
HAL Id: hal-03811270
https://hal.science/hal-03811270v1

Submitted on 11 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Patient-specific 4DCT respiratory motion synthesis
using tumor-aware GANs

Yi-Heng Cao, Vincent Jaouen, Vincent Bourbonne, François Lucia, Nicolas
Boussion, Ulrike Schick, Julien Bert, Dimitris Visvikis

To cite this version:
Yi-Heng Cao, Vincent Jaouen, Vincent Bourbonne, François Lucia, Nicolas Boussion, et al.. Patient-
specific 4DCT respiratory motion synthesis using tumor-aware GANs. IEEE Nuclear science sympo-
sium and medical imaging conference 2022, Nov 2022, Milan, Italy. �hal-03811270�

https://hal.science/hal-03811270v1
https://hal.archives-ouvertes.fr


Patient-specific 4DCT respiratory motion synthesis
using tumor-aware GANs

Yi-Heng Cao1, Vincent Jaouen1, Vincent Bourbonne1,2, François Lucia1,2, Nicolas Boussion1,2, Ulrike Schick1,2,
Julien Bert1,2, Dimitris Visvikis1
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Abstract—Four-dimensional computed tomography (4DCT) is
required in lung radiotherapy treatment planning to track tu-
mor motion for more accurate dose coverage. However, such
acquisitions expose the patient to more radiation than a standard
CT protocol. In previous works, we demonstrated the feasibility
of patient-specific 4DCT generation from static 3DCT images
using generative adversarial networks (GAN) conditioned on
the actual patient’s respiratory amplitude. Synthetic motion was
achieved globally in the lung, but with yet unsatisfactory accuracy
at the tumor level. This work addresses this issue by better
taking into account tumor motion through tumor awareness.
We condition the image-to-image GAN architecture by a static
3DCT image, a respiratory amplitude and a further condition
on the tumor segmentation mask. We train the model under a
combined segmentation and weighted L1 objective. We performed
experiments on synthetic phantoms, where we demonstrate better
tumor motion synthesis both qualitatively and quantitatively, and
show preliminary results on clinical data.

I. INTRODUCTION

FOUR-dimensional computed tomography (4DCT) imag-
ing is used routinely in lung cancer radiotherapy treatment

planning to accurately track tumor motion during breathing.
However, such acquisitions lead to increased radiation dose
delivered to the patient, up to six times a single-helical (3DCT)
acquisition [1]. For this reason, alternative planning methods
aiming at reducing exposure to imaging-induced radiation
are an active field of research, with recent studies showing
promising results using deep machine learning techniques [2].

We explored previously the potential interest of generating
4DCT phases from static 3D images using deep generative
adversarial networks (GANs) [3] trained on real 4DCT data.
Chang et al. [4] proposed a method combining a conditional
variational encoder with a latent regressor for generating real-
istic 4D-XCAT phantom breathing dynamics. Romaguera et al.
[5] presented an unsupervised predictive framework to generate
4D MRI volumes by learning a distribution of motion fields
over a population dataset. In these approaches, the generated
images do not correspond to the actual patient’s respiratory
dynamics but are rather a population average. To overcome this
issue, we introduced recently a novel image-to-image network
architecture to further condition image synthesis on respiratory
motion amplitude [6]. Such value can typically be obtained
in clinical routine from respiratory tracking devices. However,
while the global lung synthetic motion was recovered, accuracy
at smaller scales (i.e. at the tumor level) was not satisfactory.
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Fig. 1: Generator architecture with scalar value α and a
tumor segmentation as input with image.

In this paper, we propose to further condition the generative
model for improved synthesis of dynamic 4DCT images from
3D images using GANs. We force the model to account for
tumor motion through a tumor aware loss [7] by giving more
weight to the L1 loss in the tumor region and combining it
with a segmentation objective. We performed experiments on
synthetic phantoms and show preliminary results on clinical
data to study the influence of this conditioning. Results demon-
strate superior tumor motion synthesis both qualitatively and
quantitatively.

II. METHOD

We consider a reference breath-hold CT scan I(x), where
x ∈ R3 is the image domain, and its corresponding tumor
segmentation mask S(I). Our objective is to synthesize a
vector-valued phase-gated 4DCT acquisition J ∗ : R3×R → R,
where J ∗(x, g) is the image value at location x and gate
g ∈ {1, 2, ..., Ng}. To this end, we learn a mapping φg(x, α,S)
conditioned on three terms: 1) the input image I, 2) its tumor
segmentation mask S(I), and a (scalar) respiratory amplitude
α such that a generated image I ◦ φg(x, α,S) = J ∗(x, α) is
close to the real phase J (x, g). The value α can be obtained
from e.g. a respiratory tracking belt.

We modify our previous phase-to-phase model architecture
[6] so that it can accept as input both the images and the tumor
segmentation masks as two channels (Fig. 1). To further focus
on the tumor region during image to image translation, we
consider a weighted L1 loss, or L1(ω) with varying weight-
ing depending on the region considered (tumor or remaining
tissues), where this value is treated as a hyper-parameter.



During training, pairs of phases and masks to be mapped to
one another are selected at random. The respiratory amplitude
value α is injected into the bottleneck of the generator through
an AdaIN mechanism [6]. The generator outputs an image J ∗

and a tumor segmentation corresponding to the target phase.

III. EXPERIMENTS AND RESULTS

We first evaluated the model on phantom images. These
images represent synthetic lung-like images by using pairs of
ellipsoids with an arc-shaped cut to mimic the diaphragm.
We inserted a spherical hyper-signal object to simulate the
presence of a tumor (Fig. 2). We generated various motion
amplitudes through random morphological dilations along both
the anterior-posterior and the superior-inferior directions and
displaced the tumor’s center of mass accordingly. We used
800/200 images for training/testing respectively. The α value
was the lung volume variation between two phases and the
weights ω for the L1 were set to 10 for the tumor region and
1 for the remaining tissues. We then evaluated our model on
clinical 4DCT data. We used 79/32 images from 35/11 patients
respectively for training/testing. Since no tumor segmentation
was available, we used a pre-trained nnU-Net model [8] to
generate tumor masks that we manually corrected if required.
The α value used is the signal respiratory amplitude in mm.
The models were evaluated using the Dice similarity coefficient
(DSC) between the generated and the true tumor mask, as well
as the Euclidean distance between their centers of masses.

Fig. 2 shows representative results on the synthetic dataset
with and without tumor awareness (TA). In both cases, a
global lowering of the diaphragm corresponding to the target
phase was successfully achieved. However, inspecting more
closely, the tumor did not move accordingly, which is a
problem corrected through TA. These qualitative observations
are confirmed quantitatively on the entire dataset with a sharp
increase of similarity to ground truth using the proposed TA
scheme Table I. The initial errors show that there are poor
tumor overlaps between phases, with a DSC of 0.28 and a
displacement distance of 3.73mm. When using the L1 objective
only, tumor motion was not well reproduced. However, when
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Fig. 2: Example of phantoms results in the sagittal view.

Model DSC Distance
Initial error between phases 0.28 3.73
using L1 0.29 3.36
TA using weighted L1(ω) 0.53 1.94
TA using weighted L1(ω) + segmentation loss 0.67 1.08

TABLE I: Ablation study on the objective terms for the
phantom dataset.
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Fig. 3: Example of real clinical data visual synthesis results.

considering the various tumor awareness mechanism proposed
(weighted L1 and segmentation loss), a sharp improvement
was obtained, with best results achieved using a combination
of both TA terms with a DSC of 0.67 and a distance error of
1.08mm on average.

Fig. 3 shows a preliminary visual result on a patient from our
clinical 4DCT dataset, where we observed on average better
tumor motion with TA. However, quantitative evaluation is not
yet satisfactory (not shown in this summary) due to training
conditions. Many patients showed little to no motion in the
superior lobes. We believe this led the network to globally
underestimate tumor motion amplitude.

IV. CONCLUSION

We have proposed a new method for patient-specific 4DCT
respiratory motion synthesis from static CT images using
a tumor-aware image-to-image GAN to allow for realistic
modeling of the target motion. The weighting mechanism was
validated on synthetic dynamic images where both weighted
L1 and segmentation losses showed beneficial effects. Further
experiments will focus on designing more balanced training
conditions to better compensate for the relative lack of tumor
motion in the superior lobes.

REFERENCES

[1] J. de Koste et al., “Renal mobility during uncoached quiet respiration:
An analysis of 4DCT scans,” International Journal of Radiation Oncol-
ogy*Biology*Physics, vol. 64, no. 3, pp. 799–803, 2006.

[2] A. Mylonas et al., “A review of artificial intelligence applications for mo-
tion tracking in radiotherapy,” Journal of Medical Imaging and Radiation
Oncology, vol. 65, Aug. 2021.

[3] V. Jaouen et al., “4D respiratory motion synchronized image synthesis
from static CT images using GANs,” in IEEE NSS/MIC, Manchester,
United Kingdom, Oct. 2019.

[4] Y. Chang et al., “A generative adversarial network (GAN)-based technique
for synthesizing realistic respiratory motion in the extended cardiac-torso
(XCAT) phantoms,” Physics in Medicine & Biology, vol. 66, May 2021.

[5] L. V. Romaguera et al., “Probabilistic 4D predictive model from in-
room surrogates using conditional generative networks for image-guided
radiotherapy,” Medical Image Analysis, vol. 74, Dec. 2021.

[6] Y.-H. Cao et al., “Image and volume conditioning for respiratory motion
synthesis using GANs,” in IEEE NSS MIC 2021, Oct. 2021.

[7] A. Chartsias et al., “Adversarial Image Synthesis for Unpaired Multi-
modal Cardiac Data,” in Simulation and Synthesis in Medical Imaging.
Springer International Publishing, 2017, vol. 10557.

[8] F. Isensee et al., “nnU-Net: Self-adapting Framework for U-Net-Based
Medical Image Segmentation,” arXiv:1809.10486 [cs], Sep. 2018.


