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Abstract. Single source localization from low-pass filtered measurements is
ubiquitous in optics, wireless communications and sound processing. We analyse
the performance of the maximum likelihood estimator (MLE) in this context
with additive white Gaussian noise. We derive necessary conditions and sufficient
conditions on the maximum admissible noise level to reach a given precision with
high probability. The two conditions match closely, with a discrepancy related to
the conditioning of a noiseless cost function. They tightly surround the Cramér-
Rao lower bound for low noise levels. However, they are significantly more precise
for larger levels. An outcome is new optimization criteria for the design of point
spread functions in single molecule microscopy.
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1. Introduction

Many measurement devices can be modeled by a convolution with the impulse
response h of the system followed by a sampling step at some locations (z1, . . . , zM ) ∈
RD. A signal u : RD → R with D ∈ N therefore yields a measurement vector y ∈ RM

of the form
ym = u ? h(zm) + εm, (1)

where ε = (ε1, . . . , εM ) is a perturbation modeling noise on the system. A situation
of major interest in applications is that of single source localization. This corresponds
to assuming that u reads

u = δx̄, (2)

where x̄ ∈ RD is the source location. Assuming that h ∈ C0(RD), the model (1) yields

ym
def
= h(zm − x̄) + εm. (3)

The aim of this paper is to analyze the performance of maximum likelihood
estimators to recover x̄ from the sole knowledge of the kernel h and the vector y.
We work under what is possibly the simplest possible setting, by assuming that the
noise is white and Gaussian, i.e., ε ∼ N (0, σ2Id). In that case, the maximum likelihood
estimator reads∗

x̂ ∈ argmin
x∈RD

`ε(x) with `ε(x)
def
=

1

2

M∑
m=1

(h(zm − x)− h(zm − x̄)− εm)
2
. (4)

This setting is obviously idealized. More realistic situations could include multiple
sources with unknown weights and suffering from different sources of noise. Yet, it
is at the heart of many engineering issues and we tackle a really basic, yet seemingly
unexplored problem.

∗ Note: the true negative log-likelihood would have an additional normalization constant and be
multiplied by 1/σ2. We chose to discard those terms for later simplifications.
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Applications Our main motivation is related to single molecule localization
microscopy [3, 12]. This technology was awarded the 2014 Nobel prize in chemistry.
It made it possible to break the Abbe diffraction limit so as to reach nanometric
resolution. It consists in sequentially activating and localizing fluorescent molecules
with a sub-pixel accuracy. Similar issues appear for the localization of sounds
(microphone), stars (radio-telescope) or phones (wireless communications).
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Figure 1: A 1D localization experiment. Left: the empirical standard deviation
using the MLE (blue stars) coincides with the Cramér-Rao lower-bound for low
noise regimes. In high noise regimes, we observe a significant discrepancy. Right:
realizations of the vector y for different noise levels. The green and red bars correspond
to the true location x̄ and the estimated one x̂ respectively.

Existing performance guarantees It has been the subject of numerous theoretical and
applied studies in the past 50 years. In particular, the intrinsic performance limits
of localization algorithms have been studied using the celebrated Cramér-Rao lower-
bound [15]. This bound provides a theoretical limit on the best precision achievable
in average with respect to the noise realizations. In optics, it is now used massively to
characterize the performance of optical systems [4, 20, 14, 7] as well as a baseline to
estimate the quality of algorithms [17]. It can also serve as an optimization criterion
to design new efficient point spread functions [9, 18].

In order to motivate our study, let us start with a numerical experiment. In
Fig. 1, we compare the empirical precision of the maximum likelihood estimator to
the Cramér-Rao lower-bound. We observe that both coincide for low noise regimes,
and then significantly deviate. This illustrates the fact that the Cramér-Rao bound
is somewhat insufficient to explain the performance of the MLE.

Contributions and outline The main outcomes of our study are a set of necessary and
sufficient conditions to reach a given localization accuracy r with a given probability.
Fig. 2 illustrates our findings. The heat map in this graph reflects the probability of
localizing a Dirac mass with a precision r for a standard deviation σ. A clear phase
transition appears: above a certain threshold, the probability of detection becomes
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Figure 2: Phase transitions for single source localization with the MLE. Left:
the heat map indicates the empirical probability of the event Er = [‖x̂− x̄‖2 ≤ r]. We
observe a phase transition phenomenon: for a given r and a sufficiently low σ, the
probability of success is overwhelming. Below a threshold, it decays rapidly to a low
probability. The transition occurs close to the Cramér-Rao lower-bound (in red) in
the low noise regime. The dotted black curve corresponds to an empirical probability
of 0.5 (the level line 0.5 of the phase transition diagram). The blue (resp. white)
dashed curve corresponds to our theoretical upper (resp. lower) bound on this 0.5
level line. They closely circumscribe the phase transition and predict the behavior for
large noise levels as well. Right: The convolution kernels h and the sampling points
corresponding to the experiments on the left. From top to bottom: Gaussian kernel,
the reference kernel of Example 4.1, and a (sub-sampled) cardinal sine kernel.
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overwhelming. The phase transition clearly happens around the Cramér-Rao bound
in the low noise (or high precision) regime and then significantly deviates. The upper
and lower bounds we obtain in this paper clearly circumscribe the phase transition∗.
Our results based on concentration inequalities also explain this transition behavior
from a theoretical standpoint.

Our main conclusions are as follows:

(i) In general it is not true that the MLE attains the Cramér-Rao lower-bound, even
asymptotically. However, it becomes true under explicit identifiability hypotheses.

(ii) We provide explicit necessary and sufficient conditions for the global minimizer
x̂ to satisfy ‖x̄ − x̂‖2 ≤ r in Section 4. The two conditions match for a specific
kernel, showing the tightness of our bounds.

(iii) In addition, these conditions also match the Cramér-Rao bound asymptotically
when σ, r → 0. For an arbitrary r, the bounds clearly indicate that Cramér-Rao
is not accurate anymore and shed new light on the geometry of the localization
problem.

(iv) We believe that this work opens new avenues for the field of PSF engineering. If
we can choose the kernel h, it suggests new optimization criteria to obtain the
“best” possible performance.

Notation Throughout the paper, x̂ ∈ RD denotes the maximum likelihood estimator
and x̄ ∈ RD the true location to be estimated. We let ∂dh denote the d-th
partial derivative of the impulse response (PSF) h. Moreover, we let h′(x) =
(∂1h(x), . . . , ∂Dh(x)) denote the gradient of h at x ∈ RD. Similarly, we let h′′(x) ∈
RD×D denote the Hessian of h at x ∈ RD. For a matrix A ∈ RM×N , we let λmin(A)
(resp. λmax(A)) denote its smallest (resp. largest) singular value, ‖A‖2→2 denote
its spectral norm and ‖A‖F =

√
Tr(A∗A) denote its Frobenius norm. Given two

quantities a, b ∈ R+, we will write a . b if there exists a constant c > 0 not depending
on a and b such that a ≤ cb.

To keep notation concise, we introduce the set of sampling points Z = (z1, . . . , zm)
and use shorthand notation of the form

h(Z − x)
def
= (h(z1 − x), . . . , h(zM − x)) ∈ RM

h′(Z − x)
def
= (h′(z1 − x), . . . , h′(zM − x))) ∈ RD×M

h′′(Z − x)
def
= (h′′(z1 − x), . . . , h′′(zM − x))) ∈ RD×D×M .

We let L2(RD) denote the set of squared integrable functions. For f, g ∈ L2(RD),
we let

〈f, g〉L2(RD)
def
=

∫
f(x)ḡ(x) dx (5)

denote the usual scalar product on L2(RD). For two vectors u, v ∈ CN , we set

〈u, v〉 def
=

∑
1≤n≤N

unv̄n. (6)

∗ The universal constants appearing in our bounds have been tuned by hand to reproduce the
experimental curves. The same constants have been used for all kernels.
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2. A brief tour of existing performance bounds

In our context, applying Theorem 3.1 in [10] yields the following result.

Theorem 2.1 (The Cramér-Rao lower-bound). If ε ∼ N (0, σ2Id) and h ∈ C1(RD),
then any unbiased estimator x̂ of x̄ satisfies:

E
[
‖x̄− x̂‖22

]
≥ CRσ with CRσ

def
=

σ2D2

‖h′(Z − x̄)‖2F
. (7)

In addition, there exists an estimator achieving the above lower-bound if and only if
the dimension D = 1 and h is an affine non-constant function.

Proof. The proof is post-poned to Appendix B.

While the first part of the theorem is well known (e.g. [14]), we found no
reference stating the second. It shows that the Cramér-Rao bound fails to describe
the performance of localization algorithms in general. Yet, the experiment in Fig. 1
shows a close match with the experimental points in the low noise regime.

This phenomenon was explained in [13, 16]. There, it was shown that under some
technical assumptions, the MLE provides a performance asymptotically similar to the
Cramér-Rao lower-bound for σ → 0. Hence, the Cramér-Rao lower-bound is indeed
a useful tool for small noise levels, but fails to describe the best possible performance
for arbitrary noise levels.

Therefore, various authors proposed improved bounds depending nonlinearly
on σ2, especially in the context of array processing [2, 6, 23]. For instance, we refer
the reader to the excellent summary in [23, Fig.3] for more details.

The theoretical bounds obtained in these works have revealed insufficiently
precise for some practical applications. This led researchers to derive more heuristic
but tighter approximations of the mean square error. The general idea is to
describe the curvature of the log-likelihood beyond the origin to reach a more global
description [21, 1, 13].

In this condensed description of a rich field, we see that existing results either
describe the tightest possible performance limits through lower-bounds, or describe
more heuristic approximations of the MLE variance. To the best of our knowledge,
deriving theoretical upper-bounds remains an open research area that is at the heart
of the present work. One of the authors recently conducted a similar study in [8],
for the case of blind inverse problems with unknown weights. However, the proof was
suboptimal and did not allow us to reach the Cramér-Rao bound asymptotically when
σ → 0, contrarily to the present work.

3. Preliminary facts

In this section, we derive a few basic, yet partly surprising results.

3.1. Existence of minimizers

Before studying the variance of the MLE, it is important to check that it is well
defined. In fact, the answer is negative.

Proposition 3.1. There exist kernels h such that the probability of non existence of
the MLE is non zero for any noise level σ > 0.
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Proof. Take a nonnegative kernel h vanishing at infinity. In that case, P(ym < 0,∀1 ≤
m ≤ M) > 0 for all noise levels σ. If all the coordinates of y are negative, it is easy
to see that (4) has no minimizer, since the cost function decreases as |x| → ∞.

One way to avoid this problem is to add box constraints on the location x. In that
case, the minimizer would exist since we would minimize a continuous function over
a compact set. However, the estimator would then end up on the domain boundary.
This simple example highlights a fundamental difficulty in the localization problem:
the MLE can result in outliers that significantly increase the variance of the estimator.
It will therefore be central to control the probability of x̂ being an outlier. Similar
observations have already been formulated in [21, 1].

3.2. Identifiability

A second key issue is the identifiability. To illustrate it, let us consider a problem on

the real line, i.e., D = 1. Consider the family of kernels hn(x)
def
= sin(2πnx) and set

zm = m/M . In that case, the negative log-likelihood function `ε is periodical and
therefore possesses an infinite number of global minimizers. Even restricted on the
interval [0, 1], the function possesses at least n global minimizers, therefore the MLE
is not well defined again.

The Cramér-Rao bound in that case yields a somewhat contradictory result.

Indeed, the bound (7) behaves as σ2

n2 and tends to 0 as n → ∞. By minimizing
the Cramér-Rao lower-bound, we would opt for a very oscillatory kernel h, while the
problem gets less and less identifiable as n grows.

This simple example highlights the fact that the Cramér-Rao bound only provides
a local information. In what follows, we will derive global localization results, requiring
more stringent conditions on h.

4. Main results

In this section, we control the probability P (‖x̂− x̄‖2 ≤ r) for any given radius r > 0.
We define the estimator x̂ as

x̂ ∈ argmin
x∈Ω

`ε(x) with `ε(x) =
1

2
‖h(Z − x)− h(Z − x̄)− ε‖22 , (8)

where Ω ⊆ BR def
= {x ∈ RD, ‖x − x̄‖2 ≤ R} is included in a ball of radius R centered

at x̄. We prefer minimizing on a compact set Ω rather than RD for the following
reasons:

(i) in the actual practice, the minimization is usually performed over a compact
domain,

(ii) it ensures the existence of a minimizer (minimization of a continuous function
over a compact set),

(iii) it simplifies the presentation significantly.

We could take R = +∞, recovering problem (4), by adding a decay assumption on h.
We prefer skipping this aspect for conciseness.
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4.1. Technical assumptions

Our main result will depend on the following two natural assumptions.

Assumption 4.1 (Boundedness and regularity). We assume that

• Boundedness:

∀x, x′ ∈ BR, ‖h(Z − x)− h(Z − x′)‖2 ≤ Λ < +∞. (9)

• Lipschitz continuity:

∀x, x′ ∈ BR, ‖h(Z − x)− h(Z − x′)‖2 ≤ L ‖x− x′‖2 (10)

In what follows, we will let

RL
def
=

Λ

L
. (11)

In the appendix, we derive a localization result that holds for arbitrary kernels h
(Theorem C.1), but which is quite hard to grasp. To present our main results, we
will work under the following additional assumption, which significantly eases the
presentation and will allow us to draw parallels with the Cramér-Rao lower bound.

Assumption 4.2 (Cost function behavior). We assume that there exists µ > 0 and
a radius Rµ > 0 such that

`0(x) ≥
{
µ2

2 ‖x− x̄‖22 for x ∈ BRµ ,
µ2

2 R
2
µ for x ∈ BR \ BRµ .

(12)

Assumptions 4.1 and 4.2 are illustrated in Fig. 3 (left). The following properties
are standard facts:

• We have µ ≤ L since µ2

2 ‖x− x̄‖22 ≤ `0(x) ≤ L2

2 ‖x− x̄‖22 under Assumption 4.1.

• The parameter µ2 can be chosen at least as large as the strong convexity
parameter of `0 (the minimal eigenvalue of `′′0) in the ball BRµ .

• The quadratic growth in Assumption 4.2 implies the uniqueness of a global
minimizer.

Example 4.1 (Reference kernel). We define a simple kernel href for which the
quantities involved in Assumptions 4.1 and 4.2 are trivial. It will help us later for
interpreting our results. It corresponds to the hat function in the second row of Fig. 2.
Set D = 1 and

href def
= (|x| − 1)+, M ∈ 2N + 1, (zm = m)m∈{−M/2,...,M/2} , x̄ = 0. (13)

For this choice of h and (zm), the noiseless function `0 has a simple analytical formula:

∀x ∈ [−M/2 + 1,M/2− 1], `ref
0 (x) =

{
x2 if |x| ≤ 1,

1− {x}+ {x}2 otherwise
(14)

where {x} def
= x−bxc is the fractional part of x. The graph of `ref

0 is depicted in Fig. 3
(right). Some elementary calculations yield:

Lref = µref = Λref =
√

2, Rref
µ =

√
3

2
, Rref

L = 1. (15)
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Figure 3: Left: Illustration of Assumptions 4.1 and 4.2. The noiseless cost function
`0 is sandwiched between two quadratic functions near x̄ and between two constant
far away from the origin. Right: The specific case href where µ = L.

4.2. The main results

We are now ready to present our main results.

Theorem 4.1 (Sufficient conditions). Assume that ε ∼ N (0, σ2Id) and that the
conditions 4.1, 4.2 are satisfied. Set ρ > 0, a radius 0 < r ≤ R and I =
dlog2(1 + log2(Rµ/r))e. Consider the two conditions below, where c > 0 is a universal
constant∗:

4

µ2
σL
(
c
√
D +

√
ρ2 + ln(I)

)
≤ r (Cond1)

2

µ2
σL

(
c
√
D

√
ln

(
3R

RL

)
+
√
ρ2 + ln(I)

)
≤ R2

µ

RL
. (Cond2)

Then under either of the following conditions

• r ≤ Rµ
2 , R ≥ RL

2 , Cond1 and Cond2.

• r ≤ Rµ
2 , R ≤ RL

2 and Cond1.

• r ≥ Rµ
2 and Cond2.

the following inequality holds

P (‖x̄− x̂‖2 ≤ r) ≥ 1− exp

(
−ρ

2

2

)
. (16)

The complete proof is given in Appendix C. We will provide some insights in the
next section. For now, let us present a similar result showing that the conditions in
Theorem4.1 are not only sufficient but also nearly necessary.

∗ The proof of the result heavily relies on bounding the supremum of a Gaussian process. To the
best of our knowledge, it is currently out of reach to control the multiplicative constants precisely.
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Theorem 4.2 (Necessary conditions). Under the same assumptions as in
Theorem4.1:

• We have P (x̂ /∈ Br) ≥ 1 − exp(−ρ2
1/2) − Φ(ρ2/

√
2), where Φ is the cumulative

distribution function of the normal distribution, under the condition

r <
ρ2µ

2L(c
√
D + ρ1)

·min
(
Rµ, RL,

σρ2µ

L2

)
. (Cond′1)

The proof shows that the term c
√
D can be discarded if we accept to lower the

probability of failure to 1/4 (rather that 1/2 in this form).

• Assume that R > Rµ and that

‖h(Z − x)− h(Z − x′)‖2 ≥ µmin (‖x− x′‖2, Rµ) ∀x, x′ ∈ BR.
Then P (x̂ /∈ Br) ≥ 1− exp(−ρ2

1/2)− exp(−ρ2
2/2) under the condition

σ

√
ln

(
R

Rµ

)
>

R2
LL

2

√
DRµµ

+
2σ[ρ2RLL+ Lrc

√
D + ρ1]√

DRµµ
. (Cond′2)

The complete proof is given in Appendix D.

4.3. An informal proof

In this section, we provide the essential ingredients behind Theorems 4.1 and 4.2 since
they shed light on the problem’s geometry. The starting point of these proofs is the
following decomposition

`ε = `0 −∆ε +
1

2
‖ε‖22 where ∆ε(x)

def
= 〈h(Z − x)− h(Z − x̄), ε〉 , ∀x ∈ RD.

The term 1
2‖ε‖22 is constant with respect to x and does not change the location of the

minimizer. The term ∆ε is a centered random Gaussian process with

∆ε(x) ∼ N (0, σ2‖h(Z − x)− h(Z − x̄)‖22). (17)

Intuitions behind Theorem 4.1 A sufficient condition for success (x̂ ∈ Br) is that

0 = `0(x̄)−∆ε(x̄) < inf
x∈BR\Br

`0(x)−∆ε(x), (18)

as illustrated on Fig. 4 (left). Then, given that

• ∆ε(x) . σLmin (‖x− x̄‖2, RL) with high probability (from (17)),

• `0(x) ≥ µ2

2 min(‖x− x̄‖22, R2
µ) (from Assumption 4.2),

we can simplify (18) as

σLmin (‖x− x̄‖2, RL) .
µ2

2
min(‖x− x̄‖22, R2

µ), for all ‖x− x̄‖2 ≥ r.

This is illustrated in Fig. 4 (right) with the quadratic curve being higher than the
linear one for all ‖x− x̄‖2 ≥ r. This condition can be decomposed as 2σL/µ2 < r and
2σL/µ2 < R2

µ/RL which correspond in essence to Cond1 and Cond2 in Theorem 4.1.
The difference lies in additive logarithmic terms which appear, since the probability
should not be controlled pointwise, but uniformly in BR \ Br. This uniform control
is handled using discretization techniques combined with rather deep results on the
suprema of random processes [19].
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Figure 4: Intuition behind Theorem 4.1. Left: Success (x̂ ∈ Br) occurs if there
exists x ∈ Br (e.g., x = x̄) such that `0(x) −∆ε(x) (orange point) is lower than the
infimum of `0 −∆ε over BR \ Br (orange dashed line). Right: The green curve is an
upper-bound of the typical amplitude of ∆ε. The red curve is a lower-bound of `0.
An (informal) sufficient condition for x̂ ∈ Br is that the red curve dominates the green
one at r.

Intuitions behind Theorem 4.2 A sufficient condition for failure (x̂ /∈ Br) is that there
exists xt ∈ BR \ Br with t = ‖xt − x̄‖2 such that

0 ≈
r small

inf
x∈Br

`0(x)−∆ε(x) > `0(xt)−∆ε(xt), (19)

This condition is illustrated on Fig. 5 (left). Then, given that

• ∆ε(xt) & σµmin(t, Rµ) with probability close to 1/2 (from (17) and since ∆ε is
symmetric),

• `0(xt) ≤ L2

2 min
(
t2, R2

L

)
(from Assumption 4.2),

we can simplify (19) as

σµmin(t, Rµ) &
L2

2
min

(
t2, R2

L

)
.

This is illustrated on Fig. 5 (right) with the quadratic curve being lower than the
linear one at ‖x− x̄‖2 = t. Taking t = 2r, we get the two conditions r < σµ/L2 and
σ > L2R2

L/(2µRµ) which correspond to Cond′1 and Cond′2 in Theorem 4.2 (for small
r, ρ1, and ρ2). A more careful analysis involves the additive terms appearing in the
theorem.

4.4. Interpretations and simplifications

In this section, we aim at explaining the different ingredients from the theorems above.

The key geometric features The proposed analysis emphasizes the role of a few key
geometrical quantities:
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0 r t R

0

‖x− x̄‖2

`0 −∆ε

0 r t RLRµ R
0

σµRµ

1
2L

2R2
L

r 7→
σµ
r

r
7→

L
2 r

2
2

‖x− x̄‖2

Figure 5: Intuition behind Theorem 4.2. Left: Failure (x̂ /∈ Br) occurs if there
exists xt ∈ BR \ Br (with t = ‖xt − x̄‖2) such that `0(xt) −∆ε(xt) (orange point) is
lower than the infimum of `0 − ∆ε over Br (orange dashed line). Right: The green
curve is a lower-bound of the typical amplitude of ∆ε. The blue curve is an upper-
bound of `0. An (informal) sufficient condition for x̂ /∈ Br is that the green curve
dominates the blue one at t.

• The radius Rµ of quadratic growth and its associated parameter µ

µ2 ≥ inf
x∈BRµ

λmin(`′′0(x)). (20)

• The Lipschitz constant of the gradient of `0:

L2 ≤ sup
x∈BR

λmax(`′′0(x)). (21)

• The local conditioning of `0 around x̄: κ
def
= L

µ ≥ 1.

• The square root of the quotient between the upper and lower bound of `0 far from

x̄: θ
def
= RLL

Rµµ
≥ 1.

The two last theorems can be summarized informally as follows. For sufficiently
small r, we can get x̂ ∈ Br with large probability under the following

• Sufficient condition: σ . µmin

(
rκ−1

√
D
,
Rµθ

−1

√
D

ln

(
R

RL

)−1/2
)

(22)

• Necessary condition: σ . Lmin

(
rκ2,

RLθ√
D

ln

(
R

Rµ

)−1/2
)
. (23)

In most applications, only the left term in the minimum above plays a role. The term
ln(R)−1/2 comes from the fact that as the radius R increases, the probability of false
detection far away from x̄ increases. However, it does so at a very moderate rate.

Tightness The two conditions differ mostly from the conditioning factors κ and θ.
They become equivalent up to multiplicative factors for the reference kernel href .
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Indeed, set R = M/2 − 1, which amounts to looking for the source only around
the sampled points. For this kernel, they both read

σ . min
(
r,
√

ln(M)
)
.

This proves the tightness of the theorem.

The term
√
D ln(R/RL) This term is not a proof artefact and needs to be accounted

for. To provide an intuitive explanation of this, let us recall that:

X ∼ N (0, IdN )⇒ E

[
max

1≤n≤N
Xn

]
≤
√

2 ln(N). (24)

Under our sole Lipschitz assumption, the two random variables ∆ε(x) and ∆ε(x
′)

could be essentially independent for ‖x−x′‖2 & 1
L . A ball of radius R, can be packed

with (R/RL)D balls of radius RL. Letting xn denote the centers of these balls, we
would therefore have

E

[
sup
x∈BR

∆ε(x)

]
≥ E

[
max
n

∆ε(xn)
]
&
√

ln(R/RL)D.

The term ln(I) We do not know if the term ln(I) = ln(dlog2(1 + log2(Rµ/r))e) is an
artefact of the proof, or if it is actually needed. What is sure, is that it can be safely
considered as a moderate constant. For instance ln(dlog2(1 + log2(10100000))e) < 3!

4.5. Notable consequences

Theorem 4.1 has a few interesting consequences.

Phase transition An important consequence of Theorem 4.1 is a phase transition
behavior. Whenever Cond1 and Cond2 are satisfied with a sufficiently high value of
ρ (say ρ = 3), it becomes very unlikely to see the global minimizer x̂ escaping from
the ball B(x̄, r). In applications, we would typically set a small value of r (e.g. one
tenth of a pixel in single molecule localization) and the theorem tells that whenever
the condition is satisfied, the estimator will nearly always succeed.

Relationship to Cramér-Rao The condition (Cond1) is strongly connected to the
Cramér-Rao lower-bound. Assuming that `0 is µ2-strongly convex on BRµ implies the
quadratic growth in 12 and we have

µ2 ≤ inf
x∈BRµ

λmin(`′′0(x)) ≤ sup
x∈BR

λmax(`′′0(x)) ≤ L2 (25)

where `′′0(x) is the Hessian of `0 at x. Taking Rµ → 0 (which implies r → 0 and σ → 0
from Cond2), we obtain

µ2 ≤ λmin(`′′0(x̄)) ≤ λmax(`′′0(x̄)) ≤ L2. (26)

Given that `′′0(x̄) =
∑M
m=1 h

′(zm − x̄) h′(zm − x̄)T , we get

µ2 ≤ λmin (`′′0(x̄)) ≤ ‖h
′(Z − x̄)‖2F

D
≤ λmax (`′′0(x̄)) ≤ L2 (27)
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since for any matrix A ∈ RD×M with D ≤M

‖A‖2F =

D∑
d=1

σ2
d(A) =

D∑
d=1

λd(AA
T ) (28)

where σd(A) and λd(A) are respectively the singular values and the eigenvalues of A.
Finally, from Cond1 we get that asymptotically,

r &

√
DσL

µ2
&

D · σ
‖h′(Z − x̄)‖F

=
√

CRσ. (29)

This is in line with the asymptotic analysis existing in the literature [13, 16].

PSF engineering - How to optimize a kernel? A few authors proposed to optimize
the point spread function of optical systems by maximizing ‖h′(Z − x̄)‖F , motivated
by the Cramér-Rao bound, see e.g. [18, 9]. The second part of Theorem 2.1, shows
that this might not be enough. Our results highlight that other facts must be taken
into account.

Let us assume that we wish to obtain a localization precision of order r. Looking
only at the sufficient condition, the most important factors are then:

• The quadratic growth parameter µ in BR. A good upper-bound for this term is:

µ(r)
def
= inf

x∈Br
‖h′(Z − x)‖F . (30)

This term is essentially equivalent to the Cramér-Rao bound, except that it needs
to be controlled uniformly in Br.

• We also need to ensure that `0(x) is sufficiently large for all x ∈ BR \ Br. This
condition is there to ensure the identifiability of the problem. For example, this
condition discards the pathological sine kernel discussed in Section 3.2. This
would not be taken into account using the Cramér-Rao bound only.

• Finally, taking R too large increases the probability of false positives at the very
slow rate

√
ln(R). This means that cameras with large field of views can be safely

used without increasing the false detection rate significantly.

Notice that the factors mentioned above do not include any support size or decay
rate constraints, which are usually added for PSF engineering. Hence, unlocalized
kernels could yield interesting results, in the low density regime, where only scattered
sources are present.

4.6. Analysis for well sampled bandlimited kernels

In this section, we analyze the theorems in the specific case of well sampled bandlimited
kernels. This case is of major importance in optics applications. Let us introduce the
Fourier transform defined for all f ∈ L2(RD) by

F(f)(ω)
def
=

1

(2π)D/2

∫
RD

f(x) exp(−i〈x,w〉) dx. (31)

Let us recall the Plancherel formula ‖f‖L2(RD) = ‖F(f)‖L2(RD).
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Definition 4.1 (Paley-Wiener space). For W > 0 we say that f ∈ L2(RD) is
W -bandlimited if supp (F(f)) ⊆ [−W,W ]D. We let PW(W ) denote the set of W -
bandlimited functions in L2(RD).

A bandlimited function belongs to C∞(RD). Let us recall the following
fundamental result.

Theorem 4.3 (A variant of Whittaker’s theorem). Assume that f, g ∈ PW(π). Set
a sampling step τ ≤ 1. Then for all x ∈ RD, we have:

〈f, g〉L2(RD) =
( τ

2π

)D ∑
z∈τZD

f(z − x)g(z − x). (32)

In particular, taking f = g, we get

‖f‖2L2(RD) =
( τ

2π

)D ∑
z∈τZD

f(z − x)2. (33)

Proof. The proof is given in Appendix E for completeness.

Now assume that h ∈ PW(π) and that it is sampled on Z = [−R,R]D ∩ τZD,
where τ < 1 is the grid size (1/τ is the oversampling factor). By Theorem 4.3, we
have for all x

‖h(Z − x)‖22 =
∑
z∈Z

h2(z − x) =

(
2π

τ

)D
‖h‖2L2(RD) −

∑
z∈τZD\Z

h2(z − x)

'
(

2π

τ

)D
‖h‖2L2(RD)

for sufficiently large R and decaying h. Similarly, we have for all x, x′

‖h′(Z − x)‖22 '
(

2π

τ

)D
‖h′‖2L2(RD)

〈h(Z − x), h(Z − x′)〉 ≈
(

2π

τ

)D
〈h(· − x), h(· − x′)〉L2(RD)

using the fact that h ∈ PW(π) ⇒ h′ ∈ PW(π). We then get that

`0(x) '
(

2π

τ

)D (
‖h‖2L2(RD) − 〈h(· − x), h(· − x̄)〉L2(RD)

)
.

Now let Λ, L, and µ be defined according to Assumptions 4.1 and 4.2 for x 7→ `0(x)τD

so that they are independent of τ . Then, the conditions (22) and (23) read

σ .
µ

τD/2
min

(
rκ−1

√
D
,
Rµθ

−1

√
D

ln

(
R

RL

)−1/2
)

(34)

σ .
L

τD/2
min

(
rκ2,

RLθ√
D

ln

(
R

Rµ

)−1/2
)
. (35)

where κ, θ, RL, and Rµ are independent of τ .

Hence, for well sampled bandlimited kernels, we have that:

• The performance does not depend on x̄ (as ‖h′(Z − ·)‖2 is nearly constant).

• Over-sampling with τ < 1 leads to improved performances (from (34) and (35)).
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Appendices

A. Derivatives of `ε

Let us start with a set of identities that will be used continuously throughout the
proofs. We have

`ε(x) =
1

2

M∑
m=1

(h(zm − x)− h(zm − x̄)− εm)
2

(A.1)

`′ε(x) = −
M∑
m=1

(h(zm − x)− h(zm − x̄)− εm)h′(zm − x) (A.2)

`′′ε (x) =

M∑
m=1

(h(zm − x)− h(zm − x̄)− εm)h′′(zm − x) + h′(zm − x) h′(zm − x)T

(A.3)

Thus evaluating at x = x̄ gives

`ε(x̄) =
‖ε‖2

2
(A.4)

`′ε(x̄) =

M∑
m=1

εm h′(zm − x̄) (A.5)

`′′ε (x̄) =

M∑
m=1

(
h′(zm − x̄) h′(zm − x̄)T − εm h′′(zm − x̄)

)
(A.6)

B. Proof of Theorem 2.1

B.1. Establishing the Cramér-Rao lower-bound

By [10, (3.20)], we know that the covariance matrix of any unbiased estimator x̂
satisfies

cov(x̂) < I−1(x̄) with [I(x)]d,d′
def
= E

[
∂ ln p(y|x)

∂xd
· ∂ ln p(y|x)

∂xd′

]
. (B.1)

In our case, we have

p(y|x) ∝ exp

(
−‖y − h(Z − x)‖22

2σ2

)
. (B.2)
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Hence

∂ ln p(y|x)

∂xd
=

1

σ2

M∑
m=1

(h(zm − x)− ym) · h′d(zm − x). (B.3)

where we use the notation h′d = ∂dh in this proof. This yields for any unbiased
estimator x̂

E
[
|x̂d − x̄d|22

]
≥ E

[
∂ ln p(y|x̄)

∂xd
· ∂ ln p(y|x̄)

∂xd

]−1

= σ4 · E
[(

M∑
m=1

−εmh′d(zm − x̄)

)(
M∑
m=1

−εmh′d(zm − x̄)

)]−1

= σ4 · E
[
M∑
m=1

ε2
mh
′
d(zm − x̄)2

]−1

=
σ2

‖h′d(Z − x̄)‖2
2

.

Summing over d yields

E
[
‖x̂− x̄‖22

]
≥

D∑
d=1

σ2

‖h′d(Z − x̄)‖2
2

≥ D2σ2

‖h′(Z − x̄)‖22
. (B.4)

where the last inequality is obtained by the fact that the arithmetic mean is greater
than the harmonic one (i.e., 1

D

∑D
d=1 ad ≥ D(

∑D
d=1

1
ad

)−1).

B.2. Necessary and sufficient condition for attainment

Now, let us prove that the Cramér-Rao bound can be attained only in dimension
D = 1 and for affine kernels h. To this end, we recall the second part of [10, Thm.
3.2], adapted to our setting.

Proposition B.1. An unbiased estimator x̂ of x̄ that attains the Cramér-Rao bound
exists if and only if

∂ ln p(y|x̄)

∂x̄d
= I(x̄) · (g(y)− x̄), (B.5)

for all y, x̄ and some D-dimensional functions g and D ×D matrix I. The optimal
estimator is then x̂ = g(y) and the covariance matrix is I(x̄)−1.

Corollary B.1 (Necessary conditions for attaining Cramér-Rao). In our case, there
exists an unbiased estimator x̂ of x̄ that attains the Cramér-Rao bound if and only if
D = 1 and h is an affine non constant function.

Proof. Firstly, assume that such an estimator that attains the Cramér-Rao bound
exists. Let’s show that h should be affine. In our case, the condition from the general
case reads

1

σ2
Jh̃(x̄)T · (h(Z − x̄)− y) = I(x̄) · (g(y)− x̄) (B.6)

where we have introduced the following notations

h̃ : RD −→ RM

x̄ 7−→ h(Z − x̄)
def
= (h(zm − x̄))m
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and for a function f : RD −→ RI we have fixed the Jacobian of f to be

Jf(x)
def
=

(
∂fi
∂xd

)
i,d

= (∇f1(x) . . . ∇fI(x))
T ∈ RI×D.

Differentiating the equality with respect to y yields

− 1

σ2
Jh̃(x̄)T = I(x̄) · Jg(y). (B.7)

The left-hand side does not depend on y. Hence, Jg(y) is constant, meaning that

g(y) = A · y + b (B.8)

for some A ∈ RD×M and b ∈ RD. This simplifies equation (B.7) as

Jh̃(x̄)T = −σ2I(x̄) ·A. (B.9)

Now let us rewrite (B.6) by replacing g(y) and Jh̃(x̄)T :

−I(x̄) ·A · (h(Z − x̄)− y) = I(x̄) · (A · y + b− x̄).

Since from the general case, I(x̄)−1 is well defined and is the covariance matrix, one
has that I(x̄) is invertible. The previous equality simplifies as

−A · h(Z − x̄) = b− x̄. (B.10)

Differentiating this expression with respect to x̄ and injecting (B.9) gives

− σ2I(x̄) ·AAT = IdD (B.11)

which implies that I(x̄) does not depends on x̄. With (B.9), we finally get that h̃ (and
thus h) is affine.

To complete the proof, it remains to show that D = 1 and that h cannot be
constant. As h is affine, let us set h : x 7→ 〈a, x〉+ β with a ∈ RD and β ∈ R. Then

Jh̃(x̄)T = [a a · · · a] ∈ RD×M . (B.12)

We then deduce two facts from the invertibility of I(x̄). First, from (B.11) AAT is
also invertible. Second, from (B.9) there exists c ∈ RD such that

A = c · 1T ∈ RD×M and AAT = c · 1T · 1 · cT = M · ccT .

Clearly, these two properties can be satisfied at the same time only if D = 1 and
a 6= 0. This shows that D = 1 and h is affine non constant.

Conversely, any affine non constant function h in the case D = 1 attains
Cramér-Rao bound since I(x̄) = Ma2 and g(y) = β

a + 1
M

∑M
m=1 h

(
zm − ym

a

)
are

appropriate.

C. Proof of Theorem 4.1

C.1. An intermediary result

For r ≥ 0, let Br def
= {x ∈ RD, ‖x− x̄‖2 ≤ r}.
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Theorem C.1 (A general result). Let (ri)0≤i≤I denote an increasing sequence with
r0 = r and rI = R. Define Ωi = Bri \ Bri−1

and

Ēi
def
=

cσ
√
DΛ ri

RL
if ri ≤ RL

2

cσ
√
DΛ

√
ln
(

3ri
RL

)
otherwise

and Λ̄i
def
= Λ min

(
1,

ri
RL

)
. (C.1)

where c is a universal constant. Set ρ > 0. Under Assumptions 4.1 and 4.2. We have
x̂ ∈ Br with probability larger than 1− exp(−ρ2/2) under the I conditions 1 ≤ i ≤ I:

Ēi +
√
ρ2 + ln(I)σΛ̄i ≤ inf

x∈Ωi
`0(x). (Ci)

Proof. The proof of this result is quite long and technical.

C.1.1. The general strategy Let Br = {x ∈ RD, ‖x − x̄‖2 ≤ r}. We can decompose

`ε as `ε = `0 −∆ε + 1
2‖ε‖22, where ∆ε(x)

def
= 〈h(Z − x)− h(Z − x̄), ε〉. We partition

the domain Ω as

Ω =
⊔

0≤i≤I

Ωi with Ωi = Bri \ Bri−1 for i ≥ 1, (C.2)

with Ω0 = Br, (ri)0≤i≤I an increasing sequence with r0 = r and rI = R. Now, remark
that

[‖x̂− x̄‖2 ≤ r]⇔
[

inf
x∈Br

`ε(x) < inf
x∈Bcr

`ε(x)

]
⇔
[

inf
x∈Br

`0(x)−∆ε(x) < inf
x∈Bcr

`0(x)−∆ε(x)

]
⇔
[

inf
x∈Br

`0(x)−∆ε(x) < inf
x∈Ωi

`0(x)−∆ε(x), ∀1 ≤ i ≤ I
]

⇐

`0(x̄)−∆ε(x̄)︸ ︷︷ ︸
0

< inf
x∈Ωi

`0(x)− sup
x∈Ωi

∆ε(x), ∀1 ≤ i ≤ I

 (C.3)

⇔
[

inf
x∈Ωi

l0(x) > sup
x∈Ωi

∆ε(x), ∀1 ≤ i ≤ I
]
.

Here c denote the relative complement with respect to BR. The reason we
partition the domain in concentric annuli is for the event at line C.3 and the one
before to be close. The interest of C.3 is that we only need to control the supremum
of the centered process ∆ε instead on the non centered process `0−∆ε. The sequence
of radii (ri)0≤i≤I will be optimized at the end of the proof.

C.1.2. Bounding the suprema The main technical difficulty is to find probabilistic
bounds on the supremum supx∈Ωi ∆ε(x). To this end, we will use a combination of
Gaussian concentration results and Dudley’s type inequality. We refer to the three
excellent monographs [19, 5, 22] for an in depth treatment of this topic. In our specific
case, we obtain the following result.
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Lemma C.1 (Expectation and tail bounds for the supremum ). Let

Ei
def
= E

[
sup
x∈Ωi

∆ε(x)

]
. (C.4)

For t ≥ 0, we have

P

(
sup
x∈Ωi

∆ε(x) ≥ t
)
≤ exp

(
− (t− Ei)2

2σ2L2 min(R2
L, r

2
i )

)
. (C.5)

with

Ei ≤ c · σ · L ·
√
D ·

ri if ri ≤ RL
2 ,

RL ·
√

ln
(

3ri
RL

)
otherwise.

(C.6)

Proof. First notice that the random process ∆ε is Gaussian since ε ∼ N (0, σ2Id). It
can be written alternatively as σ∆ε with ε ∼ N (0, Id). Let D ⊂ RD denote a domain
and define the mapping fD : ε 7→ supx∈D σ∆ε(x). Let us define

Dh(x1, x2)
def
= h(Z − x1)− h(Z − x2) and ΛD

def
= sup

x∈D
‖Dh(x, x̄)‖2 . (C.7)

We have for δ ∈ RM

fD(ε+ δ) = σ sup
x∈D
〈Dh(x, x̄), ε+ δ〉 ≤ σ sup

x∈D
〈Dh(x, x̄), ε〉+ σΛD ‖δ‖2 ,

fD(ε+ δ) = σ sup
x∈D
〈Dh(x, x̄), ε+ δ〉 ≥ σ sup

x∈D
〈Dh(x, x̄), ε〉 − σΛD ‖δ‖2 .

Hence |fD(ε + δ) − fD(ε)| ≤ σΛD ‖δ‖2 and we can conclude that fD is Lipschitz
continuous with constant σΛD. Using [5, Theorem 5.6], we therefore get that, for any
u > 0 and D ⊂ RD

P

(
sup
x∈D

∆ε(x) ≥ E

[
sup
x∈D

∆ε(x)

]
+ u

)
≤ e−

u2

2σ2Λ2
D (C.8)

Under Assumption 4.1, we have

‖Dh(x, x̄)‖2 ≤ min(Λ, L ‖x− x̄‖2).

Hence for D = Ωi, we obtain

ΛΩi ≤ min(Λ, Lri).

The remaining technical difficulty is to find an upper-bound for E
[
supx∈Ωi ∆ε(x)

]
.

which is a hard problem in general. In this work, we will use Dudley’s inequality
together with Assumption 4.1. Let us introduce the pseudo-metric d : RD × RD → R
defined by

d(x, x′)
def
=

√
E
[
(∆ε(x)−∆ε(x′))

2
]

=

√
E
[
(〈h(Z − x)− h(Z − x′), ε〉)2

]
(C.9)

=

√
σ2 ‖h(Z − x)− h(Z − x′)‖22 = σ ‖h(Z − x)− h(Z − x′)‖2 (C.10)

It will be used in conjunction with the following tool.
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Definition C.1 (Covering number). The covering number N (δ,S, d) is defined as the
minimal number of balls of radius δ in the pseudo-metric d needed to cover S.

We are ready to present Dudley’s inequality (see e.g. [5, Cor. 13.2]).

Theorem C.2 (Dudley’s inequality ). The following inequality holds:

E

[
sup
x∈S

∆ε(x)

]
≤ c

∫ δ

0

√
ln(N (u,S, d)) du, (C.11)

where c is a universal constant and δ > 0 can be taken as the smallest number such
that N (u,S, d) ≥ 1.

Lemma C.2. Under assumption 4.1, we have

Ei ≤ c · σ · L ·
√
D ·

ri if ri ≤ RL
2 ,

RL ·
√

ln
(

3ri
RL

)
otherwise.

(C.12)

for some universal constant c.

Proof. In what follows, c is a universal constant that may change from one line to the
other. By assumption, we have

d(x, x′) ≤ σ ·min (L‖x− x′‖2,Λ) (C.13)

and we can upper bound Ei as

Ei = E

[
sup
x∈Ωi

∆ε(x)

]
≤ E

[
sup
x∈Bri

∆ε(x)

]
.

Using (C.13) and [22, Cor. 4.2.13], we obtain

N (u,Bri , d) ≤
{

1 if u ≥ σ ·min(2Lri,Λ),(
3riσL
u

)D
otherwise.

(C.14)

Hence, in the case 2Lri ≤ Λ, we obtain using Theorem C.2:

Ei ≤ c
∫ 2riσL

0

√
ln(N (u,Bri , d)) du ≤ c

∫ 3riσL

0

√
ln(N (u,Bri , d)) du

≤ c
√
D

∫ 3riσL

0

√
ln

(
3riσL

u

)
du = c · ri · σ · L ·

√
D.
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In the case 2Lri > Λ, we get

Ei ≤ c
∫ σΛ

0

√
ln(N (u,Bri , d)) du

≤ c
√
D

∫ σΛ

0

√
ln

(
3riσL

u

)
du

= cσΛ
√
D

∫ 1

0

√
ln

(
3riL

Λv

)
dv

= cσΛ
√
D

(√
ln

(
3riL

Λ

)
+

√
π

2

3riL

Λ
erfc

(√
3riL

Λ

))

≤ cσΛ
√
D

(√
ln

(
3riL

Λ

)
+

1

2

√
3riL

Λ
exp

(
−3riL

Λ

))

where we use the inequality erfc(z) < exp(−z2)√
πz

for z > 0 to get the last inequality.

Finally, since 1
2

√
ze−z ≤

√
ln(z) for z ≥ 3/2, the condition 2ri > RL implies the

simplification:

E

[
sup
x∈Bri

∆ε(x)

]
≤ c · σ · Λ ·

√
D ·
√

ln

(
3ri
RL

)
. (C.15)

C.1.3. Concluding the proof of Theorem C.1 Let θi
def
= infx∈Ωi `0(x). Now, assume

that
θi ≥ Ei, ∀1 ≤ i ≤ I. (C.16)

Then, the probability of the event x̂ ∈ Br can be bounded above as follows:

P (x̂ ∈ Br) ≥ P

 ⋂
1≤i≤I

[
sup
x∈Ωi

∆ε(x)− θi < 0

]
≥ 1− P

 ⋃
1≤i≤I

[
sup
x∈Ωi

∆ε(x)− θi ≥ 0

]
≥ 1−

I∑
i=1

P

(
sup
x∈Ωi

∆ε(x)− θi ≥ 0

)

≥ 1−
I∑
i=1

exp

(
− (θi − Ei)2

2σ2L2 min(RL, ri)2

)
.

Set ρ ≥ 0 and ρ′ =
√
ρ2 + ln(I). Under the conditions

Ei + ρ′σLmin(RL, ri) ≤ θi, (C.17)

we get that the probability of success is higher than 1− exp(−ρ2/2).
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C.2. Concluding the proof of Theorem 4.1

Proof. From Theorem C.1, the inequality (16) is valid if

Ēi +
√
ρ2 + ln(I)σΛ̄i ≤ inf

x∈Ωi
`0(x) ∀1 ≤ i ≤ I. (C.18)

Assumption 4.2, allows us to get

inf
x∈Ωi

`0(x) ≥ max

(
µ2r2

i−1

2
,
µ2R2

µ

2

)
.

Let us assume that R > RL
2 . Without loss of generality, we can also assume that

Rµ ≤ RL
2 , since the inequalities in (12) are still valid when replacing BRµ by BR′ with

R′ ≤ Rµ. In this setting, the success condition CI reads

cσ
√
DΛ

√
ln

(
3R

RL

)
+ σ

√
ρ2 + ln(I)Λ ≤ µ2R2

µ

2
. (C.19)

Now, let us set rI−1 = Rµ. For 1 ≤ i ≤ I − 1, the conditions Ci read:

σriL
(
c
√
D +

√
ρ2 + ln(I)

)
≤ µ2r2

i−1

2
. (C.20)

This can be rewritten as:

2

µ2
σL
(
c
√
D +

√
ρ2 + ln(I)

)
≤ r2

i−1

ri
. (C.21)

Now, by setting ri = 22i−1r, we get
r2
i−1

ri
= r

2 for all i. In addition 22i−1r ≥ Rµ for
i ≥ dlog2(log2(2Rµ/r))e. Hence, we can set I = dlog2(1 + log2(Rµ/r))e. This value is

larger than 2 for r <
Rµ
2 . Hence, under this condition, we get x̂ ∈ Br given that

4

µ2
σL
(
c
√
D +

√
ρ2 + ln(I)

)
≤ r

2

µ2
σΛ

(
c
√
D

√
ln

(
3R

RL

)
+
√
ρ2 + ln(I)

)
≤ R2

µ.

In the case r ≥ Rµ
2 , we can set I = 1, Ω1 = BRµ and only the second condition is

sufficient for success:

2

µ2
σΛ

(
c
√
D

√
ln

(
3R

RL

)
+ ρ

)
≤ R2

µ.

The case R ≤ RL
2 can be treated as previously, but only Cond1 matters, since the

other one is automatically verified.
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D. Proof of Theorem 4.2

Proof. First notice that

inf
x∈Br

`0(x)−∆ε(x) ≥ inf
x∈Br

`0(x)− sup
x∈Br

∆ε(x) ≥ − sup
x∈Br

∆ε(x).

Using Lemma (C.1), we obtain

Er
def
= E

[
sup
x∈Br

∆ε(x)

]
≤ crσL

√
D,

where c is a universal constant and for ρ1 > 0

P

(
sup
x∈Br

∆ε(x) ≥ Er + ρ1σLr

)
≤ exp(−ρ2

1/2).

Define the event

E1 def
=

[
inf
x∈Br

`0(x)−∆ε(x) ≥ −σLr
(
c
√
D + ρ1

)]
.

The previous inequalities imply that

P (E1) ≥ 1− exp(−ρ2
1/2).

Proof of the part related to (Cond′1) Now, set t ∈ (r,Rµ] and take an arbitrary

point x with ‖x − x̄‖2 = t. At this x, we have `0(x) ≤ min
(
L2t2

2 , Λ2

2

)
under

Assumption 4.1. In addition, we have ∆ε(x) ∼ N (0, σ2‖h(Z − x) − h(Z − x̄)‖22)
with ‖h(Z − x)− h(Z − x̄)‖22 ≥ 1

2µ
2t2 under Assumption 4.2. The previous inequality

implies that
P (∆ε(x) ≥ ρ2σµt) ≥ 1− Φ(ρ2/

√
2),

where Φ is the cumulative distribution function of the normal distribution. Define the
event

E2 def
=

[
inf
x∈Bcr

`0(x)−∆ε(x) ≤ min

(
L2t2

2
,

Λ2

2

)
− ρ2σµt

]
.

We have P (E2) ≥ 1− Φ(ρ2/
√

2) and

P (E1 ∩ E2) = 1− P (Ec1 ∪ Ec2) ≥ 1− P (Ec1)− P (Ec2) = P (E1) + P (E2)− 1

≥ 1− exp(−ρ2
1/2) + 1− Φ(ρ2/

√
2)− 1 = 1− exp(−ρ2

1/2)− Φ(ρ2/
√

2).

We get x̂ /∈ Br under the event E1 ∩ E2 together with the condition

∃t ∈ (r,Rµ], σ
(
ρ2µt− Lr

(
c
√
D + ρ1

))
> min

(
L2t2

2
,

Λ2

2

)
. (D.1)

By setting ρ2µt = 2Lr
(
c
√
D + ρ1

)
, we get failure with probability larger than

1− exp(−ρ2
1/2)− Φ(ρ2/

√
2) under the conditions:

t > r and t ≤ Rµ and
L2t2

2
≤ Λ2

2
and (D.1)⇔ σ

ρ2µt

2
>
L2t2

2
.
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These conditions can still be rewritten in terms of the radius r and the parameters ρ1

and ρ2 as

2L(c
√
D + ρ1)

ρ2µ
> 1

r <
ρ2µ

2L(c
√
D + ρ1)

·min

(
Rµ,

Λ

L
,
σρ2µ

L2

)
.

A sufficient condition for the first inequality reads ρ2 ≤ ρ1 since L ≥ µ ∗. For
instance, set ρ1 = 3 and ρ2 =

√
2. We then get P (E1 ∩ E2) ≥ 0.14. This shows that

for a sufficiently small radius r, a necessary condition for x̂ ∈ B with probability larger
than 0.86 is

r >
σµ2

L3(2c
√
D + 6)

. (D.2)

In the case µ ∝ L, this yields a condition of the form r . σ
L , which is in essence

equivalent to the Cramér-Rao bound, but in a non asymptotic setting.

Proof of the part related to (Cond′2) Here, we assume that R > Rµ and that the
growth condition is globalized:

‖h(Z − x)− h(Z − x′)‖2 ≥ µmin (‖x− x′‖2, Rµ) ∀x, x′ ∈ BR.

Hence, we get using [22, Cor. 4.2.13]:

N (u,BR, d) ≥
(
Rµσ

u

)D
for u ≤ Rµσµ.

Using Sudakov’s inequality
cite[Thm 7.4.1]vershynin2018high or [5, Thm 13.4], we obtain:

E

[
sup
x∈BR

∆ε(x)

]
≥
√
D

2
sup

u∈[0,Rµσµ]

u ·
√

ln

(
Rµσ

u

)
.

Taking u = Rµσµ, we get

E

[
sup
x∈BR

∆ε(x)

]
≥
√
D

2
Rµσµ

√
ln

(
R

Rµ

)
. (D.3)

Applying the same reasoning as the one for Lemma C.1 to the random variable
− supx∈BR ∆ε(x), implies that

P

(
E

[
sup
x∈BR

∆ε(x)

]
− sup
x∈BR

∆ε(x) ≥ t
)
≤ exp

(
− t2

2σ2Λ2

)
. (D.4)

Define the event

E2 def
=

[
sup
x∈BR

∆ε(x) ≥
√
D

2
Rµσµ

√
ln

(
R

Rµ

)
− ρ2σΛ

]
.

∗ In fact, this condition is also satisfied under weak conditions such as ρ2 ≤ 2c
√
D and the analysis

shows that c ≥ 1.



The MLE is a reliable source 26

Combining the previous results, we obtain

P (E2) ≥ 1− exp(−ρ2
2/2).

The event E1 ∩ E2 happens with probability larger than 1 − exp(−ρ2
1/2) −

exp(−ρ2
2/2). In addition, this event together with the condition

Λ2

2
−
√
D

2
Rµσµ

√
ln

(
R

Rµ

)
+ ρ2σΛ < −σLr

(
c
√
D + ρ1

)
implies that x̂ /∈ Br.

E. Proof of Theorem 4.3

The equality (32) is a consequence of standard results in sampling theory. Set
W > 0 and let sW denote the function which Fourier transform equals to F(s) =

1
(2πW )D/2

1[−πW,πW ]D . A direct calculation shows that it corresponds to a scaled and

tensorized cardinal sine. It is well known that the family (sW (· − n/W ))n∈ZD is an
orthonormal basis of PW(πW ) (see e.g. [11, Thm. 3.5] in 1D, and use the fact that
the tensor product of an orthogonal basis is still an orthogonal basis). In addition, we
have the identity for any fW ∈ PW(πW ) (obtained by direct calculation again)

〈fW , sW (· − n/W )〉L2(RD) = fW (n/W ) · (2πW )−D/2. (E.1)

Combining the two results yields

fW =
∑
n∈ZD

〈fW , sW (· − n/W )〉L2(RD)sW (· − n/W )

=
1

(2πW )D/2

∑
n∈ZD

fW (n/W )sW (· − n/W ),

which is nothing but Shannon-Whittaker theorem. Using again the fact that
(sW (· − n/W ))n∈ZD is an orthonormal basis yields:

〈fW , gW 〉L2(RD) =
1

(2πW )D

∑
n∈ZD

fW (n/W )gW (n/W ) (E.2)

for fW , gW ∈ PW(πW ).
We have PW(π) ⊂ PW(π/τ). Hence, we can apply the previous identity with

W = 1
τ . This yields

〈f, g〉L2(RD) =
τD

(2π)D

∑
n∈ZD

f(τn)g(τn). (E.3)

The result is still valid by shifting f and g by x, resulting in the claimed result.
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