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Goal-Oriented Quantization:
Analysis, Design, and Application to Resource

Allocation
Hang Zou, Chao Zhang, Samson Lasaulce, Lucas Saludjian, and Vincent Poor

Abstract—In this paper, the situation in which a receiver has
to execute a task from a quantized version of the information
source of interest is considered. The task is modeled by the
minimization problem of a general goal function fpx; gq for which
the decision x has to be taken from a quantized version of the
parameters g. This problem is relevant in many applications
e.g., for radio resource allocation (RA), high spectral efficiency
communications, controlled systems, or data clustering in the
smart grid. By resorting to high resolution (HR) analysis, it is
shown how to design a quantizer that minimizes the gap between
the minimum of f (which would be reached by knowing g
perfectly) and what is effectively reached with a quantized g. The
conducted formal analysis both provides quantization strategies
in the HR regime and insights for the general regime and allows
a practical algorithm to be designed. The analysis also allows one
to provide some elements to the new and fundamental problem of
the relationship between the goal function regularity properties
and the hardness to quantize its parameters. The derived results
are discussed and supported by a rich numerical performance
analysis in which known RA goal functions are studied and allows
one to exhibit very significant improvements by tailoring the
quantization operation to the final task.

Index Terms—Goal-oriented communications, semantic com-
munications, high resolution quantization, clustering, Bennett’s
integral, Gersho’s conjecture.

I. INTRODUCTION

Since the pioneering and fundamental works of Shannon [1],
the dominant paradigm for designing a communication system
is that communications must satisfy quality requirements.
Typically, the bit error rate, the packet error rate, the outage
probability, or the distortion level must be minimized. It turns
out that the conventional paradigm consisting in pursuing
communication reliability or possibly security may not be
suited to scenarios such as systems where communications
occur in order for a given task to be executed. For instance,
transmitting an image of 1 Mbyte to a receiver that only
needs to decide about the absence/presence of a given object
in the image might be very inefficient. In this example, the
receiver only needs one bit of information and this bit could
have been directly sent by the transmitter and make the use
of the communication and computation resources much more
efficient. This simple example shows the potential of making
a communication task- or goal-oriented (GO).

In this paper, the focus is on the problem of signal compres-
sion when the compressed signal is used for a given task which
is known. More precisely, we focus on the signal quantization
problem, which is often a key element of a signal transmit-
ter. Introducing and developing a goal-oriented quantization

(GOQ) approach is very relevant for many applications. We
will mention three of them. First, it appears in controlled
networks that are built on a communication network. A simple
example is given by modern power systems such as the smart
grid. A data measurement system such as a smart meter may
have to quantize or cluster the measured series for complexity
or privacy reasons [2]. It is essential that the quantization
or clustering operation does not impact too much the qual-
ity of the decision (e.g., a power consumption scheduling
strategy) taken e.g., by an aggregator. Second, GOQ is fully
relevant for wireless RA problems. For instance, if a wireless
transmitter receives some quantized information from the
receivers/sensors through a limited-rate feedback channel [3]–
[7]. Third, for future wireless communication systems such
as 6G systems [8]–[11], GOQ and more generally GO data
compression constitutes a very powerful degree of freedom
of increasing final spectral efficiency since only the minimum
number of bits to execute the task is transmitted through the
radio channel.

The conventional quantization approach [12] is to minimize
some distortion measure between the original signal and its
representation, regardless of the system task. In the literature,
there exist works on the problem of adapting the quantizer
to the objective. For instance, in the wireless literature, the
problem of quantizing channel state information (CSI) for
the feedback channel has been well studied (see e.g., [13]
for a typical example). The practical relevance of low-rate
scalar quantizers to transmit high dimensional signals has
been defended for MIMO systems in [14] [15] [16]. By
combining the system task with the quantization process,
[17] [18] investigated the influence of scalar quantization on
specific tasks and characterized the limiting performance in the
case of recovering a lower dimensional linear transformation
of the analog signal and reconstruction of quadratic function
of received signals. Deep-learning-based quantizers have also
be considered in [19]–[22] to adapt to the task by training
neural networks. The main point to be noticed is that for all
existing works either the impact of quantization on a given
performance metric is studied or a very specific performance
metric is considered (the Shannon transmission rate being
by far the most popular metric) and the proposed quantizer
design is often an ad hoc scheme. In contrast with this line
of research works, we introduce a general framework for
GOQ illustrated in Fig. 1. The task or goal of the receiver is
chosen to be modeled by a generic optimization problem (OP)



which contains both decision variables and parameters. One
fundamental point of the conducted analysis is that both for
the performance analysis and the design, the goal function is a
generic function fpx; gq, x being the decision with dimension
d to be made based on a quantized version of the function
parameters g with dimension p. This setting allows us to derive
analytical results and acquire completely new insights into how
to adapt a quantizer to the goal, these insights relying in part
on the high resolution (HR) regime analysis [23]–[25].

To be sufficiently complete concerning the technical back-
ground associated with the present contributions, we also
would like to clearly position our works w.r.t. recent works on
semantic communications [26]–[38]. Semantics is employed
here with its etymological meaning, that of significance. It
can be seen as a measure of the usefulness/importance of
messages with respect to the system task [26]. There have been
several tutorials and surveys to discuss possible structures and
architectures of this novel communication paradigm. By study-
ing the semantic encoder and semantic noise, [27] proposed
two models based on shared knowledge graph and semantic
entropy, respectively. Reference [28] indicated that by properly
recognizing and extracting the relevant information to the
system task, the communication efficiency and reliability can
be enhanced without using more bandwidth. In [26], it is
explained how semantic information attributes of transmitted
messages could be exploited, which entails a task-oriented
unification of information generation, transmission, and recon-
struction. By introducing intrinsic states and extrinsic observa-
tions, [29] uses indirect rate-distortion theory to characterize
the reconstruction error of semantic information induced by
lossy source coding schemes. Information bottleneck is also
an approach to find the optimal tradeoff between compressing
and reliability. Inspired by this approach, [30] proposed a
relevant loss function whose relevance was supported in [31]
and designed an end-to-end DeepSC network architecture,
using Transformer as the semantic encoder and joint source-
channel coding schemes to ensure the semantic information
transmission. Similar models [32] [33] are extended to audio
transmission and Internet-of-things (IoT) applications. Other
learning tools have also been implemented to extract important
attributes in semantic communications, such as reinforcement
learning [34], curriculum learning [35], and distributed learn-
ing [36] [37]. Some additional information can also be used
for the semantic encoder, such as contextual reasoning [38].
Compared to the quoted works, three main points have to be
noticed. First, most works focus on the novel communication
architecture or use learning tools to extract important features
but the works are not supported by theoretical derivations.
Second, we not only consider the transmission problem of
the semantic information but also the influence of distorted
information on the subsequent decision-making (DM) entity
and the system task, namely, how the semantic information
exchange will affect the system performance (effectiveness
level). Third, we address a precise technical problem which is
the quantization problem and assume a fully generic goal. The
closest contributions to the present work have been produced

Fig. 1: Proposed definition for the goal-oriented quantization
approach

by the authors through [39] [40] [41] [52]. To the best of the
authors knowledge, the concept of GOQ has been introduced
for the first time in [39] and applied in other contexts in
[40] [41] [52]. In these references, mainly numerical results
are provided and the focus is on a Lloyd-Max (LM)-type
algorithm [54] [55]. In particular the formal HR analysis is
not conducted and the fundamental role of the goal function
is not investigated.

This paper is structured as follows. In Sec. II, we define
the performance metric of a GO quantizer. In Sec. III, the
performance analysis of scalar GOQ is conducted in the HR
regime and the impact of the goal function on the optimality
loss (OL) is assessed through analytical arguments. In Sec.
IV, we address the more challenging case of vector GOQ by
providing an HR equivalent of the HR OL and a practical
GOQ algorithm. In Sec. V, we show the potential benefit
from using GOQ for important RA problems that are relevant
for quantizing information in wireless, controlled, and power
systems. Sec. VI concludes the paper.

II. PROBLEM FORMULATION

Definition II.1. Let d ě 1 be an integer and G be a subset of
Rd. Let M ě 1 be an integer. An M´quantizer QM is fully
determined by a piecewise constant function QM : G Ñ G
that is defined by QM pgq “ zm for all zm P Gm where:
m P t1, ...,Mu, the sets G1, ...,GM are called the quantization
regions and define a partition of G, and the points z1, ..., zM
are called the region representatives.

Since M is a fixed number, from now on and for the
sake of clarity, we will omit the subscript M from the
quantization function and merely refer to it as Q. We will
only make M appear for comparison purposes, mainly in the
simulations. Also, when needed, we will also use the quantity
R “ log2M which represents the number of quantization bits
per sample. Equipped with these notations, we can now define
mathematically the GO approach we propose for quantization.

Definition II.2. Let χpgq be the decision function providing
the minimum points for the goal function fpx; gq, whose
decision variable is x P Rp (p ě 1 is an integer), g being
fixed:

χpgq P arg min
xPX

fpx; gq. (1)



The optimality loss induced by quantization is defined by:

L pQ; fq “ αf

ż

gPG
rf pχ pQ pgqq ; gq ´ f pχ pgq ; gqsφ pgqdg

(2)
where φ is the probability density function (p.d.f) of g and
αf ą 0 is a scaling/normalizing factor which does not depend
on Q.

Several comments concerning the OL definition are in
order. Note that the conventional quantization approach can
be obtained from the GOQ approach by observing that the
second term of the OL functional LpQ; fq (that is, a function
of function) is independent of Q and by specializing f as
fpx; gq “ }x´g}2, }.} standing for the Euclidean norm. With
the conventional approach, quantization aims at providing a
version of g that resembles to g. However, under the GOQ
approach, what matters is the quality of the end decision taken.
The design of such a quantizer therefore depends on the math-
ematical properties of f and the underlying decision function
χ, which constitutes a key difference w.r.t. the conventional
approach. In this respect, studying analytically the relationship
between the nature of f and the quantization performance is
a nontrivial problem. For instance, for a fixed OL level, how
do the functions requiring a small (resp. large) M (that is, a
small -resp. large- amount of quantization resources) look like?
The normalizing factor αf is precisely introduced to conduct
fair comparisons between different goal functions. From the
OL definition, it can also be noticed that the knowledge of
the p.d.f. of g is implicitly assumed. One may replace the
statistical mean with an empirical mean version and rewrite
the OL under a data-based form where the integral is replaced
with a sum over the data samples obtained from a training
set. Indeed, the knowledge of the input distribution φ is indeed
convenient, especially for the analysis. However, for the design
it is not required. This is why the proposed GO quantization
algorithm is applied to the problem of data clustering, in which
only a database is available. The case of a time-varying input
distribution is not addressed here and would require to design
an adaptive quantizer, which is left as a relevant extension of
the present work. Also note that the set X and the function
χpgq are assumed to integrate the possible constraints on
the decision x. At last, note that when the optimal decision
function (ODF) χpgq is not available, other decision functions
that are suboptimal but easier to implement may be considered;
this situation will be studied in the numerical analysis.

In what follows, the main focus is on the regime of
large M , which is called the high resolution regime. This
regime is not only very useful to conduct the analysis and
make interpretations but also to provide neat approximants or
expressions. These expressions are both exploited to obtain
useful insights for the design of general quantizers and used
in the proposed quantization algorithm. As it will be seen in
the numerical performance analysis, the proposed algorithm
performs remarkably well in the low resolution regime. Note
that the direct minimization of the general form of the OL is
an NP-hard problem since it is a mathematical generalization

of the conventional quantization problem (see e.g., [20], [42]).
Therefore, using approximants and suboptimal procedures is
a classical approach in the area of quantization especially for
vector quantization.

III. SCALAR GOQ IN THE HIGH RESOLUTION REGIME

In this section we assume that both the decision to be taken
and the parameter to be quantized are scalar that is, d “ p “ 1.
For a wireless communication, this would occur for instance
when a receiver has to report a scalar channel quality indicator
(such as the SINR, the carrier/interference ratio, or the received
signal power) to a transmitter and the transmitter tunes in turn
its transmit power. Similarly, a real-time pricing system [43]
in which an electrical power consumer reports its time-varying
satisfaction parameter to an aggregator who chooses the price
dynamically corresponds to the scalar case. Additionally, many
systems, for complexity reasons, implement a set of indepen-
dent scalar quantizers instead of a vector one. This is the
case for example for some image compression standards such
as JPEG or for MIMO communications with quantized CSI
feedback [44]–[46]. In the general case, finding a quantizer
amounts to finding both the regions G1, ...,GM (which are just
intervals in the scalar case) and the representatives z1, ..., zM .
However, the calculation of regions and representatives can
be simplified in the HR regime. One could use probabilistic
density function to represent the density of quantization points,
which allows us to approximate summations by integrals. To
be precise, we assume the HR regime in the following sense
[12]. For any point g, let us introduce the quantization step
∆pgq “ min1ďmďM |g ´ zm|. Then, let us introduce the
(interval/representative) density function ρpgq which is defined
as follows:

ρpgq “ lim
MÑ`8

1

M∆pgq
. (3)

A. Optimal quantization interval density function

By construction, the number of quantization intervals or
representatives in any interval ra, bs can be approximated by

M

ż b

a

ρpgqdg. Therefore, the problem of finding a GOQ in

the HR regime amounts to finding the density function that
minimizes the OL that we will denote, with a small abuse
of notation but for simplicity by Lpρ; fq. Remarkably, the
expression of the optimal density in the HR regime can be
obtained, at least by assuming the goal and decision functions
to be sufficiently regular or smooth. This is the purpose of the
next proposition.
Proposition III.1. Let f be a fixed goal function. Assume f
κ times differentiable and χ differentiable with

κ “ min

#

i P N : @g,
Bifpx; gq

Bxi

ˇ

ˇ

ˇ

ˇ

x“χpgq

‰ 0 a.s.

+

. (4)

In the HR regime the OL Lpρ; fq is minimized by using the
following quantization interval/representative density function:



ρ‹pgq “ C

„ˆ

dχpgq

dg

˙κ
Bκfpχ pgq ; gq

Bxκ
φpgq



1
κ`1

(5)

where 1
C “

ż

G

„ˆ

dχptq

dt

˙κ
Bκfpχ ptq ; tq

Bxκ
φptq



1
κ`1

dt.

Proof. See Appendix A.

Although the optimal density is derived in the special case
of scalar quantities and the HR regime, the corresponding
result is insightful both for the analysis and the design. The
conventional result when distortion minimization is pursued
is that the optimal density ρ‹ is proportional to φ

1
3 pgq.

In practice this means allocating more quantization bits to
more likely realizations of g. Under the GOQ approach, this
conclusion is seen to be questioned. Indeed, the best density
is seen to result from a combined effect of the parameter
density φ, the variation speed of f w.r.t. the decision x (that
is, the sensitivity of the goal regarding the decision), and the
smoothness of the decision function χ w.r.t. the parameter to
be quantized. As a consequence all these three factors need
to be acccounted for in practice to design a good GOQ and
allocate quantization bits in particular. Let us illustrate this
with a simple example that is relevant to the problem of
energy-efficient wireless transmit power control.

Example. Consider the following energy-efficiency (EE)

performance metric fpx; gq “ ´
expp´ c

xg q
xη with c ą 0 and

η ě 2. Here x represents the transmit power and g the
channel gain [47] . Assume the channel gain g is exponentially
distributed that is, φ pgq “ 1

g exp
´

´
g
g

¯

with Epgq “ g ą 0.
One obtains that κ “ 2, χpgq “ c

ηg and

ρ‹pgq “ C

„

ηη`1

cηeη
gη´2φ pgq



1
3

. (6)

For instance, for η “ 3, it is easy to check that the quantization
interval density ρ‹ is increasing for 0 ď g ď g then
decreasing for g ě g. This result thus markedly differs from
the conventional distortion-based approach. Indeed, under the
latter approach, one would allocate more quantization bits to
small values of the channel gain (since φ is strictly decreasing).
Under the GOQ approach, most of the allocation bits should
be allocated for values around the mean value of g.

In this section, we have been searching for the best scalar
GOQ for a given goal function f . Now, we would like to
provide some elements about the relationship between the
nature of f and the quantization performance. For example,
it is known that compressing a signal for which its energy is
concentrated at small frequencies is generally an easy task.
Similarly, here, we would like to know more about the con-
nection between the regularity properties of the goal function
and the level of difficulty to quantize its parameters. Since, this
relevant issue constitutes a challenging mathematical problem,
we only provide some preliminary results to explore this
promising direction. For this purpose, we assume the chosen

quantizer to be given by the optimal HR quantizer given by
ρ‹ and study the impact of f on Lpρ‹; fq. To be rigorous and
clearly indicate the dependency of ρ‹ regarding f , we will use
the notation ρ‹f .

B. About choosing the scaling factor αf
So far, since f was fixed, the scaling factor αf in the

definition of the OL L was not relevant. But when it comes
to minimizing Lpρ‹f ; fq w.r.t f , this factor plays an important
role. Indeed, if one wants to compare the hardness to compress
of two functions, the retained performance criterion has to
possess some invariance properties. In particular, it should
be invariant to affine transformations. The OL has not this
property regarding f since a function of the form F “ Af`B
(with A ą 0) would produce a large OL when A is large
even if the OL obtained for the original f is small. Hence the
need for normalizing the OL properly and thus the presence of
αf . Here, we consider two choices for αf , which amounts to
considering two different reference case for the performance
comparison. The first reference case is uniform quantization.
For this case, the normalizing factor is denoted by αUQ

f and
chosen to be the reciprocal of the OL obtained when using a
HR uniform quantizer (UQ). It expresses as:

1

αUQ
f

“

ż

G
C´κg

ˆ

dχpgq

dg

˙κ
Bκfpχpgq; gq

Bxκ
φpgqdg (7)

where
ż

G
Cgdg “ 1. This case allows one to quantify the

potential gain from using a GOQ instead of a standard quan-
tizer which is independent of the goal function. The second
reference case we consider corresponds to the situation where
the DM entity takes a constant decision (CD) independently of
the value of g. This would correspond to the situation where
no instantaneous information about g is available and only
statistics can be exploited. Although this reference case is
not necessarily the right benchmark for a given application
it is still of interest for extracting useful insights because,
this time, it is not about comparing two quantizers but more
about measuring the intrinsic difficulty to compress a given
function. By defining x the chosen constant decision as
sx P arg min

xPX
Eg rf px; gq ´ f pχpgq; gqs, the corresponding

normalizing factor is denoted by αCD
f and expresses as:

1

αCD
f

“
1

p2Mqκκ!pκ` 1q

ż

gPG
rf psx; gq ´ f pχ pgq ; gqsφ pgqdg

(8)
where x is the chosen constant decision. The above quantity
represents the OL obtained when using the best CD multiplied
par a term in κ which comes from the HR approximation (see
App. A for more details).

C. On the impact of the goal function on the OL

Equipped with these two versions of the (normalized) OL,
comparing different goal functions becomes a well posed
problem. For this purpose, we have selected several functions



Goal function
fpx; gq

p.d.f. φ pgq ODF χ pgq OL (αf “
αUQ
f )

OL (αf “
αCD
f )

log p1` 10gxq´
x

uniform r1´ 1
10g
s` 0.00399 0.0488

expp´ 1
gx
q

x
uniform 1

g
0.648 6.5943

p1´expp´gxqq10

x
uniform 3.6150

g
0.648 19.4565

px´ gq2 uniform g 1 24

log p1` 10gxq´
x

exp r1´ 1
10g
s` 0.0019 0.4859

expp´ 1
gx
q

x
exp 1

g
0.083 18.75

p1´expp´gxqq10

x
exp 3.6150

g
0.083 61.12

px´ gq2 exp g 0.24 48.50

TABLE I: Comparison of different goal functions

[47]–[49] that frequently appear in wireless resource allocation
problems. For the selected functions, all quantities at hand can
be expressed analytically and the integral associated with the
OL can be computed. The obtained results appear in Table I.
With the parameter space taken to be the interval r0.1, 10s,
the table assumes two different choices for the p.d.f. φ, the
uniform distribution and a truncated exponential distribution
namely, φpgq “ expp´gq

ż 10

0.1

expp´xqdx

. The two columns providing

the value of the OL allows one to establish some hierarchy
between the selected functions. The obtained results suggest
that logarithm-type goal functions provide a relatively small
OL. These types of function would be qualified as easy to
compress, which means for example that a rough description of
the parameter is sufficient to take a good decision. Quantizing
finely the parameter would lead to a waste of resources. This
interpretation which is based on the HR analysis will be
confirmed by simulations performed in arbitrary regimes. In a
wireless system, this would e.g., mean that transmission rate-
type performance metrics are not very sensitive to quantization
noise and therefore a coarse feedback on CSI is suited to the
goal. The table shows a different behavior for exponential-
type functions, which are typically used to model energy-
efficiency in wireless systems. These types of function require
a more precise description of the function parameters (e.g.,
the CSI). Implementing the GOQ approach for such functions
is seen to still provide a quite significant gain in terms of
OL when compared to uniform quantization. We see that the
HR analysis of the scalar quantization case provides useful
insights that could be both used for an ad hoc design of a goal-
oriented quantizer and deepened by considering more complex
performance metrics.

IV. VECTOR GOQ: HIGH RESOLUTION ANALYSIS AND
PROPOSED QUANTIZATION ALGORITHM

A. High resolution analysis

As motivated in Sec. III, for some applications vector
quantization is not used for reasons such as computational
complexity. This is the case for instance for MIMO systems
where the transfer channel matrix entries are quantized by a set
of scalar quantizers. But, for optimality reasons or because of

the definition of the quantization problem, vector quantization
may be necessary. For instance, it is of high practical interest
to be able to cluster series of the non-flexible electrical power
consumption over one day for example [50] [51] [52], which
leads to a sample dimension of p “ 48 when the power signal
is sampled every 30 minutes. By construction, this clustering
problem is similar to a vector quantization problem for which
one wants to create a certain number (M with our notation)
of data subsets. For this specific problem one may want to fix
M to a small number, say M “ 4, and distinguish between 4
consumption behaviors.

For the scalar case, it has been seen that the HR regime
allows to determine the best goal-oriented quantizer, which
is fully characterized by the density function ρ‹ (see (5)).
However, in the vector case, even under the HR assumption,
the problem remains challenging in general. This is one of the
reasons why we resort to approximations. The full analytical
characterization of the corresponding approximations is left
as a relevant extension of the present work. The goal in this
paper is threefold: to show how these approximations can be
used for the quantizer design; to support the choices made by
simulations performed with a low and moderate number of
quantization bits; to focus on the potential gains that can be
brought by the GOQ approach. One the main results of this
section consists in providing an exploitable approximation of
the OL in the vector case. This approximation will be directly
exploited further in this section for the quantizer design part.
The result is stated through the following proposition.

Proposition IV.1. Assume d ě 1, p ě 1, and κ “ 2. Assume
f and χ twice differentiable. Denote by Hf px; gq the Hessian
matrix of f and denote by Jχpgq the Jacobian matrix of f
evaluated for an optimal decision χpgq. In the regime of large
M , the optimality loss function LpQ; fq defined as in (2) can
be approximated as follows:

LpQ; fq “ αf

M
ÿ

m“1

ż

Gm
pg ´ zmq

TAf,χpgqpg ´ zmqφpgqdg

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

pLM pQ;fq

`opM
´ 2
p q

(9)
where Af,χpgq “ JT

χ pgqHf pχpgq; gqJχpgq. Additionally,
by assuming the Gersho hypothesis [53] (see App. B), the
above first order HR equivalent of L can be bounded as
Lmin
M ppQ; fq ď pLM pQ; fq ď Lmax

M pQ; fq with

Lmin
M pQ; fq “

pµp
2
M´ 2

p

ˆ
ż

G
pλminpg; fqφpgqq

p
p`2 dg

˙

p`2
p

(10)

Lmax
M pQ; fq “

pµp
2
M´ 2

p

ˆ
ż

G
pλmaxpg; fqφpgqq

p
p`2 dg

˙

p`2
p

(11)
where: λminpg; fq (resp. λmaxpg; fq) is the smallest (resp.

largest) eigenvalue of Af,χpgq and µp is the least normalized



moment of inertia of the p-dimensional tessellating polytope
Tp defined by

µp “ min
Tp,z

1

p

1

volpTpq1`2{p

ż

Tp
}g ´ z}2dg. (12)

Proof. See Appendix B.

The first-order equivalent in Prop. IV.1 is seen to depend
on the matrix Af,χpgq. This matrix corresponds to the vector

generalization of the product
´

dχpgq
dg

¯2
B

2fpχpgq;gq
Bx2 that appears

in the scalar case and shows how the OL is related to the reg-
ularity properties of the goal function f . For the conventional
quantization approach (fpx; gq “ }x ´ g}2), one has merely
that Af,χpgq “ I. Therefore in the HR regime, the structure of
the equivalent shows that considering a general goal function
f amounts to introducing an appropriate weighting matrix in
the original distortion function. This matrix will be precisely
used to derive an algorithm to compute a good vector GO
quantizer that is tailored to the goal function.

The derived lower and upper bounds can be used both for
characterizing the performance of a GOQ and for the quantizer
design, which is explained at the end of this section. The
bounds are tight in special cases such as when p “ 1 (in
which case µp “ 1

12 ) and when fpx; gq “ }x ´ g}2 (with no
restrictions on the dimensions d and p. Generally speaking,
the gap between the two bounds is observed to be small when
p is less or much less than d. Now if p ě d, it can be seen
that λminpg; fq “ 0 since the matrix Af,χ pgq is not full rank.
As a consequence, the lower bound derived in (10) is not tight
anymore. Hence, it is necessary to derive a tighter lower bound
in this scenario. To this end, one can treat Jχpgqem, with em “
g´zm
}g´zm}

, as a vector and thus eTmAf,χ pgq em is minimized if
and only if Jχpgqem is aligned with the eigenvector associated
with the smallest eigenvalue of Hf pχ pgq ; gq. By denoting
νminpg; fq the smallest eigenvalue of Hf pχ pgq ; gq, the term
eTmAf,χ pgq em can be lower bounded by νminpg; fqapJχpgqq,
where apJχpgqq is the scalar factor between Jχpgqem and the
smallest eigenvector of Hf pχ pgq ; gq. By replacing λminpg; fq
with νminpg; fqapJχpgqq, a new lower bound can be derived
for the case where p ě d. The proposed refinement procedure
can also be used for the upper bound on the OL but note
that the upper bound is mainly dependent on p and is much
less dependent on the dimensionality d, which makes the
corresponding refinement generally less useful.

B. Proposed quantization algorithm

As mentioned in the last subsection, the bounds provided
by Prop. IV.1 can be used to characterize the performance
of a quantizer and study, at least numerically, the impact of
the nature of f on the OL. In the present subsection, the
main objective is to exploit the HR equivalent of Prop. IV.1
to design a practical quantization algorithm. Considering the
fact that the optimal decision function may produce solution
at the boundary of the decision set and that only sub-optimal
decision function may be available in real systems, we relax

here the optimality first order condition Bfpx;gq
Bx |x“χpgq “ 0.

Therefore, the optimality loss can be written for algorithmic
purposes in a more general form:

LpQ; fq

“

M
ÿ

m“1

ż

Gm

«

ˆ

Bfpx; gq

Bx

ˇ

ˇ

x“χpgq

˙T

pχpzmq ´ χpgqq

`
1

2
pχpzmq ´ χpgqq

T
Hf,χpgq pχpzmq ´ χpgqq



φpgqdg

` o
`

}χpzmq ´ χpgq}
2
˘

(13)

where pHf,χpgqqi,j “
B

2fpx;gq
BxiBxj

|x“χpgq for 1 ď i, j ď p. By
using the Taylor expansion, we have that:

χpzmq ´ χpgq

“Jχpgqpzm ´ gq `

»

—

—

–

pzm ´ gq
THχ1

pgqpzm ´ gq
pzm ´ gq

THχ2
pgqpzm ´ gq

. . .
pzm ´ gq

THχdpgqpzm ´ gq

fi

ffi

ffi

fl

`o
`

}zm ´ g}
2
˘

(14)

where pHχi pgqq`,k “
B

2χipgq
Bg`Bgk

for 1 ď l, k ď p and 1 ď i ď d,
χpgq “ rχ1pgq, . . . , χdpgqs

T. Plugging this expression in the
expression of LpQ; fq, the optimality loss can be re-expressed
as

LpQ; fq

“
1

2

M
ÿ

m“1

ż

Gm
pg ´ zmq

TBf,χpgqpg ´ zmqφpgqdg

`
1

2

M
ÿ

m“1

ż

Gm
pg ´ zmq

TAf,χpgqpg ´ zmqφpgqdg ` o
´

M
´2
p

¯

(15)

where Bf,χpgq “
řd
i“1 5fipgqHχipgq with

Bfpx; gq

Bx
|x“χpgq “ p5f1pgq,5f2pgq, . . . ,5fdpgqq

and Af,χpgq “ JT
χ pgqHf px; gqJχpgq.

By using this new expression of the OL, one exhibits
a natural structure for applying an alternating optimiza-

tion algorithm and thus to minimize rL “
řM
m“1

ż

Gm
pg ´

zmq
T pBf,χpgq `Af,χpgqq pg ´ zmqφpgqdg as follows:
‚ Representative updating step: To minimize L̃ with fixed

regions, the problem boils down to find the representative

zm such that
ż

Gm
pg ´ zmq

T pBf,χpgq `Af,χpgqq pg ´

zmqφpgqdg can be minimized. One can apply a gradient
descent technique to achieve that where the gradient can
be easily found:

BL̃

Bzm
“ 2

ż

Gm
Ef,χ pgq pg ´ zmqφ pgqdg (16)

where Ef,χ pgq “ Bf,χ pgq `Af,χ pgq.



Algorithm 1: Goal-oriented Quantization Algorithm

1 Inputs: goal function f px; gq, χ pgq, error tolerance ε,
number of cells M and number of iterations T ;

2 Inputs: Zp0q “
!

z
p0q
1 , . . . , z

p0q
M

)

;

3 Inputs: Gp0q “
!

Gp0q1 , . . . ,Gp0qM
)

;

4 for t “ 1 to T do
5 for m “ 1 to M do
6 Update Gptqm by

!

g
ˇ

ˇ

ˇ

r`f

´

g, z
pt´1q
m

¯

ď r`f

´

g, z
pt´1q
m1

¯

,@m1 ‰ m
)

;

7 Update zptqm by zptqm “ z
pt´1q
m ´ rt

B rLpZpt´1qq

Bz
pt´1q
m

with the step size rt ą 0 s.t. zptqm P G;
8 end

9 if
řM
m“1

›

›

›
z
ptq
m ´ z

pt´1q
m

›

›

›

2

ă ε then
10 Break;
11 end
12 end
13 Outputs: Z‹ “ Zptq and G‹ “ Gptq;

‚ Region updating step: For given representatives, the re-
gion can be computed as:

Gm “
 

g|pg ´ zmq
TEf,χpgqpg ´ zmq

ď pg ´ zm1q
TEf,χpgqpg ´ zm1q

(

where m1 ‰ m.
The approximate individual optimality loss is thus defined by
r`f pg, zq of the parameter g w.r.t. a representative z as:

r`f pg, zq fi pg ´ zq
T
Ef,χpgq pg ´ zq . (17)

our goal-oriented quantization algorithm is summarized in
pseudo-code form through algorithm 1. The proposed algo-
rithm can be applied to the scalar case. In the latter case,

the matrix Af,χ pgq becomes
´

dχpgq
dg

¯2
B

2fpχpgq;gq
Bx2 which cor-

responds to the term appearing in Equation 5 with κ “ 2.
And we have that Bf,χ pgq “ 0. The reason for this is that
either the first-order optimality condition holds or the lower
and upper bounds of the quantization interval are fixed points.

V. NUMERICAL PERFORMANCE ANALYSIS

In this section we both want to illustrate some analytical
results derived in the preceding sections and also see, from
purely numerical results, to what extent some insights obtained
from the HR analysis hold in scenarios where main assump-
tions such as smoothness are relaxed. For this purpose, we
consider four goal functions: an exponential-type goal function
and a log-type goal function which are relevant for GO infor-
mation quantization problems in wireless resource allocation
problems; a quadratic-type goal function which is typically
relevant for GOQ in controlled systems; an LP norm-type goal
function which is relevant for GO data clustering/quantization
in power systems.

A. Impact of the goal function on the OL for wireless metrics

Table I provides analytical results for the scalar case in the
HR regime. It suggests that for a given quantization scheme,
log-type goal functions lead smaller values for the OL than
exp-type goal functions. Let us consider the performance
metric introduced by [48] to measure the EE of a multiband

communication: fEE px; gq “ ´

řS
i“1 exp

´

´ c
xigi

¯

řS
i“1 xi

where S is
the number of bands, c ą 0, xi is the transmit power for band
s, and gi the channel gain for band s. The log-type function
is taken to be the classical spectral efficiency (SE) function
fSE px; gq “ ´

řS
i“1 log

`

1` xi
gi
σ2

˘

. We impose that xi ě 0

and
řS
i“1 xi ď Pmax. For Pmax

σ2 “ 5, c “ 1, S “ 2, and a
uniform quantizer Fig. 2 depicts the relative OL in percentage
(relatively to the ideal case):

Relative OLp%q “ 100ˆ

ˆ

fpχpQpgqq; gq ´ fpχpgq; gq

fpχpgq; gq

˙

(18)
averaged over 10000 independent Rayleigh fading realizations
(with Epgq “ 1) against the number of quantization bits
per realization of g. We see for a given number of bits per
sample, the OL for the SE function is much smaller than the
SE function. We retrieve the hierarchy suggested by Table I.
This shows that the SE function can accommodate a rough
quantization of the parameters (that is, the channel gains)
without degrading significantly the DM process, which is to
choose a good power allocation vector. Using a fine quantizer
would lead to waste of resources for the SE function (here we
see that a 1-bit quantizer yields an OL of about 2%, which
illustrates well the importance of adapting the quantizer to the
goal function.

B. Performance gains obtained from tailoring the quantizer to
the (control) goal

Now we assume d “ p “ 2 and consider the following
quadratic function:

fQUApx; gq “ px1 ´ h1pgqq
2
` px2 ´ h2pgqq

2
` px1 ´ x2q

2

(19)
with h1pgq “ 2g1g2 ´

1
2g

2
1g

2
2 and h2pgq “ g21g

2
2 ´ g1g2.

Parameters are assumed to be i.i.d. and exponentially dis-
tributed, i.e., φ pgq “ exp p´g1 ´ g2q. One can check that
χpgq “ rg1g2,

1
2g

2
1g

2
2s

T. In Fig. 3, the relative OL in per-
centage (relatively to the ideal case) against the number of
regions M is represented for a conventional vector quantizer
(namely, a distortion-based quantizer implementing the Lloyd-
Max algorithm [54], [55]), hardware-limited task-based quan-
tization (HLTB) in [17] and for the proposed vector GOQ
computed thanks to algorithm 1. Although Algorithm 1 is
based on a HR approximation, it is seen to provide a very
significant gain in terms of OL even for a small number of
regions. For M “ 5 a conventional quantizer would lead
to a relative OL of 70% which is a significant performance
degradation w.r.t. the ideal case where g is perfectly known,
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Fig. 2: The figure shows the impact of the number of quanti-
zation bits on the decision-making quality (measured in terms
of optimality loss) on two different well-used goal functions.
Log-type SE functions appear to accommodate very well with
very rough quantization for its parameters (CSI) which is the
not the case for exp-type EE functions. This simulation is in
accordance with the analytical results of Table I.

whereas the proposed GOQ allows the OL to be as low
as 10%. Besides, compared to HLTB quantizer which is
also goal-oriented, the optimality loss reduction of proposed
algorithm is still considerable in low-resolution regime. The
explanation behind this performance gain is already available
through Example 1 in which we have seen the importance of
adapting the “density” or more generally the concentration of
the regions (and thus allocating the quantization bits) not ac-
cording to the parameter distribution (conventional approach)
but to an appropriately weighted distribution. This difference
is illustrated through Fig. 5. The top subfigure shows the
p.d.f. of the parameter g (namely φpgq). The bottom subfigure
shows λmax

`

g; fQUA
˘

φ pgq. The analysis conducted in Sec.
III suggests to concentrate the quantization regions according
to this weighted density, which is markedly different from
φ. By doing so, Algorithm 1 provides a very significant
improvement, the main powerful insight being not to allocate
quantization resources to the most likely realizations of the
information source but to the ones that impact the most
the goal, which is measured through the weighted density
λmax

`

g; fQUA
˘

φ pgq. Notice that the above numerical results
are obtained when the p.d.f. of g is known. In practice, it
might happen that this p.d.f. is not available or is time-varying.
Then one can easily adapt algorithm 1 by replacing statistical
means with empirical/sample means and possibly, refreshing
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Fig. 3: The goal function being a quadratic function, the figure
shows the importance in terms of (decision) optimality loss
of adapting the quantizer to the goal instead of using the
conventional distortion-based quantization approach.
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Fig. 4: The figure assesses the performance loss due to not
knowing the input distribution φ perfectly but rather with a
low number of samples took from a database.

the database on the fly if the statistics need to be tracked.
Fig. 4 precisely shows the loss that would be induced by
using a relatively small database instead of knowing the input
distribution perfectly. One can observe that the data-based GO
quantizer still could achieve a relative optimality loss of 9%
for a database with only 1000 data points, which illustrates the
relevance of the proposed method when the input distribution
is not available.

C. Goal-oriented quantization and power consumption
scheduling

§ Now we assume d “ p “ 24. We consider a performance
metric which is relevant for a communication problem in



(a) New density λmax

`

g; fQUA˘φ pgq of GOQ algorithm

(b) Original probability distribution φ pgq

Fig. 5: The figure shows the marked difference between
the parameter probability distribution (bottom curve) and the
probability distribution of interest that is relevant to the
decision-making task (top curve). It implies in particular that
quantization regions (and thus quantization bits) should be
allocated in a very different way from the conventional way.

the smart grid. Indeed, we consider that the goal function
fPCSpx; gq “ }x`g}P, P being the exponent power parameter
of the LP norm, and PCS stands for power consumption
scheduling. This time the vector x “ px1, ..., xdq (d “ p here)
represents the chosen flexible power consumption schedul-
ing strategy; we impose that xi ě 0 and

řd
i“1 xi ě E,

E ą 0 being the desired energy level chosen as 30 kWh
in our simulation setting. The parameter vector g represents
the non-controllable part of the power. When P becomes
large, the problem amount to limiting the peak power. The
clustering problem is a data-based counterpart of the quanti-
zation problem in which a finite set of realizations for g is
available (instead of the knowledge of φ). We want to cluster
a finite dataset into clusters or groups of data (instead of
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Fig. 6: Required number of clusters (M ) against the Exponent
power parameter of the LP-norm (P) for the k-means and
goal-oriented clustering. The goal-oriented clustering approach
yields a drastic reduction in terms of the number of clusters
when P increases.

continuous regions). And the goal is to minimize fPCS by
only having a clustered version of the data. For the purpose
of applying the GOQ approach to clustering, we make the
following two choices in terms of implementation. First, the
statistical expectation is replaced with its empirical version
in the algorithm; the empirical mean is performed over the
300 time series of the Pecanstreet dataset. Second, since the
number of samples is small, representatives are computed
by directly minimizing LpQ, fq (as in [52]) instead of the
approximated version rL. For a given relative OL of 5% one
then looks at the number of required clusters (that is, M )
versus the exponent power parameter of the LP (that is, P). In
Fig. 6, we compare the performance of the the GO clustering
technique with the k´means algorithm (which is exactly the
data-based counterpart of the LM algorithm) and hierarchi-
cal clustering (HC) algorithm for the Pecanstreet database
[56]. For HC, the squared Euclidean distance and weighted
pair group method with arithmetic mean are used. First one
can observe that partitioning clustering slightly outperforms
hierarchical clustering, this might be explained by the fact
that several clusters in HC compose of a single outlier data
point (in terms of Euclidean distance), but outlier data points
might yield similar decision as normal data points for Lp-norm
problems especially with large p. For P ranging from 4 to 20,
the figure shows that the number of required clusters can be
decreased from about M “ 80 to M “ 8 by adapting the
clustering technique to the final decision instead of creating
clusters based on an exogenous similarity index, which is the
Euclidean norm in the case of the k´means algorithm.

VI. CONCLUSION

In this paper, the focus is on one key element of a goal-
oriented communication chain namely, the quantization stage.



The GOQ problem is very relevant for lossy data compression
e.g., to have high spectral efficiency in wireless systems (by
transmitting only the minimum amount of information relevant
to the correct task execution). It is also relevant for many
resource allocation problems, hence the choices for the goal
function in this paper. One of the contributions of this paper is
to exploit the HR assumption both for the analysis and design
of a GOQ. Valuable insights of practical interest have been
obtained. Let us mention two of them. The most conventional
way of designing a source coder is to allocate resources (say
bits) according to the frequency of the realization of the source
symbol (this is what Huffman and arithmetic coding schemes
and their many variants do). Our analysis shows that this
approach may lead to a significant performance degradation
and rather shows in a precise way (see e.g., Prop. III.1,
Example 1, and Fig. 4) how the variation speed of the goal
and decision functions should be taken into account to allocate
such resources in a much more efficient way. Our analysis
also allows one to make progresses into the direction of
understanding how the goal function impacts the quantizer.
Both analytical and simulation results are provided to exhibit
the existence of possible classes of functions which would
more or less easy to be compressed. This knowledge allows
the quantizer to be matched to the goal. For example, rough
quantization seem to have a small impact on the task execution
as far as log-type goal functions are concerned. The behavior
is different for exp-type functions. This suggests for example
that CSI feedback should be much finer for energy-efficient
performance metrics than for spectral-efficiency metrics. It is
seen that the proposed framework is rich in terms of practical
insights. Nonetheless, many relevant issues are left open and
would need to be explored. For instance, theoretical analysis
relies on smoothness assumptions for the goal and decision
functions. What would the results become for non-smooth
functions? The functions are also assumed to be known. How
to adapt the approach when only the realizations of these
functions are available? Also a dedicated complexity analysis
should be conducted. Generally, the problem of designing
vector GO quantizers when the dimension increases is open.
An interesting extension of this work would also be to address
the case of a non-stationary source, leading to the problem of
an adaptive quantizer. How learning techniques could be used
to solve all these issues?

APPENDIX A
PROOF OF PROPOSITION III.1

By using Taylor expansion, the optimality loss in high-
resolution regime can be approximated by

L pQ; fq

“αf

M
ÿ

m“1

ż

Gm
rf pχ pzmq ; gq ´ f pχ pgq ; gqsφ pgqdg

paq
“αf

M
ÿ

m“1

ż

Gm
pχ pzmq ´ χ pgqq

κ 1

κ!

Bκfpx; gq

Bxκ
|x“χpgqφpgqdg ` o

`

M´κ
˘

pbq
“αf

M
ÿ

m“1

ż

Gm
pzm ´ gq

κ

ˆ

dχpgq

dg

˙κ 1

κ!

Bκfpχpgq; gq

Bxκ
φpgqdg ` o

`

M´κ
˘

pcq
“αf

ż

G

∆
κ
pgq

pκ` 1q2κ

ˆ

dχpgq

dg

˙κ 1

κ!

Bκfpχpgq; gq

Bxκ
φpgqdg ` o

`

M´κ
˘

pdq
“

αf

p2Mqκpκ` 1q!

ż

G
ρ
´κ
pgq

ˆ

dχpgq

dg

˙κ
Bκfpχpgq; gq

Bxκ
φpgqdg ` o

`

M´κ
˘

(20)

(a) corresponds to the Taylor expansion of pfpχpzmq; gq ´
fpχpgq; gqq in the regime of large M (infinitesimals of M´κ

are not considered further); (b) follows from the fact that the
higher order terms in the Taylor expansion of pχpzmq´χpgqq
are negligible w.r.t. the first term. (c) extends the idea of
approximating mean-square error distortion in high resolution
regime (see [57], [58]) to cases with even-order κ, i.e.,

ż

Gm
pzm ´ gq

κ

ˆ

dχpgq

dg

˙κ
1

κ!

B
κfpχpgq; gq

Bxκ
φpgqdg

«

ˆ

dχpzmq

dzm

˙κ
1

κ!

B
κfpχpzmq; zmq

Bxκ
φpzmq

ż zm`
∆pzmq

2

zm´
∆pzmq

2

pzm ´ gq
κdg

«

ˆ

dχpzmq

dzm

˙κ
1

κ!

B
κfpχpzmq; zmq

Bxκ
φpzmq

∆pzmq
κ

pκ` 1q2κ
∆pzmq

«

ż

Gm

∆
κ

pgq

pκ` 1q2κ

ˆ

dχpgq

dg

˙κ
1

κ!

B
κfpχpgq; gq

Bxκ
φpgqdg;

(21)

(d) follows from results on high resolution quantization
referring to equation (3). After the derivation optimality loss
with high-resolution quantization theory, we aim to find the
optimal quantization point density to minimize the OL. We
first introduce a new function called value density:

ppgq “

ˆ

dχpgq

dg

˙κ
Bκfpx; gq

Bxκ
|x“χpgqφpgq ě 0. (22)

Then we resort to the Hölder’s inequality:
ż

p
1
κ`1 ď

ˆ
ż

pρ´κ
˙

1
κ`1

ˆ
ż

ρ

˙
κ
κ`1

(23)

knowing
ˆ
ż

ρ

˙
κ
κ`1

“ 1, it can be inferred that
ż

pρ´κ ě
ˆ
ż

p
1
κ`1

˙κ`1

, with equality if and only if pρ´κ “ C1ρ with

C1 ą 0. The optimum density function of quantization points
can thus be written as:

ρ‹pgq “

”´

dχpgq
dg

¯κ
B
κfpχpgq;gq
Bxκ φpgq

ı

1
κ`1

ż

G

„ˆ

dχptq

dt

˙κ
Bκfpχ ptq ; tq

Bxκ
φptq



1
κ`1

dt

. (24)

By plugging the optimal density into the expression of the
optimality loss, when M is large, the OL L pQ; fq becomes:

lim
MÑ8

L pQ; fq

“
αf

p2Mqκpκ` 1q!

˜

ż

G

„ˆ

dχpgq

dg

˙κ
B
κfpχ pgq ; gq

Bxκ
φpgq

 1
κ`1

dg

¸κ`1

(25)



APPENDIX B
PROOF OF PROPOSITION IV.1

To facilitate the derivation, we introduce the multi-index
notation in order to represent partial derivative of the goal
function. The d-dimensional multi-index can be written as
n “ pn1, . . . , ndq. Its sum and factorial can be expressed as
|n| “

řd
t“1 nt and n! “

śd
t“1 nt!, respectively. Considering

the decision variable x “ px1, . . . , xdq, the partial derivative
with degree n w.r.t. x can be expressed as Dn

xf “
B
|n|f

Bx
n1
1 ...Bx

nd
d

,

and the multi-index power of x can be written as xn “
d
ś

i“1

xnii .

By using the Taylor expansion for multivariate functions,
the optimality loss can be rewritten as:

L pQ; fq

“αf

M
ÿ

m“1

ż

Gm
rfpχpzmq; gq ´ fpχ pgq ; gqsφpgqdg

“

M
ÿ

m“1

»

–

ÿ

n:|n|ďκ

ż

Gm

Dn
xf pχ pgq ; gq

n!
pχ pzmq ´ χ pgqq

n φpgqdg

`
ÿ

pn:|pn|“κ`1

ż

Gm
O
´

pχ pzmq ´ χ pgqq
pn
¯

φpgqdg

fi

fl

(26)

Interestingly, one can note that the Dn
xfpχpgq;gq

n! are the
components of the gradient vector of f w.r.t. x when |n| “ 1,
and Dn

xfpχpgq;gq
n! are the components of the Hessian matrix of

f w.r.t. x when |n| “ 2. For the terms with |n| ě 3, it could be
seen as the infinitesimal of the second order terms. Therefore,
we could take k “ 2 and ignore the higher order terms in high
resolution regime. In addition, here we consider the scenario
where the optimal decision function χp.q always locates in
the interior of the feasible set X , and thus each component of
the gradient vector is zero, namely, Bfpx;gq

Bxt
|x“χpgq “ 0. The

optimality loss can be approximated by:

L pQ; fq

“

M
ÿ

m“1

ÿ

n:|n|“2

ż

Gm

Dn
xf pχ pgq gq

n!
pχ pzmq ´ χ pgqq

n
φpgqdg

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

pLM pQ;fq

`o

ˆ

M
´ 2
p

˙

(27)

and the pLM pQ; fq can be further simplified as
pLM pQ; fq “

paq
“ αf

M
ÿ

m“1

ż

Gm

1

2
pχ pzmq ´ χ pgqq

T
Hf pχ pgq ; gqpχ pzmq ´ χ pgqqφpgqdg

pbq
“αf

M
ÿ

m“1

ż

Gm

1

2
pJχ pgq pzm ´ gqq

T
Hf pχ pgq ; gqpJχ pgq pzm ´ gqqφpgqdg

pcq
“αf

M
ÿ

m“1

ż

Gm

1

2
}g ´ zm}

2
2e

T
mJ

T
χ pgqHf pχ pgq ; gqJχ pgq emφpgqdg

(28)

where em is defined as the normalized vector of the difference,
i.e., em “ g´zm

}g´zm}2
. (a) follows from the fact that the second

order term in the Taylor expansion can be rewritten with
matrix multiplication using Hessian matrix; (b) follows from

the fact that the higher order term in the Taylor expansion
of pχpgq ´ χpgmqq are negligible w.r.t. the first order term;
(c) can be verified by defining em. It is worth noting that
this expression is similar to the classical vector quantization
while the p.d.f. of g is weighted by a new coefficient related
to the Hessian and Jacobian of the goal function and the
normalized vector em. To simplify the formula, we denote
by Af,χ pgq “ JT

χ pgqHf pχ pgq ; gqJχ pgq, then one has that:

pLM pQ; fq “ αf

M
ÿ

m“1

ż

Gm

1

2
}g ´ zm}

2
2e

T
mAf,χ pgq emφpgqdg.

(29)
As the normalized vector em depends both on g and the

representative zm, the vector case can not be tackled as the
scalar case. Nevertheless, we will show similar properties
could be found in the vector case. To directly approximate
the OL defined in (28) is complicated, we thus resort to
some matrix properties to bound OL. The accuracy of our
approximation depends on how we approximate the term
eTmAf,χ pgq em. For a given parameter g, maximum eigenvalue
and minimum eigenvalue of matrix Af,χ pgq are denoted by
λmaxpg; fq and λminpg; fq ě 0 respectively since the Hessian
matrix Hf pχ pgq ; gq is nonnegative definite due to optimum.
Therefore, the term eTmAf,χ pgq em can be upper bounded by
λmaxpg; fq and lower bounded by λminpg; fq.

We first study the lower bound of pLM pQ; fq. Similarly, we
extend the notation of the point density ρpgq to a vector case
which determines the approximate fraction of representatives
contained in that region. Define the normalized moment of
inertia of the cell Gm with representative zm by

M pGm, zmq “
1

p

1

volpGmq1`2{p

ż

Gm
}g ´ zm}

2
2dg, (30)

and the inertial profile mpgq “M pGm, zmq when g P Gm, the
OL can be further approximated as [53] [12]:

L pQ; fq

“αf

M
ÿ

m“1

ż

Gm
pfpχpzmq; gq ´ fpχ pgq ; gqqφpgqdg

paq
ěαf

M
ÿ

m“1

ż

gPGm

1

2
}g ´ zm}

2
2λminpg; fqφpgqdg

pbq
“

M
ÿ

m“1

αfp

2M2{p

M pGm, zmq
ρ2{ppzmq

λminpzm; fqφpzmqvolpGmq

pcq
“

αfp

2M2{p

ż

mpgq

ρ2{ppgq
λminpg; fq pφpgqqdg

(31)

(a) comes from the fact that em is a normalized vec-
tor; (b) uses the definition of M pGm, zmq and the relation
lim
MÑ8

řM
m“1 volpGmqρpzmq “M ; (c) is still the definition of

Riemman integral. This result can be seen as a special case
of Bennett’s integral (see [57] [12]) by replacing φ pgq by the
product λminpg; fqφpgq. However, it is not known how to find
the optimal inertial profile mpgq and it is not even known what
functions are allowable as inertial profiles. To this end, Gersho



[53] made the widely accepted hypothesis or conjecture that
when R is large, most regions of a p-dimensional quantizer
aims at minimizing or nearly minimizing the mean square
error are approximately congruent to some basic tessellating p-
dimensional cell shape Tp. With this conjecture, the optimal
inertial profile mpgq can be seen as a constant µp in high
resolution case. By using the Hölder’s inequality, the optimal
density ρpgq that minimizes the distortion can be written as

ρ‹pgq “
pλminpg; fqφpgqq

p
p`2

ż

G
pλminpt; fqφptqq

p
p`2 dt

(32)

resulting in the low bound of distortion in (10). The same
reasoning can be applied to the derivation of the proposed
upper bound.

Remark When the number of cells is large, one has that
mpzmq « mpgq. Then one is able to define the inertial profile
mpgq for the parameter g. Moreover, when M is large, it is
observed that the optimal cells (in the sense of the distortion)
are roughly congruent to some basic tessellating cell shape
(Gersho’s conjecture). Even if it is difficult to find the optimal
mpgq, it could be treated as a constant by admitting Gersho’s
conjecture since it is normalized.
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