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Deep learning models trained for roof semantic segmentation from remote sensing images may suffer from low performance when applied in new cities as roof appearance may be different depending on the geographic areas. However, we claim in this paper that models learned on many different cities have better performances on a new city than a model learned on few data from this targeted city. This result may interest the community for industrial purpose: annotating few tiles of an area for simple supervised training is worthless in our experiments.

INTRODUCTION

Roof semantic segmentation from remote sensing images is a classical task in our community with many datasets dedicated or compliant to this task like ISPRS Potsdam [START_REF] Rottensteiner | Isprs test project on urban classification and 3d building reconstruction[END_REF], data fusion contest [START_REF] Moser | Report on the 2015 ieee grss data fusion contest: Extremely high resolution lidar and optical data: A data fusion challenge[END_REF][START_REF] Lagrange | Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks[END_REF], AIRS [START_REF] Chen | Aerial imagery for roof segmentation: A large-scale dataset towards automatic mapping of buildings[END_REF], INRIA aerial image [START_REF] Huang | Large-scale semantic classification: outcome of the first year of inria aerial image labeling benchmark[END_REF], Bradbury building dataset [START_REF] Bradbury | Aerial imagery object identification dataset for building and road detection, and building height estimation[END_REF], Semcity Toulouse [START_REF] Roscher | Semcity toulouse: A benchmark for building instance segmentation in satellite images[END_REF] and finally SpaceNet challenge data [START_REF] Van Etten | Spacenet: A remote sensing dataset and challenge series[END_REF]. Indeed, roof segmentation would provide a building mapping from a remote sensing image. Such product may be very interesting, in particular for countries with inaccurate land registers. Recently, google offers such product at the scale of Africa [START_REF] Sirko | Continental-scale building detection from high resolution satellite imagery[END_REF].

However, this task is still challenging because roof appearance may vary a lot depending on the geographic area (as pointed in Figure 1). Thus, from industrial point of view, a Fig. 1. Roof appearance could vary even between close geographic areas (here 4 cities from France). pragmatic question could be: how much data from one city this works is funded by the AI4GEO project ai4geo.com corresponding author adrien.chan hon tong@onera.fr should be annotated to train a model dedicated to this specific city ? This paper advances on this question and claims that, depending on the expected level of performance, it may be useless to have data from the targeted city. Indeed, by aggregating most previously cited datasets, we observed that transferring a model on a new city is better than training on few data from this city.

Importantly, this result does not hold when a lot of data is available on a specific area (this last setting resulting on better performances). Yet, an expensive annotation of a lot of data on a single city will obviously correspond to restricted used cases. Thus, the results of this paper which compares few tiles annotations vs generic training corresponds to the practice, and thus, should interest the community.

RELATED WORKS

Classically in remote sensing, training data are not i.i.d. sampled at world level. They are localized on specific areas. Formally, we do not have access to a distribution P (x, y) with y the segmentation mask and x the image, and P the world wide distribution of those images/labels. Instead, we have K distributions P (x, y, ψ 1 ), ..., P (x, y, ψ K ) where ψ 1 , ..., ψ K are latent variable corresponding to the different K geographic areas of the training set. This way, when applying the model on a new geographic area, we may encounter P (x, y, φ) which is very different from known distributions. Thus, improving performance of a deep model on a new targeted geographic localisation (outside from training set) is a transfer learning problem (rather than a generalization one).

This problem is not new and has been explored with many different ideas:

• Self or semi supervised learning [START_REF] Kumar Ayush | Geography-aware self-supervised learning[END_REF][START_REF] Castillo-Navarro | Semi-supervised semantic segmentation in earth observation: The minifrance suite, dataset analysis and multi-task network study[END_REF][START_REF] Lucas | A bayesianinspired, deep learning-based, semi-supervised domain adaptation technique for land cover mapping[END_REF] could be interesting for geographic transfer because raw images are usually much more accessible than annotated images. Thus, by taking advantage of unlabelled data from many areas, one could virtually increase the number of observed areas ψ (perhaps the targeted one).

• Zero/few shot learning [START_REF] Bucher | Improving semantic embedding consistency by metric learning for zero-shot classiffication[END_REF][START_REF] Hua | Semantic segmentation of remote sensing images with sparse annotations[END_REF] or interactive segmentation [START_REF] Lenczner | Interactive learning for semantic segmentation in earth observation[END_REF] could also be relevant to quickly adapt a deep network to a new location. Weakly supervised learning e.g. [START_REF] Wang | Weakly supervised adversarial domain adaptation for semantic segmentation in urban scenes[END_REF] can also be relevant from this purpose.

• Finally, learning from many cities could straightforwardly improve robustness to different geographic locations: this idea was already tested for example by the INRIA aerial image dataset [START_REF] Huang | Large-scale semantic classification: outcome of the first year of inria aerial image labeling benchmark[END_REF] which is composed by data from five cities.

In this paper, we consider a different setting from IN-RIA: we consider an asymmetric amount of data. Indeed, we found that when a lot of data is available on a city (e.g. like in INRIA or AIRS), training on this targeted distribution is better than training on many other data. Inversely, when having only few data on a specific city (e.g. ISPRS), it is better to transfer a geographically robust model.

BENCHMARK SETTING

Global description

The main experiment offered by this paper is to compare: a model trained on few data of 1 targeted city (written as specific-model), against, a same model but trained on many data but none from this city (written as generic-model). Of course, this benchmark is realized for many different cities, so we have on one hand many single-city training, and, on the other hand, a kind of leave-one-city-out setting.

For this purpose, we try to merge all public datasets compliant with the task: ISPRS Potsdam [START_REF] Rottensteiner | Isprs test project on urban classification and 3d building reconstruction[END_REF], data fusion contest [START_REF] Moser | Report on the 2015 ieee grss data fusion contest: Extremely high resolution lidar and optical data: A data fusion challenge[END_REF][START_REF] Lagrange | Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks[END_REF], AIRS [START_REF] Chen | Aerial imagery for roof segmentation: A large-scale dataset towards automatic mapping of buildings[END_REF], INRIA aerial image [START_REF] Huang | Large-scale semantic classification: outcome of the first year of inria aerial image labeling benchmark[END_REF], Bradbury building dataset [START_REF] Bradbury | Aerial imagery object identification dataset for building and road detection, and building height estimation[END_REF] and Semcity Toulouse [START_REF] Roscher | Semcity toulouse: A benchmark for building instance segmentation in satellite images[END_REF]. We believe the only excluded dataset is spacenet because it comes as many small tiles while all other propose few large images.

Precisely, all data are RGB images. ISRPS [START_REF] Rottensteiner | Isprs test project on urban classification and 3d building reconstruction[END_REF] is composed of 38 images 6000 × 6000 pxls at 5cm of resolution on Potsdam city. 6 classes are considered for manual annotation but only building vs background is kept. Importantly, border pixels are annotated as no-data. Similarly, DFC [START_REF] Moser | Report on the 2015 ieee grss data fusion contest: Extremely high resolution lidar and optical data: A data fusion challenge[END_REF] is composed of 6 images 10000x10000 at 7.5 cm of resolution on Bruges city manually annotated for 7 classes on which only building is kept. Morphological operations seems to have been preformed on mask, but, no no data class is used for the border. Semcity [START_REF] Roscher | Semcity toulouse: A benchmark for building instance segmentation in satellite images[END_REF] is composed of 16 images of around 3500x3500 pixels at 50cm images on Toulouse. However, only 4 images have been manually annotated for 7 classes (with a no data class but not corresponding on ambiguous borders). Then, AIRS [START_REF] Chen | Aerial imagery for roof segmentation: A large-scale dataset towards automatic mapping of buildings[END_REF] is designed for building/no building segmentation and corresponds to 457 km 2 of Christchurch area at 7.5cm with manual building annotation. Similarly, [START_REF] Huang | Large-scale semantic classification: outcome of the first year of inria aerial image labeling benchmark[END_REF] covers more than 800 km 2 in Austin, Chicago, Kitsap, Tyrol and Vienna (at a 30cm). Yet, importantly, annotation of INRIA comes from land register from those cities. This results in a lot of small label error (and some important ones like stadium entirely labeled as building). Finally, Bradbury [START_REF] Bradbury | Aerial imagery object identification dataset for building and road detection, and building height estimation[END_REF] is important for our experiments as it provides few data on 9 cites (Arlington, Austin, DC, NewYork, SanFrancisco, Atlanta, NewHaven, Norfolk, Seekonk). Few large images are provided for each town. Like for INRIA, annotations come from land register with the same kind of errors.

The code for merging those datasets can be found at github.com/delta-onera/delta tb. Precisely all data are downscaled at 50cm of spatial resolution. All except Semcity are native 8bits image, so, histogram normalisation is considered to convert 16bits Semcity pansharpened images into 8bits images. See the code for the detail of the train/test split used on each dataset. Globally, half each town is used for training while the other half is used for testing. Importantly, both specific and generic models are tested on the same testing data, so results are comparable.

Managing border

Consistently with [START_REF] Sirko | Continental-scale building detection from high resolution satellite imagery[END_REF], we also found it critical to take a specific care of borders. In [START_REF] Sirko | Continental-scale building detection from high resolution satellite imagery[END_REF], this requirement is probably due to the fact that [START_REF] Sirko | Continental-scale building detection from high resolution satellite imagery[END_REF] performs detection using segment-to-detect framework [START_REF] Audebert | Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images[END_REF]. As we consider segmentation in this paper, one could inversely claim that borders are the main difficulty.

However, we rely on many different data source with different annotation conventions: indeed, some labels just come from not-perfert land register, and, even different manual annotations come with border inconsistency (ISPRS use no data on border while DFC or Semcity do not). Typically, on AIRS (downscaled at 50cm of resolution), predicting the exact ground truth eroded by 1 pixel leads to an intersection over union performance of only 90%. Yet, most other annotations (ISPRS for example) tend to be slightly eroded making it impossible to produce not eroded AIRS-like masks.

Thus, dealing with border is mandatory to avoid to penalize good algorithms with just a slightly different convention annotation. To tackle this issue, we apply the same distance transform as [START_REF] Sirko | Continental-scale building detection from high resolution satellite imagery[END_REF] to weight the loss of the border pixel, and, to weight the pixel in the IoU metric at test time. This weighting strategy is critical despite its simplicity as pointed in [START_REF] Sirko | Continental-scale building detection from high resolution satellite imagery[END_REF].

Implementation details

The main difficulty tackled by this paper is to try to offer unbiased results between specific and generic training.

We propose to rely on EfficientNet [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF] backbones: b7 is one of the largest classical network allowing to learn on large scale data, while b0 is smaller and adapted to small dataset (like in single city setting). So best b is considered on each city (yet, we observe almost no changes between b0 and b7).

The second issue is about training duration, we try to find a specific number of iteration for each city. Currently, we found a good compromise by early stopping when training performance has reached a good performance.

All other parameters are the same in both models (optimizer, learning rate, ...). The code of the experiments can also be found in the github. Finally, metric is based on Intersection over Union (IoU) which provides a metric unbiased by the ratio of foreground/background classes in the dataset [START_REF] Nowozin | Optimal decisions from probabilistic models: the intersection-over-union case[END_REF]. Currently, the level of performances reached by the proposed baseline is consistent with state of the art, e.g. [START_REF] Lenczner | Interactive learning for semantic segmentation in earth observation[END_REF][START_REF] Chen | Aerial imagery for roof segmentation: A large-scale dataset towards automatic mapping of buildings[END_REF] strengthening the idea that the comparison is fair.

RESULTS

Generic training has strong transfer performances

The main result is presented in Table 1: the generic model (i.e. trained on large dataset but not tile for target) has higher performance than specific-model (i.e. trained on few tiles of target city only). Precisely, the smaller difference is on Toulouse (which is not native 8bit data), or, on New Haven where performance are low due to a very large sport field annotated as building. On all other cities, performance of generic model are in average higher by 2% to the specific model, and, this gap can reach up to 10% on Bruges. 

Intriguing failure of finetuning

One could expect a finetuning column in Table 1, i.e. check the performance of the generic model finetuned on the half of the specific targeted city. However, we found ambiguous result about this finetuning way. We also studied if finetuning our best binary model backbone was useful to learn a multi-classes model (i.e. adding vegetation, water, roads, etc.). However, we also do not find consistent improvement against from-scratch or imagenet finetuning, even with specific regularisation methods [START_REF] Douillard | Podnet: Pooled outputs distillation for small-tasks incremental learning[END_REF]. So, maybe our finetuning script is not sufficiently carefully designed, yet, we can not conclude.

Finally, one could also wonder where there is not column comparing a training on all available data (rather than one city or all except one city). Yet, there is low information by proving that learning on all is better. Here, the question is coarsely about comparing transfer vs few shot, and transfer wins.

About large specific data

Importantly, generic model is only 91% while specific model is 94% on AIRS. Yet, AIRS is definitely one of the best single city dataset both for size and annotation quality. In particular, annotations are all consistent (see discussion about the 1-pixel eroded vt which is at 90%). Thus, on this context of large and consistent data from the targeted city, specific model is unsurprisingly better. Yet, it is important to stress that creating a as-good-as AIRS dataset seems quite expensive.

Finally, it is important to stress that multi cities model is more robust to geographical change but it has no reason to be more robust to sensor change. Indeed, performance on Semcity (which is natively 16bits) is one of the smallest. And, transfer on to ISPRS Vaihingen [START_REF] Rottensteiner | Isprs test project on urban classification and 3d building reconstruction[END_REF] which is IR-R-G and not RGB, fails as expected (35% of IoU against 82%).

CONCLUSION

In this paper, we offer to combine many already published remote sensing datasets compliant with roof segmentation. Thank to this agglomeration of datasets, we learn generic deep model whose performance on new city are consistently higher than performances of city specific models trained on few data from these cities. Compared to the work on the African continent, carried out by Google, the originality of this work is that it focuses on the principle of global scale with a huge amount of data from public datasets (while only products are public on [START_REF] Sirko | Continental-scale building detection from high resolution satellite imagery[END_REF]). This result highlights that baseline performances can be achieve at a large scale, and, that few data even from targeted area may be worthless in classical supervised setting.

Interestingly, future work could wonder if generic performances can even be improved using regularization algorithm to refine the buildings boundaries.

Table 1 .

 1 Generic model outperforms specific model in roof segmentation from remote sensing image: on each city, the same half of the available data are used to evaluate the 2 models -specific which is trained on the other half, and, generic which is trained on all data from outside the city -performance is measured by intersection over union -for comparision AIRS is 1898Mega pixels, SPACENET1 815, and INRIA is 180 per city.

	cities	nb pixels specific generic
	Potsdam	5M	86	91
	Bruges	4M	75	86
	Toulouse	21M	86	86
	Arlington	18M	84	84
	Austin	21M	88	90
	DC	2M	76	81
	New York	4M	84	86
	San Francisco	18M	82	84
	Atlanta	4M	83	86
	New Haven	9M	76	78
	Norfolk	18M	83	87
	Seekonk	18M	84	87