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In Machine Learning (ML), the resolution of anomaly detection problems in time series presents a great diversity of practices as it can correspond to many different contexts. These practices cover both grasping the business problem and designing the solution itself. By practice, we designate explicit and implicit steps toward resolving a problem, while a solution corresponds to a combination of algorithms selected for their performance on a given problem. Two related issues arise. The first one is that the practices are individual and not explicitly mutualized. The second one is that choosing one solution over another is all the more difficult to justify because the space of solutions and the evaluation criteria are vast and evolve rapidly with the advances in ML. To solve these issues and tame the evolving diversity in ML, a Software Product Line (SPL) approach can be envisaged to represent the variable set of solutions. However, this requires characterizing an ML business problem through an explicit set of criteria and justifying one ML solution over all others. The resolution of anomaly detection problems is thus different from finding the best configuration workflow from past configurations but lies more in guiding the configuration towards a solution that may never have been studied before. This paper proposes an SPL approach that capitalizes on past practices by exploiting a variability-aware representation to detect new criteria and constraints when practices adopt different solutions to seemingly similar problems. We report on the evaluation of our approach using a set of applications from the literature and an ML software company. We show how the analysis of practices makes it possible to consolidate the knowledge contained in the SPL.

INTRODUCTION

Building learning systems are increasingly complex, as industry data, human and organizational factors, and application domains define different contexts that require tailored practices [START_REF] Canizo | Multi-head CNN-RNN for multi-time series anomaly detection: An industrial case study[END_REF]. By practices, for the Machine Learning (ML) community, we mean the entire process of producing ML workflows, from analyzing the customer's data, business goals, and constraints to delivering the ML model built by composing algorithms. To address this variability of contexts, data scientists are developing a great deal of expertise, including developing dedicated algorithms within companies and tracking the evolution of theory and practice through literature and collaborations with researchers. However, with the profusion of algorithms and the diversity of industry problems, connecting problems to appropriate practices requires increasing capabilities and resources.

To make this connection between real-world problems and undiscovered scientific knowledge, we chose to focus on time series anomaly detection, such as stock price outlier detection, which presents a wide variety of challenges and practices [START_REF] Canizo | Multi-head CNN-RNN for multi-time series anomaly detection: An industrial case study[END_REF][START_REF] Huang | An empirical analysis of data preprocessing for machine learning-based software cost estimation[END_REF]. Scientific knowledge in this area remains to be discovered as the data and application domains require developing new solutions. While building an ML model involves a composition of algorithms that takes a long time to design and test, the available experiments only partially cover the large variability of the domain, especially in industrial applications (see Section 2.1).

In this paper, we argue that a Software Product Line (SPL) approach allows for linking partial configurations of ML problems with appropriate workflows. The originality of the approach is to exploit past configurations to enrich the knowledge captured by the SPL. In this context, we identify the following functional requirements.

R1-Identifying similarities between partially described problems. Looking for similarities and differences with previous problems is a natural first thought for data scientists but remains a difficult task. Indeed, the nature of the source data often makes their characterization challenging, especially since precisely defining an anomaly in a time series can be difficult, including for the customer who delivered the data. Being able to deal with partially characterized source data is therefore mandatory, including proposing algorithms that will be able to manage the variability of the data sets, for example, when the type of anomaly is not known (singular points, global anomalies, or pattern anomalies [START_REF] Chandola | Anomaly detection: A survey[END_REF]).

R2-Consolidating knowledge according to the evolution of practices. Considering new solutions (i.e., new ML workflow) from the literature requires characterizing the boundaries of the problems targeted by these solutions. Thus, it is not only a matter of selecting new algorithms but also new criteria such as evaluation metrics or business requirements. [START_REF] Bilalli | On the predictive power of meta-features in OpenML[END_REF][START_REF] Drummond | Machine learning as an experimental science (revisited)[END_REF]. For instance, detecting anomalies in scarce resource environments such as IoT embedded systems, has an impact on the entire ML model production chain [START_REF] Branco | Machine learning in resource-scarce embedded systems, FPGAs, and end-devices: A survey[END_REF][START_REF] Pillay | Automated design of machine learning and search algorithms[END_REF]. To consolidate the knowledge, we must be able to compare applications. By application, we mean not only the solutions and their performances, but also the targeted problems, i.e., the data and the business requirements. In particular, we want to identify data sets and business requirements that appear similar but have different solutions to highlight new criteria or the obsolescence of some past criteria. For example, in the literature, when, for the same dataset, two different compositions of algorithms work well, it is interesting to identify, if possible, which requirement criteria could distinguish them.

To highlight these requirements, we propose three scenarios in which Lucile, a data scientist persona, uses our framework named ROCK'n RWL 1 (RRW).

Scenario 1:Lucile uses RRW to search for a solution to a new anomaly detection problem over a given dataset. Through a dedicated interface, Alice indicates the business requirements and some additional information about the dataset. RRW narrows the solution space to the suitable components and selects the most relevant ones. In addition, if previous applications match the same criteria, RRW helps Alice compare and browse them as her analysis evolves.

Scenario 2: Lucile wishes to enrich the SPL with a new set of applications that she considers interesting. RRW analyses the information related to these applications. After checking that it does not contradict previous knowledge, RRW makes them available to other data scientists.

Scenario 3: Lucile wants to evaluate the SPL.. RRW informs her of the equivalences between the descriptions of the data sets, the business requirements, and the solutions of the various registered applications. RRW can then draw her attention to various issues. 1 Request your Own Convenient Knowledge flow and Run your ML WorkfLows For example, RRW points out applications that address similar problems, i.e., seemingly identical business requirements and dataset characteristics, but use different solutions. It also identifies criteria that are never used or always used. These warnings are intended to help identifying new data spaces to be tested, for example, new criteria for comparing problems, and solution updates.

Research Vision and approach. The exploratory nature of machine learning makes an exhaustive analysis of the domain difficult, if not impossible. According to Drummond [START_REF] Drummond | Machine learning as an experimental science (revisited)[END_REF] and from our own experience, "any advantage indicated by a simple scalar measure may be illusory if it hides situation-dependent performance differences. " Despite the generalization power of ML and the substantial evolution of the field, we advocate that SPLs are well suited to explore this complexity of dependencies between data, business goals, and algorithm composition. Our contribution then concerns:

• Exploiting the SPL to guide the data scientist in narrowing the solution space and more easily pinpointing past solutions that solved similar problems. • Leveraging the SPL to reason about past solutions, making new knowledge explicit, and exploiting it to consolidate the SPL. The principle is then the following. The configurations of the applications in the SPL incrementally capture our partial knowledge of the problems and solutions. The SPL progressively supports capitalizing on what is not explicit by reasoning about these configurations. Then the main issue is not to determine the configuration workflow that best suits the actors according to the previous configurations [START_REF] Ramos-Gutiérrez | Discovering configuration workflows from existing logs using process mining[END_REF], but to guide them in composing a solution for an unprecedentedly studied problem. Concurrently, it is not a question of generating random samples [START_REF] Heradio | Uniform and scalable sampling of highly configurable systems[END_REF], whose relevance could not be precisely verified (e.g., stuffing the SPL with all the available algorithms and pre-processing components from the literature). Instead, it is more a matter of enriching our knowledge by systematically studying new validated configurations.

This paper shows how we apply these principles in constructing an SPL for anomaly detection in time series. We explain the difficulties specific to this domain of ML and why we consider that an adapted SPL can help in its analysis (see Section 2). Then we present the principles of the SPL, particularly the patterns used to identify knowledge from past applications (see Section 3). We validate this proposal on the first three steps of the SPL construction. The first phase consists in building the SPL proactively by domain analysis. Then we enrich the SPL with practices extracted from the partner company, and a third phase adds some applications of OpenML [START_REF] Vanschoren | OpenML: Networked Science in Machine Learning[END_REF] to the SPL. We then discuss the limits and perspectives of the approach (see Section 5) before concluding this paper.

FROM PARTIAL KNOWLEDGE TO AN SPL

Designing ML workflow has become essential to almost any scientific field with Deep Learning advances in the past decade. The field increased fast and in many directions based on different models, yet it is not a rich and shared knowledge enough to be organized and made accessible to non-experts. Most of the knowledge one can hold is partial, shared through non-conventional channels such as personal blogs of other data scientists, webinars, and tricks shared orally during conferences. This situation does not help to adopt these new techniques efficiently, particularly in companies. From our point of view, software engineering should play a more vital role in solving this central issue.

ML Workflows for anomaly detection in time series

Defining anomalies in a given business context requires business goals and constraints to be precised. Depending on the anomaly detection problem, it remains challenging to construct appropriate workflows [START_REF] Amershi | Software Engineering for Machine Learning: A Case Study[END_REF] because the interactions between the current data, the composition of algorithms, and the business requirements are substantial and not always well understood. Sculley et al. summarise these interactions as follows: "changing anything, changes everything" [START_REF] Sculley | Machine Learning: The High Interest Credit Card of Technical Debt[END_REF].

Events predicted as statistically abnormal by the model may not be relevant anomalies for the end-user, if they are unrelated to business requirements, as for instance sensor failures. In order for the model to distinguish relevant from non-relevant anomalies, selecting the proper data preparation algorithm is then part of the final ML workflow solution and often a crucial part of it.

Testing the variability of workflows is all the more problematic as the resources required to train models can be very important in terms of time, memory, computation, but also in terms of human investment, and not only from data scientists. Indeed, in the absence of a normality reference or threshold, decisions on whether values are abnormal or not have to be made by end-users, which is time-consuming. Therefore, it is essential to reduce the solution space to those more appropriate to solve the problem. However, identifying the problem itself can also be complex and resourceconsuming. Thus, even if deep learning-based solutions were the solution to all problems [START_REF] Elbrächter | Deep neural network approximation theory[END_REF], it would still be necessary to take into account the variability of upstream processing to prepare the data and downstream processing to maintain the models in production.

On meta-learning and AutoML

Automated machine learning methods (AutoML) have been proposed and are focusing the efforts of many industries and research teams [START_REF] He | AutoML: A survey of the stateof-the-art[END_REF]. However, most AutoML algorithms aim only at solving a specific problem on specific datasets and do not provide endusers with the ability to acquire reasoned knowledge. Therefore, these systems are high-value solution components that we have introduced into the SPL to solve specific problems. More generally, many SE4AI 2 works addressed the issue of classification workflow selection in a generic way like in the work of Martínez-Fernández et al. [START_REF] Martínez-Fernández | Software Engineering for AI-Based Systems: A Survey[END_REF] or by using a meta-learning-based portfolio like in the work of Kerschke et al. [START_REF] Kerschke | Automated algorithm selection: Survey and perspectives[END_REF] and Degroote et al. [START_REF] Degroote | Reinforcement Learning for Automatic Online Algorithm Selection -an Empirical Study[END_REF]. Furthermore, these automated approaches entail massive needs for computation, memory, and time resources. One standard solution is to limit the solution space on which to train: measure choice, algorithms, or composition of algorithms.

However, we aim at the contrary at enriching our SPL by regularly adding new algorithms, new business requirements criteria, etc. We also aim to help in the evaluation measure choice, according to the prediction performance [START_REF] Hossin | A review on evaluation metrics for data classification evaluations[END_REF] and ensure that the solutions 2 Software Engineering for AI deployed will scale in production [START_REF] Sokolova | Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation[END_REF], in particular, in anomaly detection, automation is difficult since end-users must validate anomalies, as explained in the previous section. We are advocating a reverse approach that is drastically less computationally, memoryintensive, and more suitable for scientific and reasoned knowledge acquisition directed by and for humans.

Towards an evolvable SPL

This work is based on a collaboration between academic researchers in software engineering and data scientists from a company providing ML workflows for business customers. The work thus targets various applications, involving diverse industrial datasets and business problems.

Despite the constantly evolution of the domain (not to say the volatility of the domain), everything changes ... in an unpredictable way [START_REF] Pohl | Software Product Line Engineering: Foundations, Principles and Techniques[END_REF], choosing to capitalize on the different solutions designed by data scientists through an SPL seemed to be the best option. Our interviews revealed that, based on their experience, the domain experts had already identified most of the main dimensions of variabilities and commonalities of their domain. However, the domain analysis quickly showed that a proactive adoption scenario was not suitable, it is not yet possible to strictly separate domain analysis from the practices of data scientists seeking to solve new problems. Therefore, we have opted for a "reactive adoption strategy" for the product line and managed its evolution by integrating the practices of data scientists [START_REF] Krüger | Promote-pl: a round-trip engineering process model for adopting and evolving product lines[END_REF].

Effectively managing the evolution of variant-rich software involves bridging the gap between software solutions and the capture of domain variability [START_REF] Kehrer | Bridging the gap between clone-and-own and software product lines[END_REF]. However, in our case, while data variability is partially identifiable automatically [START_REF] Bilalli | On the predictive power of meta-features in OpenML[END_REF], the context variability is not entirely identifiable from software solutions. Our goal is therefore to obtain this non-explicit information with a minimum of manual effort. To this end, we introduce into the round-trip engineering process proposed by Promote-pl [START_REF] Krüger | Promote-pl: a round-trip engineering process model for adopting and evolving product lines[END_REF], a feedback phase on the content of the SPL itself. This consists in identifying, when integrating new applications, those that can provide new information by comparison with past applications. To meet this objective, we started from the following assumption: "Any customer can generate the software they want, as long as they can describe it in the SPL" 3 . We use this assumption as a postulate to investigate the practices, and to hopefully identify new knowledge. The principle is that if two equivalent descriptions of problems correspond to two different solutions, then it is not the same problem; otherwise, we would not know which software to generate. Thus integrating an application to the SPL involves interactions with data scientists only when it is not possible to distinguish the contexts that led to two different solutions.

Evolving an SPL in an ad hoc manner is error-prone because the configuration space is large and involves taking into account many interdependent artefacts. Thus, the definition of a reactive approach integrates the need to foresee "a typical pattern for maintaining and evolving a product line during its lifetime" [START_REF] Apel | Feature-oriented software product lines[END_REF]. In [START_REF] Teixeira | Safe Evolution of Product Lines Using Configuration Knowledge Laws[END_REF], while defining safe evolution the authors state "that the resulting SPL must be able to generate products that behaviorally match all of the original SPL products". We are in a slightly simpler application context since we aim at composing only a unique stated version of each algorithm. It is not the products' behavior that changes, but the logic of assembling the workflows that evolves. Our objective is, thus, to detect configurations that are no longer valid due to changes in the SPL, possibly because of a past error.

From the requirements to the SPL paradigm

According to newly identified practices, the only artefacts that evolve in our SPL are the feature model (i.e., CUD 4 operations on features, feature groups, and constraints) and the assets by addition or removal of algorithms and workflows (i.e., CD operations). The configuration knowledge does not evolve as such. It consists only of bijections between the algorithms' code and the corresponding feature. Analyzing the impact of the evolution operations on past configurations is part of our perspectives inspired by the preliminary work of Nieke et al. [START_REF] Nieke | Guiding the evolution of product-line configurations[END_REF].

Besides, given the very high variability of the domain and its constant evolution, it is neither possible, at least for the time being, to consider sampling techniques for workflows on which to learn [START_REF] Kaltenecker | Distance-based sampling of software configuration spaces[END_REF], nor to support the configuration process in an optimal way [START_REF] Ochoa | A survey on scalability and performance concerns in extended product lines configuration[END_REF].

To answer the requirements stated in the introduction, we reformulate them into technical requirements (RT) for an SPL dedicated to the composition of ML workflows in the context of anomaly detection in time series. To meet R1, the solution search corresponds to configuring a feature model, producing a valid configuration, partial in the problem specification and complete in the solution definition (RT1.1). The configurations must be comparable on the subspaces: the dataset description, the business requirements, and the solution components (RT1.2). The evolution of knowledge-driven by practices (R2) requires that the criteria of the domain analysis evolve without impacting the solution space (RT2.1). We must set up comparison patterns among configurations corresponding to the applications to guide the discovery of new knowledge (RT2.2).

DESIGNING AN EVOLVABLE SPL WITH PARTIAL KNOWLEDGE

The RRW SPL defines a set of ML practices with well-defined variabilities and commonalities. A combination of features (i.e., configuration) identifies each product, and results in an application, i.e., an ML workflow with its performance, its evaluation strategy, its deployment environment, etc. The format of the applications varies from notebooks, references to runs in OpenML, and references in the company tool. The set of valid feature combinations is specified in a feature model (FM) whose structure aims at facilitating the SPL evolution. Implementation artefacts are essentially references to algorithms and workflow models expressed in BPMN [START_REF] Omg | Business Process Modeling Notation (BPMN) Specification, Final Adopted Specification[END_REF]. Mappings express the relationships between solution features and these artefacts. The SPL supports the generation of BPMN workflows based on the selected workflow model and algorithms. Since the construction of the SPL depends on the new applications created, we set up different mechanisms to control its evolution.

We developed tools to validate the overall process: (i) configuration and search of past applications (configurator), (ii) generation of ML workflows (generator), (iii) integration of applications in the SPL (integrator), (iv) reconfiguration of past configurations (reconfigurator), (v) evaluation of the knowledge carried by the SPL concerning the recorded applications (analyzer). We only present the concepts in this article. The configurator dynamically reads the feature model and a CSV file with helpful information for presenting the features (question, description, links to external elements). To help data scientists understand the feature selection, we associate descriptions with the constraints related to the selected features during the configuration. The possibility to import/export configurations allows proceeding by enrichment and, in the case of reconfiguration, manually adapting the past problematic configurations. The reusable artifacts are then the previous experiments (codes and configurations to adapt), a set of algorithms and workflow models. The reusable artifacts are, therefore, the previous experiments (codes and configurations to adapt), a set of algorithms, and workflow models.

FM structure to tame the SPL evolution

We structure the knowledge captured by the FM according to six main concepts, which organized the top of the FM hierarchy as depicted in figure 1. Information about the data sources, the business requirements, and the solution are mandatory as they are required to identify new applications. Information sources, states, and applications help the user in her analysis; they are optional. The numbers correspond in our case study to the number of features under each branch. The following paragraphs detail the content of the FM.

Data set properties. InitialData branch of the FM characterizes the space of datasets containing time series. Some properties are automatically extracted from the dataset (the sampling frequency, the time series number of dimensions, the stationarity verdict,...), while we can only get others through interacting with the business expert, such as how to interpret the missing values. No outgoing constraints from this branch to another branch are allowed since the dataset properties do not inherently imply algorithms or business requirements (RT2.1). For example, in our case study, this branch under the feature InitialData contains 28 other features.

Business requirement characteristics. BusinessRequirements branch captures requirements, such as limited memory usage to comply with hardware constraints or the solution's ability to provide explanations.

Solution components & states. The Solution branch groups and structures the algorithms used for solving anomaly detection problems and the types of workflows used in learning and deployment. The states branch represents the states through which the data passes. We express preconditions and the impact of a solution component through constraints relative to a state. Therefore, we forbid solution components to refer directly to the features of the initial data set but only to the corresponding state (RT2.1). For instance, an algorithm can require the state of the data to be scaled but not need that to be the initial state of the data.

Application & sources. The Application branch is only used in the configurator to facilitate direct access to past applications by filtering them according to the initial problem or the components of the Solution used. Similarly, the Sources branch helps remember from which literature article some features and constraints have been extracted and who are the authors of the applications. 

Capturing knowledge through configuration management

To build and develop the SPL from past applications, we memorize the valuable elements to find the associated codes and the context in which they were defined.

Configurations. Configurations are our primary tool for determining application context. As we work on applications whose context is difficult to define and the SPL evolves, the configurations associated with the applications may be partial (RT1.1). Therefore, we consider any feature neither selected nor deselected as "unknown. "

A partial configuration 𝑐 is defined as a set of selected, deselected, and undefined features. The intersection is empty between these three subsets. Let ⟦𝐹 𝑀⟧ be the set of valid configurations of a feature model 𝐹 𝑀. A partial configuration 𝑐 of a feature model 𝐹 𝑀 is valid iff ∀𝑓 𝑖 ∈ 𝑐, 𝑓 𝑖 ∈ 𝐹 𝑀 ∧ ∃𝑐 𝑘 ∈ ⟦𝐹 𝑀⟧, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐) ⊆ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐 𝑘 ) ∧ 𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐) ⊆ 𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐 𝑘 ). By extension, we note 𝑐 ∈ ⟦𝐹 𝑀⟧. A configuration is complete relatively to a set of features 𝐹 , when ∀𝑓 𝑖 ∈ 𝐹, 𝑓 𝑖 ∈ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐) ∪ 𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐). Thus, in RRW , configurations must be complete only relative to the Solution branch since we know whether the solution components are part of the application or not (RT1.1). In the following we refer to configurations, even for partial configurations.

To evaluate the evolution of our knowledge, we preserve the information on the manual or automatic selection/deselection. So we denote a configuration as a set of pairs: (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒, 𝑠𝑡𝑎𝑡𝑢𝑠) where 𝑠𝑡𝑎𝑡𝑢𝑠 ∈ {𝑚𝑠, 𝑚𝑑, 𝑎𝑠, 𝑎𝑑, 𝑢}, where m for manual, a for automatic, s for selected, d for deselected, u for undefined. For example, 𝑐 = {(𝑓 1, 𝑚𝑠), (𝑓 2, 𝑎𝑠), (𝑓 3, 𝑢), (𝑓 4, 𝑎𝑑)}, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐) = {𝑓 1, 𝑓 2}, 𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐) = {𝑓 4} Data sets. For each dataset involved in an application, we preserve the associated partial configuration relative to the branch initialData (see Figure1). This record supports a consolidation mechanism. New applications dealing with known datasets should describe them in compliance with previous records and further complete them (RT2.2).

Required information about applications. The information associated with an application is its name (used as a reference), its initial configuration, the feature model used to define it, a reference to the dataset, its author, and the associated codes. The connection to the author makes it possible to identify the practices and preferences of the data scientists and allows a data scientist to reduce the space of the applications by authors. The reference to codes corresponds, to Jupyter NoteBooks, to runs in OpenML or to a workflow in the industrial partner platform.

Pattern detection based on the premise: a problem has a unique solution

In the same way as Tornhill [START_REF] Tornhill | Your Code as a Crime Scene[END_REF], we seek to identify "hotspots" to narrow our study of applications to a few critical patterns that are most likely to guide us in the extraction of new knowledge (RT2.2). Therefore, the principle is that if two similar problems correspond to different solutions, then it is not the same problem.

We defined the first pattern: 2 problems evaluated as equivalent have a different solution. This pattern allows us to detect different situations. (i) One of the solutions is not adapted to the problem, and in this case, in retrospect, the data scientist should not have used it. We must enrich the feature model to prohibit it. (ii) The two problems are different, but we had not yet identified these discriminative criteria in the feature model; we must enrich the feature model with these new criteria.

Because the configurations partially characterize the problems, we define a second pattern: 2 problems evaluated as unifiable have a different solution. It can indeed be two similar problems partially filled in. In this case, we expect the same solution as before. But, the data scientist may also have designed a different solution to address the lack of information about the problem, such as not knowing the anomaly types.

The fact that several problems have the same solution can also induce an insensitivity of the solution to certain features. Despite the small number of applications, this situation allowed us to identify a feature that we apprehended at a level too detailed to be discriminating. Detecting these patterns occurs in Scenario 3 and meets the requirement RT2.2.

We now specify the notions of equivalence classes and their unifiability. To explain these concepts, we use the feature model presented in Figure 2 and the configurations described in Table 1. Table 3 shows the identified equivalence classes. 

𝑓 𝑖 ∈ ∩ 𝑘 1 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐 𝑗 ) ∩ 𝑘 1 𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑐 𝑗 ) ∩ 𝑘 1 𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑 (𝑐 𝑗 ).
In Table 3, two equivalence classes are identified on the Initial-Data subtree. CDS1={app1, app2, app4}. CDS1 can also be noted: {(𝑑1, 𝑠), (𝑑2, 𝑢), (𝑑3, 𝑢)} and CDS2: {(𝑑1, 𝑠), (𝑑2, 𝑠), (𝑑3, 𝑢)}

Problem equivalence classes are defined on the sub-features of InitialData and BusinessRequirements. For example CP1={app1, app2, app4}. 𝐶𝑃1 : {(𝑑1, 𝑠), (𝑑2, 𝑢), (𝑑3, 𝑢), (𝑝1, 𝑑), (𝑝2, 𝑠), (𝑝3, 𝑢), (𝑝4, 𝑠)} Solution equivalence classes are defined on the sub-features of Solution.

Two configurations are equivalent in 𝐹 𝑀 if they are member of the same Problem and Solution equivalence classes. In our example, app1 and app2 are equivalent.

We note 𝑁𝑜𝐸𝐶 the number of equivalent classes. 

Metrics for evaluating the SPL

To explain the following metrics, we use the feature model presented in Figure 2 and the configurations presented in table 1.

Feature model metrics.

We selected some standard metrics [START_REF] El-Sharkawy | Metrics for analyzing variability and its implementation in software product lines: A systematic literature review[END_REF] to assess the state of the feature model and, by comparison, its evolution.

The number of Features (𝑁𝑜𝐹 ) and the number of features with no children (𝑁 𝑙𝑒𝑎𝑓 ) are a way to measure the scope of the SPL. Our objective is to integrate new solutions while identifying better and better the problems solved. We analyze these metrics in the different spaces. In our example in Figure 2 , the number of leaves is twelve overall, and it is four in the Solution subtree (Solution Space). The evolution of the number of cross-constraints (𝑁𝑜𝐶), together with the tree-cross-constraint ratio (𝐶𝑇𝐶𝑅) 5 , gives a numerical indication of the identified interactions. In our example, four features are involved in constraints, so the 𝐶𝑇𝐶𝑅 is 20%. The theoretical number of possible configurations is not only not calculable but also does not provide any information. Indeed, it is likely that a part of 5 number of distinct features involved in cross-tree constraints and divides them through the total number of features in the feature model the valid configurations does not correspond to suitable solutions. Moreover, this partial knowledge of the domain combined with the very high cost of ML workflows evaluations does not allow to test the SPL by generating examples, except to consume a lot of resources without any assurance of a real gain.

We now propose to evaluate the feature model 𝐹 𝑀 according to the set of valid configurations 𝐴 ⊆ ⟦𝐹 𝑀⟧ that correspond to applications integrated in the SPL.

3.4.2

Feature-level metrics based on past configurations. Commonality of feature (𝐶𝑜𝑚(𝑓 )) indicates the selection ratio (manual or automatic) of a feature f in 𝐴. This ratio identifies the "unused variability" smell (i.e., feature always selected, e.g., 𝐶𝑜𝑚(𝑏1) = 1) [START_REF] Apel | Feature-oriented software product lines[END_REF]. The rate of deselection (𝐷𝑒𝑠 (𝑓 ) identifies the "unused feature" smell (i.e., feature always deselected, e.g., 𝐶𝑜𝑚(𝑏2) = 0, 𝐷𝑒𝑠 (𝑏2) = 1) [START_REF] Apel | Feature-oriented software product lines[END_REF]. We also compute the rate of undefined occurrences(𝑈 𝑛𝑑 (𝑓 )) that may identify an obscure feature that is not well related to the scope of the SPL (e.g., 𝑈 𝑛𝑑 (𝑑3) = 1, 𝐷𝑒𝑠 (𝑑3) = 0, 𝐶𝑜𝑚(𝑑3) = 0).

We globalize these metrics to all feature model leaves, which in our case study characterize practices.

Feature Model Coverage.

The Feature Model Coverage rate (𝐶𝑜𝑣) measures (in percentage) the degree of leaf selections in a set of configurations 𝐴. Feature model coverage rate = number of feature leaves selected in 𝐴/number of feature leaves * 100. In our example, eight leaves are selected at least once, 𝐶𝑜𝑣 = 66%. For the Solution subtree, as three leaves were chosen at least one time, 𝐶𝑜𝑣 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 75% Feature Model Coverage does not correspond to 𝑡-𝑤𝑖𝑠𝑒 coverage [START_REF] Henard | Bypassing the combinatorial explosion: Using similarity to generate and prioritize t-wise test configurations for software product lines[END_REF]. Unlike the latter, it only provides a measure of the feature selection rate in a given set of configurations, it does not allow to assess the coverage of feature interactions. Nevertheless, it has the advantage of not requiring to compute the number of possible configurations. In our example, 18 selections of leaves for 4 configurations and 12 leaves, 𝐶𝑜𝑚 = 37, 5%. 𝐶𝑜𝑚 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 50% Intuitively, the confidence in the feature model suggestions is proportional to its commonality rate. app1, app2 and app4 handles the same equivalence classes of dataset (CDS1) and problem (CP1). app1 and app2 are equivalent. app3 deals with the same equivalence class of solutions (CS1) than app1 (and therefore app2). While app4 handles the same equivalence class of problem than app1, it proposes a new solution, a warning is raised. According to Table 1, CDS1 and CDS2 are unifiable.

Systematically mastering the evolutions of the SPL

To promote safe reactive development of the SPL, we suggest the following process. At step 𝑇 , the SPL is coherent, i.e., all applications correspond to valid configurations of the feature model. We create new applications with the configurator. We integrate them to the SPL to make them available to other users (scenario 2, see Section 3.5.1). At step 𝑇 + 1, we update the feature model by adding, renaming, and removing features and constraints. It is then necessary to ensure that the configurations related to the previously developed applications remain valid and do not contradict the new knowledge captured by the feature model (see Section 3.5.2). We use the new feature model to build solutions to new problems. We use the patterns presented above, coupled with metrics to evaluate the SPL and detect new knowledge (see Section 3.5.3). We use the same means to analyze the evolution of the SPL (see Section 3.5.4).

3.5.1

Making applications identifiable in the configurator. Integrating in the feature model an application named 𝑎𝑝𝑝 on a dataset named 𝑑 and defined by a valid configuration 𝑐 consists in adding, in the Applications branch of the feature model, the features 𝑑 and 𝑎𝑝𝑝 if they are not already there. Then, the minimal constraints 6 linking 𝑑 to the selected and deselected features of the initialData space are added starting from the manually selected and unselected leaves. The constraint 𝑎𝑝𝑝 ⇒ 𝑑 is then added. We then proceed in the same way to link 𝑎𝑝𝑝 to the rest of the feature model, starting with the problem space. When the dataset 𝑑 is already present in the feature model, there should be no contradiction with its constraints. However, they can be completed. This step corresponds to scenario two and is essential in scenario one to identify datasets or applications with the same features as the current configuration.

For example, adding the application 𝑎𝑝𝑝5 created by John on dataset 𝑑𝑠5 and defined by the following configuration {(𝑑2, 𝑎𝑠), (𝑑3, 𝑚𝑠), (𝑝1, 𝑚𝑠), (𝑝2, 𝑎𝑑), (𝑎1, 𝑚𝑠), (𝑏1, 𝑚𝑑), (𝑏2, 𝑚𝑠), ...} adds the features 𝑎𝑝𝑝5, 𝑑𝑠5 and 𝐽𝑜ℎ𝑛 in the branch Applications and the following constraints: 𝑑𝑠5 ⇒ 𝑑3, 𝑎𝑝𝑝5 ⇒ 𝑑𝑠5, 𝑎𝑝𝑝5 ⇒ 𝑝1, 𝑎𝑝𝑝5 ⇒ 𝑏2 ∧ ¬𝑏1 ∧ 𝑎1, 𝑎𝑝𝑝5 ⇒ 𝐽𝑜ℎ𝑛 3.5.2 Application-preserving refactoring against practice evolution. Refactorings of the feature model may lead to past applications (i.e., their related configurations) being detected as conflicting with the current feature model [START_REF] Apel | Feature-oriented software product lines[END_REF]. To promote a safe evolution, a reconfiguration step is performed on all past configurations. For now, 6 features automatically selected or deselected during the configuration are not involved in new constraints reconfiguring a 𝑐 𝑠 configuration into a 𝑐 𝑡 configuration with respect to a new feature model 𝐹 𝑀 consists in (i) renaming in 𝑐 𝑡 some of the features of 𝑐 𝑠 , (ii) omitting the features that disappeared in 𝐹 𝑀 with a warning if they were selected or deselected in 𝑐 𝑠 , (iii) adding in 𝑐 𝑡 the new features of 𝐹 𝑀 whose value is known, (iv) copying in 𝑐 𝑡 the other features, then (v) replaying 𝑐 𝑡 in 𝐹 𝑀 to obtain a new valid configuration or to raise an error in the contrary situation. If past configurations cannot be rendered valid in 𝐹 𝑀, RTFS excludes them with a warning. The new valid configurations related to applications can then be integrated into the 𝐹 𝑀 using the previous operation.

For example, if we add the constraint ¬𝑏1∨¬𝑑2 in FM of Figure 2, the configuration corresponding to 𝑎𝑝𝑝3 is no more valid, while all the other configurations are automatically updated with (𝑑2, 𝑎𝑑).

Knowledge extraction driven by SPL assessment.

Regarding scenario 3, the identification of the patterns presented above and the associated metrics allow us to evaluate the SPL to extract new knowledge and orient future evolutions, notably according to the spaces covered or not by the applications.

Knowledge extraction driven by SPL evolution assessment.

The metrics and the detection of patterns also make it possible to evaluate the evolution of the SPL.

Have more features been used? Do unifiable problems become equivalent? Conversely, does the enrichment now allow us to distinguish previously equivalent problems? Both of these cases can occur when the addition of constraints affects previously undefined features.

APPLICATION

We now report on the first three steps of the SPL's construction, showing how the practices contributed to its enrichment. Figure 3 summarizes this construction process. The configurations and the results of the analyses are accessible online 7

First three steps of the SPL construction process

In each of the steps presented below we have integrated the applications into the FM, which did not raise any significant issue.

Initial product line version from literature study. Following a first analysis of the domain, we built the SPL's initial version (𝑆𝑃𝐿 𝑇 0 ). The feature model (𝐹 𝑀 𝑇 0 ) integrates some solutions from the literature dealing with the detection of anomalies in time series. The Enrichment of the product line through industrial practices. At 𝑇 1 , we leverage the practices of the partner company's data scientists to build 𝑆𝑃𝐿 𝑇 1 by enriching 𝑆𝑃𝐿 𝑇 0 . The interest in exploiting industrial applications is to broaden the scope of the SPL to the processing of industrial data. The industrial partner uses a custom tool to summarize all the applications on their customer's data. We update the feature model (𝐹 𝑀 𝑇 0 → 𝐹 𝑀 𝑇 1 ) by including company-specific solution components, new initial dataset properties relevant to analyzing customer datasets, and new features necessary to describe the customer business requirements. Then we collect applications conducted by the company's data scientists, keeping only the solutions from deployed workflows and solving customers' anomaly detection problems. We have thus selected six workflows whose resulting product models are in production. The production of these workflows can take several months for the data scientists. We have generated partial configurations containing information about the dataset and solution based on automatic solution extraction and data analysis tools. We used these partial configurations to initialize the configurator. We then completed the source data and business requirements parts via a discussion with the application authors.

Consolidation by extraction of OpenML workflows. At 𝑇 2 , we extract some practices from the OpenML platform. OpenML is an automated machine learning environment [START_REF] Vanschoren | OpenML: Networked Science in Machine Learning[END_REF], from which ML practices can be downloaded and uploaded i.e., solutions (runs and flows in OpenML) to a given problem (task and dataset in OpenML). The interest in exploiting OpenML's practices is to analyze the impact of upgrading the SPL with external sources. In OpenML, we selected time-series datasets and associated tasks of type Supervised Learning and Unsupervised learning since anomaly detection is supervised or unsupervised learning with unbalanced classes. We only had four datasets that matched these criteria. We kept 4 tasks of Supervised learning that had runs associated with them. Among these runs, we selected only the best runs on F1-score evaluation criterion as evaluations on other measures such as user CPU-time were not available for these runs. We preferred the runs using the scikitlearn library when we had the choice. We then extracted the associated flows and generated the associated partial configurations for each run. We had already studied in 𝑇 0 the meta-features proposed by OpenML to characterize datasets, so we only updated the feature model(𝐹 𝑀 𝑇 1 → 𝐹 𝑀 𝑇 2 ) by adding new solution components.

Knowledge extraction driven by SPL assessment

We explain in the following subsections how we exploit pattern and metric analysis in our use case.

Two different solutions for the same problem: algorithms side effects. At 𝑇 0 , we encountered the following scenario. For two equivalent problems, the solutions used two different scaling techniques in each workflow, min-max scaler and robust scaler [START_REF] Patro | Normalization: A Preprocessing Stage[END_REF]. This equivalence of problems and not solutions raised a warning. We analyzed workflows for both experiments and observed that for the second workflow, the robust scaler results were equivalent to the min-max scaler results due to the data properties. In this scenario, we were able to confirm that the main particularity of the robust scaler was not required 8 . Therefore only the first application with min-max scaler was kept. We added a constraint to the selection of this algorithm to prevent the error from being repeated. i.e., data without outliers will not anymore be scaled with robust scaler.

Two different solutions for the same problem: Data Scientist preferences impact. The data scientist's preferences bias her choice of the solution components. At 𝑇 1 , we identified two applications that presented different solutions to equivalent problems. The two authors could not justify the difference in the choice of Solution components other than by their expertise in selected algorithms. Therefore, we have kept these two applications distinguishable by their author, with a warning for possible future treatment.

Two problems same solution: factorizing unnecessary variability. At 𝑇 0 , two problems differ only in acquisition sampling; data acquisition sampling is in seconds for one and in microseconds for the second. Otherwise, the data are similar, and the anomaly detection requirements are equivalent. After the detection of this pattern, we checked the impact of acquisition sampling on the algorithms and factorized all four regular sampling features into regularSampling for the SPL at 𝑇 1 .

Knowledge extraction driven by SPL evolution assessment

We also exploited the analysis of the evolution of patterns and metrics as another source of information. We use Pb 𝛼 and Pb 𝛽 to refer to the problem part of the configurations (i.e., the features of the InitialData and BusinessRequirements branches) and S 𝛼 and S 𝛽 to refer to the solution part.

4.3.1 Pattern evolution and knowledge consolidation. At T 0 , Pb 𝛼 and Pb 𝛽 are equivalent, but solved by two different clustering models 9 , kmeans [START_REF] Huang | Time series k-means: A new k-means type smooth subspace clustering for time series data[END_REF] on the one hand and Dbscan [START_REF] Schubert | DBSCAN revisited, revisited: why and how you should (still) use DBSCAN[END_REF] on the other. At T 0 , we did not know which to delete; we kept both applications. At T 1 , we reconfigured the configurations to align with the new feature model, which now incorporates features detailing business expert insights into possible outliers in the data 10 . The feature model also includes associated constraints expressing compatibility between 8 Usage of the robust scaler is interesting only if outliers are within the values of the time series 9 Solution workflows vary according to machine learning algorithms 10 The data scientists can decide whether outliers are anomalies or not in the context of the experiment The feature model hierarchy is six levels deep for the Solution branch, and four for the InitialData and BusinessRequirements branches. solution components and these new features. The reconfiguration made it possible to distinguish the two problems and the adequacy of the two different solutions.

Pattern evolution and knowledge extraction.

Pb 𝛼 and Pb 𝛽 are equivalent in T 0 , S 𝛼 includes a dimension reduction process through PCA [START_REF] Abdi | Principal component analysis[END_REF] while S 𝛽 skips this step. Like in the previous example, we kept both applications. At T 1 , we extended the InitialData space with features to explicit time series dimensionalities and automated their evaluation by dataset analysis. The reconfiguration step indicated that in Pb 𝛼 , the time series were multivariate. In contrast, Pb 𝛽 's time series were uni-variate [START_REF] Aboagye-Sarfo | A comparison of multivariate and univariate time series approaches to modelling and forecasting emergency department demand in Western Australia[END_REF]. This unique change in configuration highlighted the link between PCA and time series dimensionalities.

Exploiting the metrics

In sections 4.2 and 4.3, we established that the analysis of equivalence classes on both the problems and the solutions helps to trace the applications and their common points. We will now describe how the metrics defined in section 3.4 help us assess the evolution of the practices in each space.

InitialData. The coverage rate (𝐶𝑜𝑣) increased from 𝑇 0 to 𝑇 1 , while the number of features (𝑁𝑜𝐹 ) also increased. This increase indicates that the industrial applications cover different data set properties from the first applications on benchmark datasets. Between 𝑇 1 and 𝑇 2 the coverage increased while the number of features did not change. New applications did involve new features of the InitialData. We rely on commonality analysis to better understand the variations between industrial and benchmark datasets. It shows that at 𝑇 0 all the features related to Missingvalues were unused features 11 which means that the datasets did not have missing values of any type. At 𝑇 1 MCARMV 12 , and StructuralMV 13 features had a 𝑐𝑜𝑚(𝑓 ) > 1, which means that the new datasets were exhibiting these two types of missing values. Similarly, we identify the emergence of irregular sampling time series at 𝑇 1 .

11 always deselected 12 Missing value completely at random 13 Missing values of structural nature BusinessRequirements. Within this feature space, we sought to identify the questions that experts answered the least. These questions may need rephrasing. The principle is then to identify the most undefined features of the penultimate level. We did not meet such a case yet, which was confirmed by the data scientists.

The coverage and commonality analysis highlight the requirements of industrial applications for memory, CPU, or energy consumption optimization. The features representing these hardware constraints are either undefined or deselected at 𝑇 0 and 𝑇 2 . They are selected at 𝑇 1 only.

Solution. . The coverage rate decreases at step 𝑇 1 and increases at 𝑇 2 , while the number of features increases strictly. The evolution of these two metrics indicates: (i) on the one hand, that industrial applications use new solution components; (ii) and on the other hand, that the applications we integrated at 𝑇 2 consolidate our SPL by reusing existing solution components. The commonality rate decreases to reach 7.89%. However, a detailed analysis of the number of selections by feature indicates that some algorithms are used in several solutions, while others are never used. For instance, we observe that each of LSTMAE (LSTM Auto-encoder) and MAE (mean absolute error) have been used 5 times out of 19, while padding, FrontFill and others have not been used. Therefore, correlated with broader coverage of problem space, this metric should help identify some of the preferences of data scientists and maybe some bias. Indeed, it is natural to think that data scientists generally rely on the algorithms they are comfortable with, sometimes maybe at the expense of the solution.

DISCUSSION

In this section, we relate our findings to existing work, and discuss potential threats to validity and current limitations.

Usability. . While we are confident that our SPL approach helps narrowing the problem, reducing the solution space, and identifying similar applications, these points remain to be proven through controlled experiments. To facilitate the use of the configurator, we rely on visualization techniques [START_REF] Pereira | FeatureIDE: Scalable product configuration of variable systems[END_REF] since recommendation systems are not yet applicable [START_REF] Pereira | Personalized recommender systems for product-line configuration processes[END_REF][START_REF] Uta | Evaluating recommender systems in feature model configuration[END_REF]. Yet, due to the increasing size and complexity of the feature model, one threat is that the configurator might become cumbersome to use because it exposed too many questions and too many possible solutions. Controlling the evolution of the feature model is therefore essential to avoid irrelevant questions and poorly fitting solution components. Metrics and patterns are part of the proposed solution to reduce this risk. Nevertheless, detecting patterns, especially those related to unification, can pose scalability issues on which we are currently working. Another threat to usability is related to the actual maintenance of the SPL in response to metrics and patterns analysis. These tasks were performed by the SPL modelers, interacting with the data scientists. This point does not challenge the relevance of the approach, but we still need to demonstrate that the tools allows autonomous maintenance by data scientists and collaborative FM updating [START_REF] Kuiter | variED: an editor for collaborative, real-time feature modeling[END_REF].

Practice-driven feature modeling. To address the different perceptions of domain concepts, we not only unified domain terminology with descriptive feature names, but also provided descriptions and sources that are accessible directly from the configurator. However, we specified requirements only qualitatively (with propositional FM) using an ordinal scale when necessary, instead of their scalar values (e.g., available memory greater than/lower than 1 GB) [START_REF] Berger | A Study of Variability Models and Languages in the Systems Software Domain[END_REF]. To automate and ensure reproducibility of reasoning between stakeholders, we scripted a mapping between time series metadata values and features. So far, these approximations have not hampered knowledge acquisition. Therefore, we did not need attributed feature models for which pattern detection has yet to be designed.

Practice-driven evolution. . Our work follows a reactive SPL adoption process [START_REF] Fischer | The ECCO Tool: Extraction and Composition for Clone-and-Own[END_REF][START_REF] Kehrer | Bridging the gap between clone-and-own and software product lines[END_REF], using different techniques to locate features [START_REF] Dit | Feature location in source code: A taxonomy and survey[END_REF]. However, identifying the variations between workflows does not always enable us to understand the variations of the problem. The feature model then plays a crucial role in revealing undefined elements of the problem from the known constraints on the solutions. It is therefore essential that the FM be rich enough. We have demonstrated through our case study that we can enrich it with pattern detection. Yet, other complementary avenues still need to be explored to identify the relationships between solution components and source datasets. We are currently working on extracting the preconditions and effects of the algorithms by analyzing different techniques and ML environments [START_REF] Benni | When DevOps meets meta-learning: A portfolio to rule them all[END_REF][START_REF] Hoan | Mining preconditions of APIs in large-scale code corpus[END_REF][START_REF] Olz | Revealing Hidden Preconditions and Effects of Compound HTN Planning Tasks-A Complexity Analysis[END_REF][START_REF] Van Rijn | Sharing RapidMiner workflows and experiments with OpenML[END_REF]. Quality assurance. . When the feature model is modified, we check, through automatic reconfigurations [START_REF] Uta | Evaluating recommender systems in feature model configuration[END_REF], that the previous configurations are preserved or even enhanced. These systematic checks have already allowed us to identify errors in the definition of new constraints. They participate in non-regression testing. However, SPL testing [START_REF] Devroey | Covering SPL behaviour with sampled configurations: An initial assessment[END_REF] and ML testing [START_REF] Jie | Machine Learning Testing: Survey, Landscapes and Horizons[END_REF] are inherently difficult activities that we do not yet address; Many algorithms built into SPL are too resource-intensive (CPU, memory, and time) to consider sampling techniques [START_REF] Heradio | Uniform and scalable sampling of highly configurable systems[END_REF]. Nonetheless, we believe that some work on SPL configurations opens up new opportunities to help build portfolios for automatic algorithm selection [START_REF] Kerschke | Automated algorithm selection: Survey and perspectives[END_REF]. For example, configuration similarity analysis should help analyze the coverage of the problem space [START_REF] Al-Hajjaji | Similarity-based prioritization in software product-line testing[END_REF][START_REF] Devroey | Covering SPL behaviour with sampled configurations: An initial assessment[END_REF][START_REF] Kaltenecker | Distance-based sampling of software configuration spaces[END_REF], while modeled features provide additional information to the metadata usually considered in meta-learning [START_REF] Lesoil | Transferring Performance between Distinct Configurable Systems : A Case Study[END_REF].

Generalizability. . External validity concerns the ability to generalize the results to other environments [START_REF] Wohlin | Experimentation in software engineering[END_REF]. Our study has been developed in the context of one company, taking into account industrial applications. However, we have collected applications from three different sources, which mitigates the risk of dependency on the company's applications. Pattern detection relies on our ability to distinguish between the problem space and the solution space, the essence of any SPL. However, we decided to showcase our work on the particular context of this SPL (i.e., focused on specific types of ML applications, with scientific knowledge yet to be discovered and with a small set of configurations) because it can be exploited industrially as is. We could generalize this approach to other systems as one of our most prized contributions is to build and evaluate an incremental SPL. However, t the particular context of this SPL (i.e., focused on specific types of ML applications, with scientific knowledge yet to be discovered and with a small set of configurations) does not allow us to state that our contribution is generalizable. Nevertheless, several subdomains of ML at least present the same characteristics.

CONCLUSION

Recent technological advances have made possible to collect a large amount of data over time. The purpose of time series data mining is to enable classification, clustering, or outlier detection [START_REF] Blázquez-García | A Review on Outlier/Anomaly Detection in Time Series Data[END_REF]. Our study focuses on this last task. In this paper, we have proposed a practice-driven approach to build an SPL as a first step toward allowing the design of generic solutions to detect anomalies in time series, while capturing new knowledge and capitalizing on the existing one.

The incrementality in the acquisition of knowledge and the instability of the domain [START_REF] Pohl | Software Product Line Engineering: Foundations, Principles and Techniques[END_REF] are supported by the SPL through its structuring and the exploitation of partial configurations associated with past applications. As far as we know, this is the first case of application of the SPL paradigm in such a context, and with a knowledge acquisition objective. We argue that using this paradigm to record and analyze practices will enable advances in the selection of ML workflows that are much less energy-intensive than meta-learning techniques, while assisting scientific knowledge production. By capturing practices in partial configurations, we obtain the abstractions to reason about datasets, solutions, and business requirements. The SPL is then used both to produce new solutions and compare them to past solutions, as well as to identify knowledge that was not explicit. The growing abstraction supported by the SPL also brings other benefits. In mentoring junior data scientists, we have observed a shift in the approach to creating ML workflows, focusing on analyzing problems before looking for similar applications, especially in choosing evaluation metrics. It is rather difficult for data scientists to explain the precise reasons for their choice. We observed that focusing only on particular cases identified as patterns makes the relevant criteria explicit.

This preliminary work paves the way for new software engineering contributions to ML. Our SPL is now evolving through the various works of data scientists to enrich the knowledge of anomaly detection in time series. We are working on visualization tools to facilitate the exploitation of practices, and thus the SPL maintenance. Distinguishing the users of the SPL from those who maintain it is also part of our future plan in order to obtain an empirical validation.
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 44 Feature Model Commonality Rate. The Feature Model Commonality Rate (𝐶𝑜𝑚) measures (in percentage) the selection ratio of leaf selections in 𝐴. Feature model Commonality Rate = number of selection of feature leaves in 𝐴 / number of feature leaves * #𝐴 * 100, where #𝐴 denotes the cardinality of the set 𝐴.
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Table 1 :

 1 Examples of application configurations.

	XP Name d1 d2 d3 p3 𝑝4 p1 p2 a1	a2 b1 b2 𝑆𝑜𝑢𝑟𝑐𝑒𝑠 r1 r2
	app1	as u	u	u	as ad ms md as ms md u	u	u
	app2	as u	u	u	as ad ms ad ms ms md u	u	u
	app3	as as u	u	as ms ad ad ms ms md u	u	u
	app4	as u	u	u	as ad ms ms ad ms md as	ms u
	s=selected, d=deselected, u=undefined, a=automatic, m=manual	

Table 2 :

 2 Metrics related to the FM in fig. 2 and its configurations (tab. 1) Let a feature model 𝐹 𝑀 and 𝐴 a set of valid partial configurations of 𝐹 𝑀, 𝐴 ⊆ ⟦𝐹 𝑀⟧. 3.3.1 Equivalence Classes in 𝐴. An equivalence class on a subset of features 𝐹 of 𝐹 𝑀 is defined as a set of valid configurations [𝑐1] = {𝑐 1 , ...𝑐 𝑘 }, 𝑐 𝑖 ∈ 𝐴, such as ∀𝑓 𝑖 ∈ 𝐹,

	𝑁𝑜𝐹	20	𝑁𝑜𝐴	4
	𝑁 𝑙𝑒𝑎𝑓 12	𝐶𝑜𝑣	66 %
	𝑁𝑜𝐶	2	𝑁𝑜𝐸𝐶 3
	𝐶𝑇𝐶𝑅 20 % 𝐶𝑜𝑚	37,5 %

Table 3 :

 3 Equivalence classes and pattern detection.

	App Name InitialDSClass InitialPBClass SolutionClass EquivalentApp Warning SameSolution
	app1	CDS1	CP1	CS1	{app2}	{app4}	{app3}
	app2	CDS1	CP1	CS1	{app1}	[]	[]
	app4	CDS1	CP1	CS2	[]	{app1}	[]
	app3	CDS2	CP2	CS1	[]	[]	{app1}

Table 4 :

 4 Metrics Evolution in times and spacesThe difference between the global figures and the figures of the 3 spaces corresponds to the branches Sources and states.

			𝑁 𝑜𝐹 𝑁 𝑙𝑒𝑎𝑓 𝐶𝑜𝑣	𝐶𝑜𝑚	𝑁 𝑜𝐸𝐶 𝑁 𝑜𝐴 𝑁 𝑜𝐶 𝐶𝑇𝐶𝑅
		InitialData	23	16	37%	19%	5	-	-	-
	𝑇 0	BusinessRequirements 33 Solution 51	24 25	41% 52%	21,25 % 7 16.8 % 7	--	--	--
		Global *	156	96	35,04 % 14,68 % 10	10	25	21,19%
		InitialData	28	19	42,10 % 18,94 % 9	-	-	-
	𝑇 1	BusinessRequirements 43 Solution 67	33 37	54,55 % 17 % 48,64 % 8,64 %	13 11	--	--	--
		Global *	194	124	40,32 % 10,86 % 14	15	31	21,76%
		InitialData	28	19	57,9 %	18,00 % 14	-	-	-
	𝑇 2	BusinessRequirements 43 Solution 74	33 42	57,6 % 57,14 % 7,89 % 17,24 % 17 15	--	--	--
		Global *	203	131	47,32 % 10,41 % 18	19	32	21,78%
									

* 

Loosely adapted from Henry Ford.

create (C), update (U) or delete (D) operation[START_REF] Marques | Software product line evolution: A systematic literature review[END_REF] 
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