
HAL Id: hal-03811081
https://hal.science/hal-03811081

Submitted on 12 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emergent Programming Feasibility Study using
Self-Organizing Instruction-Agents

Jean-Pierre Georgé, Marie-Pierre Gleizes

To cite this version:
Jean-Pierre Georgé, Marie-Pierre Gleizes. Emergent Programming Feasibility Study using Self-
Organizing Instruction-Agents. 4th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2005), Jul 2005, Utrecht, Netherlands. pp.1139-1140,
�10.1145/1082473.1082662�. �hal-03811081�

https://hal.science/hal-03811081
https://hal.archives-ouvertes.fr

Basic approach to Emergent Programming

Feasibility Study for Engineering Adaptive Systems using Self-Organizing
Instruction-agents

PAPER ID : #517

Abstract

We propose to investigate the concept of an Emergent
Programming Environment enabling the development of
complex adaptive systems. This is done as a mean to tackle
the problems of the growth in complexity of programming,
increasing dynamisms in artificial systems and environ-
ments, and the lack of knowledge about difficult problems
and their solutions. For this we use as a foundation the
concept ofemergenceand a multi-agent system technology
based on cooperative self-organizing mechanisms.

The general objective is then to develop a complete pro-
gramming language in which each instruction is an au-
tonomous agent trying to be in a cooperative state with
the other agents of the system, as well as with the environ-
ment of the system. By endowing theseinstruction-agents
with self-organizing mechanisms, we obtain a system able
to continuously adapt to the task required by the program-
mer (i.e. to program and re-program itself depending on the
needs). The work presented here aims at showing the fea-
sibility of such a concept by specifying, and experimenting
with, a core of instruction-agentsneeded for a sub-set of
mathematical calculus.

1. Introduction

In the last few years, the use of computers has spectac-
ularly grown and classical software development methods
run into numerous difficulties. Operating systems are a good
example of extremely complex software which are never ex-
empt of problems. The classical approach, by top-down de-
composition into modules, cannot guaranty the functional-
ity of the software given the complexity of interaction be-
tween the increasing and variable number of modules, and
the shear size of possibilities. Adding to this, the now mas-
sive and inevitable use of network resources and distribu-
tion only increases the difficulties of design, stability and
maintenance.

1.1. Neo-computation Problems

This state is of interest to an increasing number of indus-
trials, including IBM who wrote in a much relayed mani-
festo : "Even if we could somehow come up with enough
skilled people, the complexity is growing beyond human
ability to manage it. As computing evolves, the overlap-
ping connections, dependencies, and interacting applica-
tions call for administrative decision-making and responses
faster than any human can deliver. Pinpointing root causes
of failures becomes more difficult, while finding ways of in-
creasing system efficiency generates problems with more
variables than any human can hope to solve. Without new
approaches, things will only get worse" [13]. They answer
to that is a scientific challenge they callautonomic comput-
ing, whose objective is to design systems able to execute
themselves, adjust their behavior in face of various circum-
stances, manage at best their resources and self-repair when
needed.

These kind of applications are what we callneo-
computation problems, namely: autonomic computing, per-
vasive computing, ubiquitous computing [16], emergent
computation, ambient intelligence, amorphous comput-
ing... This set of problems have in common the inability
to define the global function to achieve, and by conse-
quence to specify at the design phase, a derived evaluation
function for the learning process. They are character-
ized by :

• a great number of interacting components (intelligent
objects, agents, software);

• a variable number of these components during runtime
(open system);

• the impossibility to impose a global control;

• an evolving and unpredictable environment;

• a global task to achieve.

1.2. Problem Solving by Emergence

Given the previous characteristics, the challenge is to
find new approaches to conceive these new systems by tak-
ing into account the increasing complexity and the fact that
we want reliable and robust systems. For this, because of
the similarities, it seems opportune to look at natural sys-
tems - biological, physical or sociological - from an artifi-
cial system builder’s point of view so as to understand the
mechanisms and processes which enable their functioning.

In Biology for example, a lot of natural systems com-
posed of autonomous individuals exhibit aptitudes to carry
out complex tasks without any global control. Moreover,
they can adapt to their surroundings either for survival needs
or to improve the functioning of the collective. This is the
case for example in social insects colonies [5] such as ter-
mites and ants [4]. The study of swarm behaviors by migra-
tory birds or fish shoals also shows that the collective task is
the result of the interactions between autonomous individu-
als. Non supervised phenomenon resulting from the activity
of a huge number of individuals can also be observed in hu-
man activities such as the synchronization of clapping in a
crowd or traffic jams. But the most surprising is still the ap-
pearance of human consciousness out of the chemical and
electrical jumble of our brain.

There is a common factor among all theses systems :
the emergent dimension of the observed behavior. Thus it
is quite legitimate to study emergence so as to understand
its functioning or at least to be able to adequately repro-
duce it for the design of artificial systems. This would en-
able the development of more complex, robust and adaptive
systems, needed to tackle the difficulties inherent toneo-
computationproblems. In this way, interesting and useful
emergent phenomena will be used in artificial systems when
needed. Contrariwise, they will still appear sooner or later
the more complex the systems are getting but will be unex-
pected and unwanted. To prevent this, one orientation would
be, in our opinion, that the scientific community studies and
develops new theories based upon emergence. The prereq-
uisites of such a theory could be resumed in four points :

• to start from the Systems Theory field;

• to focus on the parts of the system and their function-
ing;

• to depend neither from the systems finality, nor its en-
vironment;

• to be independent from the material support into which
a given system will be incarnated (biological, techno-
logical, ...);

It is noteworthy that some research is already being done
for quite some years now to bring emergence into artificial
systems, but it is still very localized. For example, theSanta
Fe Institute[2] has acquired an international renown for its

works on complexity, adaptive complex systems and thus
emergence. These are also the preoccupations ofExystence
[1], the European excellence network on complex systems.
More recent (Mars 2000), this network wants to promote
collaboration between researchers from any field interested
in it, from fundamental concepts to applications.

1.3. Going to the Lowest Level : the Instructions

If we suppose that we can manage to use the emergent
phenomena to build artificial systems, this will be by spec-
ifying the behavior of the parts of the systems so that it
will enable their interactions to produce the expected global
emergent behavior of the system. A relevant question would
be to ask about what parts we are focusing on and on which
level. As with classical software engineering, any decompo-
sition could be interesting, depending on the nature of the
system being build.

We propose here to focus on the lowest possible level for
any artificial system : the instruction level. We will explain
our theoretical and experimental exploration of the concept
of Emergent Programming. This concept is explained in the
next section (section 2). Its use relies on emergence and
self-organization (section 3) on one hand, and on a multi-
agent approach calledAMAS(Adaptive Multi-Agent Sys-
tem) (section 4) on the other hand. A sub-problem which
we called theelementary examplehas been thoroughly ex-
plored and is presented in section 5 where we then show
how the learned lessons can lead us forward in our ex-
ploration ofEmergent Programmingand more generally of
problem solving using emergence.

2. Emergent Programming

2.1. The Concept

In its most abstract view,Emergent Programmingis the
automatic assembling of instructions of a programming lan-
guage using mechanisms which are not explicitly informed
of the program to be created. We may consider that for a
programmer to produce a program comes down to finding
which instructions to assemble and in which precise order.
This is in fact the exploration of the search space represent-
ing the whole set of possible programs until the right pro-
gram is found. However, if this exploration is easy when the
programmer has a precise knowledge about the program he
wants and how to obtain it, it grows more and more difficult
with the increase of complexity of the program, or when
the knowledge about the task to be executed by the program
becomes imprecise or incomplete. Then are we not able to
conceive an artificial system exploring efficiently the search
space of the possible programs instead of having the pro-
grammer do it ?

2

To approach the problem ofEmergent Programming
concretely, we chose to rely on an adaptive multi-agent sys-
tem using self-organizing mechanisms based on coopera-
tion as it is described in theAMAStheory. This theory can
be considered as a guide to endow the agents with the ca-
pacity to continuously self-organize so as to always tend to-
ward cooperative interactions between them and with the
environment. It then claims that a cooperative state for the
whole system implies the functional adequacy of the sys-
tem, i.e. that it exhibits a behavior which satisfies the con-
straints of the parts of the system as well as from the envi-
ronment (e.g. a user).

2.2. The Instruction-Agents

In this context, we define an agent as an instruction
of a programming language. Depending on the type of
the instruction he is representing, the agent possesses spe-
cific competences which he will use to interact with other
instruction-agents. A complete program is then represented
by a given organization of theinstruction-agentsin which
each agent is linked with partners from which he receives
data and partners to which he sends data. The counterpart of
the execution of a classical program is here simply the ac-
tivity of the multi-agent system during the exchange of data
between the agents.

2.3. The Reorganization Process

We can now appreciate all the power of the concept :
a given organization codes for a given program, and thus,
changing the organization changes the final program. It
comes down to having the agents self-organize depending
on the requirements from the environment so as to con-
tinuously tend toward the adequate program (the adequate
global function). In principle, we obtain a system able to ex-
plore the search space of the possible programs in place of
the programmer. Everything depends on the efficiency of
the exploration to reach an organization producing the right
function. An important part of our work onEmergent Pro-
gramminghas been the exploration of the self-organization
mechanisms which enable the agents to progress toward the
adequate function, depending on the constraints of the en-
vironment but without knowing the organization to reach or
how to do it (since this is unknown for the problems we are
interested in).

2.4. A Neo-programming Environment

The system will not be able to growex nihilo all by it-
self, all the more if we want to obtain higher level programs.
As the programmer with his classical programming envi-
ronment, theneo-programmerwill affect the development

of the system through aneo-programming environment, at
least at the beginning. It is a matter of supplying the tools to
shape the environment of the system so as to have this en-
vironment constrain the system toward the adequate func-
tion. In a pure systems theory’s view, theneo-programmer
is simply part of the environment of the system.

But the neo-programming environmentwill certainly
have to be more than a simple envelope for the devel-
oping system. We will probably need to integrate some
tools for the observation of the evolution of the sys-
tem, means to influence this evolution, the type and pro-
portions of instruction-agents, to affect some aspects
of the structure. Moreover, a complex program is gener-
ally viewed as a modular construct and theneo-programmer
may want to influence this modular structure, either by ma-
nipulating some sorts of "bricks", each being anemer-
gent programmingsystem, or by letting these "bricks"
self-organize in the same manner as their own compo-
nents.

At the end, we will obtain a system able not only to "find"
how to realize the adequate function, but also to continu-
ously adapt to the environment in which it is plunged, to
react to the strongly dynamic and unpredictable nature of
real world environments, and all this by presenting a high
grade of robustness. Indeed, because of its nature, the sys-
tem would be able to change its internal structure anytime
and by consequence its performed function, or even grow
by adding instructions to respond to some partial destruc-
tion or to gain some new competences.

The research we did onEmergent Programmingwas to
explore the feasibility of the concept. For this, we restrained
the programming language to the instructions needed for a
subset of mathematical calculus, of which theelementary
example(section 5) is a representative. We specified such
a core of agents and put it through experimentation. For
this an environment has been implemented :EPE (Emer-
gent Programming Environment) [9]. These experimenta-
tions enabled us to explore different self-organization mech-
anisms for theinstruction-agentsso as to find those who
lead to the emergence of the adequate function. Part of these
mechanisms are described here.

3. Emergence and Self-organization

If we study specialized literature on emergence or self-
organization, we can see that these are tightly linked. Yet,
at the same time, we can see a lot of works focusing exclu-
sively on the second without any mention, or only a brief,
about the first. On explanation could be that the notion of
emergence is quite abstract, even philosophical, making it
difficult to fully grasp and therefore delicate to manipu-
late. At the opposite, self-organization is more concrete by
its description in terms of mechanisms and thus, more eas-

3

ily used. But by concentrating solely on the mechanisms,
are we not taking the risk to leave the frame of emergence?
We give here a description of self-organization integrating
emergence.

3.1. What is Self-organization ?

Whereas emergence has been studied for a long time
only as a philosophical concept manipulable only as it, the
self-organization field has from the very beginning tried to
explore its internal mechanisms. They tried to find the gen-
eral functioning rules explaining the growth and evolution
of the observed systemic structures, to find the shapes the
systems could take, and finally to produce methods to pre-
dict the future organizations appearing out of changes hap-
pening at the component level of the systems. And these
prospective results had to be applicable on any other sys-
tem exhibiting the same characteristics (search for generic
mechanisms).

There are abundant definitions and descriptions of char-
acteristics of emergence and self-organization in literature.
To resume, we can sum it up as this :

Definition. Self-organization is the set of processes
within a system, stemming from mechanisms based on lo-
cal rules which lead the system to produce structures
or specific behaviors which are not dictated by the out-
side of the system[8][12][15].

3.2. Understanding Self-organization

In most definitions about emergence and self-
organization, there is the notion under some form or
another of strictly local rules and resulting behaviors.
There is also the strong constraint for these behav-
iors not to be imposed, dictated, explicitly informed or
constrained by the environment of the system. The lo-
cal character of a rule gives a strict and clear framework.
But concerning the influence of the environment on the sys-
tem, being it directly or through some internal rules, the
exact characterization of this influence can be particu-
larly difficult and vague.

Let us take the example of Bénard convection cells
which is a classical example of self-organization. The phe-
nomenon produced by self-organization is here the shape of
the movement of water molecules which creates these par-
ticular observable flux structures (when looking to down at
water just before it starts boiling, we can see hexagonal cells
covering the bottom). The local rules are here the movement
and collisions of the molecules. The fact that the molecules
move more easily when they move in the same direction
(because of less collisions) creates circulation fluxes. But
the surfaces of the container as well as the influx of heat
which forces the molecules to move are indeed part of the

environment of the system and influence the behavior of the
system. We then have to decide of the impact and nature of
this influence on the behavior of the molecules and system.
We can argue that it is indeed this influx of heat which com-
pels the molecules to move and that the surfaces of the con-
tainer also strongly constrain these movements. But this is
not enough to explainhowthe molecules have to move, only
that they have to, and in a given border. It is indeed the local
collision rules which lead to the emergence of the hexag-
onal cells. The frame of self-organization seems here rela-
tively clear after analysis but could have been argued against
at the beginning.

In fact, in many cases the environment dictates very
strong templates for the system to follow. Even if these tem-
plates are followed at a local level by autonomous entities,
the more strong and precise they are, the less we think we
can pretend to be in a self-organization frame. When want-
ing to use self-organization as the internal mechanism of an
artificial system, we have to keep a critical attention on the
influence the environment has on the system.

3.3. Using Emergence in Artificial Systems

Our work in this domain during the last decade lead us to
give a "technical" definition of emergence in the context of
multi-agent systems, and therefore with a strong computer
science coloration. It is based on three points: what we want
to be emergent, at what condition it is emergent and how we
can use it [6].

1. Subject. The goal of a computational system is to re-
alize an adequate function, judged by a relevant user.
It is this function (which may evolve during time) that
has to emerge.

2. Condition. This function is emergent if the coding of
the system does not depend on the knowledge of this
function. This coding has to contain the mechanisms
facilitating the adaptation of the system during its cou-
pling with the environment, so as to tend toward an ad-
equate function.

3. Method. To change the function the system only has to
change the organization of its components. The mech-
anisms which allow the changes are specified by self-
organization rules providing autonomous guidance to
the components’ behavior without any explicit knowl-
edge of the collective function nor how to reach it.

4

fs

fp7

fp6

fp5 fp4

fp3

fp2

fp1

Figure 1. Adaptation : changing the function
of the system by changing the organization.

4. Using Cooperative Agents as the Engine for
Self-organization

4.1. Adapt the System by its Parts

We consider that each partPi of a multi-agent system
S achieves a partial functionfpi of the global functionfs

(Figure 1).fs is the result of the combination of the par-
tial functionsfpi, noted by the operator "o". The combi-
nation being determined by the current organization of the
parts, we can deducefs = fp1 ofp2 o ... o fpn. As generally
fp1 ofp2 6= fp2 ofp1, by transforming the multi-agent orga-
nization, the combination of the partial functions is changed
and therefore the global function fs changes. This is a pow-
erful way to adapt the system to the environment. A per-
tinent technique to build this kind of systems is to use
adaptive multi-agent systems. As in Wooldridge’s defini-
tion of multi-agent systems[17], we will be referring to sys-
tems constituted by several autonomous agents, plunged in
a common environment and trying to solve a common task.

4.2. The Theorem of Functional Adequacy

Cooperation was extensively studied in computer sci-
ence by Axelrod [3] and Huberman [14] for instance. "Ev-
erybody will agree that co-operation is in general advan-
tageous for the group of co-operators as a whole, even
though it may curb some individual’s freedom" [11]. Rel-
evant biological inspired approaches using cooperation are
for instanceAnts Algorithms[7] which give efficient re-
sults in many domains. In order to show the theoretical im-
provement coming from cooperation, we have developped
theAMAS(Adaptive Multi-Agent System) theory which is
based upon the following theorem. This theorem describes

the relation between cooperation in a system and the result-
ing functional adequacy1 of the system.

Theorem. For any functionally adequate system, there is
at least a cooperative internal medium system that fulfills an
equivalent function in the same environment.

Definition. A cooperative internal medium system is a
system where noNon-Cooperative Situationsexist.

Definition. An agent is in a Non-Cooperative Situation
(NCS) when : (1) a perceived signal coming from the en-
vironment is not understood or is ambiguous; (2) perceived
information does not produce any activity of the agent; (3)
the conclusions are not useful to others.

4.3. Consequence

This theorem means that we only have to use (and hence
understand) a subset of particular systems (those with co-
operative internal mediums) in order to obtain a function-
ally adequate system in a given environment. We concen-
trate on a particular class of such systems, those with the
following properties [10]:

• The system is cooperative and functionally adequate
with respect to its environment. Its parts do not ’know’
the global function the system has to achieve via adap-
tation.

• The system does not have an explicitly defined goal,
rather it acts using its perceptions of the environment
as a feedback in order to adapt the global function to
be adequate. The mechanism of adaptation is for each
agent to try and maintain cooperation using their skills,
representations of themselves, other agents and envi-
ronment.

• Each part only evaluates whether the changes taking
place are cooperative from its point of view - it does
not know if these changes are dependent on its own
past actions.

4.4. The Engine for Self-organization

The designer provides the agents with local criterion
to discern between cooperative and non-cooperative situa-
tions. The detection and then elimination of NCS between
agents constitute the engine of self-organization. Depend-
ing on the real-time interactions the multi-agent system has
with its environment, the organization between its agents
emerges and constitutes an answer to the aforementioned

1 "Functional" refers to the "function" the system is producing, in a
broad meaning, i.e. what the system is doing, what an observerwould
qualify as the behavior of a system. And "adequate" simply meansthat
the system is doing the "right" thing, judged by an observer or the en-
vironment. So "functional adequacy" can be seen as "having the ap-
propriate behavior for the task".

5

difficulties of neo-computation problems(indeed, there is
no global control of the system). In itself, the emergent or-
ganization is an observable organization that has not been
given first by the designer of the system. Each agent com-
putes a partial functionfpi, but the combination of all the
partial functions produces the global emergent function fs.
Depending on the interactions between themselves and with
the environment, the agents change their interactions i.e.
their links. This is what we call self-organization.

By principle, the emerging purpose of a system is not
recognizable by the system itself, its only criterion must be
of strictly local nature (relative to the activity of the parts
which make it up). By respecting this, theAMAS theory
aims at being a theory of emergence.

5. The Elementary Example

We tried to find anemergent programmingsystem as
simple as possible (i.e. with the smallest number of agents
with the simplest functioning), but still needing reorganiza-
tions so as to produce the desired function. The advantages
of such a case study are that it is more practical for obser-
vation, that it leads to less development complexity and that
it presents a smaller search space.

5.1. Description

The specification of each agent depends on the task he
has to accomplish, of his "inputs"and"outputs". The agents
communicate by messages but to accomplish the actual cal-
culation, we can consider that the agents are expecting val-
ues as inputs to be able to provide computed values as out-
puts. Schematically, we can consider exchanges between
agents as an electronic cabling between outputs and inputs
of agents.

The elementary example we choose is constituted of 6
agents : 3 "constant" agents, an "addition" agent, a "multi-
plication" agent and an "output" agent. A "constant" agent
is able to provide the value which has been fixed at his cre-
ation. The 3 the system contains have been given suf-
ficiently different values so as to prevent calculation
ambiguity : AgentConstantA(value = 2), AgentCon-
tantB(value = 10) andAgentConstantC(value = 100).
Combined with AgentAddition and AgentMultiplica-
tion, the values produced by the system are results from
organizations like(A + B) ∗ C or any other possible com-
bination.AgentOutsimply transmits the value he receives
to the environment. But he is also in charge of retriev-
ing the feedback from the environment and forward it into
the system.

The size of the complete search space is65, that is 7.776
theoretically possible organizations, counting all the incom-
plete ones (i.e. where not every agent has all his partners).

*
A
B

C
++++

2

10

100

20

120

*
A
C

B
++++

2

100

10

200

210

*
B
C

A
++++

10

100

2

1000

1002

++++
B
C

A *
10

100

2

110

220

++++
A
C

B
*

2

100

10

102

1020

++++
A
B

C
*

2

10

100

12

1200

OUT

OUT

OUT

OUT

OUT

OUT
2

3

1

5

6

4

Figure 2. The 6 different possible types of
functional organizations for the elementary
example.

There are 120 complete organizations and among those, 24
are functional (they can actually calculate a value) if we
count all the possible permutations on the inputs which do
not change the calculated value. In the end, we have 6 types
of different organization (cf. Figure 2) producing these 6
values : 120, 210, 220, 1002, 1020 and 1200. The aim is
to start without any partnerships between agents and to re-
quest that the system produces the highest value for exam-
ple.

5.2. Reorganization Mechanisms

In accordance with theAMAS theory, the agent’s self-
organizing capacity is induced by their capacity to detect
NCS (Non-Cooperative Situations), react so as to resorb
them and continuously act as cooperatively as possible. This
last point implies in fact that the agent also has to try to re-
sorb NCS of other agents if he is aware of them: to ignore
a call for help from another agent is definitely not coopera-
tive. We will illustrate this with the description of two NCS
and how they are resorbed.

Detection
NCSNeedIn: the agent is missing a partner on one of his

inputs. Since to be cooperative in the system he has to be
useful, and to be useful he has to be able to compute his
function, he has to find partners able to send values toward
his input.

Most NCS lead the agent to communicate so as to find a
suitable (new) partner. These calls, because the agents have
to take them into account, also take the shape of NCS.

NCSNeedInMessage: the agent receives a message in-
forming him that another agent is in aNCSNeedInsitua-
tion.

Resorption

6

NCSNeedIn: this is one of the easiest NCS so resorb
because the agent only has to find any agent for his miss-
ing input. And the agents are potentially always able to
provide as many values on their outputs for as many part-
ners as needed. The agent has simply to be able to contact
some agent providing values of the right type (there could
be agents handling values of different types in a system), i.e.
corresponding to his own type. So he generates aNCSNeed-
InMessagedescribing his situation (his needs) and send it
to his acquaintances (because they are the only agents he
knows).

NCSNeedInMessage: the agent is informed of the needs
of the sender of the NCS and his cooperative attitude dic-
tates him to actions. First, he has to judge if he is relevant
for the needs of the sender, and if it is the case, he has to pro-
pose himself as a potential partner. Second, even if he is not
himself relevant, one of its acquaintances may be. He will
do what theAMAS theory calls a resorption by restricted
propagation : he tries to counter this NCS by propagating
the initial message to some acquaintances he thinks may be
the most relevant.

For each NCS the agent is able to detect (there are 10
NCS in total for these agents), a specific resorption mecha-
nism has been defined. It is a precise description of the deci-
sion making of the agent depending on his state and on what
it perceives. For other NCS, the mechanisms become quite
complicated, and require a long description. For an exhaus-
tive presentation, please refer to [9].

These NCS and their symmetric for a missing partner
on an output enable the system to produce an organization
where each agent has all his needed partners. To obtain the
functional adequacy for the system means that the final or-
ganization is able to produce the expected result. The main
question is how to introduce mechanisms in the resorption
of the NCS to enable the agents as a whole to reach this or-
ganization. For this, they need some kind of "direction" (but
on local criterion) to get progressively closer to the solution,
a local information to judge this proximity. The informa-
tion used here is simply a "smaller/bigger" feedback type
that the environment sends to the system and that will be
dispatched between the agents by propagation and by tak-
ing other the goal (smaller or bigger). The agent then tries
to satisfy its new goal and staying at the same time the most
cooperative possible with the other agents. This will bring
the system as a whole to produce a smaller or bigger value.

Of course, the agents will get into conflict with other
agents when trying to reach these goals and the self-
organizing mechanisms take that into account. Each agent
also manipulates a knowledge about the prejudice he in-
flicts or may inflict following changes he induces in the or-
ganization. By minimizing these prejudices (which is
a form of cooperation), the whole organization pro-
gresses.

It is important to note that the information which is given
as a feedback is not in any way an explicit description about
the goal andhow to reach it. Indeed, this information does
not exist : given a handful of values and mathematical op-
erators, there is no explicit method to reach a specific value
even for a human. They can only try and guess, and this is
also what the agents do. That is why we believe the resolu-
tion we implemented to be in the frame of emergence.

5.3. Results and Discussion

5.3.1. ResultsFirst of all, the internal constraints of the
system are solved very quickly : in only a few reorgani-
zation moves (among the 7.776 possible organizations), all
the agents find their partners and a functional organization
is reached. Then, because the system is asked to produce
the highest value for example (configuration 6, Figure 2),
other NCS are produced and the system starts reorganizing
toward its goal.

On a few hundred simulations, the functional adequacy
is reached in a very satisfactory number of organization
changes. Since the search space if of 7.776 possible or-
ganizations, a blind exploration would need an average of
3.888 checked organizations to reach a specific one. Since a
functional organization possesses 4 identical instances for a
given value (by input permutations), we would need 972
tries to get the right value. Experimentation shows that,
whatever the initial organization (without any links or one
of the 6 functionals), the system needs to explore less than a
hundred organizations among the 7.776 to reach one of the
4 producing the highest value. We consider that this self-
organization strategy allows a relevant exploration of the
search space. A noteworthy result is also that whatever or-
ganization receives the feedback for a better value, the next
organization will indeed produce a better value (if it exists).

5.3.2. Emergent Programming : A Universal Tool If we
define all the agents needed to represent a complete pro-
gramming language (with agents representing variables, al-
location, control structures, ...) and if this language is exten-
sive enough, we obtain maximal expressiveness : every pro-
gram we can produce with current programming languages
can be coded as an organization ofinstruction-agents. In its
absolute concept,Emergent programmingcould then solve
any problem, given that the problem can be solved by a
computer system. Of course, this seems quite unrealistic,
at least for the moment.

5.3.3. Problem Solving using EmergenceBut if we pos-
sess some higher-level knowledges about a problem, or if
the problem can be structured at a higher level than the in-
struction level, then it is more efficient and easier to con-
ceive the system at a higher level. This is the case for ex-
ample when we can identify entities of bigger granular-

7

ity which therefore have richer competences and behaviors,
maybe adapted specifically for the problem.

Consequently, we will certainly be able to apply the self-
organizing mechanisms developed for Emergent Program-
ming to other ways to tackle a problem. Indeed,instruction-
agentsare very particular by the fact that they represent the
most generic type of entities and that there is a huge gap be-
tween their functions and the function of a whole program.
The exploration of the search space, for entities possessing
more information or more competences for a given prob-
lem can only be easier. In the worst case, we can always try
to use Emergent Programming as a way to specify the be-
havior of higher-level entities (recursive use of emergence).

Let us consider for instance the problem of ambient in-
telligence : in a room, a huge number of electronic equip-
ments controlled each by an autonomous microchip have as
a goal the satisfaction of the users moving around it from
day to day. The goal itself, user satisfaction, is really im-
precise and uncomplete, and the way to reach it even more.
We claim that this problem is an ideal candidate for a prob-
lem solving by emergence approach: let us endow the enti-
ties with means to find by themselves the global behavior of
the system so as to satisfy the users. The challenge is to de-
fine the "right" self-organizing behaviors for the different
equipments for them to be able to modify the way they in-
teract to take into account the constraints of every one of
them plus the external stimuli from the users (order, judg-
ment, behavior, ...). And we are convinced that this can only
be done if the self-organization mechanisms tightly fit the
frame of emergence.

6. Conclusion

We aimed at studying the feasibility of the con-
cept of Emergent Programmingby using self-organizing
instruction-agents. We presented in this paper the con-
cept and how we studied it. For this, we first described
the frame of self-organization and emergence as we
think can be applied in artificial systems. Then we de-
scribed a generic approach for adaptive systems based
upon a multi-agent system where the agents are en-
dowed with self-organizing mechanisms based upon coop-
eration and emergence.

An elementary example has been used as a case study. Its
implementation, and experimentation with, lead to the defi-
nition of the self-organizing mechanisms of theinstruction-
agentsso as to enable them to make the system reach a given
goal.

This study has been an interesting work to explore self-
organization in MAS when confronted to difficult prob-
lems that we are persuaded need an Emergent solution. We
claim that this approach would be really relevant forneo-
computationproblems such as ambient intelligence, if not

directly with instruction-agents, by using the same kind of
cooperative self-organization mechanisms.

References

[1] Web site of exystence : the complex systems network of ex-
cellence. http://www.complexityscience.org.

[2] Web site of the santa fe institute. http://www.santafe.edu.
[3] R. Axelrod. The Evolution of Cooperation. Basic Books,

New York, 1984.
[4] E. Bonabeau, M. Dorigo, and G. Theraulaz.Swarm intelli-

gence - from natural to artificial systems. Oxford University
Press, 1999.

[5] S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, and
E. Theraulaz, G.and Bonabeau.Self-organization in biolog-
ical systems. Princeton University Press, 2002.

[6] D. Capera, J. Georgé, M.-P. Gleizes, and P. Glize. Emergence
of organisations, emergence of functions. InAISB’03 sym-
posium on Adaptive Agents and Multi-Agent Systems, April
2003.

[7] M. Dorigo and G. Di Caro. The Ant Colony Optimization
Meta-Heuristic. McGraw-Hill, 1999.

[8] J. Georgé, B. Edmonds, and P. Glize.Self-organizing adap-
tive multi-agent systems work, chapter 16, pages 321–340.
Kluwer Publishing, 2004.

[9] J.-P. Georgé. Résolution de problèmes par émergence -
Étude d’un Environnement de Programmation Émergente.
PhD thesis, Université Paul Sabatier, Toulouse, France, 2004.
http://www.irit.fr/SMAC/EPE.html.

[10] P.-P. Gleizes, V. Camps, and P. Glize. A theory of emergent
computation based on cooperative self-oganization for adap-
tive artificial systems. InFourth European Congress of Sys-
tems Science, Valencia, Spain, 1999.

[11] F. Heylighen. Evolution, selfishness and cooperation; selfish
memes and the evolution of cooperation.Journal of Ideas,
2(4):70–84, 1992.

[12] F. Heylighen. Encyclopedia of Life Support Systems, chap-
ter The Science of Self-organization and Adaptivity. EOLSS
Publishers Co. Ltd, 2001.

[13] P. Horn. Autonomic computing - ibm’s per-
spective on the state of information technology.
http://www.ibm.com/research/autonomic, 2001.

[14] B. Huberman. The performance of cooperative processes.
MIT Press / North-Holland, 1991.

[15] I. Prigogine and G. Nicolis. Self Organization in Non-
Equilibrium Systems. J. Wiley and Sons, New York, 1977.

[16] M. Weiser and J. S. Brown. Designing calm technology.
PowerGrid Journal, 1(1), 1996.

[17] M. Wooldridge.An introduction to multi-agent systems. John
Wiley & Sons, 2002.

8

