Patient-specific 4DCT respiratory motion synthesis using tumor-aware GANs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Patient-specific 4DCT respiratory motion synthesis using tumor-aware GANs

Résumé

Four-dimensional computed tomography (4DCT) is required in lung radiotherapy treatment planning to track tumor motion for more accurate dose coverage. However, such acquisitions expose the patient to more radiation than a standard CT protocol. In previous works, we demonstrated the feasibility of patient-specific 4DCT generation from static 3DCT images using generative adversarial networks (GAN) conditioned on the actual patient's respiratory amplitude. Synthetic motion was achieved globally in the lung, but with yet unsatisfactory accuracy at the tumor level. This work addresses this issue by better taking into account tumor motion through tumor awareness. We condition the image-to-image GAN architecture by a static 3DCT image, a respiratory amplitude and a further condition on the tumor segmentation mask. We train the model under a combined segmentation and weighted L1 objective. We performed experiments on synthetic phantoms, where we demonstrate better tumor motion synthesis both qualitatively and quantitatively, and show preliminary results on clinical data.
Fichier principal
Vignette du fichier
MIC_dynagan_2022.pdf (390.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03811270 , version 1 (11-10-2022)

Identifiants

  • HAL Id : hal-03811270 , version 1

Citer

Yi-Heng Cao, Vincent Jaouen, Vincent Bourbonne, François Lucia, Nicolas Boussion, et al.. Patient-specific 4DCT respiratory motion synthesis using tumor-aware GANs. IEEE Nuclear science symposium and medical imaging conference 2022, Nov 2022, Milan, Italy. ⟨hal-03811270⟩
109 Consultations
104 Téléchargements

Partager

More