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Introduction

Metagenomics studies are based on gene centric approaches often based on assembly followed by contigs binning for building metagenome-assembled genomes (MAGs). However, a relatively low proportion of the reads can be assembled into contigs or/and MAGs. Often the higher proportion of the sequencing data (> 70%) remains largely unexploited in metagenomes because rare and closely related genomes are missed in short-read data assemblies [START_REF] Sharon | Accurate, multi-kb reads resolve complex populations and detect rare microorganisms[END_REF]. Indeed, a minimum sequencing depth is often needed for contig assembly. Bacterial species with coverage below 15x in metagenomes typically result in low-quality assemblies [START_REF] Bankevich | Joint Analysis of Long and Short Reads Enables Accurate Estimates of Microbiome Complexity[END_REF]. For Luo et al. [START_REF] Luo | Individual genome assembly from complex community short-read metagenomic datasets[END_REF], a species can only be accurately assembled from a complex metagenome when it shows at least 20x coverage. Since rare species within a community typically have low sequencing coverage, they are hardly assembled into long contigs. To reconstruct rare strains from complex assemblages thus requires sometimes an enormous dataset with a very high coverage depth exceeding sometime 1000x [START_REF] Lapidus | Metagenomic Data Assembly -The Way of Decoding Unknown Microorganisms[END_REF]. The approach described by Nielsen [START_REF] Nielsen | Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes[END_REF] allows, however, the reconstruction of any species with an adequate sequencing depth (~ 50x according to the simulation) and permits the binning of some rare members with the rarest having 0.02% relative abundance. However, a minimum sequencing depth is often needed, but not always sufficient for accurate contig assembly. Globally, assemblers perform poorly in the presence of multiple similar genomes from closely related species. In that case, unassembled reads can also belong to the flexible or accessory genome of the main components of the community. For instance, members of the wide spread marine Prochlorococcus genus have a huge pangenome, with ~ 1000 common genes (core genomes), and a 'flexible' genome, which is found in only one or a few of the Prochlorococcus genomes [START_REF] Biller | Prochlorococcus: the structure and function of collective diversity[END_REF]. However, by comparing long and short reads, Sharon et al [START_REF] Sharon | Accurate, multi-kb reads resolve complex populations and detect rare microorganisms[END_REF] concluded that the majority of unassembled reads in the short-read data were left unassembled because of low coverage and not because of the presence of multiple similar regions.

The rare components of the metagenomics data, bacterial taxa (i.e. rare biosphere) or individual genes (i.e. flexible genome), which may be hard to assemble, could nevertheless play an important role in ecosystem functioning. Regarding genes for instance, genomic and metagenomic data have defined at least 12 major clades among Prochlorococcus and the flexible gene distribution within these clades determines adaptation to the local environment (light, temperature…) [START_REF] Biller | Prochlorococcus: the structure and function of collective diversity[END_REF]. These flexible genes pool, which are not abundant, are still important because they are often associated with specific nutritional requirements (phosphorus, nitrogen or iron, [START_REF] Biller | Prochlorococcus: the structure and function of collective diversity[END_REF]). At the taxa level, rare populations of microorganisms, with their tremendous diversity [START_REF] Crespo | Probing the Rare Biosphere of the North-West Mediterranean Sea: An Experiment with High Sequencing Effort[END_REF], can also play an important role in ecosystem functioning. The "rare microbial biosphere" [START_REF] Sogin | Microbial diversity in the deep sea and the underexplored "rare biosphere[END_REF] was first seen mainly as a seed bank in which some members became dominant at times depending on specific environmental [START_REF]Pedrós-Alió C. Dipping into the Rare Biosphere[END_REF]. Some bacteria, for instance, become dominant under anthropogenic pressure [START_REF] Sauret | Rare biosphere' bacteria as key phenanthrene degraders in coastal seawaters[END_REF] or when colonizing a new substrate [START_REF] Kalenitchenko | Ultra-rare marine microbes contribute to key sulfur related ecosystem functions[END_REF]. Other changes in abundance can occur following climatic fluctuations [START_REF] Capo | Long-term dynamics in microbial eukaryotes communities: a palaeolimnological view based on sedimentary DNA[END_REF].

These observations illustrate a transient state of rare microorganisms toward the abundant biosphere, or an oscillation within a rare state [START_REF] Lynch | Ecology and exploration of the rare biosphere[END_REF]. Inversely, some rare taxa always remain rare [START_REF] Lynch | Ecology and exploration of the rare biosphere[END_REF]. The fact that some of them exhibit high cell-level metabolic activity [START_REF] Debroas | Evidence for an active rare biosphere within freshwater protists community[END_REF] could indicate that they are keystone species in ecosystems. Keystone taxa are defined by Banerjee et al. [START_REF] Banerjee | Keystone taxa as drivers of microbiome structure and functioning[END_REF] as highly connected taxa that exert a considerable influence on microbiome structure and function, irrespective of their abundance across space and time. Thus, some low-abundance taxa that are highly connected in microbial communities can explain compositional turnover better than all the taxa combined [START_REF] Herren | Keystone taxa predict compositional change in microbial communities[END_REF]. However, the functional role of rare microorganisms remains poorly understood, since they are often phylogenetically distant from referenced cultured or uncultured microbes [START_REF] Debroas | Evidence for an active rare biosphere within freshwater protists community[END_REF][START_REF] Hugoni | Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters[END_REF][START_REF] Debroas | Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data[END_REF]. Therefore, the microbial rare biosphere may constitute an important genomic reservoir or diversity pool, and a source of genetic novelty with biotechnological potential [START_REF] Elshahed | Novelty and Uniqueness Patterns of Rare Members of the Soil Biosphere[END_REF][START_REF] Pascoal | The Link Between the Ecology of the Prokaryotic Rare Biosphere and Its Biotechnological Potential[END_REF]. Thus, the rare taxa are certainly an important component of the "dark matter" [START_REF] Rinke | Insights into the phylogeny and coding potential of microbial dark matter[END_REF], but the metabolic potential of the rare biosphere remains under-explored. A limited number of studies have focused on the genetic content of this biosphere [START_REF] Delmont | Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics[END_REF][START_REF] Sachdeva | Rare microbes from diverse Earth biomes dominate community activity[END_REF].

In this work, we focused on the rare genetic material defined here as the sequencing reads that do not align with assembled contigs. We hypothesize that this genetic material plays an important role in the marine ecosystem functioning. For this purpose, we analyzed a three-year metagenomic time series based on monthly samples from the Bay of Banyuls sur Mer (NW Mediterranean Sea).

Materials and methods

Sampling and sequencing

The sampling strategy was described in Galand et al. [START_REF] Galand | A strong link between marine microbial community composition and function challenges the idea of functional redundancy[END_REF]. Briefly, surface seawater (3 m) was collected monthly from January 2012 to February 2015 (40 samples) by using a 10-L Niskin bottle at the SOLA station (42°31′N, 03°11′E) in the Bay of Banyuls sur Mer (France) in the northwestern Mediterranean. A volume of 5 L was prefiltered through 3-μm pore-size polycarbonate filters (Millipore, Billerica, MA, USA), and the microbial biomass was collected on 0.22-μm pore-size GV Sterivex cartridges (Millipore) and stored at -80 °C until nucleic acid extraction. The physicochemical parameters (Table S1) were provided by the "Service d'Observation en Milieu Littoral" (SOMLIT). After DNA extraction [START_REF] Galand | A strong link between marine microbial community composition and function challenges the idea of functional redundancy[END_REF] samples were sequenced on eight lanes of a HiSeq 2500 "High-Output" paired-end run (2 × 100 bp). Raw reads were archived in the ENA repository under accession number PRJEB26919.

Assembling

Raw paired-end Illumina reads were preprocessed by removing Nextera adapters with the bbduck program from the BBTools package (12.10.2015 release) (http://jgi.doe.gov/data-andtools/bbtools/). Reads were then trimmed and filtered using Trimmomatic v. 0.33 [START_REF] Bolger | Trimmomatic: a flexible trimmer for Illumina sequence data[END_REF] based on their quality generating a read length of ca. 85 bp. A total of 34 to 112 million reads per sample remained after filtering (Table S2). For each metagenome, high-quality reads were assembled into contigs with IDBA-UD [START_REF] Peng | IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth[END_REF] with the default iterative k-mer assembly and k-mer length increasing from 20 to 100 in steps of 20, the correction option, and with both pair-end reads (-r entry) and single-end reads (--long entry). Two kinds of reads were discriminated by mapping all the reads against the built contigs (Fig. 1). The mapping was conducted with bwa mem algorithm [START_REF] Li | Fast and accurate long-read alignment with Burrows-Wheeler transform[END_REF] with default parameters, the results by sample are displayed in the Table S2. Thereafter, we term the two fractions as unassembled, as the pool of reads that do not match with contigs formed post-assembly, and assembled reads. However, algorithms implemented in mappers are different from assemblers and in some cases it can exist some discrepancies between these tools

Community composition, functional abundance table and OTU abundance table inferred from assembled and unassembled reads

The composition of the unassembled and assembled read fractions were compared to each other with MetaFast [START_REF] Ulyantsev | MetaFast: fast referencefree graph-based comparison of shotgun metagenomic data[END_REF], which allows a direct reference-free comparison of shotgun metagenomic data.

The Bray-Curtis dissimilarity matrix computed by MetaFast was used to construct a non-metric multidimensional scaling (NMDS) ordination with the vegan package in R [START_REF] Dixon | a package of R functions for community ecology[END_REF].

An OTU abundance table based on 16S rRNA gene was built for assembled and non assembled reads separately. The 16S rRNA gene were identified by comparing all preprocessed reads to the SILVA database [START_REF] Quast | The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[END_REF] with BLASTn (identity ≥ 90% and length > 80 bp). An abundance table was built by clustering reads at a 97% similarity against the SILVA sequence collection. In addition, a phylogenetic analysis was conducted based on unique clade-specific marker genes for assembled and unassembled reads with metaphlan2 [START_REF] Truong | MetaPhlAn2 for enhanced metagenomic taxonomic profiling[END_REF], and the list of taxa and their relative abundance was used with LefSe [START_REF] Segata | Metagenomic biomarker discovery and explanation[END_REF] to identify the taxa that best explained the differences between the fractions. A functional abundance table was built with a reference-guided approach based on the UNIREF (90 and 100) [START_REF]UniProt: the universal protein knowledgebase[END_REF] and KEGG databases [START_REF] Kanehisa | KEGG as a reference resource for gene and protein annotation[END_REF]. Reads were compared against the databases using DIAMOND [START_REF] Buchfink | Fast and sensitive protein alignment using DIAMOND[END_REF] with the blastx mode and the following parameters: -evalue 1e-5 --sensitive -max-target-seqs 1. Each function in these tables contains reads originating from multiple genomes.

The generated abundance tables were characterized by zero-inflation. We removed all genes present as singletons only in the 80 samples (40 assembled and 40 unassembled), or detected in less than 20 samples. Gene loss are presented in the Table S3. Overall, we counted 846 16S rRNA OTUs, 6984 KOs, and 1,210,645 proteins (UNIREF90) in the entire dataset after applying strict filters described in the experimental procedures section (Table S3). The statistical analysis were conducted with the ALDEx2 methods [START_REF] Fernandes | Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis[END_REF] that take into account the compositional nature of the data [START_REF] Gloor | Microbiome Datasets Are Compositional: And This Is Not Optional[END_REF]. Differences in abundance between the two categories of genes (derived from assembled and unassembled reads) were considered as significant (P<0.05) when the Welch and Wilcoxon tests were convergent. The significant results annotated against the KEGG database were used to discriminate metabolic pathways between assembled and unassembled fractions with the "gage" and "pathview" functions implemented in R [START_REF] Luo | GAGE: generally applicable gene set enrichment for pathway analysis[END_REF][START_REF] Luo | Pathview: an R/Bioconductor package for pathway-based data integration and visualization[END_REF].

Multivariate analyses were conducted with the R MixOmics package [START_REF] Rohart | mixOmics: An R package for 'omics feature selection and multiple data integration[END_REF] by using the "spca" function with centered log ratio transformation (CLR) after replacing zeros with the "cmultRepl" function and the "czm" option included in the zCompositions library [START_REF] Palarea-Albaladejo | zCompositions -R package for multivariate imputation of left-censored data under a compositional approach[END_REF].

Binning covarying gene groups with assembled and unassembled reads

The most common approach to reconstruct genomes from metagenomes is to build MAGs.

MAG construction is based on mapping reads to contigs, but since we cannot obtain contigs from the rare reads, we chose an alternative approach to survey the potential genomic content of the communities. Co-Abundance gene Groups (CAGs) were built separately for the assembled and non assembled datasets, from the table gathering the functional abundance (UNIREF90) and OTU (SILVA) tables, with 3 different approaches: MSPminer [START_REF] Oñate | MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data[END_REF], canopy [START_REF] Nielsen | Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes[END_REF] and Partial Least Squares regression (PLS) based networks. MSPminer and canopy bin covarying genes by a robust measure of proportionality or correlation between genes, and give a same weight to the proteins and rRNA genes. In our approach, unlike in the original methods cited, we used the abundance of functions rather than a gene catalog. In addition, we introduce a new method to bin genes from abundance tables by associating a Partial Least Squares regression (PLS) and a bipartite network. PLS relates the OTUs (16S rRNA) and the protein tables. The goal was to predict the protein variations from the OTUs dynamics. The regression was computed with the "spls" function associated to the regression method in the MixOmics package in R [START_REF] Rohart | mixOmics: An R package for 'omics feature selection and multiple data integration[END_REF]. In a second step, a bipartite network based on PLS was built linking OTUs and protein genes. The edges with a weight lower than 0.8 and orphan vertices were deleted by using the igraph package [START_REF] Csardi | The igraph software package for complex network research[END_REF]. A CAG was then defined by grouping all the protein genes associated to one OTU.

The quality (completeness and contamination) of the CAGs built by these 3 different approaches were checked with checkM [START_REF] Parks | CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes[END_REF] with the option "--genes". In a first step, 149 CAGs were defined and the taxonomy, completeness and contamination was assessed by checkM (Table S4). The temporal dynamics of these different CAGs were assessed from the median of the gene counts at each sampling date, and a network was built based on Spearman correlations. CAGs were considered redundant if their weight (i.e. correlation) in the network was higher than 0.95 to a CAG with the same taxonomy and amino acids identity >95%. This identity was computed with compareM (https://github.com/dparks1134/CompareM). These criteria were based on the histogram of the edge weight (i.e. correlations), manual inspection of the network cluster for the CAG taxonomy and the amino acid identity. The final network, with a correlation coefficient > 0.8 or < -0.8 between edges, included 114 CAGs as well as 3 physicochemical parameters of the water samples. The centrality `indices were computed with the package qgraph [START_REF] Epskamp | qgraph: Network Visualizations of Relationships in Psychometric Data[END_REF].

Amplicon sequencing

Amplicon sequencing data were originally published in Lambert et al. [START_REF] Lambert | Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations[END_REF]. Briefly, specific primer pairs 27F (5'-AGRGTTYGATYMTGGCTCAG) and 519R (5'-GTNTTACNGCGGCKGCTG) were used to target the V1-V3 regions of the bacterial 16S rRNA gene and sequencing was carried out with Illumina MiSeq 2 x 300 bp kits. The analysis of the raw reads was done by constructing amplicon sequence variants (ASVs) following the standard pipeline of the DADA2 package [START_REF] Callahan | DADA2: Highresolution sample inference from Illumina amplicon data[END_REF].

Abundant ASVs were defined as the ones with a representation > 0.01% within a sample, and rare ASVs as having an abundance < 0.01% within a sample [START_REF] Galand | Ecology of the rare microbial biosphere of the Arctic Ocean[END_REF] 

Results

Temporal dynamics of the assembled and unassembled reads

The reads from the three-year metagenomic time series were classified according to their mapping or not to contigs larger than 1 kb (i.e. assembled and unassembled) (Fig. 1). , A direct comparison of the read composition between time points showed that for the unassembled reads the similarity between samples was highest when samples were taken one year apart (Fig. 2), and similarity was lowest when samples were taken six months apart (Fig. 2a). For the assembled reads, the seasonal pattern of similarity was noisy and the overall pattern was not as clear (Fig. 2b).

The non-metric multidimensional scaling (NMDS) computed from Bray-Curtis index obtained with MetaFast showed that the read composition of the unassembled fraction was different from the read composition of the assembled fraction (Fig. S1). We then identified the reads that were significantly enriched in each fraction (Table 1). From the statistical analysis (ALDEx2 methods) we deduced that a total of 130,450 proteins (10.7% of the total) were significantly enriched in the unassembled fraction and 125,953 (10.4%) in the assembled fraction. Furthermore, 26 16S rRNA (mean reads: 170.5) and 25 KEGG (mean reads: 69.8) annotated genes were only present in the unassembled fraction. Conversely, 2523 UNIREF genes (mean: 209.2) were present only in the assembled fraction (Table 1).

Taxonomic composition

To study the taxonomic composition of the two fractions, we used statistical analysis based on both unique clade-specific marker genes (Fig. 3) and rRNA genes (Fig. S2) found in the reads. In addition, we analyzed the results obtained from high-throughput sequencing of the 16S rRNA gene (Fig. S3). From the shotgun data, both analyses showed that the taxonomic composition of the unassembled fraction was different from that of the assembled fraction. The use of phylogenetic marker genes highlighted differences in prokaryotic and viral compositions (Fig. 3). The analysis showed that the assembled fraction had one characteristic phylum, Proteobacteria. At the class level, Rhizobiales and Betaproteobacteria with Burkholderiales dominated this fraction. The unassembled community had a larger number of signature taxa, including Verrucomicrobia, Actinobacteria, Bacteroidetes, and Thaumarchaeota, within Archaea. Among this fraction Proteobacteria, Gammaproteobacteria dominated. Interestingly, this fraction was also characterized by viruses. Since, in this study, the microbial biomass was gathered on 0.2 µm poresized filters, viruses were possibly present as prophages or particles in the lytic phase. The ASVs from the amplicon sequencing were separated in two fractions based on an abundance threshold of 0.01% (Fig. S3). The abundant ASVs were dominated by the SAR11 clade whereas the rare ASVs were also more diverse as observed for unassembled metagenomic read fraction. In the rare ASV fraction, the Gammaproteobacteria, Bacteroidetes Verrucomicrobia and Actinobacteria were more common than in the abundant fraction. Finally, the two fractions based on the assembled/unassembled reads and the reference method for deciphering the rare biosphere based on a threshold (i.e. 0.01%) gave similar results (Fig. 3 and Fig. S3). We can hypothesized that the unassembled reads capture the majority of the rarest fraction of microorganisms.

Identifying metabolic capabilities among the assembled and unassembled fraction

The alignment data showed that for all sampling dates there was a higher proportion of reads that aligned to the UNIREF90 references in the assembled (44.1%) than unassembled fraction (38.5%) (Fig. S4). The overall percentage of aligned reads for both assembled and unassembled reads was low. In addition, a higher proportion of the assembled read alignments had high identity values than those of the unassembled reads (Fig. 4). When comparing both alignment scores and identities for UNIREF90 and UNIREF100, the differences between unassembled and assembled reads were highly significant (ANOVA two ways: assembled/unassembled × sampling dates; Fig. S5). The main factor explaining the variations in identity or scores was "mappability" against contigs and not sampling date.

The sparse principal component analysis (sPCA) based on UNIREF90 and KEGG annotated genes separated the assembled and unassembled fractions (Fig. 5). The multivariate analysis explained 31% (UNIREF90 clusters) and 36% (KEGG clusters) of the variance along axes 1 and 2.

By comparing pathways (KO) present in the assembled vs. unassembled fractions, we identified two pathways involved in photosynthesis and flagellar assembly, which were enriched in the assembled communities (Fig. S6). The unassembled fraction was not significantly enriched in any of the pathways referenced in the KEGG database. This result is congruent with the previous statistical analysis showing few KOs enriched in this fraction (Table 1).

Covarying gene groups of the assembled and unassembled communities

In total, 114 non-redundant CAGs were identified. The mean completeness was 53.19% (33.47-89.71) for the 56 uCAGs and 47.27% (30.25-80.07) for the 58 aCAGs. The mean contaminations were 4.44% and 4.06% for the uCAGs and aCAGs species, respectively. The uCAGs consisted of 65,787 genes and 59,470 genes for the aCAGs. The UNIREF proteins were linked to KEGG features to identify 3,072 KOs in 78 CAGs. A total of 765 KOs specifically belonged to the uCAGs [START_REF] Gloor | Microbiome Datasets Are Compositional: And This Is Not Optional[END_REF] and 2287 to the aCAGs [START_REF] Palarea-Albaladejo | zCompositions -R package for multivariate imputation of left-censored data under a compositional approach[END_REF].

Of the 125,257 genes (UNIRE90 + 16S rRNA genes) found to be enriched in the unassembled fraction (Table 1), 16,878 were found in the uCAGs (13.4%). This proportion reached 14.7% for genes enriched in assembled fraction. Three CAGs contained 16S rRNA genes that were found to be significantly enriched in the unassembled fraction (Gammaproteobacteria, Flavobacteriia, and Betaproteobacteria), and one CAG included a 16S rRNA gene present exclusively in the unassembled reads during all sampling dates. This CAG belonged to Alphaproteobacteria (Nisaea genus).

Key constituents in marine ecosystems deciphered by a network approach

The network built with 49 uCAGs and 46 aCAGs was binned in 18 clusters (Louvain method), of which five had more than three vertices (CAGs or physico-chemical parameters). All of these large clusters included two kinds of CAGs and three were associated with physico-chemical parameters: temperature, oxygen, and nitrite concentration (Fig. 6 and Fig. S7). We identified the main metabolic pathways associated with each cluster by considering the pathways represented by at least 25% of the KEGG orthologs included in the pathway of interest. The major common pathways corresponded mainly to metabolisms involved in amino acid biosynthesis, but photosynthesis pathways also characterized one of these clusters (Fig. S7 -Cluster 17).

When analyzing the temporal dynamics of the CAGs, the spring and summer seasons determined their dynamics (Fig. S7). The network parameters allow us to decipher the main "influencers" or keystone species (Fig. 6), and temperature appears to be the main key parameter.

Among the keystone species, uCAGs and aCAGs were present and mainly classified in the Proteobacteria phylum (Alpha and Gammaproteobacteria). Interestingly, Archaea classified as Euryarchaeota appeared in this top ranking.

Discussion

In this paper we present an overview of the rare genomic content of marine microbial communities based on the reads "mappability" against contigs, and defined for the first time at the taxa or gene level. The congruence between the detection clade-specific marker genes in the assembled and unassembled reads (Fig 3) and metabarcoding results (Fig. S3), separating abundant and rare microbes, indicates that the most part of the unassembled reads belonged to rare marine species. The unassembled reads could also have originated from strain heterogeneity manifested as single nucleotide variations and small insertions or deletions [START_REF] Lapidus | Metagenomic Data Assembly -The Way of Decoding Unknown Microorganisms[END_REF]. However, the assembler used in this paper takes into account the coverage ratios between adjacent edges in the assembly graph (de Bruijn Graph) to replace it with high-covered alternatives, and acts therefore as a consensus assembly reducing information about individual strains. As only the most abundant microbes are assembled by common bioinformatics tools [START_REF] Bankevich | Joint Analysis of Long and Short Reads Enables Accurate Estimates of Microbiome Complexity[END_REF][START_REF] Luo | Individual genome assembly from complex community short-read metagenomic datasets[END_REF], and because the kind of assembler used performs poorly with strain heterogeneity, the unassembled reads that we focused on most certainly represent members of the rare biosphere.

Community composition of the assembled and unassembled fractions

The comparison of the taxonomy inferred from metabarcoding in the abundant and rare fraction (<0.01%) with those deduced from phylogenetic markers included in assembled and unassembled reads, revealed similar patterns between the two approaches. The unassembled fraction, and the rare 16S rRNA amplicons, were both characterized by a higher community diversity and by a higher abundance of Gammaproteobacteria, Verrucomicrobia, Actinobacteria and Bacteroidetes. The similarity between the two data sets is noteworthy since the approaches have different potential biases. Metabarcoding is hampered by well-known PCR bias and the cut-off definition of the rare biosphere is always arbitrary (0.01% here). To date, 16S or 18S rRNA based studies describing the rare biosphere have used a cut off, often ranging between < 1% [START_REF] Campbell | Activity of Abundant and Rare Bacteria in a Coastal Ocean[END_REF] and < 0.01% [START_REF] Galand | Ecology of the rare microbial biosphere of the Arctic Ocean[END_REF], which originates from the rank-curve distribution of microbial communities that shows a long 'tail' of low abundance taxa [START_REF] Lynch | Ecology and exploration of the rare biosphere[END_REF]. In our metagenomic approach, the delineation between rare and abundant pool genes does not depend on an arbitrary cut off, but on sequencing depth and contig length. However, the delineation between rare and abundant may still depend on the sequencing effort. Our approach differs from an earlier metagenomics study that defined rare members as sequence assemblies being in the "tail" of the contig rank abundance curve, or ~0.005% in relative abundance [START_REF] Sachdeva | Rare microbes from diverse Earth biomes dominate community activity[END_REF]. The two methods that we used, metabarcoding and metagenomic based, allowed to detect the prokaryotes characterizing the abundant fraction, the Alphaproteobacteria phylum (SAR11 clade), which dominates marine bacteria [START_REF] Morris | SAR11 clade dominates ocean surface bacterioplankton communities[END_REF]. Its ecological importance at our study site was underlined by the network analysis where it appeared among the main keystone. Interestingly, the rare gene pool (unassembled data) was characterized by viruses. These viral genes detected mainly in the rare fraction corresponded likely to the replication of the DNA phage before the cell lysis. The rare community can therefore include some taxa under a strong selection pressure through viral lysis.

Earlier experimental work suggested that some rare taxa may indeed have high susceptibility to viral attack [START_REF] Bouvier | Key role of selective viral-induced mortality in determining marine bacterial community composition[END_REF]. This idea is, however, counter intuitive within the frame of the "kill the winner" hypothesis [START_REF] Thingstad | A theoretical analysis of how strainspecific viruses can control microbial species diversity[END_REF], which suggests that rare microorganisms, because they are not abundant, have a lower probability of encountering virus [START_REF] Pedrós-Alió | Marine microbial diversity: can it be determined?[END_REF]. The link between predation and rare taxa is then rather seen as an evolutionary advantage for escaping top-down regulation [START_REF] Lynch | Ecology and exploration of the rare biosphere[END_REF]. Our data adds arguments for another hypothesis which suggests that lysis or predation are maintaining some particular taxa in a state of rarity.

Seasonal dynamics and keystone species

Our study showed that the unassembled reads of metagenomes responded strongly to seasonal variations and corresponded certainly to an adaptation of the communities to specific environment conditions (light, temperature, nutrients etc…). This unassembled gene pool, which could correspond mostly to rare taxa as discussed above, displayed a reproducible pattern of temporal dynamics that was stronger than that of the assembled fraction, which in turn could represent the abundant microorganisms. The rare fraction thus showed a strong seasonal pattern for both similar and dissimilar communities (Fig. 2). Conversely, the rhythm of the abundant fraction (i.e. assembled reads) was noisier, with no patterns for communities sampled during opposite seasons.

The abundant gene pool could thus correspond to core marine taxa with few temporal variations or to housekeeping genes. Thus, the overall seasonality of the microbial communities in response to the environment was mainly driven by the rare gene pool. A similar observation was made from coastal sands, where turnover in community composition was no longer observed when 50% of the rare species were removed from the dataset [START_REF] Gobet | Diversity and dynamics of rare and of resident bacterial populations in coastal sands[END_REF], and the Arctic Ocean where the rare biosphere was sensitive to environmental heterogeneity [START_REF] Pascoal | Exploration of the Types of Rarity in the Arctic Ocean from the Perspective of Multiple Methodologies[END_REF]. Rare communities can be classified according to different patterns of seasonal abundance and activity [START_REF] Hugoni | Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters[END_REF]. Within this classification, there is a group defined as rare taxa that never bloom but are active. It has been shown in bacteria, Archaea, and Eukaryotes [START_REF] Debroas | Evidence for an active rare biosphere within freshwater protists community[END_REF][START_REF] Hugoni | Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters[END_REF][START_REF] Campbell | Activity of Abundant and Rare Bacteria in a Coastal Ocean[END_REF]. These rare but active taxa also have a temporal pattern linked to biotic or abiotic parameters. Even though our metagenomics approach does not allow to infer activity, the reproducible seasonal dynamics of the continually rare community that we observed could suggest that they are active.

Overall, the binning step allowed the reconstruction of the main bacterial and archaeal phyla detected by the metaphlan pipeline (Fig. 3), with the exception of Thaumarchaeota (Table S2), and the network provided a good overview of the microbial interactions along the seasonal dynamics. Among the top "influencers" within this network were temperature, abundant microorganisms, and six rare taxa belonging to Gammaproteobacteria, Flavobacteriia, Dehalocccoidetes, and Euryarchaeota. The temperature had a significant influence on the microbial components of this network. Such result is not surprising, but it can be viewed as a validation of our approach. This influence is also noticeable at the read scale, since temporal variation was strongly associated with seasonality (Fig. 2). The link between heterotrophic bacterial metabolism and temperature is generally associated with nutrient availability, such as organic matter released from phytoplankton or grazing [START_REF] Huete-Stauffer | Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions[END_REF]. Alphaproteobacteria (Rhodobacterales) appeared twice in the top influencers, but were also challenged by other taxa, such as Gammaproteobacteria and Bacteroidetes. Arandia-Gorostidi et al. [START_REF] Arandia-Gorostidi | Testing the metabolic theory of ecology with marine bacteria: different temperature sensitivity of major phylogenetic groups during the spring phytoplankton bloom[END_REF] showed that the growth of these taxa was strongly related to temperature changes, whereas Alphaproteobacteria, such as SAR11, showed the lowest temperature sensitivity [START_REF] Giovannoni | Proteorhodopsin in the ubiquitous marine bacterium SAR11[END_REF]. The Gammaproteobacteria class, and more specifically the Alteromonodales, dominated the main influencers in this network. After Alphaproteobacteria, this class was the most abundant in ICoMM data [START_REF] Giovannoni | Proteorhodopsin in the ubiquitous marine bacterium SAR11[END_REF] and Alteromonodales, such as Oceanospirillales or Vibrionales, contains mainly marine species. Therefore, Alteromonas could contribute significantly to the flux of dissolved organic carbon and nutrient mineralisation in the upper ocean [START_REF] Yilmaz | Expanding the World of Marine Bacterial and Archaeal Clades[END_REF]. Furthermore, Euryarchaeota was also found to have a key role. The CAG built in this study does not allow for a precise taxonomy; however, a previous study on the same site highlighted the presence of the MGII clade [START_REF] Hugoni | Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters[END_REF][START_REF] Pereira | Seasonality of archaeal proteorhodopsin and associated Marine Group IIb ecotypes ( Ca . Poseidoniales) in the North Western Mediterranean Sea[END_REF] now defined as an order lineage. The ecological success of the MGII group could be due to the presence of light-harvesting proteins (i.e. proteorhodopsin) [START_REF] Pereira | Seasonality of archaeal proteorhodopsin and associated Marine Group IIb ecotypes ( Ca . Poseidoniales) in the North Western Mediterranean Sea[END_REF][START_REF] Iverson | Untangling Genomes from Metagenomes: Revealing an Uncultured Class of Marine Euryarchaeota[END_REF][START_REF] Pereira | Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean[END_REF]. Recently, the partially reconstructed MGIIa genome revealed the presence of glycoside hydrolases that are possibly involved in algal substrate breakdown [START_REF] Tully | Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns[END_REF][START_REF] Xie | Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation[END_REF].

Rare and abundant gene pools: many unknown functions

This study showed that there was significantly more unknown genes in the rare fraction than in the abundant fraction (Fig 4 and Fig S4). The microbial rare biosphere could thus be seen as a large pool of genes possessing known and unknown functions and considered a reservoir of "genetic novelty" [START_REF] Pascoal | The Link Between the Ecology of the Prokaryotic Rare Biosphere and Its Biotechnological Potential[END_REF][START_REF] Jousset | Where less may be more: how the rare biosphere pulls ecosystems strings[END_REF]. Since the rare gene pool showed strong temporal dynamics, it indicates that this reservoir of rare functions plays a role in ecosystem functioning. Some of the rare reads could nevertheless be mapped against database references (UNIREF or KEGG). They corresponded to known potential functions, but the identity of these rare genes was significantly lower than that of the abundant ones. This suggests that the rare gene pool harbors different variants of known genes found in abundant microbes. It should be noted that no metabolic pathways could be built from the identified rare KOs. The sequencing depth may have been too shallow to detect all the steps of the pathways present in the rare microbes, or some of the steps may be conducted by proteins coded by unknown genes.

For the abundant microorganisms, the fraction of the mapped reads against the UNIREF databases (90 or 100) always represented a low proportion of the total clean reads (< 45%). This result at the short-read scale is in agreement with previous studies showing that 40%-60% of the coding genes cannot be assigned to a known function in the marine environment [START_REF] Bernard | Microbial Dark Matter Investigations: How Microbial Studies Transform Biological Knowledge and Empirically Sketch a Logic of Scientific Discovery[END_REF][START_REF] Carradec | A global ocean atlas of eukaryotic genes[END_REF]. Even in the human gut microbiome, which has been extensively studied, approximately 40% of the genes have unknown functions, although the "mappability "of the metagenomes against microbial genomes reaches ~ 80% [START_REF] Thomas | Multiple levels of the unknown in microbiome research[END_REF]. The unmapped reads can correspond to new functions harbored by known lineages or the dark matter of unknown taxa [START_REF] Bernard | Microbial Dark Matter Investigations: How Microbial Studies Transform Biological Knowledge and Empirically Sketch a Logic of Scientific Discovery[END_REF]. Our results showed that little is known about the genes and their coded functions present in marine microbial communities. When analyzing known functions among abundant microbes, some metabolic pathways could be described, but they represented the most common metabolic pathways involved in primary metabolic processes, such as photosynthesis or flagellar assembly (Fig. S6).

Conclusion

In this work, we show that the rare microbial gene pool of the marine environment is made of key species and represents a large number of potentially novel functions. In addition, based on the presence of viruses in the rare fraction, we hypothesized that the state of rarity could be maintained by viral lysis. However, the procedures used in this study were not dedicated to the detection of viruses and thus a large diversity may have escaped detection. A metagenomic based approach helps the challenging characterization of the members of the rare biosphere and promotes the discovery of new putative functions. 
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Figure 1 :

 1 Figure 1: Schematic showing the bioinformatic analysis conducted to separate assembled and unassembled reads from a 3-year metagenomic time series dataset.

Figure 2 .

 2 Figure 2. Pairwise comparisons of similarity between communities in relation to the time separating two samples. The similarity was measured by a direct metagenome-to-metagenome comparison of the read content for the unassembled (a) and assembled ones (b).

Figure 3 .

 3 Figure 3. Cladogram showing the taxonomic position of the unassembled (orange) and assembled (blue) fractions and their relative abundance. Each circle diameter is proportional to the taxon's abundance, and the color represents which branch of the phylogenetic tree is more abundant in each fraction.

Figure 4 .

 4 Figure 4. Distribution of the identities between assembled and unassembled reads against the UNIREF90 database.

Figure 5 .

 5 Figure 5. Sparse Principal Component Analysis conducted of the read composition annotated against the UNIREF90 (top) and the KO databases (bottom). The ANOSIM statistics based on the Bray-Curtis similarity were R=0.63 (P<0.01) for the UNIREF90 dataset and R=0.90 (P<0.01) for KO results.

Figure 6 .

 6 Figure 6. Network representation of the relationship between uCAG (square vertices), aCAG (circle) and physicochemical parameters (rectangle, T: temperature, Ox: oxygen and N: nitrite) and Louvain clusters. Red lines between nodes indicate negative Spearman correlations whereas grey edges correspond to positive correlations. The table below the graphics shows the best keystones in

  

  

  

  

Table S3 .

 S3 table below the graphics shows the best keystones in Effects of the cleaning procedures on the functional abundance tables

	CAGs	Completeness Contamination Kingdom	Phylum	Class	Order	Family	Genus	Species
	ass-cano-CAG0026	61.2	4.13	k__Bacteria	p__Proteobacteria	c__Alphaproteobacteria	o__Rhodospirillales	f__Rhodospirillaceae	g__Nisaea
	ass-cano-CAG0035	46.22	0.84	k__Bacteria	p__Proteobacteria	c__Alphaproteobacteria	o__Rhodobacterales	f__Rhodobacteraceae	
	ass-cano-CAG0040	40.47	5.17	k__Bacteria	p__Proteobacteria	c__Gammaproteobacteria			
	ass-cano-CAG0045	49.54	1.01	k__Bacteria	p__Proteobacteria	c__Alphaproteobacteria	o__Rhodospirillales	f__Rhodospirillaceae	
	ass-cano-CAG0048	35.66	0	k__Bacteria	p__Proteobacteria	c__Gammaproteobacteria			
	ass-cano-CAG0049	49.34	9.44	k__Bacteria	p__Proteobacteria	c__Gammaproteobacteria	o__Alteromonadales_3	f__Alteromonadaceae	
	ass-cano-CAG0050	34.85	1.72	k__Bacteria	p__Proteobacteria	c__Gammaproteobacteria	o__Alteromonadales_3	f__Alteromonadaceae	
	ass-cano-CAG0051	52.59	0.92	k__Bacteria	p__Proteobacteria	c__Alphaproteobacteria	o__Rhodobacterales	f__Rhodobacteraceae	
	ass-cano-CAG0056	35.75	5.17	k__Bacteria	p__Verrucomicrobia c__Verrucomicrobiae	o__Verrucomicrobiales	f__Verrucomicrobiaceae	
	ass-cano-CAG0059	51.77	7.78	k__Bacteria	p__Bacteroidetes	c__Flavobacteriia	o__Flavobacteriales	f__Flavobacteriaceae	
	ass-cano-CAG0060	53.72	5.78	k__Bacteria	p__Actinobacteria	c__Actinobacteria			
	ass-cano-CAG0061	36.26	5.13	k__Bacteria	p__Proteobacteria	c__Alphaproteobacteria	o__Sphingomonadales	f__Sphingomonadaceae_3	g__Sphingobium
	ass-cano-CAG0064	67.45	9.1	k__Bacteria	p__Proteobacteria	c__Gammaproteobacteria			
	ass-cano-CAG0066	52.26	1.63	k__Bacteria	p__Cyanobacteria	c__Chroococcales	o__Chroococcales	f__Cyanobium	
	ass-cano-CAG0068	47.53	1.83	k__Bacteria	p__Verrucomicrobia c__Opitutae	o__Opitutales		
	ass-cano-CAG0069	43.1	0	k__Bacteria	p__Proteobacteria	c__Gammaproteobacteria	o__Alteromonadales_3	f__Alteromonadaceae	
	ass-cano-CAG0070	70.2	1.92	k__Bacteria	p__Cyanobacteria	c__Prochlorales	o__Prochlorales	f__Prochlorococcaceae	g__Prochlorococcus s__Prochlorococcus_marinus
	ass-cano-CAG0072	44.45	9.47	k__Bacteria	p__Proteobacteria	c__Alphaproteobacteria	o__Rhodospirillales	f__Rhodospirillaceae	
	ass-cano-CAG0073	49.49	4.01	k__Bacteria	p__Proteobacteria	c__Alphaproteobacteria	o__Rhodobacterales		
	ass-cano-CAG0075	40.11	3.51	k__Bacteria	p__Bacteroidetes	c__Flavobacteriia	o__Flavobacteriales	f__Flavobacteriaceae	
	ass-cano-CAG0077	58.97	0	k__Bacteria	p__Bacteroidetes	c__Flavobacteriia	o__Flavobacteriales		
	ass-cano-CAG0078 ass-cano-CAG0081 ass-cano-CAG0088	61.33 39.87 37.23	Before cleaning k__Bacteria p__Proteobacteria Databases 7.91 Features 3.79 k__Bacteria p__Cyanobacteria 1.72 k__Bacteria p__Bacteroidetes	c__Gammaproteobacteria After cleaning Reads Features c__Prochlorales o__Prochlorales c__Flavobacteriia o__Flavobacteriales	f__Prochlorococcaceae Reads f__Flavobacteriaceae	g__Prochlorococcus s__Prochlorococcus_marinus
	ass-cano-CAG0089	47.85	9.63	k__Bacteria	p__Proteobacteria	c__Betaproteobacteria	o__Methylophilales		
	ass-cano-CAG0091	31.27	0	k__Bacteria	p__Actinobacteria	c__Actinobacteria			
	ass-cano-CAG0093 ass-cano-CAG0104 ass-cano-CAG0108	39.47 43.36 31.99	SILVA 0 KEGG 5.18 0.54	k__Bacteria k__Bacteria k__Bacteria	6959 p__Proteobacteria 9826 p__Proteobacteria p__Bacteroidetes	1260545 4.97E+08 c__Alphaproteobacteria c__Flavobacteriia	846 6984 o__Flavobacteriales	1191644 4.97E+08	
	ass-cano-CAG0109 ass-cano-CAG0114	46.33 35.8	uniref90 0.66 0.74	k__Bacteria k__Bacteria	7725889 p__Proteobacteria p__Bacteroidetes	1.15E+09 c__Betaproteobacteria c__Flavobacteriia	1210645 o__Methylophilales o__Flavobacteriales	1.09E+09	
	ass-miner-msp_023 ass-miner-msp_025	58.08 80.07	Uniref100 3.86 k__Bacteria 4.92 k__Bacteria	8471020 p__Proteobacteria p__Proteobacteria	9.40E+08 c__Alphaproteobacteria c__Alphaproteobacteria	NA o__Rhodobacterales o__Rhodobacterales	f__Rhodobacteraceae NA f__Rhodobacteraceae	
	ass-miner-msp_036	50.17	6.31	k__Bacteria	p__Verrucomicrobia c__Verrucomicrobiae	o__Verrucomicrobiales	f__Verrucomicrobiaceae	
	ass-miner-msp_037	47.87	6.49	k__Bacteria	p__Verrucomicrobia c__Verrucomicrobiae	o__Verrucomicrobiales	f__Verrucomicrobiaceae	
	ass-miner-msp_042	39.09	6.53	k__Bacteria	p__Proteobacteria	c__Gammaproteobacteria	o__Alteromonadales_3	f__Alteromonadaceae	
	ass-miner-msp_049	41.18	1.72	k__Bacteria	p__Proteobacteria	c__Gammaproteobacteria			
	ass-miner-msp_054	32.47	0	k__Bacteria	p__Proteobacteria	c__Alphaproteobacteria	o__Rhodospirillales	f__Rhodospirillaceae	
	ass-miner-msp_056	55.25	2.3	k__Bacteria	p__Planctomycetes	c__Planctomycetia	o__Planctomycetales	f__Planctomycetaceae	
	ass-miner-msp_058	49.48	1.72	k__Bacteria	p__Proteobacteria	c__Alphaproteobacteria	o__Rhodobacterales	f__Rhodobacteraceae	
	ass-miner-msp_059	58.37	3.53	k__Bacteria	p__Cyanobacteria	c__Chroococcales	o__Chroococcales	f__Cyanobium	
	ass-miner-msp_060	30.83	0	k__Bacteria	p__Proteobacteria	c__Gammaproteobacteria			
	ass-miner-msp_064	77.2	6.81	k__Bacteria	p__Actinobacteria	c__Actinobacteria	o__Actinomycetales	f__Microbacteriaceae	
	ass-miner-msp_068	55.68	9.55	k__Bacteria	p__Proteobacteria	c__Betaproteobacteria	o__Burkholderiales		
	ass-miner-msp_073	68.23	1.97	k__Bacteria	p__Bacteroidetes	c__Flavobacteriia	o__Flavobacteriales		
	ass-miner-msp_074	67.28	3.89	k__Bacteria	p__Cyanobacteria	c__Prochlorales	o__Prochlorales	f__Prochlorococcaceae	g__Prochlorococcus s__Prochlorococcus_marinus
	ass-miner-msp_079	36.04	1.73	k__Bacteria	p__Proteobacteria				
	ass-miner-msp_082	54.77	2	k__Bacteria	p__Proteobacteria				
	ass-miner-msp_083	38.01	0.78	k__Bacteria	p__Proteobacteria	c__Gammaproteobacteria			
	ass-miner-msp_088	36.36	0	k__Bacteria	p__Proteobacteria	c__Gammaproteobacteria	o__Alteromonadales_3	f__Alteromonadaceae	
	ass-miner-msp_089	32.4	0.93	k__Archaea	p__Euryarchaeota				
	ass-miner-msp_090	50.11	0.54	k__Bacteria	p__Bacteroidetes	c__Flavobacteriia	o__Flavobacteriales	f__Cryomorphaceae	
	ass-miner-msp_092	36.21	3.45	k__Bacteria	p__Actinobacteria	c__Actinobacteria			
	ass-miner-msp_094	35.42	1.72	k__Bacteria	p__Bacteroidetes	c__Flavobacteriia	o__Flavobacteriales	f__Flavobacteriaceae	
	ass-miner-msp_096	40.61	5.31	k__Bacteria	p__Proteobacteria	c__Alphaproteobacteria	o__Rhodospirillales	f__Rhodospirillaceae	

Table S4 .

 S4 Completeness, contamination and taxonomy of the CAGs built with the three methods described in the materials and methods. (ass : assembled or aCAG -unass : unassembled or uCAG -cano : Canopy method (Nielsen et al. 2014) -miner-msp : MSPminer method (Plaza Oñate et al. 2019) -mixo: new approach described in materials and methods section) Fig S7 Temporal dynamics (z-scores) of the unassembled and assembled CAGs inside the main network clusters assessed by the Louvain methods. The clusters composed of less than 3 vertices are not represented. The grey rectangle represents spring and summer periods. The table displays the mains metabolic pathways in the clusters 16 and 17 (Any pathway with at least 25 % of the KOs were detected in the other clusters).Fig S8. « ExpectedInfluence » parameter computed from the network with the package qgraph under R.

	ass-miner-msp_099	55.8	3.81	k__Bacteria	p__Bacteroidetes				
	ass-miner-msp_100	52.77	0.54	k__Bacteria	p__Bacteroidetes	c__Flavobacteriia	o__Flavobacteriales		
	ass-miner-msp_103	30.25	0	k__Bacteria	p__Bacteroidetes	c__Flavobacteriia	o__Flavobacteriales		
	ass-miner-msp_106	33.56	1.58	k__Bacteria	p__Actinobacteria	c__Actinobacteria	o__Actinomycetales		
	ass-miner-msp_111	35.93	1.16	k__Bacteria	p__Bacteroidetes	c__Flavobacteriia	o__Flavobacteriales	f__Flavobacteriaceae	
	ass-miner-msp_112	48.02	2.94	k__Bacteria	p__Bacteroidetes	c__Flavobacteriia	o__Flavobacteriales		
	ass-miner-msp_113	38.09	4.39	k__Bacteria	p__Proteobacteria	c__Alphaproteobacteria	o__Rhizobiales		
	ass-miner-msp_117	48.4	8.97	k__Bacteria	p__Proteobacteria	c__Betaproteobacteria	o__Methylophilales		
	ass-miner-msp_118	47.1	3.23	k__Bacteria	p__Bacteroidetes	c__Flavobacteriia	o__Flavobacteriales		
	ass-miner-msp_119	35.44	4.8	k__Bacteria					
	ass-miner-msp_123	54.44	1.17	k__Bacteria	p__Proteobacteria	c__Betaproteobacteria	o__Methylophilales		
	ass-miner-msp_129	31.5	0	k__Bacteria	p__Proteobacteria	c__Alphaproteobacteria	o__Rhodospirillales	f__Rhodospirillaceae	
	ass-miner-msp_134 ass-miner-msp_139 unass-miner-msp_063 ass-miner-msp_140 unass-miner-msp_082 ass-mixo-msp_236 unass-miner-msp_083 ass-mixo-msp_318 ass-mixo-msp_34 ass-mixo-msp_349 ass-mixo-msp_352 ass-mixo-msp_444 ass-mixo-msp_502 ass-mixo-msp_83 unass-cano-CAG0027 unass-cano-CAG0032 unass-cano-CAG0048 unass-cano-CAG0050 unass-cano-CAG0052 unass-cano-CAG0056 unass-cano-CAG0062 unass-cano-CAG0066 unass-cano-CAG0073 unass-cano-CAG0074 unass-cano-CAG0077 unass-cano-CAG0080 unass-cano-CAG0082 unass-cano-CAG0085 unass-cano-CAG0088 unass-cano-CAG0089 unass-cano-CAG0090 unass-cano-CAG0091 unass-cano-CAG0095 unass-cano-CAG0098 unass-cano-CAG0102 unass-cano-CAG0106 unass-cano-CAG0108 unass-cano-CAG0109 unass-mixo-msp_71 unass-mixo-msp_679 unass-mixo-msp_677 unass-mixo-msp_654 unass-mixo-msp_610 unass-mixo-msp_516 unass-mixo-msp_448 unass-mixo-msp_405 unass-mixo-msp_355 unass-mixo-msp_309 unass-mixo-msp_144 unass-mixo-msp_122 unass-miner-msp_155 unass-miner-msp_146 unass-miner-msp_132 unass-miner-msp_130 unass-miner-msp_119 unass-miner-msp_112 unass-miner-msp_111 unass-miner-msp_110 unass-miner-msp_109 unass-miner-msp_107 unass-miner-msp_102 unass-miner-msp_105 unass-miner-msp_101 unass-miner-msp_099 unass-miner-msp_096 unass-miner-msp_086 unass-miner-msp_087 unass-miner-msp_088 unass-miner-msp_093	46.09 32.26 35.75 41.45 81.53 39.77 56.05 51.63 45.3 39.55 48.95 34.5 50.91 42.16 82.18 84.12 77.79 82.27 67.08 79.6 58.16 73.66 50.36 72.06 73.92 61.47 39.14 50.57 52.33 74.99 52.06 57.75 50.34 78.78 41.88 40.24 53.06 77.05 36.32 37.74 42.22 45.7 43.94 89.71 36.85 34.04 33.47 40.04 45.54 40.22 33.65 34.83 41.98 34.94 48.64 33.65 40.83 52.59 58.94 50.87 58.34 79.63 47.73 52.27 43.6 38.71 79.74 86.88 38.9	5.05 1.53 2.6 0.68 9.22 9.32 1.96 4.81 9.79 8.82 7.73 3.66 4.52 1.62 5.73 6.73 6.87 4.93 2.72 6.83 7.67 7.03 1.94 2.64 2.81 7.28 6.96 6.29 5.39 4.04 8.09 1.74 0 1.37 2.15 3.74 1.35 1.35 5.13 5.62 7.25 6.91 5.54 6.67 1.72 3.57 0.72 9.44 5.62 4.86 1.75 3.2 8.2 4.79 0 0 5.67 3.75 0.75 4.5 9.22 5.77 0.81 2.56 1.08 5.17 8.77 3.32 1.72	k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Archaea k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Archaea k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria k__Bacteria	p__Bacteroidetes p__Proteobacteria p__Planctomycetes p__Verrucomicrobia c__Opitutae c__Flavobacteriia c__Gammaproteobacteria c__Planctomycetia p__Bacteroidetes c__Flavobacteriia p__Proteobacteria c__Gammaproteobacteria p__Proteobacteria c__Alphaproteobacteria p__Planctomycetes c__Planctomycetia p__Verrucomicrobia c__Opitutae p__Proteobacteria c__Alphaproteobacteria p__Actinobacteria c__Actinobacteria p__Proteobacteria c__Alphaproteobacteria p__Proteobacteria p__Proteobacteria p__Proteobacteria c__Alphaproteobacteria p__Verrucomicrobia c__Verrucomicrobiae p__Proteobacteria c__Alphaproteobacteria p__Proteobacteria c__Gammaproteobacteria p__Bacteroidetes c__Flavobacteriia p__Proteobacteria c__Alphaproteobacteria p__Bacteroidetes c__Flavobacteriia p__Bacteroidetes c__Flavobacteriia p__Proteobacteria c__Gammaproteobacteria p__Bacteroidetes c__Flavobacteriia p__Proteobacteria p__Bacteroidetes c__Flavobacteriia p__Bacteroidetes c__Flavobacteriia p__Bacteroidetes c__Flavobacteriia p__Proteobacteria c__Alphaproteobacteria p__Proteobacteria c__Betaproteobacteria p__Bacteroidetes c__Flavobacteriia p__Verrucomicrobia c__Opitutae p__Verrucomicrobia c__Opitutae p__Actinobacteria c__Actinobacteria p__Proteobacteria c__Gammaproteobacteria p__Euryarchaeota p__Proteobacteria c__Gammaproteobacteria p__Proteobacteria c__Gammaproteobacteria p__Bacteroidetes c__Flavobacteriia p__Proteobacteria c__Betaproteobacteria p__Proteobacteria c__Alphaproteobacteria p__Proteobacteria c__Alphaproteobacteria p__Proteobacteria c__Alphaproteobacteria c__Gammaproteobacteria p__Chloroflexi c__Dehalococcoidetes p__Bacteroidetes c__Flavobacteriia p__Bacteroidetes c__Flavobacteriia p__Euryarchaeota p__Proteobacteria c__Gammaproteobacteria p__Proteobacteria p__Bacteroidetes c__Flavobacteriia p__Bacteroidetes c__Cytophagia p__Cyanobacteria c__Prochlorales p__Bacteroidetes c__Flavobacteriia p__Bacteroidetes c__Flavobacteriia c__Gammaproteobacteria p__Proteobacteria c__Alphaproteobacteria c__Gammaproteobacteria p__Proteobacteria p__Verrucomicrobia c__Opitutae c__Gammaproteobacteria p__Actinobacteria c__Actinobacteria p__Proteobacteria p__Proteobacteria c__Alphaproteobacteria p__Proteobacteria p__Bacteroidetes c__Flavobacteriia p__Proteobacteria c__Alphaproteobacteria p__Actinobacteria c__Actinobacteria p__Proteobacteria c__Betaproteobacteria p__Proteobacteria	o__Flavobacteriales o__Alteromonadales_3 o__Planctomycetales o__Flavobacteriales o__Opitutales o__Pseudomonadales o__Rhodospirillales o__Planctomycetales o__Opitutales o__Rhodospirillales o__Rhodobacterales o__Rhodobacterales o__Verrucomicrobiales o__Rhodobacterales o__Alteromonadales_3 o__Flavobacteriales o__Rhodobacterales o__Flavobacteriales o__Flavobacteriales o__Alteromonadales_3 o__Rhodospirillales o__Opitutales o__Opitutales o__Flavobacteriales o__Alteromonadales_3 o__Methylophilales o__Flavobacteriales o__Methylophilales o__Flavobacteriales o__Rhodospirillales o__Flavobacteriales o__Rhodospirillales o__Flavobacteriales o__Flavobacteriales o__Flavobacteriales o__Flavobacteriales o__Legionellales o__Flavobacteriales o__Cytophagales o__Prochlorales o__Flavobacteriales o__Flavobacteriales o__Rhodobacterales o__Opitutales o__Actinomycetales o__Actinomycetales o__Rhodobacterales_2 o__Flavobacteriales o__Rhodobacterales o__Actinomycetales o__Methylophilales Best influencers/ f__Planctomycetaceae f__Alteromonadaceae f__Rhodospirillaceae f__Moraxellaceae f__Planctomycetaceae f__Rhodobacteraceae f__Alteromonadaceae f__Rhodospirillaceae f__Rhodospirillaceae f__Rhodospirillaceae f__Cryomorphaceae f__Alteromonadaceae f__Cryomorphaceae f__Flavobacteriaceae f__Flavobacteriaceae f__Rhodobacteraceae f__Cryomorphaceae f__Alteromonadaceae f__Cytophagaceae_2 f__Rhodobacteraceae f__Prochlorococcaceae f__Verrucomicrobiaceae f__Rhodobacteraceae f__Hyphomonadaceae uCAG f__Hyphomonadaceae f__Rhodospirillaceae f__Microbacteriaceae aCAG keystone species	g__Nisaea g__Prochlorococcus s__Prochlorococcus_marinus g__Oceanicaulis
	unass-cano-CAG0113	34.5	0.18	k__Bacteria	p__Bacteroidetes	c__Cytophagia	o__Cytophagales	f__Cytophagaceae_2	
	unass-cano-CAG0114	43.47	5.17	k__Bacteria	p__Proteobacteria	c__Gammaproteobacteria			
	unass-cano-CAG0115 unass-cano-CAG0116 Pathways	37.48 38.97	1.61 0.27	k__Bacteria k__Bacteria	p__Bacteroidetes p__Actinobacteria	c__Flavobacteriia c__Actinobacteria KOs in pathways	o__Flavobacteriales o__Actinomycetales		
	unass-cano-CAG0117	46.77	0	k__Bacteria	p__Bacteroidetes	c__Flavobacteriia	o__Flavobacteriales		
	unass-cano-CAG0124 unass-cano-CAG0133 Cluster 16	36.64 42.31	4.76 0.91	k__Bacteria k__Bacteria	p__Proteobacteria p__Proteobacteria	c__Alphaproteobacteria c__Gammaproteobacteria	o__Rhodobacterales o__Thiotrichales	f__Hyphomonadaceae	g__Oceanicaulis
	unass-cano-CAG0136 unass-cano-CAG0145 ko00290 Valine, leucine and isoleucine biosynthesis 37.2 3.45 k__Bacteria p__Proteobacteria 36.13 3.45 k__Bacteria p__Proteobacteria unass-miner-msp_030 85.08 6.95 k__Bacteria p__Proteobacteria ko00970 Aminoacyl-tRNA biosynthesis unass-miner-msp_033 81.93 8.22 k__Bacteria p__Proteobacteria unass-miner-msp_045 76.68 5.44 k__Bacteria p__Verrucomicrobia c__Verrucomicrobiae c__Gammaproteobacteria c__Alphaproteobacteria c__Betaproteobacteria c__Gammaproteobacteria ko00780 Biotin metabolism	o__Legionellales o__Rhodospirillales 42% 32% o__Burkholderiales o__Verrucomicrobiales 30%	f__Rhodospirillaceae f__Verrucomicrobiaceae	
	unass-miner-msp_060 Cluster 17	38.56	1.72	k__Bacteria	p__Proteobacteria	c__Gammaproteobacteria	o__Alteromonadales_3	f__Alteromonadaceae	
	ko00290 Valine, leucine and isoleucine biosynthesis		53%		
	ko00780 Biotin metabolism					39%		
	ko00970 Aminoacyl-tRNA biosynthesis			35%		
	ko00473 D-Alanine metabolism				33%		
	ko01230 Biosynthesis of amino acids			31%		
	ko00670 One carbon pool by folate				30%		
	ko00785 Lipoic acid metabolism				27%		
	ko00770 Pantothenate and CoA biosynthesis			26%		
	ko00195 Photosynthesis					25%		
	ko00860 Porphyrin and chlorophyll metabolism			25%		
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