
HAL Id: hal-03811082
https://hal.science/hal-03811082v1

Submitted on 12 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Basic approach to Emergent Programming - Feasibility
Study for Engineering Adaptive Systems using

Self-Organizing Instruction-agents
Jean-Pierre Georgé, Marie-Pierre Gleizes, Pierre Glize

To cite this version:
Jean-Pierre Georgé, Marie-Pierre Gleizes, Pierre Glize. Basic approach to Emergent Programming
- Feasibility Study for Engineering Adaptive Systems using Self-Organizing Instruction-agents. 3rd
International Workshop on Engineering Self-Organising Applications (ESOA 2005), Jul 2005, Utrecht,
Netherlands. pp.16-30, �10.1007/11734697_2�. �hal-03811082�

https://hal.science/hal-03811082v1
https://hal.archives-ouvertes.fr


Basic approach to Emergent Programming

Feasibility Study for Engineering Adaptive
Systems using Self-Organizing Instruction-agents

Jean-Pierre Georgé, Marie-Pierre Gleizes, Pierre Glize

IRIT, Université Paul Sabatier, 118 route de Narbonne, 31400 Toulouse, France
{george, gleizes, glize}@irit.fr

Abstract. We propose to investigate the concept of an Emergent Pro-
gramming Environment enabling the development of complex adaptive
systems. This is done as a means to tackle the problems of the growth
in complexity of programming, increasing dynamisms in arti�cial sys-
tems and environments, and the lack of knowledge about di�cult prob-
lems and their solutions. For this we use as a foundation the concept
of emergence and a multi-agent system technology based on cooperative
self-organizing mechanisms.
The general objective is then to develop a complete programming lan-
guage in which each instruction is an autonomous agent trying to be in
a cooperative state with the other agents of the system, as well as with
the environment of the system. By endowing these instruction-agents
with self-organizing mechanisms, we obtain a system able to continu-
ously adapt to the task required by the programmer (i.e. to program
and re-program itself depending on the needs). The work presented here
aims at showing the feasibility of such a concept by specifying, and ex-
perimenting with, a core of instruction-agents needed for a sub-set of
mathematical calculus.

1 Introduction
In the last few years, the use of computers has spectacularly grown and classical
software development methods run into numerous di�culties. Operating sys-
tems are a good example of extremely complex software which are never exempt
of problems. The classical approach, by decomposition into modules and total
control, cannot guaranty the functionality of the software given the complexity
of interaction between the increasing and variable number of modules, and the
shear size of possibilities. Adding to this, the now massive and inevitable use
of network resources and distribution only increases the di�culties of design,
stability and maintenance.

1.1 Neo-computation Problems
This state is of interest to an increasing number of industrials, including IBM
who wrote in a much relayed manifesto : "Even if we could somehow come up with



enough skilled people, the complexity is growing beyond human ability to manage
it. Pinpointing root causes of failures becomes more di�cult, while �nding ways
of increasing system e�ciency generates problems with more variables than any
human can hope to solve. Without new approaches, things will only get worse"
[14].

These kind of applications are what we call neo-computation problems, namely:
autonomic computing, pervasive computing, ubiquitous computing [18], emer-
gent computation, ambient intelligence, amorphous computing... This set of
problems have in common the inability to de�ne the global function to achieve,
and by consequence to specify at the design phase, a derived evaluation function
for the learning process. They are characterized by :

� a great number of interacting components (intelligent objects, agents, soft-
ware);

� a variable number of these components during runtime (open system);
� the impossibility to impose a global control;
� an evolving and unpredictable environment;
� a global task to achieve.

1.2 Problem Solving by Emergence

Given the previous characteristics, the challenge is to �nd new approaches to
conceive these new systems by taking into account the increasing complexity
and the fact that we want reliable and robust systems. For this, because of the
similarities, it seems opportune to look at natural systems - biological, physical or
sociological - from an arti�cial system builder's point of view so as to understand
the mechanisms and processes which enable their functioning.

In Biology for example, a lot of natural systems composed of autonomous
individuals exhibit aptitudes to carry out complex tasks without any global
control. Moreover, they can adapt to their surroundings either for survival needs
or to improve the functioning of the collective. This is the case for example in
social insects colonies [4] such as termites and ants [3]. The study of swarm
behaviours by migratory birds or �sh shoals also shows that the collective task
is the result of the interactions between autonomous individuals. Non supervised
phenomena resulting from the activity of a huge number of individuals can also
be observed in human activities such as the synchronization of clapping in a
crowd or tra�c jams. But the most surprising is still the appearance of human
consciousness out of the chemical and electrical jumble of our brain.

There is a common factor among all theses systems : the emergent dimension
of the observed behaviour. Thus it is quite legitimate to study emergence so as to
understand its functioning or at least to be able to adequately reproduce it for the
design of arti�cial systems. This would enable the development of more complex,
robust and adaptive systems, needed to tackle the di�culties inherent to neo-
computation problems. In this way, interesting and useful emergent phenomena
will be used in arti�cial systems when needed. Contrariwise, they will still appear
sooner or later the more complex the systems are getting but will be unexpected



and unwanted. To prevent this, one orientation would be, in our opinion, that the
scienti�c community studies and develops new theories based upon emergence.
The prerequisites of such a theory could be resumed in four points :
� to start from the Systems Theory �eld;
� to focus on the parts of the system and their functioning;
� to depend neither from the systems �nality, nor its environment (there can

still be constraints or some form of feedback but there should be no imposed
behaviour for the system);

� to be independent from the material support into which a given system will
be incarnated (biological, technological, ...) : it has to be generic;

It is noteworthy that some research is already being done for quite some
years now to bring emergence into arti�cial systems, but it is still very localized.
For example, the Santa Fe Institute has acquired an international renown for
its works on complexity, adaptive complex systems and thus emergence. These
are also the preoccupations of Exystence, the European excellence network on
complex systems, or the recently begun ONCE-CS, the Open network of Centres
of Excellence in Complex Systems.

1.3 Going to the Lowest Level : the Instructions
If we suppose that we can manage to use the emergent phenomena to build
arti�cial systems, this will be by specifying the behaviour of the parts of the
systems so that it will enable their interactions to produce the expected global
emergent behaviour of the system. A relevant question would be to ask about
what parts we are focusing on and on which level. As with classical software
engineering, any decomposition could be interesting, depending on the nature of
the system being build.

We propose here to focus on the lowest possible level for any arti�cial system
: the instruction level. We will explain our theoretical and experimental explo-
ration of the concept of Emergent Programming. This concept is explained in
the next section (section 2). Its use relies on emergence and self-organization
(section 5) on one hand, and on a multi-agent approach called AMAS (Adaptive
Multi-Agent System)[11] (section 3) on the other hand. A sub-problem which we
called the elementary example has been thoroughly explored and is presented in
section 4 where we then show how the learned lessons can lead us forward in our
exploration of Emergent Programming and more generally of problem solving
using emergence.

2 Emergent Programming
2.1 The Concept
In its most abstract view, Emergent Programming is the automatic assembling
of instructions of a programming language using mechanisms which are not ex-
plicitly informed of the program to be created. We may consider that for a



programmer to produce a program comes down to �nding which instructions to
assemble and in which precise order. This is in fact the exploration of the search
space representing the whole set of possible programs until the right program is
found. However, if this exploration is easy when the programmer has a precise
knowledge about the program he wants and how to obtain it, it grows more
and more di�cult with the increase of complexity of the program, or when the
knowledge about the task to be executed by the program becomes imprecise
or incomplete. Then are we not able to conceive an arti�cial system exploring
e�ciently the search space of the possible programs instead of having the pro-
grammer do it ? Only very few works exists on this topic. One noteworthy try
has been done by Koza using Genetic Algorithms and a LISP language [16], but
the main hindrance of GA is the need for a speci�c evaluation function for each
problem, which can be very di�cult to �nd. At the opposite, we aim at an as
generic as possible approach.

To approach the problem of Emergent Programming concretely, we chose to
rely on an adaptive multi-agent system using self-organizing mechanisms based
on cooperation as it is described in the AMAS theory. This theory can be con-
sidered as a guide to endow the agents with the capacity to continuously self-
organize so as to always tend toward cooperative interactions between them
and with the environment. It then claims that a cooperative state for the whole
system implies the functional adequacy of the system, i.e. that it exhibits a be-
haviour which satis�es the constraints of the parts of the system as well as from
the environment (e.g. a user).

2.2 The Instruction-Agents
In this context, we de�ne an agent as an instruction of a programming language.
Depending on the type of the instruction he is representing, the agent pos-
sesses speci�c competences which he will use to interact with other instruction-
agents. A complete program is then represented by a given organization of the
instruction-agents in which each agent is linked with partners from which he
receives data and partners to which he sends data. The counterpart of the exe-
cution of a classical program is here simply the activity of the multi-agent system
during the exchange of data between the agents.

2.3 The Reorganization Process
We can now appreciate all the power of the concept : a given organization codes
for a given program, and thus, changing the organization changes the �nal pro-
gram. It comes down to having the agents self-organize depending on the re-
quirements from the environment so as to continuously tend toward the adequate
program (the adequate global function). In principle, we obtain a system able to
explore the search space of the possible programs in place of the programmer.
Everything depends on the e�ciency of the exploration to reach an organization
producing the right function. An important part of our work on Emergent Pro-
gramming has been the exploration of the self-organization mechanisms which



enable the agents to progress toward the adequate function, depending on the
constraints of the environment but without knowing the organization to reach
or how to do it (since this is unknown for the problems we are interested in).

2.4 A Neo-programming Environment

The system will not be able to grow ex nihilo all by itself, all the more if
we want to obtain higher level programs (programs with more complex be-
haviours). As the programmer with his classical programming environment, the
neo-programmer will have to a�ect the development of the system through a neo-
programming environment, at least at the beginning. It is a matter of supplying
the tools to shape the environment of the system so as to have this environment
constrain the system toward the adequate function. But in a pure systems the-
ory's view, the neo-programmer is simply part of the environment of the system.

But the neo-programming environment will certainly have to be more than
a simple envelope for the developing system. We will probably need to integrate
some tools for the observation of the evolution of the system, means to in�uence
this evolution, the type and proportions of instruction-agents, to a�ect some
aspects of the structure. Moreover, a complex program is generally viewed as a
modular construct and the neo-programmer may want to in�uence this modular
structure, either by manipulating some sorts of "bricks", each being an emer-
gent programming system, or by letting these "bricks" self-organize in the same
manner as their own components.

At the end, we will obtain a system able not only to "�nd" how to realize
the adequate function, but also to continuously adapt to the environment in
which it is plunged, to react to the strongly dynamic and unpredictable nature
of real world environments, and all this by presenting a high grade of robustness.
Indeed, because of its nature, the system would be able to change its internal
structure any time and by consequence its performed function, or even grow by
adding instructions to respond to some partial destruction or to gain some new
competences.

The research we did on Emergent Programming was to explore the feasibility
of the concept. For this, we restrained the programming language to the instruc-
tions needed for a subset of mathematical calculus, of which the elementary ex-
ample (section 4) is a representative. We speci�ed such a core of agents and put it
through experimentation. For this an environment has been implemented : EPE
(Emergent Programming Environment) [9]. These experimentations enabled us
to explore di�erent self-organization mechanisms for the instruction-agents so as
to �nd those who lead to the emergence of the adequate function. Part of these
mechanisms are described here.



3 Using Cooperative Agents as the Engine for
Self-organization

3.1 Adapt the System by its Parts

We consider that each part Pi of a system S achieves a partial function fpi of the
global function fs (Figure 1). fs is the result of the combination of the partial
functions fpi, noted by the operator "o". The combination being determined by
the current organization of the parts, we can deduce fs = fp1 o fp2 o ... o fpn. As
generally fp1 ofp2 6= fp2 ofp1, by transforming the organization, the combination
of the partial functions is changed and therefore the global function fs changes.
This is a powerful way to adapt the system to the environment. A pertinent
technique to build this kind of systems is to use adaptive multi-agent systems.
As in Wooldridge's de�nition of multi-agent systems [19], we will be referring
to systems constituted by several autonomous agents, plunged in a common
environment and trying to solve a common task.

fs 

fp7 

fp6 

fp5 fp4 

fp3 

fp2 

fp1 

Fig. 1. Adaptation : changing the function of the system by changing the organization.

3.2 The Theorem of Functional Adequacy

Cooperation was extensively studied in computer science by Axelrod [1] and Hu-
berman [15] for instance. "Everybody will agree that co-operation is in general
advantageous for the group of co-operators as a whole, even though it may curb
some individual's freedom" [12]. Relevant biological inspired approaches using
cooperation are for instance Ants Algorithms [7] which give e�cient results in



many domains. In order to show the theoretical improvement coming from co-
operation, we have developed the AMAS (Adaptive Multi-Agent System)[11]
theory which is based upon the following theorem. This theorem describes the
relation between cooperation in a system and the resulting functional adequacy
1 of the system.

Theorem. For any functionally adequate system, there exists at least one
cooperative internal medium system that ful�ls an equivalent function in the
same environment.

De�nition. A cooperative internal medium system is a system where no
Non-Cooperative Situations exist.

De�nition. An agent is in a Non-Cooperative Situation (NCS) when : (1)
a perceived signal is not understood or is ambiguous; (2) perceived information
does not produce any activity of the agent; (3) the conclusions are not useful to
others.

3.3 Consequence

This theorem means that we only have to use (and hence understand) a subset of
particular systems (those with cooperative internal mediums) in order to obtain
a functionally adequate system in a given environment. We concentrate on a
particular class of such systems, those with the following properties [11]:

� The system is cooperative and functionally adequate with respect to its
environment. Its parts do not 'know' the global function the system has to
achieve via adaptation.

� The system does not have an explicitly de�ned goal, rather it acts using its
perceptions of the environment as a feedback in order to adapt the global
function to be adequate. The mechanism of adaptation is for each agent to try
and maintain cooperation using their skills, representations of themselves,
other agents and environment.

� Each part only evaluates whether the changes taking place are cooperative
from its point of view - it does not know if these changes are dependent on
its own past actions.

This way of engineering systems has been successfully applied on numer-
ous applications with very di�erent characteristics for the last ten years (au-
tonomous mechanisms synthesis[6], �ood forecast[10], electronic commerce and
pro�ling,...). On each, the local cooperation criterion proved to be relevant to
tackle the problems without having to resort to an explicit knowledge of the goal
an how to reach it.
1 "Functional" refers to the "function" the system is producing, in a broad meaning,
i.e. what the system is doing, what an observer would qualify as the behaviour of a
system. And "adequate" simply means that the system is doing the "right" thing,
judged by an observer or the environment. So "functional adequacy" can be seen as
"having the appropriate behaviour for the task".



3.4 The Engine for Self-organization
The designer provides the agents with local criterion to discern between coop-
erative and non-cooperative situations. The detection and then elimination of
NCS between agents constitute the engine of self-organization. Depending on
the real-time interactions the multi-agent system has with its environment, the
organization between its agents emerges and constitutes an answer to the afore-
mentioned di�culties of neo-computation problems (indeed, there is no global
control of the system). In itself, the emergent organization is an observable or-
ganization that has not been given �rst by the designer of the system. Each agent
computes a partial function fpi, but the combination of all the partial functions
produces the global emergent function fs. Depending on the interactions between
themselves and with the environment, the agents change their interactions i.e.
their links. This is what we call self-organization.

By principle, the emerging purpose of a system is not recognizable by the
system itself, its only criterion must be of strictly local nature (relative to the
activity of the parts which make it up). By respecting this, the AMAS theory
aims at being a theory of emergence.

4 The Elementary Example
We tried to �nd an emergent programming system as simple as possible (i.e. with
the smallest number of agents with the simplest functioning), but still needing
reorganizations so as to produce the desired function. The advantages of such
a case study are that it is more practical for observation, that it leads to less
development complexity and that it presents a smaller search space.

4.1 Description
The speci�cation of each agent depends on the task he has to accomplish, of his
"inputs" and "outputs". The agents communicate by messages but to accomplish
the actual calculation, we can consider that the agents are expecting values as
inputs to be able to provide computed values as outputs. Schematically, we can
consider exchanges between agents as an electronic cabling between outputs and
inputs of agents.

The elementary example we choose is constituted of 6 agents : 3 "constant"
agents, an "addition" agent, a "multiplication" agent and an "output" agent. A
"constant" agent is able to provide the value which has been �xed at his cre-
ation. The 3 the system contains have been given su�ciently di�erent values so
as to prevent calculation ambiguity : AgentConstantA (value = 2), AgentCon-
tantB(value = 10) and AgentConstantC (value = 100). Combined with Agen-
tAddition and AgentMultiplication, the values produced by the system are results
from organizations like (A+B)∗C or any other possible combination. AgentOut
simply transmits the value he receives to the environment. But he is also in
charge of retrieving the feedback from the environment and forward it into the
system.



��
A 
B 

C 
��������

2 

10 

100 

20 

120 

��
A 
C 

B 
��������

2 

100 

10 

200 

210 

��
B 
C 

A 
��������

10 

100 

2 

1000 

1002 

��������
B 
C 

A ��
10 

100 

2 

110 

220 

��������
A 
C 

B 
��

2 

100 

10 

102 

1020 

��������
A 
B 

C 
��

2 

10 

100 

12 

1200 

OUT 

OUT 

OUT 

OUT 

OUT 

OUT 
2 

3 

1 

5 

6 

4 

Fig. 2. The 6 di�erent possible types of functional organizations for the elementary
example.

The size of the complete search space is 65, that is 7776 theoretically possible
organizations, counting all the incomplete ones (i.e. where not every agent has
all his partners). There are 120 complete organizations and among those, 24
are functional (they can actually calculate a value) if we count all the possible
permutations on the inputs which do not change the calculated value. In the end,
we have 6 types of di�erent organization (cf. Figure 2) producing these 6 values :
120, 210, 220, 1002, 1020 and 1200. The aim is to start without any partnerships
between agents and to request that the system produces the highest value for
example.

4.2 Reorganization Mechanisms
In accordance with the AMAS theory, the agent's self-organizing capacity is
induced by their capacity to detect NCS (Non-Cooperative Situations), react so
as to resorb them and continuously act as cooperatively as possible. This last
point implies in fact that the agent also has to try to resorb NCS of other agents
if he is aware of them: to ignore a call for help from another agent is de�nitely
not cooperative. We will illustrate this with the description of two NCS and how
they are resorbed.

Detection
NCSNeedIn : the agent is missing a partner on one of his inputs. Since to be

cooperative in the system he has to be useful, and to be useful he has to be able
to compute his function, he has to �nd partners able to send values toward his
input.



Most NCS lead the agent to communicate so as to �nd a suitable (new)
partner. These calls, because the agents have to take them into account, also
take the shape of NCS.

NCSNeedInMessage : the agent receives a message informing him that an-
other agent is in a NCSNeedIn situation.

Resorption
NCSNeedIn : this is one of the easiest NCS to resorb because the agent only

has to �nd any agent for his missing input. And the agents are potentially always
able to provide as many values on their outputs for as many partners as needed.
The agent has simply to be able to contact some agent providing values of the
right type (there could be agents handling values of di�erent types in a system),
i.e. corresponding to his own type. So he generates a NCSNeedInMessage de-
scribing his situation (his needs) and send it to his acquaintances (because they
are the only agents he knows).

NCSNeedInMessage : the agent is informed of the needs of the sender of the
NCS and his cooperative attitude dictates him to act. First, he has to judge if
he is relevant for the needs of the sender, and if it is the case, he has to propose
himself as a potential partner. Second, even if he is not himself relevant, one of its
acquaintances may be. He will do what the AMAS theory calls a resorption by
restricted propagation : he tries to counter this NCS by propagating the initial
message to some acquaintances he thinks may be the most relevant.

For each NCS the agent is able to detect (there are 10 NCS in total for
these agents), a speci�c resorption mechanism has been de�ned. It is a precise
description of the decision making of the agent depending on his state and on
what it perceives. For other NCS, the mechanisms become quite complicated,
and require a long description. For an exhaustive presentation, please refer to
[9].

These NCS and their symmetric for a missing partner on an output enable
the system to produce an organization where each agent has all his needed part-
ners. To obtain the functional adequacy for the system means that the �nal
organization is able to produce the expected result. The main question is how
to introduce mechanisms in the resorption of the NCS to enable the agents
as a whole to reach this organization. For this, they need some kind of "di-
rection" (but on local criterion) to get progressively closer to the solution, a
local information to judge this proximity. The information used here is simply
a "smaller/bigger" feedback type that the environment sends to the system and
that will be dispatched between the agents by propagation and by taking other
the goal (smaller or bigger). The agent then tries to satisfy its new goal and
staying at the same time the most cooperative possible with the other agents.
This will bring the system as a whole to produce a smaller or bigger value.

Of course, the agents will get into con�ict with other agents when trying
to reach these goals and the self-organizing mechanisms take that into account.
Each agent also manipulates a knowledge about the prejudice he in�icts or may
in�ict following changes he induces in the organization. For this, the agents
communicate to each other, when necessary, their current goal and state. When



choosing a new partner an agent takes into account the impact of its decision
upon the concerned agents, i.e which agents will be hindered from reaching their
goal, which agents will be in a worse state than before and in what proportion.
By minimizing these prejudices (which is a form of cooperation), the whole
organization progresses.

It is important to note that the information which is given as a feedback is not
in any way an explicit description about the goal and how to reach it. Indeed,
this information does not exist : given a handful of values and mathematical
operators, there is no explicit method to reach a speci�c value even for a human.
They can only try and guess, and this is also what the agents do. That is why
we believe the resolution we implemented to be in the frame of emergence.

4.3 Results and Discussion

Results The elementary example has been implemented in Java as a multi-
threaded agent platform able to run any type of instruction-agents. It also sim-
ulates the environment for an organization of instruction-agents and provides
tools for the observation and analysis of the reorganization process.

First of all, the internal constraints of the system are solved very quickly : in
only a few reorganization moves (among the 7776 possible organizations), all the
agents �nd their partners and a functional organization is reached. Then, because
the system is asked to produce the highest value for example (con�guration 6,
Figure 2), other NCS are produced and the system starts reorganizing toward its
goal. In accordance with the AMAS theory, the system is considered to provide
an adequate behaviour when no more NCS are detected (the environment is
satis�ed by the produced results).

On a few hundred simulations, the functional adequacy is reached in a very
satisfactory number of organization changes. Since the search space if of 7776
possible organizations, a blind exploration would need an average of 3.888 checked
organizations to reach a speci�c one. Since a functional organization possesses
4 identical instances for a given value (by input permutations), we would need
972 tries to get the right value. Experimentation shows that, whatever the initial
organization (without any links or one of the 6 functionals), the system needs
to explore less than a hundred organizations among the 7776 to reach one of the
4 producing the highest value. We consider that this self-organization strategy
allows a relevant exploration of the search space. A noteworthy result is also
that whatever organization receives the feedback for a better value, the next
organization will indeed produce a better value (if it exists).

Emergent Programming : A Universal Tool If we de�ne all the agents
needed to represent a complete programming language (with agents representing
variables, allocation, control structures, ...) and if this language is extensive
enough, we obtain maximal expressiveness : every program we can produce with
current programming languages can be coded as an organization of instruction-
agents. In its absolute concept, Emergent programming could then solve any



problem, given that the problem can be solved by a computer system. Of course,
this seems quite unrealistic, at least for the moment.

Problem Solving using Emergence But if we possess some higher-level
knowledges about a problem, or if the problem can be structured at a higher
level than the instruction level, then it is more e�cient and easier to conceive
the system at a higher level. This is the case for example when we can iden-
tify entities of bigger granularity which therefore have richer competences and
behaviours, maybe adapted speci�cally for the problem.

Consequently, we will certainly be able to apply the self-organizing mecha-
nisms developed for Emergent Programming to other ways to tackle a problem.
Indeed, instruction-agents are very particular by the fact that they represent
the most generic type of entities and that there is a huge gap between their
functions and the function of a whole program. The exploration of the search
space, for entities possessing more information or more competences for a given
problem can only be easier. In the worst case, we can always try to use Emergent
Programming as a way to specify the behaviour of higher-level entities (recursive
use of emergence).

Let us consider for instance the problem of ambient intelligence : in a room,
a huge number of electronic equipments controlled each by an autonomous mi-
crochip have as a goal the satisfaction of the users moving around it from day to
day. The goal itself, user satisfaction, is really imprecise and incomplete, and the
way to reach it even more. We claim that this problem is an ideal candidate for a
problem solving by emergence approach: let us endow the entities with means to
�nd by themselves the global behaviour of the system so as to satisfy the users.
The challenge is to de�ne the "right" self-organizing behaviours for the di�erent
equipments for them to be able to modify the way they interact to take into
account the constraints of every one of them plus the external stimuli from the
users (order, judgement, behaviour, ...). And we are convinced that this can only
be done if the self-organization mechanisms tightly �t the frame of emergence.

5 Emergence and Self-organization

If we study specialized literature on emergence or self-organization, we can see
that these are tightly linked. Yet, at the same time, we can see a lot of works
focusing exclusively on the second without any mention, or only a brief, about the
�rst. One explanation could be that the notion of emergence is quite abstract,
even philosophical, making it di�cult to fully grasp and therefore delicate to
manipulate. At the opposite, self-organization is more concrete by its description
in terms of mechanisms and thus, more easily used. But by concentrating solely
on the mechanisms, are we not taking the risk to leave the frame of emergence?
We give here a description of self-organization integrating emergence.



5.1 What is Self-organization ?

The self-organization �eld has from the very beginning tried to explore the in-
ternal mechanisms of systems producing emergent phenomena[2]. They tried to
�nd the general functioning rules explaining the growth and evolution of the ob-
served systemic structures, to �nd the shapes the systems could take, and �nally
to produce methods to predict the future organizations appearing out of changes
happening at the component level of the systems. And these prospective results
had to be applicable on any other system exhibiting the same characteristics
(search for generic mechanisms). There are abundant de�nitions and descrip-
tions of characteristics of emergence and self-organization in literature. We can
sum it up as this:

De�nition. Self-organization is the set of processes within a system, stem-
ming from mechanisms based on local rules which lead the system to produce
structures or speci�c behaviours which are not dictated by the outside of the
system [8][13][17].

5.2 Understanding Self-organization

In most de�nitions about emergence and self-organization, there is the notion
under some form or another of strictly local rules and resulting behaviours.
There is also the strong constraint for these behaviors not to be imposed, dic-
tated, explicitly informed or constrained by the environment of the system. The
local character of a rule gives a strict and clear framework. But concerning the
in�uence of the environment on the system, being it directly or through some
internal rules, the exact characterization of this in�uence can be particularly
di�cult and vague.

Let us take the example of Bénard convection cells which is a classical exam-
ple of self-organization. The phenomenon produced by self-organization is here
the shape of the movement of water molecules which creates these particular
observable �ux structures (when looking top down at water just before it starts
boiling, we can see hexagonal cells covering the bottom). The local rules are here
the movement and collisions of the molecules. The fact that the molecules move
more easily when they move in the same direction (because of less collisions)
creates circulation �uxes. But the surfaces of the container as well as the in�ux
of heat which forces the molecules to move are indeed part of the environment
of the system and in�uence the behaviour of the system. We then have to decide
of the impact and nature of this in�uence on the behaviour of the molecules and
system. We can argue that it is indeed this in�ux of heat which compels the
molecules to move and that the surfaces of the container also strongly constrain
these movements. But this is not enough to explain how the molecules have
to move, only that they have to, and in a given border. It is indeed the local
collision rules which lead to the emergence of the hexagonal cells. The frame of
self-organization seems here relatively clear after analysis but could have been
argued against at the beginning.



In fact, in many cases the environment dictates very strong templates for
the system to follow. Even if these templates are followed at a local level by
autonomous entities, the more strong and precise they are, the less we think
we can pretend to be in a self-organization frame. When wanting to use self-
organization as the internal mechanism of an arti�cial system, we have to keep
a critical attention on the in�uence the environment has on the system.

5.3 Using Emergence in Arti�cial Systems

Our work in this domain during the last decade lead us to give a "technical"
de�nition of emergence in the context of multi-agent systems, and therefore with
a strong computer science colouration. It is based on three points: what we want
to be emergent, at what condition it is emergent and how we can use it [5].

1. Subject. The goal of a computational system is to realize an adequate func-
tion, judged by a relevant user. It is this function (which may evolve during
time) that has to emerge.

2. Condition. This function is emergent if the coding of the system does not
depend on the knowledge of this function. This coding has to contain the
mechanisms facilitating the adaptation of the system during its coupling
with the environment, so as to tend toward an adequate function.

3. Method. To change the function the system only has to change the orga-
nization of its components. The mechanisms which allow the changes are
speci�ed by self-organization rules providing autonomous guidance to the
components' behaviour without any explicit knowledge of the collective func-
tion nor how to reach it.

6 Conclusion

We aimed at studying the feasibility of the concept of Emergent Programming by
using self-organizing instruction-agents. We presented in this paper the concept
and how we studied it. For this, we �rst described the frame of self-organization
and emergence as we think can be applied in arti�cial systems. Then we described
a generic approach for adaptive systems based upon a multi-agent system where
the agents are endowed with self-organizing mechanisms based upon cooperation
and emergence.

An elementary example has been used as a case study. Its implementation,
and experimentation with, lead to the de�nition of the self-organizing mecha-
nisms of the instruction-agents so as to enable them to make the system reach
a given goal.

This study has been an interesting work to explore self-organization in MAS
when confronted to di�cult problems that we are persuaded need an Emer-
gent solution. We claim that this approach would be really relevant for neo-
computation problems such as ambient intelligence, if not directly with instruction-
agents, by using the same kind of cooperative self-organization mechanisms.



References
1. R. Axelrod. The Evolution of Cooperation. Basic Books, New York, 1984.
2. P. Ball. The Self-Made Tapestry. Oxford Press, 1999.
3. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence - from natural to

arti�cial systems. Oxford University Press, 1999.
4. S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, and E. Theraulaz,

G.and Bonabeau. Self-organization in biological systems. Princeton University
Press, 2002.

5. D. Capera, J. Georgé, M.-P. Gleizes, and P. Glize. Emergence of organisations,
emergence of functions. In AISB'03 symposium on Adaptive Agents and Multi-
Agent Systems, April 2003.

6. D. Capera, M.-P. Gleizes, and P. Glize. Mechanism type synthesis based on self-
assembling agents. Journal on Applied Arti�cial Intelligence, 18(8-9), 2004.

7. M. Dorigo and G. Di Caro. The Ant Colony Optimization Meta-Heuristic.
McGraw-Hill, 1999.

8. J. Georgé, B. Edmonds, and P. Glize. Self-organizing adaptive multi-agent systems
work, chapter 16, pages 321�340. Kluwer Publishing, 2004.

9. J.-P. Georgé. Résolution de problèmes par émergence - Étude d'un Environnement
de Programmation Émergente. PhD thesis, Université Paul Sabatier, Toulouse,
France, 2004. http://www.irit.fr/SMAC/EPE.html.

10. J.-P. Georgé, M.-P. Gleizes, P. Glize, and C. Régis. Real-time simulation for �ood
forecast: an adaptive multi-agent system sta�. In D. Kazakov, D. Kudenko, and
E. Alonso, editors, Proceedings of the AISB'03 symposium on Adaptive Agents and
Multi-Agent Systems(AAMAS'03), pages 109�114, University of Wales, Aberyst-
wyth, April 7-11 2003. SSAISB.

11. P.-P. Gleizes, V. Camps, and P. Glize. A theory of emergent computation based
on cooperative self-oganization for adaptive arti�cial systems. In Fourth European
Congress of Systems Science, Valencia, Spain, 1999.

12. F. Heylighen. Evolution, sel�shness and cooperation; sel�sh memes and the evo-
lution of cooperation. Journal of Ideas, 2(4):70�84, 1992.

13. F. Heylighen. Encyclopedia of Life Support Systems, chapter The Science of Self-
organization and Adaptivity. EOLSS Publishers Co. Ltd, 2001.

14. P. Horn. Autonomic computing - ibm's perspective on the state of information
technology. http://www.ibm.com/research/autonomic, 2001.

15. B. Huberman. The performance of cooperative processes. MIT Press / North-
Holland, 1991.

16. J. R. Koza. Evolution and co-evolution of computer programs to control
independently-acting agents. In From animals to animats : proceedings of the �rst
international conference on Simulation of Adaptative Behavior (SAB). MIT Press,
1991.

17. I. Prigogine and G. Nicolis. Self Organization in Non-Equilibrium Systems. J.
Wiley and Sons, New York, 1977.

18. M. Weiser and J. S. Brown. Designing calm technology. PowerGrid Journal, 1(1),
1996.

19. M. Wooldridge. An introduction to multi-agent systems. John Wiley & Sons, 2002.


