniqueness value has an unexpected effect on the ac-
curacy: the MAE decreases when UV value increases up to
70 % and increases for UV values above 90 %, while it could
be expected to continue decreasing. However, the difference
is slight (0.05 m, 2.5 %) and may be explained by the size of
the sample, which is larger (+23 %) for the 70 % scenario
than for the 95 % (having 345 418 and 281 081 individuals,
respectively). Therefore, the data used to train the GeoCli-
mate model are created with UV = 70%.

3.2 General building height accuracy

For all cities, more than 50 % of the buildings have an es-
timated height within a ±3.97 m (3.22 m if the 18th district
of Paris is excluded) interval around the true building height
(Fig. 6a). At cell scale (Fig. 6b), the same statistic is±4.61 m
(2.74 m if the 18th district of Paris is excluded). If cities

demonstrating a specific behavior are not considered (Paris
and Meudon), the median absolute error at cell scale is al-
ways lower than 1.6 m, and 75 % of the buildings or cells of
any city have an error lower than 3.2 m. This error is equiv-
alent to the floor height of one building and could appear
quite high. However, it seems quite reasonable when com-
pared with the accuracy of the reference data (i.e., the height
uncertainty of more than half of the BDT dataset is ±5 m).
Note that we have tested a previous version of the model (in-
dependent variables have been updated since then) on several
cities far from the ones presented in this manuscript, and the
error was almost similar.

Surprisingly, the worst results are obtained with com-
munes belonging to the training dataset (the median relative
absolute error – MRAE – is 24 % for main peripheral com-
munes – Table 5). Overall, there is almost no accuracy de-
crease when the model is applied to the validation dataset
(Fig. 6). No city type shows a specific pattern; even the rural
areas, which are not included in the training dataset, do not
show a clearly higher error (MRAE = 23%) than the over-
all trend (MRAE = 22% on average). However, a specific
behavior is observed for the city of Meudon and for the 18th
district of Paris, which have a higher error than the main trend
(Fig. 6b). A part of the explanation can be found in their un-
common urban fabrics, which makes them more difficult to
estimate by the RF model:

– Meudon has quite a low median height (Fig. 6b) while
also having a high building height variability within a
100 m square (Fig. 6c);

https://doi.org/10.5194/gmd-15-7505-2022 Geosci. Model Dev., 15, 7505–7532, 2022
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Figure 6. Median absolute error versus median true value for (a) building height, (b) RSU average building height, (c) RSU standard
deviation building height, (d) RSU mean ground sky view factor, and (e) RSU effective terrain roughness length. The cross and the dot are
the medians, while the whiskers are the first and third quartiles.
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Table 5. Summary of the main statistics for each combination of {indicator, commune type, dataset type}. Bold values are the ones described
in the text.

Indicator Urban class Training Validation

Median Median Median Median Median Median
absolute relative absolute median relative

error absolute error absolute
error∗ error∗

Building height (m)

Main urban 2.13 10.65 0.21 1.45 6.50 0.23
Main peripheral 1.61 6.91 0.24 0.93 5.00 0.17
Secondary peripheral 1.14 5.41 0.23 1.19 5.50 0.23
Rural – – – 1.24 5.50 0.23

RSU average building height (m)

Main urban 1.93 10.58 0.19 1.41 7.00 0.20
Main peripheral 1.61 7.20 0.22 0.75 5.31 0.13
Secondary peripheral 1.04 5.43 0.20 1.12 5.47 0.21
Rural – – – 1.32 5.42 0.26

RSU standard deviation building height (m)

Main urban 0.38 0.75 0.70 0.35 0.62 0.67
Main peripheral 0.54 1.10 0.62 0.23 0.45 0.73
Secondary peripheral 0.26 0.37 0.71 0.23 0.36 0.76
Rural – – – 0.08 0.00 0.76

RSU mean ground SVF

Main urban 0.03 0.78 0.17 0.02 0.86 0.20
Main peripheral 0.03 0.86 0.21 0.01 0.95 0.26
Secondary peripheral 0.01 0.95 0.26 0.01 0.94 0.28
Rural – – – 0.01 0.97 0.37

RSU effective terrain roughness length

Main urban 0.23 1.40 0.20 0.17 0.90 0.23
Main peripheral 0.19 0.94 0.24 0.07 0.52 0.20
Secondary peripheral 0.11 0.55 0.27 0.11 0.47 0.32
Rural – – – 0.07 0.17 0.48

∗ Contrarily to the other indicators, the reference value used for MRAE is not the SVF of the grid cell but 1-SVF of the grid cell.

– the 18th district of Paris has the highest average building
roof height at grid scale (Fig. 6b) but also the highest
sky view factor of the three Parisian districts (Fig. 6d)
even though it would be expected to have the lowest.

3.3 Accuracy of standard spatial indicators

The building height estimation is slightly improved when av-
eraged at RSU scale (MRAE decreases from about 3 % for
all communes types except for rural areas). The variabil-
ity of height within a cell is very roughly calculated using
the estimated height: for more than 50 % of the cells, the
MRAE on the standard deviation of the building height is
higher than 62 % (Table 5). This behavior is quite under-
standable, since the RF model smooths the values of the es-
timated height; it cannot reproduce entirely the complexity
of the initial dataset. The roughness length MRAE is about
25 %. This error is slightly higher for secondary peripheral
and rural communes (29.5 % and 48 %, respectively – Ta-
ble 5), while Meudon and the 18th district of Paris show
higher values than the MAE trend (Fig. 6e). The sky view
factor is quite accurately calculated: more than 50 % of the
cells have an absolute error lower or equal to 0.02 (Table 5).
The effect of the building height error is probably limited, be-

cause the sky view factor is a 3-dimensional indicator: it also
accounts for the horizontal footprint of the building, which is
the same between the estimated and observed data.

3.4 Limitations of the model for high-rise buildings

The accuracy differs a lot between low-rise and high-rise
buildings. For all types of cities, the building height is often
overestimated for buildings smaller than 5 m and often under-
estimated for the taller ones (Fig. 7). The bias for high-rise
buildings can be quite high, but it does not affect the general
accuracy of the model, since most of the buildings are low-
rise (see Fig. 7: 80 % of the buildings are lower than 10 m
– even in main cities). A better estimation of the high-rise
buildings may be achieved using a training dataset contain-
ing an equal number of buildings for all levels. This would
allow a better representation of the spatial heterogeneity of
the third dimension. However, this would most probably af-
fect the accuracy of the estimation for low-rise buildings. In-
deed, in France, low-rise building are much more numerous
than the high-rise ones.

As previously observed, there is almost no accuracy de-
crease between the training and the validation estimations,
even for high buildings. Only a slight difference can be ob-
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served for main urban cities: above 15 m, the training dataset
performs better than the validation one (almost 3 m differ-
ence – Table 6).

This difference is attributed to the Paris buildings dataset:
the two curves almost coincide if the latter is excluded. The
reason is that Paris buildings are quite accurately calculated
and represent a large part of the training dataset (43.2 % of
the buildings higher than 15 m). The urban fabric (very dense
block of buildings with courtyards) and the building heights
are quite homogeneous in Paris, thus being well taken into
account by the model. In most other cities, a large amount of
the high-rise buildings are isolated buildings (see Fig. 8 for
an example with the city of Nantes). These buildings proba-
bly have very little shape or environmental differences with
smaller, isolated buildings and are probably less numerous.
Therefore, most of these buildings are seen as low-rise by
the model.

It is interesting to notice that the buildings that already
have a building height value in OSM (or at least a number-
of-floors value) are, most of the time, slightly higher than
the BDT ones (Fig. 7). This is the case for low-rise build-
ings (lower than 5 m – Table 6) in particular, and it may be
explained by the fact that the BDT heights are taken at the
lowest part of the roof. The OSM data can take into account
the roof height, which is, most of the time, equal to zero for
tall buildings but non-negligible for small buildings. The dif-
ference between height derived from OSM user filling and
the reference data (BDT) is quite low for any building height.
This result may be used to improve the model performance –
when estimating the height of a given building, the random
forest may take into account the height of a nearby building
filled by an OSM user as an extra independent variable.

3.5 Spatial distribution of the building height at city
scale

While most of the buildings higher than 15 m are underesti-
mated, the model allows one to represent the spatial patterns
of the third dimension well; at grid scale, the average build-
ing height maps of estimated and reference values look quite
similar (Fig. 9; Appendix B for other cities). While the model
smooths the values slightly, the city center, first ring and sec-
ond ring are quite easily distinguishable. Note that this is not
the case for cities that have a more homogeneous spatial dis-
tribution of the building height values (e.g., Annecy, which is
constrained by the topography – see Fig. B1 in Appendix B).

For most of the city pixels, the absolute error is under
2.5 m, and only a small proportion of cells have an error
higher than 5 m (Fig. 9). This absolute error magnitude is
within the accuracy of the reference building dataset. Indeed,
according to the data supplier’s (IGN) information (based on
a sample of 7 299 422 buildings), 8.2 % of the buildings have
an accuracy of 1 m, 13.5 % an accuracy of 2.5 m, and 68.8 %
an accuracy of 5 m, while 9.5 % have no accuracy informa-
tion.

4 Conclusions

There is a need for a world-wide database of morphologi-
cal indicators that would be useful for many physical process
interests (e.g., parametric urban climate models, noise mod-
eling, urban planning). The GeoClimate tool aims to tackle
this issue using the OpenStreetMap data. However, most of
the OSM buildings do not have any information concerning
their height, which is a crucial parameter for urban climate
studies. A random forest model has been integrated within
GeoClimate to estimate the height of a building based on
spatial indicators describing its shape, its relations to other
buildings and the 2D characteristics of its close environment.

This article presents the method for building and evalu-
ating this model. The buildings from 14 French communes
have been used to train the model, while the evaluation was
based on 8 French communes. Attention was paid to having
as many types of territories (based on the French definitions)
in the samples as possible, including main urban, main pe-
ripheral, secondary peripheral and rural.

The random forest model was tuned according to four pa-
rameters: the number of trees (best 350), the minimum node
size (best 0.01 %), the maximum variables per tree (best
40 %), and the maximum leaves per tree (best 1100). The
reference heights used for the training of our OSM build-
ings were based on a dataset (French BDTopo – BDT) where
buildings could not fit exactly with the OSM ones. Thus, the
matching between each OSM building footprint and BDT
building footprint has been quantified using the uniqueness
value indicator. The latter equals 1 if only one building from
the BDT was used to feed the OSM building height; it is oth-
erwise lower than 1 and is best suited to the random forest
model when values are higher than 0.7.

Two communes (Paris and Meudon) demonstrate a spe-
cific behavior within the analysis. Apart from these, the me-
dian absolute error at cell scale was always lower than 1.6 m,
and 75 % of the buildings or cells of any city had an er-
ror lower than 3.2 m. This level of magnitude is similar to
the BDT data used for the training: 68.8 % of the buildings
heights demonstrated an uncertainty of 5 m.

Geographical indicators commonly used in urban climate
studies have also been calculated at a 100 m grid cell ac-
cording to the estimated building height. While the build-
ing height variability (standard deviation within a grid) is
strongly affected by the building height estimation error
(50 % of the cells have more than 50 % error in building
height standard deviation value), the roughness length and
sky view factor have a relative error of about 20 % for 50 %
of the cells.

One of the major limitations of the model at the French
scale is presented when applied to tall (> 15 m), isolated
buildings. However, it does not affect the recognition of the
general patterns of a city: most of the high-rise buildings
located in the centers of the cities are quite well modeled,
though slightly underestimated.
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Figure 7. On the top: building height errors (Errmodel and Erruser) versus reference building height (HOSM,true) for each type of city. The
dots represent the median, while the whiskers are the 1st and 3rd quartiles. On the bottom: cumulated distribution of reference building height
(HOSM,true) for each type of city. The intervals used for the reference building height (the abscissa) are based on the following values: 0, 5,
7.5, 10, 12.5, 15, 20, 30, 50 m (values above 50 m are not considered, since their number is negligible and they affect the reading).

Figure 8. Buildings taller than 15 m for which the height underestimation is higher than 30 %. © OpenStreetMap contributors 2021. Dis-
tributed under the Open Data Commons Open Database License (ODbL) v1.0.
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Table 6. Summary of the building height estimation error by commune type, building height range and dataset type.

Commune Reference Training dataset Validation dataset OSM dataset

type building Propor- Median Median Propor- Median Median Propor- Median Median
height tions error relative tions error relative tions error relative
range (m) (m) error (m) error (m) error

Main urban

0–5 0.19 1.10 0.25 0.16 1.28 0.28 0.05 4.00 0.80
5–10 0.44 −0.30 −0.05 0.48 −0.23 −0.04 0.15 2.10 0.33
10–12.5 0.16 −1.62 −0.19 0.17 −1.80 −0.22 0.11 2.00 0.20
12.5–15 0.09 −2.08 −0.18 0.09 −2.37 −0.21 0.11 1.01 0.09
15–20 0.05 −3.66 −0.27 0.05 −4.35 −0.32 0.10 2.00 0.15
20–30 0.05 −5.08 −0.30 0.05 −7.45 −0.43 0.25 2.00 0.12
30–40 0.02 −9.69 −0.42 0.01 −12.43 −0.53 0.23 1.00 0.04
40–50 < 0.01 −23.48 −0.69 < 0.01 −26.86 −0.73 0.02 1.00 0.03

0–5 0.18 0.93 0.21 0.26 0.90 0.19 0.04 2.00 0.50
5–10 0.47 −0.58 −0.09 0.63 −0.32 −0.05 0.23 2.00 0.29
10–12.5 0.18 −2.48 −0.29 0.08 −1.89 −0.22 0.19 1.00 0.12

Main 12.5–15 0.09 −4.33 −0.38 0.02 −3.46 −0.31 0.11 1.00 0.09
peripheral 15–20 0.04 −6.05 −0.44 0.01 −5.25 −0.40 0.09 1.11 0.08

20–30 0.03 −8.55 −0.50 < 0.01 −8.79 −0.54 0.16 1.00 0.06
30–40 0.01 −14.58 −0.63 < 0.01 −14.16 −0.66 0.10 0.01 0.00
40–50 < 0.01 −26.37 −0.74 – – – 0.08 3.66 0.09

0–5 0.36 0.94 0.22 0.30 1.36 0.31 0.32 5.00 1.25
5–10 0.55 −0.84 −0.14 0.61 −0.06 −0.01 0.55 2.00 0.29
10–12.5 0.07 −2.89 −0.35 0.06 −1.77 −0.21 0.08 0.00 0.00

Secondary 12.5–15 0.02 −5.25 −0.47 0.02 −3.48 −0.31 0.05 3.00 0.25
peripheral 15–20 < 0.01 −6.89 −0.53 < 0.01 −6.37 −0.42 – – –

20–30 < 0.01 −9.12 −0.47 < 0.01 −7.43 −0.47 – – –
30–40 – – – – – – – – –
40–50 – – – – – – – – –

Rural

0–5 – – – 0.24 1.13 0.24 – – –
5–10 – – – 0.62 −0.41 −0.07 – – –
10–12.5 – – – 0.12 −2.61 −0.32 – – –
12.5–15 – – – 0.02 −4.85 −0.47 – – –
15–20 – – – – – – – – –
20–30 – – – – – – – – –
30–40 – – – – – – – – –
40–50 – – – – – – – – –

Care should be taken for territories that have limited OSM
data available (which is not the case in this study, since all
cities used in this work have a higher building fraction in
OSM than in BDT). In this case, the first step before apply-
ing our work would be to contribute to OSM and fill the
gap in the study area. In our opinion, aside from this is-
sue, the dataset resulting from the optimized random forest
could be useful for climate analysis (even though the model
is far from being perfect). We recommend a prior evalua-
tion of what the effect of using the output of the RF model
compared with the reference data usually employed by urban
climate researchers could be. While we do not expect ma-
jor differences when applied with parametric urban climate
models at city scale, the spatial error might be quite high at
neighborhood scale. Thus, for researchers and practitioners

willing to use GeoClimate at a finer scale (for example, to
automatically download land-type and land-use information
for explicit modeling purpose), we recommend that they con-
tribute to the OSM project first. Specifying the height of the
most important buildings of their studying area in OSM can
be done before running GeoClimate. At the end of the day,
they can contribute to the improvement of the OSM data and
also freely benefit from the GeoClimate tool. Concerning the
building height modeling, the work may be continued by

– identifying the model’s sensitivity to a lack of OSM in-
formation (for example, removing some or all of the
roads, vegetation and water data);

– evaluating the accuracy of the estimations using other
reference datasets – in France, it could be performed us-
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Figure 9. Results for the city of Nantes at grid cell: (a) reference building height, (b) estimated building height, (c) absolute building height
error, and (d) fraction of OSM buildings that have height information. For cases (a), (b) and (c), only cells that have buildings with at least
90 % of their buildings having no height value in OSM are displayed.

ing more accurate reference data and in other countries
with any existing reference data;

– improving the statistical modeling: (i) selecting a
dataset that has a uniform distribution of building
height, as described Sect. 3.4; (ii) using the height from
OSM buildings that already have this information as an
additional independent variable (e.g., the average build-
ing height at RSU scale may be used); (iii) investigate
other supervised methods; (iv) in the training data, get
rid of OSM buildings that have less than a certain frac-
tion of BDT buildings covering them; (v) find more ap-
propriate building properties that can be used as inde-
pendent variables (e.g., the height of the nearby build-
ings filled by OSM users); and (vi) identify a subset of
the most appropriate variables in order to limit the ad-
verse effects of noisy variables.
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Appendix A: List of all spatial indicators used as
independent variables

A1 Building scale

Table A1. List of all building scale spatial indicators used as inde-
pendent variables.

Indicator name Indicator type Name of the indicator in

Type Form Spatial the GeoClimate documentation (version 0.0.1)
and use and size relations

BUILD_TYPE x None (this is an input of GeoClimate)
BUILD_MAIN_USE x None (this is an input of GeoClimate)
BUILD_PERIMETER x PERIMETER
BUILD_AREA x AREA
BUILD_TOTAL_FACADE_LENGTH x TOTAL_FACADE_LENGTH
BUILD_COMMON_WALL_FRACTION x COMMON_WALL_FRACTION
BUILD_NUMBER_BUILDING_NEIGHBOR x NUMBER_BUILDING_NEIGHBOR
BUILD_AREA_CONCAVITY x AREA_CONCAVITY
BUILD_FORM_FACTOR x FORM_FACTOR
BUILD_PERIMETER_CONVEXITY x PERIMETER_CONVEXITY
BUILD_MINIMUM_BUILDING_SPACING x MINIMUM_BUILDING_SPACING
BUILD_ROAD_DISTANCE x ROAD_DISTANCE
BUILD_LIKELIHOOD_LARGE_BUILDING x LIKELIHOOD_LARGE_BUILDING

A2 Block scale

Table A2. List of all block scale spatial indicators used as indepen-
dent variables.

Indicator name Indicator type Name of the method in

Form Aggregated statistics the GeoClimate documentation (version 0.0.1)
and size from lower scale

BLOCK_BUILDING_DIRECTION_UNIQUENESS x BUILDING_DIRECTION_UNIQUENESS
BLOCK_AREA x AREA
BLOCK_BUILDING_DIRECTION_EQUALITY x BUILDING_DIRECTION_EQUALITY
BLOCK_HOLE_AREA_DENSITY x HOLE_AREA_DENSITY
BLOCK_CLOSINGNESS x CLOSINGNESS
BUILD_AVG_PERIMETER x None (average from lower scale)
BUILD_STD_PERIMETER x None (standard deviation from lower scale)
BUILD_AVG_AREA x None (average from lower scale)
BUILD_STD_AREA x None (standard deviation from lower scale)
BUILD_STD_TOTAL_FACADE_LENGTH x None (standard deviation from lower scale)
BUILD_STD_COMMON_WALL_FRACTION x None (standard deviation from lower scale)
BUILD_STD_NUMBER_BUILDING_NEIGHBOR x None (standard deviation from lower scale)
BUILD_AVG_AREA_CONCAVITY x None (average from lower scale)
BUILD_STD_AREA_CONCAVITY x None (standard deviation from lower scale)
BUILD_AVG_FORM_FACTOR x None (average from lower scale)
BUILD_STD_FORM_FACTOR x None (standard deviation from lower scale)
BUILD_AVG_PERIMETER_CONVEXITY x None (average from lower scale)
BUILD_STD_PERIMETER_CONVEXITY x None (standard deviation from lower scale)
BUILD_STD_MINIMUM_BUILDING_SPACING x None (standard deviation from lower scale)
BUILD_AVG_ROAD_DISTANCE x None (average from lower scale)
BUILD_STD_ROAD_DISTANCE x None (standard deviation from lower scale)
BUILD_AVG_LIKELIHOOD_LARGE_BUILDING x None (average from lower scale)
BUILD_STD_LIKELIHOOD_LARGE_BUILDING x None (standard deviation from lower scale)
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A3 TSU scale

Table A3. List of all TSU scale spatial indicators used as indepen-
dent variables.

Indicator name Indicator type Name of the method in the

Form Planar Aggregated statistics GeoClimate documentation (version 0.0.1)
and size density from lower scale

RSU_HIGH_VEGETATION_FRACTION x AREA_FRACTION_x
RSU_HIGH_VEGETATION_WATER_FRACTION x AREA_FRACTION_x
RSU_HIGH_VEGETATION_BUILDING_FRACTION x AREA_FRACTION_x
RSU_HIGH_VEGETATION_LOW_VEGETATION_FRACTION x AREA_FRACTION_x
RSU_HIGH_VEGETATION_ROAD_FRACTION x AREA_FRACTION_x
RSU_HIGH_VEGETATION_IMPERVIOUS_FRACTION x AREA_FRACTION_x
RSU_WATER_FRACTION x AREA_FRACTION_x
RSU_BUILDING_FRACTION x AREA_FRACTION_x
RSU_LOW_VEGETATION_FRACTION x AREA_FRACTION_x
RSU_ROAD_FRACTION x AREA_FRACTION_x
RSU_IMPERVIOUS_FRACTION x AREA_FRACTION_x
RSU_VEGETATION_FRACTION_URB x VEGETATION_FRACTION_URB
RSU_LOW_VEGETATION_FRACTION_URB x LOW_VEGETATION_FRACTION_URB
RSU_HIGH_VEGETATION_IMPERVIOUS_FRACTION_URB x HIGH_VEGETATION_IMPERVIOUS_FRACTION_URB
RSU_HIGH_VEGETATION_PERVIOUS_FRACTION_URB x HIGH_VEGETATION_PERVIOUS_FRACTION_URB
RSU_ROAD_FRACTION_URB x ROAD_FRACTION_URB
RSU_IMPERVIOUS_FRACTION_URB x IMPERVIOUS_FRACTION_URB
RSU_AREA x AREA
RSU_GROUND_LINEAR_ROAD_DENSITY x GROUND_LINEAR_ROAD_DENSITY
RSU_AVG_NUMBER_BUILDING_NEIGHBOR x AVG_NUMBER_BUILDING_NEIGHBOR
RSU_AVG_MINIMUM_BUILDING_SPACING x AVG_MINIMUM_BUILDING_SPACING
RSU_BUILDING_NUMBER_DENSITY x BUILDING_NUMBER_DENSITY
RSU_BUILDING_TOTAL_FRACTION x BUILDING_TOTAL_FRACTION
RSU_BUILDING_DIRECTION_EQUALITY x BUILDING_DIRECTION_EQUALITY
RSU_BUILDING_DIRECTION_UNIQUENESS x BUILDING_DIRECTION_UNIQUENESS
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Appendix B: Results for all cities

Figure B1. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.

Figure B2. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings having height information. For all panels
except the lower right, only cells that buildings – with at least 90 % of their buildings having no height value in OSM – are displayed.
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Figure B3. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.

Figure B4. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.
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Figure B5. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.

Figure B6. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.
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Figure B7. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.

Figure B8. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.
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Figure B9. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.

Figure B10. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.
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Figure B11. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.

Figure B12. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.
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Figure B13. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.

Figure B14. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error and (lower right panel) fraction of OSM buildings that have height information. For all panels
except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are displayed.
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Figure B15. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.

Figure B16. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.

https://doi.org/10.5194/gmd-15-7505-2022 Geosci. Model Dev., 15, 7505–7532, 2022



7528 J. Bernard et al.: Estimation of missing building height in OpenStreetMap data: a French case study

Figure B17. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.

Figure B18. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.
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Figure B19. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.

Figure B20. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.
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Figure B21. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.

Figure B22. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.
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Figure B23. Results for the commune at grid cell (upper left panel) reference building height, (upper right panel) estimated building height,
(lower left panel) absolute building height error, and (lower right panel) fraction of OSM buildings that have height information. For all
panels except the lower right, only cells that have buildings – with at least 90 % of their buildings having no height value in OSM – are
displayed.

Code and data availability. The major part of this work
can be reproduced directly using the Software GeoCli-
mate version 0.0.1 (the source code and executable file of
this software version are permanently available on Zenodo
at https://doi.org/10.5281/zenodo.6372337, Bocher et al.,
2021b); the scripts and data are available on Zenodo at
https://doi.org/10.5281/zenodo.6855063 (Bernard et al., 2021).
GeoClimate downloads OpenStreetMap data using the overpass
API from the end point https://overpass-api.de/ (last access:
28 September 2022), estimates building height when missing and
calculates geographical indicators. The resulting datasets presented
in this paper have been obtained using the OpenStreetMap data
between June and September 2021. It can be freely accessed at
https://doi.org/10.5281/zenodo.6855063 (Bernard et al., 2021).
The French BDTopo (version 2.2) is used only for training and
evaluation purposes. It is a proprietary dataset provided by the
French National Geographic Institute (IGN) and is available upon
request. Thus it is unfortunately not possible to make this dataset
freely accessible. This was one of the major motivations for
perform this work, i.e., to create a methodology to automatically
create a topographic dataset containing buildings with estimated
height.
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