
HAL Id: hal-03811038
https://hal.science/hal-03811038

Submitted on 11 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolvable SPL management with partial knowledge: an
application to anomaly detection in time series

Yassine El Amraoui, Mireille Blay-Fornarino, Philippe Collet, Frédéric
Precioso, Julien Muller

To cite this version:
Yassine El Amraoui, Mireille Blay-Fornarino, Philippe Collet, Frédéric Precioso, Julien Muller. Evolv-
able SPL management with partial knowledge: an application to anomaly detection in time series.
SPLC 2022 - 26th ACM International Systems and Software Product Line Conference, Sep 2022, Graz,
Austria. pp.222-233, �10.1145/3546932.3547008�. �hal-03811038�

https://hal.science/hal-03811038
https://hal.archives-ouvertes.fr

Evolvable SPL management with partial knowledge: an
application to anomaly detection in time series

Yassine El Amraoui
Université Côte d’Azur, CNRS, I3S

EZAKO
Sophia Antipolis, France

yassine.elamraoui@ezako.com

Mireille Blay-Fornarino
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
Mireille.blay@univ-cotedazur.fr

Philippe Collet
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
philippe.collet@univ-cotedazur.fr

Frédéric Precioso
Université Côte d’Azur, Inria, CNRS,

I3S
Sophia Antipolis, France

frederic.precioso@univ-cotedazur.fr

Julien Muller
EZAKO

Sophia Antipolis, France
julien.muller@ezako.com

ABSTRACT
In Machine Learning (ML), the resolution of anomaly detection
problems in time series presents a great diversity of practices as it
can correspond to many different contexts. These practices cover
both grasping the business problem and designing the solution
itself. By practice, we designate explicit and implicit steps toward
resolving a problem, while a solution corresponds to a combination
of algorithms selected for their performance on a given problem.
Two related issues arise. The first one is that the practices are
individual and not explicitly mutualized. The second one is that
choosing one solution over another is all the more difficult to justify
because the space of solutions and the evaluation criteria are vast
and evolve rapidly with the advances in ML. To solve these issues
and tame the evolving diversity in ML, a Software Product Line
(SPL) approach can be envisaged to represent the variable set of
solutions. However, this requires characterizing an ML business
problem through an explicit set of criteria and justifying one ML
solution over all others. The resolution of anomaly detection prob-
lems is thus different from finding the best configuration workflow
from past configurations but lies more in guiding the configuration
towards a solution that may never have been studied before. This
paper proposes an SPL approach that capitalizes on past practices
by exploiting a variability-aware representation to detect new cri-
teria and constraints when practices adopt different solutions to
seemingly similar problems. We report on the evaluation of our
approach using a set of applications from the literature and an ML
software company. We show how the analysis of practices makes it
possible to consolidate the knowledge contained in the SPL.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’22, September 12–16, 2022, Graz, Austria

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9443-7/22/09. . . $15.00
https://doi.org/10.1145/3546932.3547008

CCS CONCEPTS
• Software product line; •Machine learning; • Configurations;

KEYWORDS
Software Product Line, Machine Learning, Evolution, Metrics

ACM Reference Format:
Yassine El Amraoui, Mireille Blay-Fornarino, Philippe Collet, Frédéric Pre-
cioso, and Julien Muller. 2022. Evolvable SPL management with partial
knowledge: an application to anomaly detection in time series. In 26th

ACM International Systems and Software Product Line Conference - Volume A

(SPLC ’22), September 12–16, 2022, Graz, Austria. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3546932.3547008

1 INTRODUCTION
Building learning systems are increasingly complex, as industry
data, human and organizational factors, and application domains
define different contexts that require tailored practices[11]. By prac-
tices, for the Machine Learning (ML) community, we mean the
entire process of producing ML workflows, from analyzing the cus-
tomer’s data, business goals, and constraints to delivering the ML
model built by composing algorithms. To address this variability
of contexts, data scientists are developing a great deal of expertise,
including developing dedicated algorithms within companies and
tracking the evolution of theory and practice through literature
and collaborations with researchers. However, with the profusion
of algorithms and the diversity of industry problems, connecting
problems to appropriate practices requires increasing capabilities
and resources.

To make this connection between real-world problems and undis-
covered scientific knowledge, we chose to focus on time series
anomaly detection, such as stock price outlier detection, which
presents a wide variety of challenges and practices [11, 25]. Scien-
tific knowledge in this area remains to be discovered as the data
and application domains require developing new solutions. While
building an ML model involves a composition of algorithms that
takes a long time to design and test, the available experiments only
partially cover the large variability of the domain, especially in
industrial applications (see Section 2.1).

https://doi.org/10.1145/3546932.3547008
https://doi.org/10.1145/3546932.3547008

SPLC ’22, September 12–16, 2022, Graz, Austria El Amraoui et al.

In this paper, we argue that a Software Product Line (SPL) ap-
proach allows for linking partial configurations of ML problems
with appropriate workflows. The originality of the approach is
to exploit past configurations to enrich the knowledge captured
by the SPL. In this context, we identify the following functional
requirements.

R1- Identifying similarities between partially described problems.

Looking for similarities and differences with previous problems is a
natural first thought for data scientists but remains a difficult task.
Indeed, the nature of the source data often makes their characteri-
zation challenging, especially since precisely defining an anomaly
in a time series can be difficult, including for the customer who
delivered the data. Being able to deal with partially characterized
source data is therefore mandatory, including proposing algorithms
that will be able to manage the variability of the data sets, for ex-
ample, when the type of anomaly is not known (singular points,
global anomalies, or pattern anomalies [12]).

R2-Consolidating knowledge according to the evolution of prac-

tices. Considering new solutions (i.e., new ML workflow) from the
literature requires characterizing the boundaries of the problems
targeted by these solutions. Thus, it is not only a matter of selecting
new algorithms but also new criteria such as evaluation metrics or
business requirements. [8, 17]. For instance, detecting anomalies
in scarce resource environments such as IoT embedded systems,
has an impact on the entire ML model production chain [10, 43].
To consolidate the knowledge, we must be able to compare appli-
cations. By application, we mean not only the solutions and their
performances, but also the targeted problems, i.e., the data and the
business requirements. In particular, we want to identify data sets
and business requirements that appear similar but have different
solutions to highlight new criteria or the obsolescence of some past
criteria. For example, in the literature, when, for the same dataset,
two different compositions of algorithms work well, it is interesting
to identify, if possible, which requirement criteria could distinguish
them.

To highlight these requirements, we propose three scenarios in
which Lucile, a data scientist persona, uses our framework named
ROCK’n RWL1(RRW).

Scenario 1:Lucile uses RRW to search for a solution to a new anom-

aly detection problem over a given dataset. Through a dedicated
interface, Alice indicates the business requirements and some ad-
ditional information about the dataset. RRW narrows the solution
space to the suitable components and selects the most relevant
ones. In addition, if previous applications match the same criteria,
RRW helps Alice compare and browse them as her analysis evolves.

Scenario 2: Lucile wishes to enrich the SPL with a new set of appli-

cations that she considers interesting. RRW analyses the information
related to these applications. After checking that it does not contra-
dict previous knowledge, RRW makes them available to other data
scientists.

Scenario 3: Lucile wants to evaluate the SPL.. RRW informs her
of the equivalences between the descriptions of the data sets, the
business requirements, and the solutions of the various registered
applications. RRW can then draw her attention to various issues.
1
Request your Own Convenient Knowledge flow and Run your MLWorkfLows

For example, RRW points out applications that address similar prob-
lems, i.e., seemingly identical business requirements and dataset
characteristics, but use different solutions. It also identifies criteria
that are never used or always used. These warnings are intended
to help identifying new data spaces to be tested, for example, new
criteria for comparing problems, and solution updates.

Research Vision and approach. The exploratory nature of ma-
chine learning makes an exhaustive analysis of the domain difficult,
if not impossible. According to Drummond [17] and from our own
experience, "any advantage indicated by a simple scalar measure

may be illusory if it hides situation-dependent performance differ-

ences." Despite the generalization power of ML and the substantial
evolution of the field, we advocate that SPLs are well suited to
explore this complexity of dependencies between data, business
goals, and algorithm composition. Our contribution then concerns:

• Exploiting the SPL to guide the data scientist in narrowing
the solution space and more easily pinpointing past solutions
that solved similar problems.

• Leveraging the SPL to reason about past solutions, making
new knowledge explicit, and exploiting it to consolidate the
SPL.

The principle is then the following. The configurations of the
applications in the SPL incrementally capture our partial knowl-
edge of the problems and solutions. The SPL progressively supports
capitalizing on what is not explicit by reasoning about these con-
figurations. Then the main issue is not to determine the configura-
tion workflow that best suits the actors according to the previous
configurations [45], but to guide them in composing a solution
for an unprecedentedly studied problem. Concurrently, it is not
a question of generating random samples [23], whose relevance
could not be precisely verified (e.g., stuffing the SPL with all the
available algorithms and pre-processing components from the liter-
ature). Instead, it is more a matter of enriching our knowledge by
systematically studying new validated configurations.

This paper shows how we apply these principles in construct-
ing an SPL for anomaly detection in time series. We explain the
difficulties specific to this domain of ML and why we consider that
an adapted SPL can help in its analysis (see Section 2). Then we
present the principles of the SPL, particularly the patterns used
to identify knowledge from past applications (see Section 3). We
validate this proposal on the first three steps of the SPL construc-
tion. The first phase consists in building the SPL proactively by
domain analysis. Then we enrich the SPL with practices extracted
from the partner company, and a third phase adds some applica-
tions of OpenML [53] to the SPL. We then discuss the limits and
perspectives of the approach (see Section 5) before concluding this
paper.

2 FROM PARTIAL KNOWLEDGE TO AN SPL
Designing ML workflow has become essential to almost any scien-
tific field with Deep Learning advances in the past decade. The field
increased fast and in many directions based on different models,
yet it is not a rich and shared knowledge enough to be organized
and made accessible to non-experts. Most of the knowledge one can
hold is partial, shared through non-conventional channels such as
personal blogs of other data scientists, webinars, and tricks shared

Evolvable SPL management with partial knowledge: an application to anomaly detection in time series SPLC ’22, September 12–16, 2022, Graz, Austria

orally during conferences. This situation does not help to adopt
these new techniques efficiently, particularly in companies. From
our point of view, software engineering should play a more vital
role in solving this central issue.

2.1 ML Workflows for anomaly detection in
time series

Defining anomalies in a given business context requires business
goals and constraints to be precised. Depending on the anomaly
detection problem, it remains challenging to construct appropri-
ate workflows [4] because the interactions between the current
data, the composition of algorithms, and the business requirements
are substantial and not always well understood. Sculley et al. sum-
marise these interactions as follows: "changing anything, changes
everything" [47].

Events predicted as statistically abnormal by the model may
not be relevant anomalies for the end-user, if they are unrelated
to business requirements, as for instance sensor failures. In order
for the model to distinguish relevant from non-relevant anomalies,
selecting the proper data preparation algorithm is then part of the
final ML workflow solution and often a crucial part of it.

Testing the variability of workflows is all the more problematic
as the resources required to train models can be very important in
terms of time, memory, computation, but also in terms of human
investment, and not only from data scientists. Indeed, in the ab-
sence of a normality reference or threshold, decisions on whether
values are abnormal or not have to be made by end-users, which
is time-consuming. Therefore, it is essential to reduce the solution
space to those more appropriate to solve the problem. However,
identifying the problem itself can also be complex and resource-
consuming. Thus, even if deep learning-based solutions were the
solution to all problems [19], it would still be necessary to take into
account the variability of upstream processing to prepare the data
and downstream processing to maintain the models in production.

2.2 On meta-learning and AutoML
Automated machine learning methods (AutoML) have been pro-
posed and are focusing the efforts of many industries and research
teams [21]. However, most AutoML algorithms aim only at solving
a specific problem on specific datasets and do not provide end-
users with the ability to acquire reasoned knowledge. Therefore,
these systems are high-value solution components that we have
introduced into the SPL to solve specific problems. More generally,
many SE4AI2 works addressed the issue of classification workflow
selection in a generic way like in the work of Martínez-Fernández
et al. [34] or by using a meta-learning-based portfolio like in the
work of Kerschke et al. [29] and Degroote et al. [14]. Furthermore,
these automated approaches entail massive needs for computation,
memory, and time resources. One standard solution is to limit the
solution space on which to train: measure choice, algorithms, or
composition of algorithms.

However, we aim at the contrary at enriching our SPL by regu-
larly adding new algorithms, new business requirements criteria,
etc. We also aim to help in the evaluation measure choice, according
to the prediction performance [24] and ensure that the solutions
2Software Engineering for AI

deployed will scale in production [48], in particular, in anomaly
detection, automation is difficult since end-users must validate
anomalies, as explained in the previous section. We are advocating
a reverse approach that is drastically less computationally, memory-
intensive, and more suitable for scientific and reasoned knowledge
acquisition directed by and for humans.

2.3 Towards an evolvable SPL
This work is based on a collaboration between academic researchers
in software engineering and data scientists from a company provid-
ing ML workflows for business customers. The work thus targets
various applications, involving diverse industrial datasets and busi-
ness problems.

Despite the constantly evolution of the domain (not to say the
volatility of the domain), everything changes ... in an unpredictable

way [44], choosing to capitalize on the different solutions designed
by data scientists through an SPL seemed to be the best option. Our
interviews revealed that, based on their experience, the domain
experts had already identified most of the main dimensions of vari-
abilities and commonalities of their domain. However, the domain
analysis quickly showed that a proactive adoption scenario was not
suitable, it is not yet possible to strictly separate domain analysis
from the practices of data scientists seeking to solve new problems.
Therefore, we have opted for a "reactive adoption strategy" for the
product line and managed its evolution by integrating the practices
of data scientists [30].

Effectively managing the evolution of variant-rich software in-
volves bridging the gap between software solutions and the capture
of domain variability [28]. However, in our case, while data variabil-
ity is partially identifiable automatically [8], the context variability
is not entirely identifiable from software solutions. Our goal is
therefore to obtain this non-explicit information with a minimum
of manual effort. To this end, we introduce into the round-trip en-
gineering process proposed by Promote-pl [30], a feedback phase
on the content of the SPL itself. This consists in identifying, when
integrating new applications, those that can provide new informa-
tion by comparison with past applications. To meet this objective,
we started from the following assumption: "Any customer can gen-
erate the software they want, as long as they can describe it in
the SPL"3. We use this assumption as a postulate to investigate the
practices, and to hopefully identify new knowledge. The principle
is that if two equivalent descriptions of problems correspond to
two different solutions, then it is not the same problem; otherwise,
we would not know which software to generate. Thus integrating
an application to the SPL involves interactions with data scientists
only when it is not possible to distinguish the contexts that led to
two different solutions.

Evolving an SPL in an ad hoc manner is error-prone because the
configuration space is large and involves taking into account many
interdependent artefacts. Thus, the definition of a reactive approach
integrates the need to foresee "a typical pattern for maintaining

and evolving a product line during its lifetime" [5]. In [49], while
defining safe evolution the authors state "that the resulting SPL

must be able to generate products that behaviorally match all of

the original SPL products". We are in a slightly simpler application

3Loosely adapted from Henry Ford.

SPLC ’22, September 12–16, 2022, Graz, Austria El Amraoui et al.

context since we aim at composing only a unique stated version of
each algorithm. It is not the products’ behavior that changes, but
the logic of assembling the workflows that evolves. Our objective
is, thus, to detect configurations that are no longer valid due to
changes in the SPL, possibly because of a past error.

2.4 From the requirements to the SPL paradigm
According to newly identified practices, the only artefacts that
evolve in our SPL are the feature model (i.e., CUD4 operations on
features, feature groups, and constraints) and the assets by addition
or removal of algorithms and workflows (i.e., CD operations). The
configuration knowledge does not evolve as such. It consists only
of bijections between the algorithms’ code and the corresponding
feature. Analyzing the impact of the evolution operations on past
configurations is part of our perspectives inspired by the prelimi-
nary work of Nieke et al. [36].

Besides, given the very high variability of the domain and its
constant evolution, it is neither possible, at least for the time be-
ing, to consider sampling techniques for workflows on which to
learn [27], nor to support the configuration process in an optimal
way [37].

To answer the requirements stated in the introduction, we refor-
mulate them into technical requirements (RT) for an SPL dedicated
to the composition of ML workflows in the context of anomaly de-
tection in time series. To meet R1, the solution search corresponds
to configuring a feature model, producing a valid configuration,
partial in the problem specification and complete in the solution def-
inition (RT1.1). The configurations must be comparable on the sub-
spaces: the dataset description, the business requirements, and the
solution components (RT1.2). The evolution of knowledge-driven
by practices (R2) requires that the criteria of the domain analysis
evolve without impacting the solution space (RT2.1). We must set
up comparison patterns among configurations corresponding to
the applications to guide the discovery of new knowledge (RT2.2).

3 DESIGNING AN EVOLVABLE SPL WITH
PARTIAL KNOWLEDGE

The RRW SPL defines a set of ML practices with well-defined varia-
bilities and commonalities. A combination of features (i.e., config-
uration) identifies each product, and results in an application, i.e.,
an ML workflow with its performance, its evaluation strategy, its
deployment environment, etc. The format of the applications varies
from notebooks, references to runs in OpenML, and references in
the company tool. The set of valid feature combinations is specified
in a feature model (FM) whose structure aims at facilitating the SPL
evolution. Implementation artefacts are essentially references to
algorithms and workflow models expressed in BPMN [39]. Map-
pings express the relationships between solution features and these
artefacts. The SPL supports the generation of BPMN workflows
based on the selected workflow model and algorithms. Since the
construction of the SPL depends on the new applications created,
we set up different mechanisms to control its evolution.

We developed tools to validate the overall process: (i) configu-
ration and search of past applications (configurator), (ii) generation
of ML workflows (generator), (iii) integration of applications in
4create (C), update (U) or delete (D) operation [33]

the SPL (integrator), (iv) reconfiguration of past configurations (re-
configurator), (v) evaluation of the knowledge carried by the SPL
concerning the recorded applications (analyzer). We only present
the concepts in this article. The configurator dynamically reads the
feature model and a CSV file with helpful information for present-
ing the features (question, description, links to external elements).
To help data scientists understand the feature selection, we as-
sociate descriptions with the constraints related to the selected
features during the configuration. The possibility to import/export
configurations allows proceeding by enrichment and, in the case of
reconfiguration, manually adapting the past problematic configu-
rations. The reusable artifacts are then the previous experiments
(codes and configurations to adapt), a set of algorithms and work-
flow models. The reusable artifacts are, therefore, the previous
experiments (codes and configurations to adapt), a set of algorithms,
and workflow models.

3.1 FM structure to tame the SPL evolution
We structure the knowledge captured by the FM according to six
main concepts, which organized the top of the FM hierarchy as de-
picted in figure 1. Information about the data sources, the business
requirements, and the solution are mandatory as they are required
to identify new applications. Information sources, states, and appli-
cations help the user in her analysis; they are optional. The numbers
correspond in our case study to the number of features under each
branch. The following paragraphs detail the content of the FM.

Data set properties. InitialData branch of the FM characterizes
the space of datasets containing time series. Some properties are
automatically extracted from the dataset (the sampling frequency,
the time series number of dimensions, the stationarity verdict,...),
while we can only get others through interacting with the business
expert, such as how to interpret the missing values. No outgoing
constraints from this branch to another branch are allowed since the
dataset properties do not inherently imply algorithms or business
requirements (RT2.1). For example, in our case study, this branch
under the feature InitialData contains 28 other features.

Business requirement characteristics. BusinessRequirements bran-
ch captures requirements, such as limited memory usage to comply
with hardware constraints or the solution’s ability to provide expla-
nations.

Solution components & states. The Solution branch groups and
structures the algorithms used for solving anomaly detection pro-
blems and the types of workflows used in learning and deployment.
The states branch represents the states through which the data
passes. We express preconditions and the impact of a solution
component through constraints relative to a state. Therefore, we
forbid solution components to refer directly to the features of the
initial data set but only to the corresponding state (RT2.1). For
instance, an algorithm can require the state of the data to be scaled
but not need that to be the initial state of the data.

Application & sources. The Application branch is only used in
the configurator to facilitate direct access to past applications by
filtering them according to the initial problem or the components of
the Solution used. Similarly, the Sources branch helps remember

Evolvable SPL management with partial knowledge: an application to anomaly detection in time series SPLC ’22, September 12–16, 2022, Graz, Austria

from which literature article some features and constraints have
been extracted and who are the authors of the applications.

Figure 1: Feature Model Structure

3.2 Capturing knowledge through configuration
management

To build and develop the SPL from past applications, we memorize
the valuable elements to find the associated codes and the context
in which they were defined.

Configurations. Configurations are our primary tool for deter-
mining application context. As we work on applications whose
context is difficult to define and the SPL evolves, the configurations
associated with the applications may be partial (RT1.1). Therefore,
we consider any feature neither selected nor deselected as "un-
known."

A partial configuration 𝑐 is defined as a set of selected, deselected,
and undefined features. The intersection is empty between these
three subsets.
Let ⟦𝐹𝑀⟧ be the set of valid configurations of a feature model 𝐹𝑀 .
A partial configuration 𝑐 of a feature model 𝐹𝑀 is valid iff
∀𝑓𝑖 ∈ 𝑐, 𝑓𝑖 ∈ 𝐹𝑀 ∧ ∃𝑐𝑘 ∈ ⟦𝐹𝑀⟧, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐) ⊆ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐𝑘) ∧
𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐) ⊆ 𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐𝑘). By extension, we note 𝑐 ∈ ⟦𝐹𝑀⟧.
A configuration is complete relatively to a set of features 𝐹 , when
∀𝑓𝑖 ∈ 𝐹, 𝑓𝑖 ∈ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐) ∪𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐). Thus, in RRW , configura-
tions must be complete only relative to the Solution branch since
we know whether the solution components are part of the appli-
cation or not (RT1.1). In the following we refer to configurations,
even for partial configurations.

To evaluate the evolution of our knowledge, we preserve the
information on the manual or automatic selection/deselection. So
we denote a configuration as a set of pairs: (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒, 𝑠𝑡𝑎𝑡𝑢𝑠) where
𝑠𝑡𝑎𝑡𝑢𝑠 ∈ {𝑚𝑠,𝑚𝑑, 𝑎𝑠, 𝑎𝑑,𝑢}, where m for manual, a for automatic, s
for selected, d for deselected, u for undefined. For example,
𝑐 = {(𝑓 1,𝑚𝑠), (𝑓 2, 𝑎𝑠), (𝑓 3, 𝑢), (𝑓 4, 𝑎𝑑)},
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐) = {𝑓 1, 𝑓 2}, 𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐) = {𝑓 4}

Data sets. For each dataset involved in an application, we pre-
serve the associated partial configuration relative to the branch
initialData (see Figure1). This record supports a consolidation
mechanism. New applications dealing with known datasets should
describe them in compliance with previous records and further
complete them (RT2.2).

Required information about applications. The information associ-
ated with an application is its name (used as a reference), its initial
configuration, the feature model used to define it, a reference to the
dataset, its author, and the associated codes. The connection to the
author makes it possible to identify the practices and preferences
of the data scientists and allows a data scientist to reduce the space
of the applications by authors. The reference to codes corresponds,
to Jupyter NoteBooks, to runs in OpenML or to a workflow in the
industrial partner platform.

3.3 Pattern detection based on the premise: a
problem has a unique solution

In the same way as Tornhill [50], we seek to identify "hotspots" to
narrow our study of applications to a few critical patterns that are
most likely to guide us in the extraction of new knowledge (RT2.2).
Therefore, the principle is that if two similar problems correspond
to different solutions, then it is not the same problem.
We defined the first pattern: 2 problems evaluated as equivalent

have a different solution. This pattern allows us to detect different
situations. (i) One of the solutions is not adapted to the problem,
and in this case, in retrospect, the data scientist should not have
used it. We must enrich the feature model to prohibit it. (ii) The
two problems are different, but we had not yet identified these
discriminative criteria in the feature model; we must enrich the
feature model with these new criteria.

Because the configurations partially characterize the problems,
we define a second pattern: 2 problems evaluated as unifiable have a

different solution. It can indeed be two similar problems partially
filled in. In this case, we expect the same solution as before. But, the
data scientist may also have designed a different solution to address
the lack of information about the problem, such as not knowing
the anomaly types.

The fact that several problems have the same solution can also
induce an insensitivity of the solution to certain features. Despite
the small number of applications, this situation allowed us to iden-
tify a feature that we apprehended at a level too detailed to be
discriminating. Detecting these patterns occurs in Scenario 3 and
meets the requirement RT2.2.

We now specify the notions of equivalence classes and their unifi-
ability. To explain these concepts, we use the feature model pre-
sented in Figure 2 and the configurations described in Table 1.
Table 3 shows the identified equivalence classes.

Figure 2: Feature model for explaining metrics

SPLC ’22, September 12–16, 2022, Graz, Austria El Amraoui et al.

Table 1: Examples of application configurations.

XP Name d1 d2 d3 p3 𝑝4 p1 p2 a1 a2 b1 b2 𝑆𝑜𝑢𝑟𝑐𝑒𝑠 r1 r2
app1 as u u u as ad ms md as ms md u u u
app2 as u u u as ad ms ad ms ms md u u u
app3 as as u u as ms ad ad ms ms md u u u
app4 as u u u as ad ms ms ad ms md as ms u
s=selected, d=deselected, u=undefined, a=automatic, m=manual

Table 2: Metrics related to the FM in
fig. 2 and its configurations (tab. 1)

𝑁𝑜𝐹 20 𝑁𝑜𝐴 4
𝑁𝑙𝑒𝑎𝑓 12 𝐶𝑜𝑣 66 %
𝑁𝑜𝐶 2 𝑁𝑜𝐸𝐶 3
𝐶𝑇𝐶𝑅 20 % 𝐶𝑜𝑚 37,5 %

Let a feature model 𝐹𝑀 and𝐴 a set of valid partial configurations
of 𝐹𝑀 , 𝐴 ⊆ ⟦𝐹𝑀⟧.

3.3.1 Equivalence Classes in 𝐴. An equivalence class on a subset
of features 𝐹 of 𝐹𝑀 is defined as a set of valid configurations [𝑐1] =
{𝑐1, ...𝑐𝑘 }, 𝑐𝑖 ∈ 𝐴, such as ∀𝑓𝑖 ∈ 𝐹,

𝑓𝑖 ∈ ∩𝑘1𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐 𝑗)
⋃∩𝑘1𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐 𝑗)

⋃∩𝑘1𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑 (𝑐 𝑗).
In Table 3, two equivalence classes are identified on the Initial-
Data subtree. CDS1={app1, app2, app4}. CDS1 can also be noted:
{(𝑑1, 𝑠), (𝑑2, 𝑢), (𝑑3, 𝑢)} and CDS2: {(𝑑1, 𝑠), (𝑑2, 𝑠), (𝑑3, 𝑢)}

Problem equivalence classes are defined on the sub-features of
InitialData and BusinessRequirements.
For example CP1={app1, app2, app4}.
𝐶𝑃1 : {(𝑑1, 𝑠), (𝑑2, 𝑢), (𝑑3, 𝑢), (𝑝1, 𝑑), (𝑝2, 𝑠), (𝑝3, 𝑢), (𝑝4, 𝑠)}

Solution equivalence classes are defined on the sub-features of
Solution.

Two configurations are equivalent in 𝐹𝑀 if they are member of
the same Problem and Solution equivalence classes. In our example,
app1 and app2 are equivalent.

We note 𝑁𝑜𝐸𝐶 the number of equivalent classes.

3.3.2 Unifiable classes. Two equivalence classes [𝑐1] and [𝑐2] de-
fined on a same set of features 𝐹 are unifiable if ∀𝑓𝑖 ∈ 𝐹,

𝑓𝑖 ∈ ∩2
1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐 𝑗) ∪ 𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑 (𝑐 𝑗))⋃∩2

1 (𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐 𝑗) ∪ 𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑 (𝑐 𝑗))
In the example, CDS1 and CDS2 are unifiable.

3.4 Metrics for evaluating the SPL
To explain the following metrics, we use the feature model pre-
sented in Figure 2 and the configurations presented in table 1.

3.4.1 Feature model metrics. We selected some standard metrics
[18] to assess the state of the feature model and, by comparison, its
evolution.

The number of Features (𝑁𝑜𝐹) and the number of features with
no children (𝑁𝑙𝑒𝑎𝑓) are a way to measure the scope of the SPL.
Our objective is to integrate new solutions while identifying better
and better the problems solved. We analyze these metrics in the
different spaces. In our example in Figure 2 , the number of leaves is
twelve overall, and it is four in the Solution subtree (Solution Space).
The evolution of the number of cross-constraints (𝑁𝑜𝐶), together
with the tree-cross-constraint ratio (𝐶𝑇𝐶𝑅)5, gives a numerical in-
dication of the identified interactions. In our example, four features
are involved in constraints, so the 𝐶𝑇𝐶𝑅 is 20%. The theoretical
number of possible configurations is not only not calculable but also
does not provide any information. Indeed, it is likely that a part of

5number of distinct features involved in cross-tree constraints and divides them
through the total number of features in the feature model

the valid configurations does not correspond to suitable solutions.
Moreover, this partial knowledge of the domain combined with
the very high cost of ML workflows evaluations does not allow to
test the SPL by generating examples, except to consume a lot of
resources without any assurance of a real gain.

We now propose to evaluate the feature model 𝐹𝑀 according
to the set of valid configurations 𝐴 ⊆ ⟦𝐹𝑀⟧ that correspond to
applications integrated in the SPL.

3.4.2 Feature-level metrics based on past configurations. Common-
ality of feature (𝐶𝑜𝑚(𝑓)) indicates the selection ratio (manual or
automatic) of a feature f in 𝐴. This ratio identifies the "unused vari-
ability" smell (i.e., feature always selected, e.g., 𝐶𝑜𝑚(𝑏1) = 1)[5].
The rate of deselection (𝐷𝑒𝑠 (𝑓) identifies the "unused feature" smell
(i.e., feature always deselected, e.g., 𝐶𝑜𝑚(𝑏2) = 0, 𝐷𝑒𝑠 (𝑏2) = 1)[5].
We also compute the rate of undefined occurrences(𝑈𝑛𝑑 (𝑓)) that
may identify an obscure feature that is not well related to the scope
of the SPL (e.g., 𝑈𝑛𝑑 (𝑑3) = 1, 𝐷𝑒𝑠 (𝑑3) = 0,𝐶𝑜𝑚(𝑑3) = 0).

We globalize these metrics to all feature model leaves, which in
our case study characterize practices.

3.4.3 Feature Model Coverage. The Feature Model Coverage rate
(𝐶𝑜𝑣) measures (in percentage) the degree of leaf selections in a
set of configurations 𝐴.
Feature model coverage rate = number of feature leaves selected in

𝐴/number of feature leaves * 100.
In our example, eight leaves are selected at least once, 𝐶𝑜𝑣 = 66%.
For the Solution subtree, as three leaves were chosen at least one
time, 𝐶𝑜𝑣𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 75%

Feature Model Coverage does not correspond to 𝑡-𝑤𝑖𝑠𝑒 covera-
ge [22]. Unlike the latter, it only provides a measure of the feature
selection rate in a given set of configurations, it does not allow
to assess the coverage of feature interactions. Nevertheless, it has
the advantage of not requiring to compute the number of possible
configurations.

3.4.4 Feature Model Commonality Rate. The Feature Model Com-
monality Rate (𝐶𝑜𝑚) measures (in percentage) the selection ratio
of leaf selections in 𝐴.
Feature model Commonality Rate = number of selection of feature

leaves in 𝐴 / number of feature leaves * #𝐴 * 100, where #𝐴 denotes
the cardinality of the set 𝐴.

In our example, 18 selections of leaves for 4 configurations and
12 leaves, 𝐶𝑜𝑚 = 37, 5%. 𝐶𝑜𝑚𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 50%
Intuitively, the confidence in the feature model suggestions is pro-
portional to its commonality rate.

Evolvable SPL management with partial knowledge: an application to anomaly detection in time series SPLC ’22, September 12–16, 2022, Graz, Austria

Table 3: Equivalence classes and pattern detection.

App Name InitialDSClass InitialPBClass SolutionClass EquivalentApp Warning SameSolution
app1 CDS1 CP1 CS1 {app2} {app4} {app3}
app2 CDS1 CP1 CS1 {app1} [] []
app4 CDS1 CP1 CS2 [] {app1} []
app3 CDS2 CP2 CS1 [] [] {app1}

app1, app2 and app4 handles the same equivalence classes of dataset (CDS1) and problem (CP1). app1 and app2 are equivalent. app3 deals with the same
equivalence class of solutions (CS1) than app1 (and therefore app2). While app4 handles the same equivalence class of problem than app1, it proposes a new

solution, a warning is raised. According to Table 1, CDS1 and CDS2 are unifiable.

3.5 Systematically mastering the evolutions of
the SPL

To promote safe reactive development of the SPL, we suggest the
following process.

At step 𝑇 , the SPL is coherent, i.e., all applications correspond
to valid configurations of the feature model. We create new appli-

cations with the configurator. We integrate them to the SPL to
make them available to other users (scenario 2, see Section 3.5.1). At
step𝑇 +1, we update the feature model by adding, renaming, and re-
moving features and constraints. It is then necessary to ensure that
the configurations related to the previously developed applications

remain valid and do not contradict the new knowledge captured by
the feature model (see Section 3.5.2). We use the new feature model
to build solutions to new problems. We use the patterns presented
above, coupled with metrics to evaluate the SPL and detect new
knowledge (see Section 3.5.3). We use the same means to analyze
the evolution of the SPL (see Section 3.5.4).

3.5.1 Making applications identifiable in the configurator. Integra-
ting in the feature model an application named 𝑎𝑝𝑝 on a dataset
named𝑑 and defined by a valid configuration 𝑐 consists in adding, in
the Applications branch of the feature model, the features 𝑑 and
𝑎𝑝𝑝 if they are not already there. Then, the minimal constraints6
linking𝑑 to the selected and deselected features of the initialData
space are added starting from the manually selected and unselected
leaves. The constraint 𝑎𝑝𝑝 ⇒ 𝑑 is then added. We then proceed in
the same way to link 𝑎𝑝𝑝 to the rest of the feature model, starting
with the problem space. When the dataset 𝑑 is already present
in the feature model, there should be no contradiction with its
constraints. However, they can be completed. This step corresponds
to scenario two and is essential in scenario one to identify datasets
or applications with the same features as the current configuration.

For example, adding the application 𝑎𝑝𝑝5 created by John on
dataset 𝑑𝑠5 and defined by the following configuration
{(𝑑2, 𝑎𝑠), (𝑑3,𝑚𝑠), (𝑝1,𝑚𝑠), (𝑝2, 𝑎𝑑), (𝑎1,𝑚𝑠), (𝑏1,𝑚𝑑), (𝑏2,𝑚𝑠), ...}
adds the features 𝑎𝑝𝑝5, 𝑑𝑠5 and 𝐽𝑜ℎ𝑛 in the branch Applications
and the following constraints: 𝑑𝑠5 ⇒ 𝑑3, 𝑎𝑝𝑝5 ⇒ 𝑑𝑠5, 𝑎𝑝𝑝5 ⇒
𝑝1, 𝑎𝑝𝑝5 ⇒ 𝑏2 ∧ ¬𝑏1 ∧ 𝑎1, 𝑎𝑝𝑝5 ⇒ 𝐽𝑜ℎ𝑛

3.5.2 Application-preserving refactoring against practice evolution.
Refactorings of the feature model may lead to past applications
(i.e., their related configurations) being detected as conflicting with
the current feature model [5]. To promote a safe evolution, a recon-
figuration step is performed on all past configurations. For now,
6features automatically selected or deselected during the configuration are not involved
in new constraints

reconfiguring a 𝑐𝑠 configuration into a 𝑐𝑡 configuration with respect
to a new feature model 𝐹𝑀 consists in (i) renaming in 𝑐𝑡 some of
the features of 𝑐𝑠 , (ii) omitting the features that disappeared in 𝐹𝑀

with a warning if they were selected or deselected in 𝑐𝑠 , (iii) adding
in 𝑐𝑡 the new features of 𝐹𝑀 whose value is known, (iv) copying in
𝑐𝑡 the other features, then (v) replaying 𝑐𝑡 in 𝐹𝑀 to obtain a new
valid configuration or to raise an error in the contrary situation. If
past configurations cannot be rendered valid in 𝐹𝑀 , RTFS excludes
them with a warning. The new valid configurations related to ap-

plications can then be integrated into the 𝐹𝑀 using the previous
operation.

For example, if we add the constraint ¬𝑏1∨¬𝑑2 in FM of Figure 2,
the configuration corresponding to 𝑎𝑝𝑝3 is no more valid, while all
the other configurations are automatically updated with (𝑑2, 𝑎𝑑).

3.5.3 Knowledge extraction driven by SPL assessment. Regarding
scenario 3, the identification of the patterns presented above and
the associated metrics allow us to evaluate the SPL to extract new
knowledge and orient future evolutions, notably according to the
spaces covered or not by the applications.

3.5.4 Knowledge extraction driven by SPL evolution assessment.
The metrics and the detection of patterns also make it possible to
evaluate the evolution of the SPL.

Have more features been used? Do unifiable problems become
equivalent? Conversely, does the enrichment now allow us to dis-
tinguish previously equivalent problems? Both of these cases can
occur when the addition of constraints affects previously undefined
features.

4 APPLICATION
We now report on the first three steps of the SPL’s construction,
showing how the practices contributed to its enrichment. Figure 3
summarizes this construction process. The configurations and the
results of the analyses are accessible online 7

4.1 First three steps of the SPL construction
process

In each of the steps presented below we have integrated the appli-
cations into the FM, which did not raise any significant issue.

Initial product line version from literature study. Following a first
analysis of the domain, we built the SPL’s initial version (𝑆𝑃𝐿𝑇 0).
The feature model (𝐹𝑀𝑇 0) integrates some solutions from the liter-
ature dealing with the detection of anomalies in time series. The
7https://anonymous.4open.science/r/RFTS-SPLC2022-D508/

https://anonymous.4open.science/r/RFTS-SPLC2022-D508/

SPLC ’22, September 12–16, 2022, Graz, Austria El Amraoui et al.

Figure 3: Three main steps of our SPL construction

applications correspond to experiments carried out on reference
data sets [13].

Enrichment of the product line through industrial practices. At𝑇 1,
we leverage the practices of the partner company’s data scientists
to build 𝑆𝑃𝐿𝑇 1 by enriching 𝑆𝑃𝐿𝑇 0 . The interest in exploiting indus-
trial applications is to broaden the scope of the SPL to the processing
of industrial data. The industrial partner uses a custom tool to sum-
marize all the applications on their customer’s data. We update
the feature model (𝐹𝑀𝑇 0 → 𝐹𝑀𝑇 1) by including company-specific
solution components, new initial dataset properties relevant to an-
alyzing customer datasets, and new features necessary to describe
the customer business requirements. Then we collect applications
conducted by the company’s data scientists, keeping only the solu-
tions from deployed workflows and solving customers’ anomaly
detection problems. We have thus selected six workflows whose
resulting product models are in production. The production of these
workflows can take several months for the data scientists. We have
generated partial configurations containing information about the
dataset and solution based on automatic solution extraction and
data analysis tools. We used these partial configurations to initialize
the configurator. We then completed the source data and business
requirements parts via a discussion with the application authors.

Consolidation by extraction of OpenML workflows. At 𝑇 2, we ex-
tract some practices from the OpenML platform. OpenML is an
automated machine learning environment [53], from which ML
practices can be downloaded and uploaded i.e., solutions (runs and
flows in OpenML) to a given problem (task and dataset in OpenML).
The interest in exploiting OpenML’s practices is to analyze the
impact of upgrading the SPL with external sources. In OpenML, we
selected time-series datasets and associated tasks of type Supervised
Learning and Unsupervised learning since anomaly detection is su-
pervised or unsupervised learning with unbalanced classes.We only
had four datasets that matched these criteria. We kept 4 tasks of Su-
pervised learning that had runs associated with them. Among these
runs, we selected only the best runs on F1-score evaluation criterion
as evaluations on other measures such as user CPU-time were not
available for these runs. We preferred the runs using the scikitlearn
library when we had the choice. We then extracted the associated
flows and generated the associated partial configurations for each
run. We had already studied in 𝑇 0 the meta-features proposed by
OpenML to characterize datasets, so we only updated the feature
model(𝐹𝑀𝑇 1 → 𝐹𝑀𝑇 2) by adding new solution components.

4.2 Knowledge extraction driven by SPL
assessment

We explain in the following subsections how we exploit pattern
and metric analysis in our use case.

Two different solutions for the same problem: algorithms
side effects. At 𝑇 0, we encountered the following scenario. For
two equivalent problems, the solutions used two different scaling
techniques in each workflow, min-max scaler and robust scaler [40].
This equivalence of problems and not solutions raised a warning.
We analyzed workflows for both experiments and observed that for
the secondworkflow, the robust scaler results were equivalent to the
min-max scaler results due to the data properties. In this scenario,
we were able to confirm that the main particularity of the robust
scaler was not required8. Therefore only the first application with
min-max scaler was kept. We added a constraint to the selection of
this algorithm to prevent the error from being repeated. i.e., data
without outliers will not anymore be scaled with robust scaler.

Two different solutions for the same problem: Data Scien-
tist preferences impact. The data scientist’s preferences bias her
choice of the solution components. At𝑇 1, we identified two applica-
tions that presented different solutions to equivalent problems. The
two authors could not justify the difference in the choice of Solution
components other than by their expertise in selected algorithms.
Therefore, we have kept these two applications distinguishable by
their author, with a warning for possible future treatment.

Two problems same solution: factorizing unnecessary varia-
bility. At 𝑇 0, two problems differ only in acquisition sampling;
data acquisition sampling is in seconds for one and in microseconds
for the second. Otherwise, the data are similar, and the anomaly
detection requirements are equivalent. After the detection of this
pattern, we checked the impact of acquisition sampling on the
algorithms and factorized all four regular sampling features into
regularSampling for the SPL at 𝑇 1.

4.3 Knowledge extraction driven by SPL
evolution assessment

We also exploited the analysis of the evolution of patterns and
metrics as another source of information. We use Pb𝛼 and Pb𝛽 to
refer to the problem part of the configurations (i.e., the features of
the InitialData and BusinessRequirements branches) and S𝛼
and S𝛽 to refer to the solution part.

4.3.1 Pattern evolution and knowledge consolidation. At T0, Pb𝛼
and Pb𝛽 are equivalent, but solved by two different clustering mod-
els9, kmeans [26] on the one hand and Dbscan [46] on the other. At
T0, we did not know which to delete; we kept both applications. At
T1, we reconfigured the configurations to align with the new feature
model, which now incorporates features detailing business expert
insights into possible outliers in the data10. The feature model also
includes associated constraints expressing compatibility between

8Usage of the robust scaler is interesting only if outliers are within the values of the
time series
9Solution workflows vary according to machine learning algorithms
10The data scientists can decide whether outliers are anomalies or not in the context
of the experiment

Evolvable SPL management with partial knowledge: an application to anomaly detection in time series SPLC ’22, September 12–16, 2022, Graz, Austria

Table 4: Metrics Evolution in times and spaces

𝑁𝑜𝐹 𝑁𝑙𝑒𝑎𝑓 𝐶𝑜𝑣 𝐶𝑜𝑚 𝑁𝑜𝐸𝐶 𝑁𝑜𝐴 𝑁𝑜𝐶 𝐶𝑇𝐶𝑅

𝑇 0

InitialData 23 16 37% 19% 5 - - -
BusinessRequirements 33 24 41% 21,25 % 7 - - -
Solution 51 25 52% 16.8 % 7 - - -
Global∗ 156 96 35,04 % 14,68 % 10 10 25 21,19%

𝑇 1

InitialData 28 19 42,10 % 18,94 % 9 - - -
BusinessRequirements 43 33 54,55 % 17 % 13 - - -
Solution 67 37 48,64 % 8,64 % 11 - - -
Global∗ 194 124 40,32 % 10,86 % 14 15 31 21,76%

𝑇 2

InitialData 28 19 57,9 % 18,00 % 14 - - -
BusinessRequirements 43 33 57,6 % 17,24 % 17 - - -
Solution 74 42 57,14 % 7,89 % 15 - - -
Global∗ 203 131 47,32 % 10,41 % 18 19 32 21,78%

∗The difference between the global figures and the figures of the 3 spaces corresponds to the branches Sources and states.
The feature model hierarchy is six levels deep for the Solution branch, and four for the InitialData and BusinessRequirements branches.

solution components and these new features. The reconfiguration
made it possible to distinguish the two problems and the adequacy
of the two different solutions.

4.3.2 Pattern evolution and knowledge extraction. Pb𝛼 and Pb𝛽 are
equivalent in T0, S𝛼 includes a dimension reduction process through
PCA [1] while S𝛽 skips this step. Like in the previous example,
we kept both applications. At T1, we extended the InitialData
space with features to explicit time series dimensionalities and
automated their evaluation by dataset analysis. The reconfiguration
step indicated that in Pb𝛼 , the time series were multivariate. In
contrast, Pb𝛽 ’s time series were uni-variate [2]. This unique change
in configuration highlighted the link between PCA and time series

dimensionalities.

4.4 Exploiting the metrics
In sections 4.2 and 4.3, we established that the analysis of equiva-
lence classes on both the problems and the solutions helps to trace
the applications and their common points. We will now describe
how the metrics defined in section 3.4 help us assess the evolution
of the practices in each space.

InitialData. The coverage rate (𝐶𝑜𝑣) increased from 𝑇 0 to 𝑇 1,
while the number of features (𝑁𝑜𝐹) also increased. This increase in-
dicates that the industrial applications cover different data set prop-
erties from the first applications on benchmark datasets. Between
𝑇 1 and 𝑇 2 the coverage increased while the number of features
did not change. New applications did involve new features of the
InitialData. We rely on commonality analysis to better understand
the variations between industrial and benchmark datasets. It shows
that at 𝑇 0 all the features related to Missingvalues were unused
features

11 which means that the datasets did not have missing val-
ues of any type. At𝑇 1 MCARMV12, and StructuralMV13 features had
a 𝑐𝑜𝑚(𝑓) > 1, which means that the new datasets were exhibit-
ing these two types of missing values. Similarly, we identify the
emergence of irregular sampling time series at 𝑇 1.

11always deselected
12Missing value completely at random
13Missing values of structural nature

BusinessRequirements. Within this feature space, we sought
to identify the questions that experts answered the least. These
questions may need rephrasing. The principle is then to identify
the most undefined features of the penultimate level. We did not
meet such a case yet, which was confirmed by the data scientists.

The coverage and commonality analysis highlight the require-
ments of industrial applications for memory, CPU, or energy con-
sumption optimization. The features representing these hardware
constraints are either undefined or deselected at 𝑇 0 and 𝑇 2. They
are selected at 𝑇 1 only.

Solution. . The coverage rate decreases at step𝑇 1 and increases
at𝑇 2, while the number of features increases strictly. The evolution
of these two metrics indicates: (i) on the one hand, that industrial
applications use new solution components; (ii) and on the other
hand, that the applications we integrated at 𝑇 2 consolidate our SPL
by reusing existing solution components. The commonality rate de-
creases to reach 7.89%. However, a detailed analysis of the number
of selections by feature indicates that some algorithms are used in
several solutions, while others are never used. For instance, we ob-
serve that each of LSTMAE (LSTM Auto-encoder) and MAE (mean
absolute error) have been used 5 times out of 19, while padding,
FrontFill and others have not been used. Therefore, correlated
with broader coverage of problem space, this metric should help
identify some of the preferences of data scientists and maybe some
bias. Indeed, it is natural to think that data scientists generally rely
on the algorithms they are comfortable with, sometimes maybe at
the expense of the solution.

5 DISCUSSION
In this section, we relate our findings to existing work, and discuss
potential threats to validity and current limitations.

Usability. . While we are confident that our SPL approach helps
narrowing the problem, reducing the solution space, and identify-
ing similar applications, these points remain to be proven through
controlled experiments. To facilitate the use of the configurator,
we rely on visualization techniques [41] since recommendation
systems are not yet applicable [42, 51]. Yet, due to the increasing
size and complexity of the feature model, one threat is that the
configurator might become cumbersome to use because it exposed

SPLC ’22, September 12–16, 2022, Graz, Austria El Amraoui et al.

too many questions and too many possible solutions. Controlling
the evolution of the feature model is therefore essential to avoid
irrelevant questions and poorly fitting solution components. Met-
rics and patterns are part of the proposed solution to reduce this
risk. Nevertheless, detecting patterns, especially those related to
unification, can pose scalability issues on which we are currently
working. Another threat to usability is related to the actual main-
tenance of the SPL in response to metrics and patterns analysis.
These tasks were performed by the SPL modelers, interacting with
the data scientists. This point does not challenge the relevance of
the approach, but we still need to demonstrate that the tools allows
autonomous maintenance by data scientists and collaborative FM
updating [31].

Practice-driven feature modeling. To address the different percep-
tions of domain concepts, we not only unified domain terminology
with descriptive feature names, but also provided descriptions and
sources that are accessible directly from the configurator. How-
ever, we specified requirements only qualitatively (with proposi-
tional FM) using an ordinal scale when necessary, instead of their
scalar values (e.g., available memory greater than/lower than 1
GB) [7]. To automate and ensure reproducibility of reasoning be-
tween stakeholders, we scripted a mapping between time series
metadata values and features. So far, these approximations have
not hampered knowledge acquisition. Therefore, we did not need
attributed feature models for which pattern detection has yet to be
designed.

Practice-driven evolution. . Our work follows a reactive SPL adop-
tion process [20, 28], using different techniques to locate features [16].
However, identifying the variations between workflows does not
always enable us to understand the variations of the problem. The
feature model then plays a crucial role in revealing undefined ele-
ments of the problem from the known constraints on the solutions.
It is therefore essential that the FM be rich enough. We have demon-
strated through our case study that we can enrich it with pattern
detection. Yet, other complementary avenues still need to be ex-
plored to identify the relationships between solution components
and source datasets. We are currently working on extracting the
preconditions and effects of the algorithms by analyzing different
techniques and ML environments [6, 35, 38, 52].

Quality assurance. . When the feature model is modified, we
check, through automatic reconfigurations [51], that the previous
configurations are preserved or even enhanced. These systematic
checks have already allowed us to identify errors in the defini-
tion of new constraints. They participate in non-regression testing.
However, SPL testing [15] and ML testing [55] are inherently dif-
ficult activities that we do not yet address; Many algorithms built
into SPL are too resource-intensive (CPU, memory, and time) to
consider sampling techniques [23]. Nonetheless, we believe that
some work on SPL configurations opens up new opportunities to
help build portfolios for automatic algorithm selection [29]. For
example, configuration similarity analysis should help analyze the
coverage of the problem space [3, 15, 27], while modeled features
provide additional information to the metadata usually considered
in meta-learning [32].

Generalizability. . External validity concerns the ability to gen-
eralize the results to other environments [54]. Our study has been

developed in the context of one company, taking into account in-
dustrial applications. However, we have collected applications from
three different sources, which mitigates the risk of dependency on
the company’s applications. Pattern detection relies on our ability
to distinguish between the problem space and the solution space,
the essence of any SPL. However, we decided to showcase our
work on the particular context of this SPL (i.e., focused on specific
types of ML applications, with scientific knowledge yet to be dis-
covered and with a small set of configurations) because it can be
exploited industrially as is. We could generalize this approach to
other systems as one of our most prized contributions is to build
and evaluate an incremental SPL. However, t the particular context
of this SPL (i.e., focused on specific types of ML applications, with
scientific knowledge yet to be discovered and with a small set of
configurations) does not allow us to state that our contribution
is generalizable. Nevertheless, several subdomains of ML at least
present the same characteristics.

6 CONCLUSION
Recent technological advances have made possible to collect a large
amount of data over time. The purpose of time series data mining
is to enable classification, clustering, or outlier detection [9]. Our
study focuses on this last task. In this paper, we have proposed
a practice-driven approach to build an SPL as a first step toward
allowing the design of generic solutions to detect anomalies in
time series, while capturing new knowledge and capitalizing on
the existing one.

The incrementality in the acquisition of knowledge and the in-
stability of the domain [44] are supported by the SPL through its
structuring and the exploitation of partial configurations associ-
ated with past applications. As far as we know, this is the first case
of application of the SPL paradigm in such a context, and with a
knowledge acquisition objective. We argue that using this para-
digm to record and analyze practices will enable advances in the
selection of ML workflows that are much less energy-intensive than
meta-learning techniques, while assisting scientific knowledge pro-
duction. By capturing practices in partial configurations, we obtain
the abstractions to reason about datasets, solutions, and business
requirements. The SPL is then used both to produce new solutions
and compare them to past solutions, as well as to identify knowl-
edge that was not explicit. The growing abstraction supported by
the SPL also brings other benefits. In mentoring junior data sci-
entists, we have observed a shift in the approach to creating ML
workflows, focusing on analyzing problems before looking for sim-
ilar applications, especially in choosing evaluation metrics. It is
rather difficult for data scientists to explain the precise reasons for
their choice. We observed that focusing only on particular cases
identified as patterns makes the relevant criteria explicit.

This preliminary work paves the way for new software engi-
neering contributions to ML. Our SPL is now evolving through
the various works of data scientists to enrich the knowledge of
anomaly detection in time series. We are working on visualization
tools to facilitate the exploitation of practices, and thus the SPL
maintenance. Distinguishing the users of the SPL from those who
maintain it is also part of our future plan in order to obtain an
empirical validation.

Evolvable SPL management with partial knowledge: an application to anomaly detection in time series SPLC ’22, September 12–16, 2022, Graz, Austria

REFERENCES
[1] Hervé Abdi and Lynne J Williams. 2010. Principal component analysis. Wiley

interdisciplinary reviews: computational statistics 2, 4 (2010), 433–459.
[2] Patrick Aboagye-Sarfo, Qun Mai, Frank M Sanfilippo, David B Preen, Louise M

Stewart, and Daniel M Fatovich. 2015. A comparison of multivariate and univari-
ate time series approaches to modelling and forecasting emergency department
demand in Western Australia. Journal of biomedical informatics 57 (2015), 62–73.

[3] M Al-Hajjaji, T Thüm, J Meinicke, M Lochau . . . Software Product Line . . . , and
undefined 2014. 2014. Similarity-based prioritization in software product-line
testing. dl.acm.org 1 (sep 2014), 197–206. https://doi.org/10.1145/2648511.2648532

[4] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software Engineering for Machine Learning: A Case Study. In Proceedings

- 2019 IEEE/ACM 41st International Conference on Software Engineering: Software

Engineering in Practice, ICSE-SEIP 2019. IEEE, Montreal Quebec Canada, 291–300.
https://doi.org/10.1109/ICSE-SEIP.2019.00042

[5] S Apel, D Batory, C Kästner, and G Saake. 2016. Feature-oriented software product
lines. Springer. https://link.springer.com/content/pdf/10.1007/978-3-642-37521-
7.pdf

[6] Benjamin Benni, Mireille Blay Fornarino, Sebastien Mosser, Frederic Precisio,
and Gunther Jungbluth. 2019. When DevOps meets meta-learning: A portfolio
to rule them all. In Proceedings - 2019 ACM/IEEE 22nd International Conference

on Model Driven Engineering Languages and Systems Companion, MODELS-C

2019. Institute of Electrical and Electronics Engineers Inc., 605–612. https:
//doi.org/10.1109/MODELS-C.2019.00092

[7] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Transactions on Software Engineering 39, 12 (2013), 1611–
1640. https://doi.org/10.1109/TSE.2013.34

[8] Besim Bilalli, Alberto Abelló, and Tomàs Aluja-Banet. 2017. On the predictive
power of meta-features in OpenML. International Journal of Applied Mathematics

and Computer Science 27, 4 (2017), 697–712.
[9] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A. Lozano. 2021. A

Review on Outlier/Anomaly Detection in Time Series Data. ACM Computing

Surveys (CSUR) 54, 3 (feb 2021), 33. https://doi.org/10.1145/3444690
[10] Sérgio Branco, André G Ferreira, and Jorge Cabral. 2019. Machine learning in

resource-scarce embedded systems, FPGAs, and end-devices: A survey. Electronics
8, 11 (2019), 1289.

[11] Mikel Canizo, Isaac Triguero, Angel Conde, and Enrique Onieva. 2019. Multi-head
CNN–RNN for multi-time series anomaly detection: An industrial case study.
Neurocomputing 363 (2019), 246–260.

[12] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM computing surveys (CSUR) 41, 3 (2009), 1–58.

[13] Hoang Anh Dau, Anthony J Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh,
Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn J
Keogh. 2018. The UCR Time Series Archive. CoRR abs/1810.07758 (2018), 1–12.
http://arxiv.org/abs/1810.07758

[14] Hans Degroote, Bernd Bischl, Lars Kotthoff, and Patrick De Causmaecker. 2016.
Reinforcement Learning for Automatic Online Algorithm Selection - an Empirical
Study. In ITAT 2016 Proceedings, CEUR Workshop Proceedings Vol. 1649 (CEUR

Workshop Proceedings, Vol. 1649), Brona Brejová (Ed.). CEUR-WS.org, 93–101.
http://ceur-ws.org/Vol-1649/93.pdf

[15] Xavier Devroey, Gilles Perrouin, Axel Legay, Pierre Yves Schobbens, and Patrick
Heymans. 2015. Covering SPL behaviour with sampled configurations: An initial
assessment. In Proceedings of the Ninth International Workshop on Variability

Modelling of Software-Intensive Systems. ACM Press, Hildesheim, Germany, 59–
66. https://doi.org/10.1145/2701319.2701325

[16] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: A taxonomy and survey. Journal of software:
Evolution and Process 25, 1 (jan 2013), 53–95. https://doi.org/10.1002/SMR.567

[17] Chris Drummond. 2006. Machine learning as an experimental science (revisited).
In AAAI workshop on evaluation methods for machine learning. AAAI Press,
Phoenix, Arizona USA, 1–5. http://www.aaai.org/Library/Workshops/ws06-
06.php

[18] Sascha El-Sharkawy, Nozomi Yamagishi-Eichler, and Klaus Schmid. 2019. Metrics
for analyzing variability and its implementation in software product lines: A
systematic literature review. Information and Software Technology 106 (feb 2019),
1–30. https://doi.org/10.1016/j.infsof.2018.08.015

[19] Dennis Elbrächter, Dmytro Perekrestenko, Philipp Grohs, and Helmut Bölcskei.
2019. Deep neural network approximation theory. CoRR abs/1901.02220 (2019),
1–43. http://arxiv.org/abs/1901.02220

[20] Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander Egyed.
2015. The ECCO Tool: Extraction and Composition for Clone-and-Own. In
Proceedings - International Conference on Software Engineering. IEEE, Florence,
Italy, 665–668. https://doi.org/10.1109/ICSE.2015.218

[21] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the state-
of-the-art. Knowledge-Based Systems 212 (2021), 106622.

[22] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick
Heymans, and Yves Le Traon. 2014. Bypassing the combinatorial explosion:
Using similarity to generate and prioritize t-wise test configurations for software
product lines. IEEE Transactions on Software Engineering 40, 7 (2014), 650—-670.
https://ieeexplore.ieee.org/abstract/document/6823132/

[23] Ruben Heradio, David Fernandez-Amoros, José A. Galindo, David Benavides,
and Don Batory. 2022. Uniform and scalable sampling of highly configurable
systems. Empirical Software Engineering 27, 2 (mar 2022), 44. https://doi.org/10.
1007/s10664-021-10102-5

[24] Mohammad Hossin and Md Nasir Sulaiman. 2015. A review on evaluation
metrics for data classification evaluations. International journal of data mining &

knowledge management process 5, 2 (2015), 1.
[25] Jianglin Huang, Yan-Fu Li, and Min Xie. 2015. An empirical analysis of data

preprocessing for machine learning-based software cost estimation. Information

and software Technology 67 (2015), 108–127.
[26] Xiaohui Huang, Yunming Ye, Liyan Xiong, Raymond YK Lau, Nan Jiang, and

Shaokai Wang. 2016. Time series k-means: A new k-means type smooth subspace
clustering for time series data. Information Sciences 367 (2016), 1–13.

[27] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo,
Sven Apel, and Michael Felderer. 2019. Distance-based sampling of software
configuration spaces. In 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE). IEEE Press, 1084–1094. https://doi.org/10.1109/ICSE.2019.
00112

[28] T Kehrer, T Thüm, A Schultheis . . . Conference on Software . . . , and Undefined
2021. 2021. Bridging the gap between clone-and-own and software product lines.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering: New

Ideas and Emerging Results (ICSE-NIER). IEEE, 21–25. https://ieeexplore.ieee.org/
abstract/document/9402254/

[29] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. 2018.
Automated algorithm selection: Survey and perspectives. Evolutionary Computa-

tion 27, 1 (2018), 3–45. https://doi.org/10.1162/evco_a_00242 arXiv:1811.11597
[30] Jacob Krüger, Wardah Mahmood, and Thorsten Berger. 2020. Promote-pl: a

round-trip engineering process model for adopting and evolving product lines.
In Proceedings of the 24th ACM Conference on Systems and Software Product Line:

Volume A-Volume A, Vol. Part F1642. Association for Computing Machinery,
263–273. https://doi.org/10.1145/3382025.3414970

[31] Elias Kuiter, Sebastian Krieter, Jacob Krüger, Gunter Saake, and Thomas Leich.
2021. variED: an editor for collaborative, real-time feature modeling. Empirical

Software Engineering 26, 2 (mar 2021), 1–47. https://doi.org/10.1007/S10664-020-
09892-X

[32] Luc Lesoil, Hugo Martin, Mathieu Acher, Arnaud Blouin, and Jean-Marc Jézéquel.
2022. Transferring Performance between Distinct Configurable Systems : A Case
Study. Proceedings of the 16th International Working Conference on Variability

Modelling of Software-Intensive Systems 6 (feb 2022), 1–6. https://doi.org/10.1145/
3510466.3510486

[33] Maíra Marques, Jocelyn Simmonds, Pedro O. Rossel, and María Cecilia Bastarrica.
2019. Software product line evolution: A systematic literature review. , 190–
208 pages. https://doi.org/10.1016/j.infsof.2018.08.014

[34] Silverio Martínez-Fernández, Justus Bogner, Xavier Franch, Marc Oriol, Julien
Siebert, Adam Trendowicz, Anna Maria Vollmer, and Stefan Wagner. 2021. Soft-
ware Engineering for AI-Based Systems: A Survey. CoRR abs/2105.0 (may 2021),
54. arXiv:2105.01984 https://arxiv.org/abs/2105.01984v1http://arxiv.org/abs/2105.
01984

[35] Hoan Anh Nguyen, Robert Dyer, Tien N. Nguyen, and Hridesh Rajan. 2014.
Mining preconditions of APIs in large-scale code corpus. In Proceedings of the

ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE). ACM,
Hong Kong, China, 166–177. https://doi.org/10.1145/2635868.2635924

[36] Michael Nieke, Gabriela Sampaio, Thomas Thüm, Christoph Seidl, Leopoldo
Teixeira, and Ina Schaefer. 2022. Guiding the evolution of product-line con-
figurations. Software and Systems Modeling 21 (jul 2022), 225–247. https:
//doi.org/10.1007/S10270-021-00906-W/TABLES/5

[37] Lina Ochoa, Juliana Alves Pereira, Oscar González-Rojas, Harold Castro, and
Gunter Saake. 2017. A survey on scalability and performance concerns in ex-
tended product lines configuration. In Proceedings of the Eleventh International

Workshop on Variability Modelling of Software-intensive Systems. Association for
Computing Machinery, 5–12. https://doi.org/10.1145/3023956.3023959

[38] Pascal Olz, Conny and Biundo, Susanne and Bercher. 2021. Revealing Hidden
Preconditions and Effects of Compound HTN Planning Tasks–A Complexity
Analysis. In 35th AAAI Conference on Artificial Intelligence (AAAI). AAAI Press.
AAAI Press, Virtual Event, 1903–11912. https://www.aaai.org/AAAI21Papers/
AAAI-655.OlzC.pdf

[39] OMG. 2006. Business Process Modeling Notation (BPMN) Specification, Final

Adopted Specification. Technical Report. Object Management Group (OMG).
[40] S. Gopal Krishna Patro and Kishore Kumar Sahu. 2015. Normalization: A Prepro-

cessing Stage. CoRR abs/1503.06462 (2015), 1–3. http://arxiv.org/abs/1503.06462
[41] Juliana Alves Pereira, Sebastian Krieter, Jens Meinicke, Reimar Schröter, Gunter

Saake, and Thomas Leich. 2016. FeatureIDE: Scalable product configuration of
variable systems. In International Conference on Software Reuse, Lecture Notes in

https://doi.org/10.1145/2648511.2648532
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://link.springer.com/content/pdf/10.1007/978-3-642-37521-7.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-37521-7.pdf
https://doi.org/10.1109/MODELS-C.2019.00092
https://doi.org/10.1109/MODELS-C.2019.00092
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1145/3444690
http://arxiv.org/abs/1810.07758
http://ceur-ws.org/Vol-1649/93.pdf
https://doi.org/10.1145/2701319.2701325
https://doi.org/10.1002/SMR.567
http://www.aaai.org/Library/Workshops/ws06-06.php
http://www.aaai.org/Library/Workshops/ws06-06.php
https://doi.org/10.1016/j.infsof.2018.08.015
http://arxiv.org/abs/1901.02220
https://doi.org/10.1109/ICSE.2015.218
https://ieeexplore.ieee.org/abstract/document/6823132/
https://doi.org/10.1007/s10664-021-10102-5
https://doi.org/10.1007/s10664-021-10102-5
https://doi.org/10.1109/ICSE.2019.00112
https://doi.org/10.1109/ICSE.2019.00112
https://ieeexplore.ieee.org/abstract/document/9402254/
https://ieeexplore.ieee.org/abstract/document/9402254/
https://doi.org/10.1162/evco_a_00242
https://arxiv.org/abs/1811.11597
https://doi.org/10.1145/3382025.3414970
https://doi.org/10.1007/S10664-020-09892-X
https://doi.org/10.1007/S10664-020-09892-X
https://doi.org/10.1145/3510466.3510486
https://doi.org/10.1145/3510466.3510486
https://doi.org/10.1016/j.infsof.2018.08.014
https://arxiv.org/abs/2105.01984
https://arxiv.org/abs/2105.01984v1 http://arxiv.org/abs/2105.01984
https://arxiv.org/abs/2105.01984v1 http://arxiv.org/abs/2105.01984
https://doi.org/10.1145/2635868.2635924
https://doi.org/10.1007/S10270-021-00906-W/TABLES/5
https://doi.org/10.1007/S10270-021-00906-W/TABLES/5
https://doi.org/10.1145/3023956.3023959
https://www.aaai.org/AAAI21Papers/AAAI-655.OlzC.pdf
https://www.aaai.org/AAAI21Papers/AAAI-655.OlzC.pdf
http://arxiv.org/abs/1503.06462

SPLC ’22, September 12–16, 2022, Graz, Austria El Amraoui et al.

Computer Science, Vol. 9679. Springer Verlag, 397–401. https://doi.org/10.1007/
978-3-319-35122-3_27

[42] Juliana Alves Pereira, Pawel Matuszyk, Sebastian Krieter, Myra Spiliopoulou,
and Gunter Saake. 2018. Personalized recommender systems for product-line
configuration processes. Computer Languages, Systems and Structures 54 (2018),
451–471. https://doi.org/10.1016/j.cl.2018.01.003

[43] Nelishia Pillay, Rong Qu, Dipti Srinivasan, Barbara Hammer, and Kenneth
Sorensen. 2018. Automated design of machine learning and search algorithms
[guest editorial]. IEEE Computational intelligence magazine 13, 2 (2018), 16–17.

[44] Klaus Pohl, Günter Böckle, and Frank J van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-Verlag.

[45] Belén Ramos-Gutiérrez, Ángel Jesús Varela-Vaca, José A. Galindo, María Teresa
Gómez-López, and David Benavides. 2021. Discovering configuration workflows
from existing logs using process mining. Empir. Softw. Eng. 26, 1 (jan 2021), 11.
https://doi.org/10.1007/s10664-020-09911-x

[46] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu.
2017. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN.
ACM Transactions on Database Systems (TODS) 42, 3 (2017), 1–21.

[47] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, and Michael Young. 2015. Machine Learning: The High
Interest Credit Card of Technical Debt. In Proceedings of the 28th International

Conference on Neural Information Processing Systems - Volume 2, Ghahramani
Zoubin, MaxWelling, Corinna Cortes, Neil D. Lawrence, and Kilian Q.Weinberger
(Eds.). MIT Press, Montreal, Canada, 2503–2511. https://ai.google/research/pubs/
pub43146

[48] Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. 2006. Beyond ac-
curacy, F-score and ROC: a family of discriminant measures for performance
evaluation. In Australasian joint conference on artificial intelligence. Springer,

Springer, Berlin, Heidelberg, 1015–1021.
[49] Leopoldo Teixeira, Rohit Gheyi, and Paulo Borba. 2020. Safe Evolution of Product

Lines Using Configuration Knowledge Laws. In Brazilian Symposium on Formal

Methods, Lecture Notes in Computer Science, Vol. 12475 LNCS. Springer, Cham,
210–227. https://doi.org/10.1007/978-3-030-63882-5_13

[50] A Tornhill. 2015. Your Code as a Crime Scene. Pragmatic Bookshelf. https:
//books.google.fr/books?id=l7dDnQAACAAJ

[51] Mathias Uta, Alexander Felfernig, Viet Man Le, Andrei Popescu, Thi Ngoc Trang
Tran, and Denis Helic. 2021. Evaluating recommender systems in feature model
configuration. In Proceedings of the 25th ACM International Systems and Software

Product Line Conference, Vol. Part F1716. ACM, New York, NY, USA, 58–63. https:
//doi.org/10.1145/3461001.3471144

[52] Jan N. Van Rijn and Joaquin Vanschoren. 2015. Sharing RapidMiner workflows
and experiments with OpenML. In CEUR Workshop Proceedings, Vol. 1455. CEUR-
WS, 93–103.

[53] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2013. OpenML:
Networked Science inMachine Learning. SIGKDD Explorations 15, 2 (2013), 49–60.
https://doi.org/10.1145/2641190.2641198 arXiv:1407.7722

[54] C Wohlin, P Runeson, M Höst, MC Ohlsson, and B Regnell. 2012.
Experimentation in software engineering. Springer. 1–236 pages.
https://books.google.com/books?hl=fr&lr=&id=QPVsM1_U8nkC&oi=fnd&pg=
PR5&dq=Experimentation+in+Software+Engineering.&ots=GPx7rciRCu&sig=
KyBLRUIbGY48ZlXMyE9nRVCbP_o

[55] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2022. Machine Learn-
ing Testing: Survey, Landscapes and Horizons. IEEE Transactions on Software

Engineering 48, 01 (jan 2022), 1–36. https://doi.org/10.1109/TSE.2019.2962027
arXiv:1906.10742

https://doi.org/10.1007/978-3-319-35122-3_27
https://doi.org/10.1007/978-3-319-35122-3_27
https://doi.org/10.1016/j.cl.2018.01.003
https://doi.org/10.1007/s10664-020-09911-x
https://ai.google/research/pubs/pub43146
https://ai.google/research/pubs/pub43146
https://doi.org/10.1007/978-3-030-63882-5_13
https://books.google.fr/books?id=l7dDnQAACAAJ
https://books.google.fr/books?id=l7dDnQAACAAJ
https://doi.org/10.1145/3461001.3471144
https://doi.org/10.1145/3461001.3471144
https://doi.org/10.1145/2641190.2641198
https://arxiv.org/abs/1407.7722
https://books.google.com/books?hl=fr&lr=&id=QPVsM1_U8nkC&oi=fnd&pg=PR5&dq=Experimentation+in+Software+Engineering.&ots=GPx7rciRCu&sig=KyBLRUIbGY48ZlXMyE9nRVCbP_o
https://books.google.com/books?hl=fr&lr=&id=QPVsM1_U8nkC&oi=fnd&pg=PR5&dq=Experimentation+in+Software+Engineering.&ots=GPx7rciRCu&sig=KyBLRUIbGY48ZlXMyE9nRVCbP_o
https://books.google.com/books?hl=fr&lr=&id=QPVsM1_U8nkC&oi=fnd&pg=PR5&dq=Experimentation+in+Software+Engineering.&ots=GPx7rciRCu&sig=KyBLRUIbGY48ZlXMyE9nRVCbP_o
https://doi.org/10.1109/TSE.2019.2962027
https://arxiv.org/abs/1906.10742

	Abstract
	1 Introduction
	2 From partial knowledge to an SPL
	2.1 ML Workflows for anomaly detection in time series
	2.2 On meta-learning and AutoML
	2.3 Towards an evolvable SPL
	2.4 From the requirements to the SPL paradigm

	3 Designing an evolvable SPL with partial knowledge
	3.1 FM structure to tame the SPL evolution
	3.2 Capturing knowledge through configuration management
	3.3 Pattern detection based on the premise: a problem has a unique solution
	3.4 Metrics for evaluating the SPL
	3.5 Systematically mastering the evolutions of the SPL

	4 Application
	4.1 First three steps of the SPL construction process
	4.2 Knowledge extraction driven by SPL assessment
	4.3 Knowledge extraction driven by SPL evolution assessment
	4.4 Exploiting the metrics

	5 Discussion
	6 Conclusion
	References

