
HAL Id: hal-03811028
https://hal.science/hal-03811028v2

Submitted on 21 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The MLE is a reliable source: sharp performance
guarantees for localization problems

Nathanaël Munier, Emmanuel Soubies, Pierre Weiss

To cite this version:
Nathanaël Munier, Emmanuel Soubies, Pierre Weiss. The MLE is a reliable source: sharp performance
guarantees for localization problems. Inverse Problems, 2023, �10.1088/1361-6420/ad0dbb�. �hal-
03811028v2�

https://hal.science/hal-03811028v2
https://hal.archives-ouvertes.fr


The MLE is a reliable source: sharp performance
guarantees for localization problems
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Abstract. Single source localization from low-pass filtered measurements is
ubiquitous in optics, wireless communications and sound processing. We analyse
the performance of the maximum likelihood estimator (MLE) in this context
with additive white Gaussian noise. We derive necessary conditions and sufficient
conditions on the maximum admissible noise level to reach a given precision with
high probability. The two conditions match closely, with a discrepancy related to
the conditioning of a noiseless cost function. They tightly surround the Cramér-
Rao lower bound for low noise levels. However, they are significantly more precise
to describe the performance of the MLE for larger levels. As an outcome, we
obtain a new criterion for the design of point spread functions in single molecule
microscopy.
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1. Introduction

Many measurement devices can be modeled by a convolution with the impulse
response h of the system followed by a sampling step at some locations z1, . . . , zM ∈
RD. A signal u : RD → R with D ∈ N therefore yields a measurement vector y ∈ RM

of the form
ym = (u ⋆ h)(zm) + εm, (1)

where ε = (ε1, . . . , εM ) is a perturbation modeling noise on the system. A situation
of major interest in applications is that of single source localization. This corresponds
to assuming that u reads

u = δx̄, (2)

where x̄ ∈ RD is the source location. Assuming that h ∈ C0(RD), the model (1) yields

ym
def
= h(zm − x̄) + εm. (3)

The aim of this paper is to analyze the performance of maximum likelihood
estimators to recover x̄ from the sole knowledge of the kernel h and the vector y.
We work under what is possibly the simplest possible setting, by assuming that the
noise is white and Gaussian, i.e., ε ∼ N (0, σ2Id). In that case, the maximum likelihood
estimator reads∗

x̂ ∈ argmin
x∈RD

ℓε(x) with ℓε(x)
def
=

1

2
∥h(Z − x)− h(Z − x̄)− ε∥22 . (4)

The computation of x̂ requires solving a non-convex optimization problem. This
can be done, for instance, using nonlinear programming techniques. The experiments
led in this paper were conducted using multiple Newton methods initialized with a
fine grid. The final location with the minimal value was then used to approximate
x̂. This setting is obviously idealized. More realistic situations could include multiple
sources with unknown weights and suffering from different sources of noise. Yet, it
is at the heart of many engineering issues and we tackle a really basic, yet seemingly
unexplored problem.

∗ Note: the true negative log-likelihood would have an additional normalization constant and be
multiplied by 1/σ2. We chose to discard those terms for later simplifications.
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Applications Our main motivation is related to single molecule localization
microscopy [3, 19]. This technology was awarded the 2014 Nobel prize in chemistry.
It made it possible to break the Abbe diffraction limit so as to reach nanometric
resolution. It consists in sequentially activating and localizing fluorescent molecules
with a sub-pixel accuracy. There, the setting where only a few scattered sources are
activated at a time and are well “separated” is of importance in fixed-cell imaging. This
motivates the analysis of the considered single-source model. It is worth mentioning
that similar issues appear for the localization of sounds (microphone), stars (radio-
telescope) or phones (wireless communications).
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Figure 1: A 1D localization experiment. Left: the empirical standard deviation
using the MLE (blue stars) coincides with the square root of the Cramér-Rao lower-
bound (see (7) for its expression) for low noise regimes. In high noise regimes, we
observe a significant discrepancy. Right: realizations of the vector y for different noise
levels. The green and red bars correspond to the true location x̄ and the estimated
one x̂ respectively. Note that y-axis is different in the four graphs on the right.

The Cramér-Rao lower-bound and its limits It has been the subject of numerous
theoretical and applied studies in the past 50 years. In particular, the intrinsic
performance limits of localization algorithms have been studied using the celebrated
Cramér-Rao lower-bound [22]. This bound provides a theoretical limit on the best
precision achievable in average with respect to the noise realizations. In optics, it is
now used massively to characterize the performance of optical systems [4, 29, 21, 11]
as well as a baseline to estimate the quality of algorithms [25]. It can also serve as an
optimization criterion to design new efficient point spread functions [15, 26].

In order to motivate our study, let us start with a numerical experiment. In
Fig. 1, we compare the empirical precision of the maximum likelihood estimator to
the Cramér-Rao lower-bound. We observe that both coincide for low noise regimes,
and then significantly deviate. This illustrates the fact that the Cramér-Rao bound
is somewhat insufficient to explain the performance of the MLE.

Contributions and outline The main outcomes of our study are a set of necessary and
sufficient conditions to reach a given localization accuracy r with a given probability.
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Figure 2: Phase transitions for single source localization with the MLE. Left:
the heat map indicates the empirical probability of the event Er = [∥x̂− x̄∥2 ≤ r]. We
observe a phase transition phenomenon: for a given r and a sufficiently low σ, the
probability of success is overwhelming. Above a certain threshold (i.e., when σ ≥ σ0),
it decays rapidly to a low probability. The transition occurs close to the square root
of the Cramér-Rao lower-bound (red line corresponding to r =

√
CR(σ)) in the low

noise regime. The dotted black curve corresponds to an empirical probability of 0.5
(the level line 0.5 of the phase transition diagram). The blue (resp. white) dashed
curve corresponds to our theoretical upper (resp. lower) bound on this 0.5 level line.
They closely circumscribe the phase transition and predict the behavior for large noise
levels as well. Right: The convolution kernels h and the sampling points corresponding
to the experiments on the left. From top to bottom: Gaussian kernel, the reference
kernel of Example 4.1, and a (sub-sampled) cardinal sine kernel.
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Fig. 2 illustrates our findings. The heat map in this graph reflects the probability of
localizing a Dirac mass with a precision r for a standard deviation σ. A clear phase
transition appears: above a certain threshold, the probability of detection becomes
overwhelming. The phase transition clearly happens around the Cramér-Rao bound
in the low noise (or high precision) regime and then significantly deviates. The upper
and lower bounds we obtain in this paper clearly circumscribe the phase transition∗.
Our results based on concentration inequalities also explain this transition behavior
from a theoretical standpoint.

Our main conclusions are as follows:

(i) In general it is not true that the MLE attains the Cramér-Rao lower-bound,
even asymptotically (i.e., σ → 0). However, it becomes true under explicit
identifiability hypotheses.

(ii) We provide explicit necessary and sufficient conditions for the global minimizer
x̂ to satisfy ∥x̄ − x̂∥2 ≤ r in Section 4. The two conditions match for a specific
kernel, showing the tightness of our bounds.

(iii) In addition, these conditions also match the Cramér-Rao bound asymptotically
when σ, r → 0. For an arbitrary r, the bounds clearly indicate that Cramér-Rao
is not accurate anymore and shed new light on the geometry of the localization
problem.

(iv) We believe that this work opens new avenues for the field of PSF engineering. If
we can choose the kernel h, it suggests new optimization criteria to obtain the
“best” possible performance.

Notation Throughout the paper, x̂ ∈ RD denotes the maximum likelihood estimator
and x̄ ∈ RD the true location to be estimated. Assuming that h is of class C2, we let
∂dh denote the d-th partial derivative of the impulse response (PSF) h. Moreover, we
let h′(x) = (∂1h(x), . . . , ∂Dh(x))

T denote the gradient of h at x ∈ RD. Similarly, we
let h′′(x) ∈ RD×D denote the Hessian of h at x ∈ RD. For a matrix A ∈ RM×N , we
let λmin(A) (resp. λmax(A)) denote its smallest (resp. largest) singular value, ∥A∥2→2

denote its spectral norm and ∥A∥F =
√
Tr(A∗A) denote its Frobenius norm. Given

two functions a, b we will write a ≲ b if there exists a constant c > 0 not depending
on a and b such that for all x, a(x) ≤ c b(x).

To keep notation concise, we introduce the set of sampling points Z = (z1, . . . , zM )
and use the following shorthand notation

h(Z − x)
def
= (h(z1 − x), . . . , h(zM − x)) ∈ RM

h′(Z − x)
def
= (h′(z1 − x), . . . , h′(zM − x)) ∈ RD×M

h′′(Z − x)
def
= (h′′(z1 − x), . . . , h′′(zM − x)) ∈ RD×D×M .

We let L2(RD) denote the set of squared integrable functions. For f, g ∈ L2(RD),
we let

⟨f, g⟩L2(RD)
def
=

∫
f(x)ḡ(x) dx (5)

∗ To generate the curves in Figure 2, we manually chose a value for the universal constant c appearing
in Theorems 4.1 and 4.2, which is not explicitly known. The same constant has been used for all
kernels. As such, the bounds represented in Figure 2 have to be interpreted qualitatively (global
shape) rather than quantitatively.
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denote the usual scalar product on L2(RD). For two vectors u, v ∈ CN , we set

⟨u, v⟩ def
=

∑
1≤n≤N

unv̄n. (6)

2. A brief tour of existing performance bounds

Cramér-Rao lower-bound and variants In our context, applying Theorem 3.1 in [16]
yields the following result.

Theorem 2.1 (The Cramér-Rao lower-bound). If ε ∼ N (0, σ2Id) and h ∈ C1(RD),
then any unbiased estimator x̂ of x̄ satisfies:

E
[
∥x̄− x̂∥22

]
≥ CRσ with CRσ

def
=

σ2D2

∥h′(Z − x̄)∥2F
. (7)

In addition, there exists an estimator achieving the above lower-bound if and only if
the dimension D = 1 and h is an affine non-constant function.

Proof. The proof is post-poned to Appendix B.

While the first part of the theorem is well known (e.g. [21]), we found no
reference stating the second. It shows that the Cramér-Rao bound fails to describe
the performance of localization algorithms in general. Yet, the experiment in Fig. 1
shows a close match with the experimental points in the low noise regime.

This phenomenon was explained in [20, 23]. There, it was shown that under some
technical assumptions, the MLE provides a performance asymptotically similar to the
Cramér-Rao lower-bound for σ → 0. Hence, the Cramér-Rao lower-bound is indeed
a useful tool for small noise levels, but fails to describe the best possible performance
for arbitrary noise levels.

Therefore, various authors proposed improved bounds depending nonlinearly
on σ2, especially in the context of array processing [2, 10, 32]. For instance, we
refer the reader to the excellent summary in [32, Fig.3] for more details.

The theoretical bounds obtained in these works have revealed insufficiently
precise for some practical applications. This led researchers to derive more heuristic
but tighter approximations of the mean square error. The general idea is to
describe the curvature of the log-likelihood beyond the origin to reach a more global
description [30, 1, 20].

In this condensed description of a rich field, we see that existing results either
describe the tightest possible performance limits through lower-bounds, or describe
more heuristic approximations of the MLE variance. To the best of our knowledge,
deriving theoretical upper-bounds remains an open research area that is at the heart
of the present work. One of the authors recently conducted a similar study in [12],
for the case of blind inverse problems with unknown weights. However, the proof was
suboptimal and did not allow us to reach the Cramér-Rao bound asymptotically when
σ → 0, contrary to the present work.

Beurling-LASSO framework To resolve superpositions of Dirac masses, a lot of works
have considered the so-called Beurling LASSO (BLASSO) problem [6, 7, 8, 9, 13, 14,
28]. In this framework, the sources are defined as sparse measures and sparsity is
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promoted by penalizing the total variation norm. This framework now possesses a
rich theory. These include the study of the asymptotic small noise regime [9, 13, 14]
where it has been proved that BLASSO produces a solution with exactly the same
number of spikes as the target. Beyond this asymptotic noise regime, the authors in
[6, 28] exploited the fine structure of the Gaussian white noise to control the effects
of the noise and uncover near minimax rates of prediction. The improvement of [6]
lies in the joint estimation of the signal and the noise level, making the estimator
adaptive to unknown noise levels. More recently, the authors in [8] considered
a general parameterized model (continuous dictionaries) with correlated Gaussian
noise. In this context, they proved that under a minimal separation condition on
the true parameters, rates of prediction similar to those attained by the Lasso (linear
regression) are achieved.

The simplified model we consider in this paper (single source with fixed
amplitude) can be seen as a special case of these works, in particular of [8]. Yet,
in our setting the source location can be multidimensional. Moreover, the proposed
analysis sheds new light on the problem at least in two important ways.

• We provide both upper and lower bounds on the localization error which are shown
to match closely and surround the Cramér-Rao lower bound for low noise levels.
In particular, we manage to discard some logarithmic factors asymptotically.

• Our bounds highlight geometrical features of the kernel h that should be
controlled to limit localization errors.

These results are important from a practical point of view. For example in optics, the
current practice for characterizing the performance of optical systems, estimating the
quality of algorithms or designing new point spread functions is systematically based
on the Cramér-Rao lower-bound. Our results show why and when this methodology
might be meaningful and highlight other criteria that must be taken into account
jointly.

3. Preliminary facts

In this section, we derive a few basic, yet partly surprising results.

3.1. Existence of minimizers

Before studying the variance of the MLE, it is important to check that it is well
defined. In fact, the answer is negative.

Proposition 3.1. For any positive kernel h vanishing at infinity, and for any noise
level σ > 0, the probability of non existence of the MLE is non zero.

Proof. Take a positive kernel h vanishing at infinity. In that case, P(ym < 0,∀1 ≤
m ≤ M) > 0 for all noise levels σ. If all the coordinates of y are negative, it is easy
to see that (4) has no minimizer, since ℓϵ(x) > limx′→+∞ ℓϵ(x

′) for any x ∈ RD.

One way to avoid this problem is to add box constraints on the location x. In
that case, the minimizer would exist since we would minimize a continuous function
over a compact set. However, in such a scenario, the estimator would then end up
on the domain boundary. This simple example highlights a fundamental difficulty in
the localization problem: outliers can significantly increase the variance of the MLE.
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It will therefore be central to control the probability of x̂ being an outlier. Similar
observations have already been formulated in [30, 1].

3.2. Identifiability

A second key issue is the identifiability. To illustrate it, let us consider a problem on

the real line, i.e., D = 1. Consider the family of kernels hn(x)
def
= sin(2πnx) and set

zm = m/M . In that case, the negative log-likelihood function ℓε is periodical and
therefore possesses an infinite number of global minimizers. Even restricted on the
interval [0, 1], the function possesses at least n global minimizers, therefore the MLE
is not well defined again.

The Cramér-Rao bound in that case yields a somewhat contradictory result.

Indeed, the bound (7) behaves as σ2

n2 and tends to 0 as n → ∞. By minimizing
the Cramér-Rao lower-bound, we would opt for a very oscillatory kernel h, while the
problem gets less and less identifiable as n grows.

This simple example highlights the fact that the Cramér-Rao bound only provides
a local information. In what follows, we will derive global localization results, requiring
more stringent conditions on h.

4. Main results

In this section, we control the probability P (∥x̂− x̄∥2 ≤ r) for any given radius r > 0.
We define the estimator x̂ as

x̂ ∈ argmin
x∈Ω

ℓε(x) with ℓε(x) =
1

2
∥h(Z − x)− h(Z − x̄)− ε∥22 , (8)

where Ω ⊆ BR
def
= {x ∈ RD, ∥x − x̄∥2 ≤ R} is included in a ball of radius R centered

at x̄. We prefer minimizing on a compact set Ω rather than RD for the following
reasons:

(i) In the actual practice, the minimization is usually performed over a compact
domain over which the source is assumed to lie. Such a priori knowledge is easily
accessible in many applications.

(ii) It ensures the existence of a minimizer (minimization of a continuous function
over a compact set).

(iii) It simplifies the presentation significantly.

We could take R = +∞, recovering problem (4), by adding a decay assumption on h.
We prefer skipping this aspect for conciseness.

4.1. Technical assumption and geometrical quantities

First of all, let us recall that we work under the assumption h ∈ C2(RD) which implies
the existence of the following two quantities.

• Boundedness:
Λ

def
= sup

x,x′∈BR

∥h(Z − x)− h(Z − x′)∥, (9)
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• Lipschitz continuity:

L
def
= sup

x,x′∈BR

∥h(Z − x)− h(Z − x′)∥
∥x− x′∥ . (10)

Moreover, in what follows, we will let

RL
def
=

Λ

L
.

Remark 4.1. The Lipschitz continuity over BR implies that Λ ≤ 2LR. Hence under
the stated assumptions, we get RL ≤ 2R. However, the radius R could be large, in
which case, it can be highly preferable to work with RL than R.

In the appendix, we derive a localization result that holds for arbitrary kernels
h (Theorem D.1), but which is quite hard to grasp. To present our main results,
we will work under the following additional assumption, which significantly eases the
presentation and will allow us to draw parallels with the Cramér-Rao lower bound.

Assumption 4.1. x̄ is the unique global minimizer of the noiseless function ℓ0 and
ℓ′′0(x̄) ≻ 0.

Assumption 4.1 is quite weak. To illustrate it, we can consider a simplified model
without sampling, leading to the following result.

Proposition 4.1 (Generality of Assumption 4.1). Assume that y = h ⋆ δx̄ + ε, with

h belonging to the Sobolev space W 1,2(RD)
def
= {f ∈ L2(RD) ; f ′ ∈ L2(RD)}. Then

Assumption 4.1 is equivalent to h being non-periodic (there exists no non-zero v ∈ RD

such that h(x+ v) = h(x) for all x ∈ RD).

Proof. The proof is post-poned to Appendix C.

In the discrete case however, the study should be handled on a case by case basis
since it depends on a complex interplay between the measurement grid and the PSF
h.

Under Assumption 4.1, there exists µ > 0 and a radius Rµ > 0 such that

ℓ0(x) ≥
{

µ2

2 ∥x− x̄∥22 for x ∈ BRµ
,

µ2

2 R
2
µ for x ∈ BR \ BRµ

.
(11)

The quantities Λ, µ, Rµ and L are related to simple geometrical properties of h (and
thus ℓ0). The strong convexity parameter µ denotes the local curvature of ℓ0 around
x̄. Hence, by picking a small radius Rµ, µ can be associated to the minimal eigenvalue
of ℓ′′0(x̄). The parameter L can be associated to the maximal curvature of ℓ0 on RD.
They are illustrated in Fig. 3 (left) and their behavior for different 1D kernels h is
illustrated in Fig. 4.

A refined analysis of these quantities can be carried out case by case as illustrated
in the central part of Figure 4. In this example, different choices of values of µ and
Rµ are available depending on the sought for precision guarantees.

Example 4.1 (Reference kernel). We define a simple kernel href for which our
geometrical quantities are trivial. It will help us later for interpreting our results.
It corresponds to the hat function in the second row of Fig. 2. Set D = 1 and

href
def
= (1− |x|)+, M ∈ N, Z = (−M,−M + 1, . . . ,M − 1,M) , x̄ = 0. (12)
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Figure 3: Left: Illustration of quantities Λ, L, µ and Rµ. The noiseless cost function
ℓ0 is sandwiched between two quadratic functions near x̄ and between two constants
far away from the origin. Right: The specific case href where µ = L.

For this choice of h and Z, the noiseless function ℓ0 has a simple analytical formula:

∀x ∈ [−M,M ] , ℓref0 (x) =

{
x2 if |x| ≤ 1,

1− {x}+ {x}2 if 1 ≤ |x| ≤M.
(13)

where {x} def
= x − ⌊x⌋ is the fractional part of x. To get this result, we exploit the

fact that href is even and continuous, and so is ℓref0 . Moreover, href is linear on each

interval [m,m + 1] with −M ≤ m ≤ M − 1, thus ℓref0 is quadratic on each of these

intervals. The remaining computation is the interpolation from known values of ℓref0

at points (t/2)2Mt=−2M . The graph of ℓref0 is depicted in Fig. 3 (right). Some elementary
calculations yield:

Lref = µref = Λref =
√
2, Rref

µ =

√
3

2
, Rref

L = 1. (14)

4.2. The main results

We are now ready to present our main results.

Theorem 4.1 (Sufficient conditions). Assume that ε ∼ N (0, σ2Id) and that the
Assumption 4.1 is satisfied. Set ρ > 0, a radius 0 < r ≤ R and I = ⌈log2(1 +
log2(Rµ/r))⌉. Consider the two conditions below, where c > 0 is a universal constant∗:

4

µ2
σL
(
c
√
D +

√
ρ2 + 2 ln(I)

)
≤ r (Cond1)

2

µ2
σL

(
c
√
D

√
ln

(
3R

RL

)
+
√
ρ2 + 2 ln(I)

)
≤ R2

µ

RL
. (Cond2)

Then under either of the following conditions

∗ The proof of the result heavily relies on bounding the supremum of a Gaussian process. To the
best of our knowledge, it is currently out of reach to control the multiplicative constants precisely.
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Figure 4: Different kernels h (top) and the corresponding functions ℓ0 (bottom) for
x̄ = 0. Left: a Gaussian with standard deviation 0.5. Middle and right: cosines with
two different frequencies multiplied by a bump function. For the slowly oscillating
cosine associated to the frequency ω1, we show that different choices of µ and Rµ in
Assumption 4.1 are possible with the green and red dashed curves. We can choose
a large value of µ with a small radius Rµ (see the red dashed lower bound). As
an effect, the bounds we obtain in Theorem 4.1 will ensure that a highly accuracte
estimate can be obtained for low noise regimes. However, they will suffer from a
high probability of false detection with higher noise levels. On the other hand, we
can choose a smaller value of µ (see the green dashed lower bound) with a larger
radius Rµ. As a result, our theorem provides sharper estimates for high noise regimes.
The Cramér-Rao lower bound on its side is based on the curvature of ℓ0 at x̄ only.
It therefore accomodates only with small noise levels and leads to an overoptimistic
conclusion for the mean squared error of the estimator. The function on the right
illustrates a pathological kernel for the Cramér-Rao bound: the bound converges to
zero due to the high curvature at the origin, but there is a very high probability of
false detection since shifted kernels correlate highly with h. Our theorems allow us to
use a more precise lower enveloppe that provides sharp guarantees on the estimator
location.
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• r ≤ Rµ

2 , R ≥ RL

2 , Cond1 and Cond2.

• r ≤ Rµ

2 , R ≤ RL

2 and Cond1.

• r ≥ Rµ

2 and Cond2.

the following inequality holds

P (∥x̄− x̂∥2 ≤ r) ≥ 1− exp

(
−ρ

2

2

)
. (15)

The complete proof is given in Appendix D. We will provide some insights in the
next section. For now, let us present a similar result showing that the conditions in
Theorem 4.1 are not only sufficient but also nearly necessary.

Theorem 4.2 (Necessary conditions). Under the same assumptions as in Theorem
4.1, R > Rµ and

∥h(Z − x)− h(Z − x′)∥2 ≥ µmin (∥x− x′∥2, Rµ) ∀x, x′ ∈ BR. (16)

• We have P (x̂ /∈ Br) ≥ 1 − exp(−ρ21/2) − Φ(ρ2), where Φ is the cumulative
distribution function of the normal distribution, under the condition

r <

(√
ln 2
8 µ

√
D − 1− ρ2L

)
L
(
c
√
D + ρ1

) min

(
Rµ, σ

√
ln 2

4

µ

L2

√
D − 1

)
. (Cond′1)

• We have P (x̂ /∈ Br) ≥ 1− exp(−ρ21/2)− exp(−ρ22/2) under the condition

σ

√
ln

(
R

Rµ

)
>

R2
LL

2

√
DRµµ

+
2σ[ρ2RLL+ Lrc

√
D + ρ1]√

DRµµ
. (Cond′2)

The complete proof is given in Appendix E.

4.3. An informal proof

In this section, we provide the essential ingredients behind Theorems 4.1 and 4.2 since
they shed light on the problem’s geometry. The starting point of these proofs is the
following decomposition

ℓε = ℓ0 −∆ε +
1

2
∥ε∥22 where ∆ε(x)

def
= ⟨h(Z − x)− h(Z − x̄), ε⟩ , ∀x ∈ RD.

The term 1
2∥ε∥22 is constant with respect to x and does not change the location of the

minimizer. The term ∆ε is a centered random Gaussian process with

∆ε(x) ∼ N (0, 2σ2ℓ0(x)) (17)

Intuitions behind Theorem 4.1 A sufficient condition for success (x̂ ∈ Br) is that

0 = ℓ0(x̄)−∆ε(x̄) < inf
x∈BR\Br

ℓ0(x)−∆ε(x), (18)

as illustrated on Fig. 5 (left). Then, given that
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0 r R

0

‖x− x̄‖2

`0 −∆ε

0 r Rµ RL R
0

σLRL

1
2µ

2R2
µ

r 7→
σL
r

r
7→

µ
2 r

2
2

‖x− x̄‖2

Figure 5: Intuition behind Theorem 4.1. Left: Success (x̂ ∈ Br) occurs if there
exists x ∈ Br (e.g., x = x̄) such that ℓ0(x) −∆ε(x) (orange point) is lower than the
infimum of ℓ0 −∆ε over BR \ Br (orange dashed line). Right: The green curve is an
upper-bound of the typical amplitude of ∆ε. The red curve is a lower-bound of ℓ0.
An (informal) sufficient condition for x̂ ∈ Br is that the red curve dominates the green
one at r.

• ∆ε(x) ≲ σLmin (∥x− x̄∥2, RL) with high probability (from (17) and regularity
of h (9) and (10)),

• ℓ0(x) ≥ µ2

2 min(∥x− x̄∥22, R2
µ) (from Assumption 4.1),

we can simplify (18) as

σLmin (∥x− x̄∥2, RL) ≲
µ2

2
min(∥x− x̄∥22, R2

µ), for all ∥x− x̄∥2 ≥ r.

This is illustrated in Fig. 5 (right) with the quadratic curve being higher than the
linear one for all ∥x− x̄∥2 ≥ r. This condition can be decomposed as 2σL/µ2 < r and
2σL/µ2 < R2

µ/RL which correspond in essence to Cond1 and Cond2 in Theorem 4.1.
The difference lies in additive logarithmic terms which appear, since the probability
should not be controlled pointwise, but uniformly in BR \ Br. This uniform control
is handled using discretization techniques combined with results on the suprema of
random processes [27].

Intuitions behind Theorem 4.2 A sufficient condition for failure (x̂ /∈ Br) is that there
exists x′ ∈ BR \ Br with t = ∥x′ − x̄∥2 such that

0 ≈
r small

inf
x∈Br

ℓ0(x)−∆ε(x) > ℓ0(x
′)−∆ε(x

′). (19)

This condition is illustrated on Fig. 6 (left). Then, given that

• ∆ε(x
′) ≳ σµmin(t, Rµ) with probability close to 1/2 (from (17) and since ∆ε is

symmetric),

• ℓ0(x
′) ≤ L2

2 min
(
t2, R2

L

)
(from Assumption 4.1),
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0 r t R

0

‖x− x̄‖2

`0 −∆ε

0 r t RLRµ R
0

σµRµ

1
2L

2R2
L

r 7→
σµ
r

r
7→

L
2 r

2
2

‖x− x̄‖2

Figure 6: Intuition behind Theorem 4.2. Left: Failure (x̂ /∈ Br) occurs if there
exists xt ∈ BR \ Br (with t = ∥xt − x̄∥2) such that ℓ0(xt) −∆ε(xt) (orange point) is
lower than the infimum of ℓ0 − ∆ε over Br (orange dashed line). Right: The green
curve is a lower-bound of the typical amplitude of ∆ε. The blue curve is an upper-
bound of ℓ0. An (informal) sufficient condition for x̂ /∈ Br is that the green curve
dominates the blue one at t.

we can simplify (19) as

σµmin(t, Rµ) ≳
L2

2
min

(
t2, R2

L

)
.

This is illustrated on Fig. 6 (right) with the quadratic curve being lower than the
linear one at ∥x′ − x̄∥2 = t. Taking t = 2r, we get the two conditions r < σµ/L2 and
σ > L2R2

L/(2µRµ) which correspond to Cond′1 and Cond′2 in Theorem 4.2 (for small
r, ρ1, and ρ2). A more careful analysis involves the additive terms appearing in the
theorem.

4.4. Interpretations and simplifications

In this section, we aim at explaining the different ingredients from the theorems above.

The key geometric features The proposed analysis emphasizes the role of a few key
geometrical quantities:

• The radius Rµ of quadratic growth and its associated parameter µ

µ2 ≥ inf
x∈BRµ

λmin(ℓ
′′
0(x)). (20)

• The Lipschitz constant of the gradient of ℓ0:

L2 ≤ sup
x∈BR

λmax(ℓ
′′
0(x)). (21)

• The local conditioning of ℓ0 around x̄: κ
def
= L

µ ≥ 1.
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• The square root of the quotient between the upper and lower bound of ℓ0 far from

x̄: θ
def
= RLL

Rµµ
≥ 1.

The two last theorems can be summarized informally as follows. For sufficiently
small r, we can get x̂ ∈ Br with large probability under the following

• Sufficient condition: σ ≲
µ√
D

min

(
rκ−1, Rµθ

−1 ln

(
R

RL

)−1/2
)

(22)

• Necessary condition: σ ≲
L√
D

min

(
rκ2, RLθ ln

(
R

Rµ

)−1/2
)
. (23)

Only the left term in the minimum above plays a role in the control of the local error
around the true location. The term ln(R)−1/2 comes from the fact that as the radius
R increases, the probability of false detection far away from x̄ increases. However, it
does so at a very moderate rate.

Tightness The two conditions differ mostly from the conditioning factors κ and θ.
They become equivalent up to multiplicative factors for the reference kernel href .
Indeed, set R = M/2 − 1, which amounts to looking for the source only around
the sampled points. For this kernel, they both read

σ
√
D ≲ min

(
r,
√
ln(M)

)
.

This proves the tightness of the theorem.

The term
√
D ln(R/RL) This term is not a proof artefact and needs to be accounted

for. To illustrate this, let us consider the simple function h(x) = (1− L∥x∥∞)+. We
assume for simplicity that L = 1/K for some integer K ∈ N and that the sampling set
is the Euclidean grid Z = J1,M1/DKD, where we assume thatM1/D is an integer. The

function h is L-Lipschitz continuous, has a support [−K,K]
D

and satisfies RL ∝ 1
L .

By definition, ∆ε(x) = ⟨h(Z − x), ε⟩ − ⟨h(Z − x̄), ε⟩. Since h is compactly supported,
notice that the random variables ⟨h(Z − x), ε⟩ and ⟨h(Z − x′), ε⟩ are independent
for |x − x′| ≥ 2K. In addition, for x, x′ ∈ Z ∩ (2KN)D, they are independent and
identically distributed Gaussian random variables.

We can pack O(RL)D balls of radius K in a ball of radius R. To find a lower-
bound on the supremum of ∆ε(x), we can therefore use Sudakov’s inequality:

X ∼ N (0, IdN ) ⇒ E

[
max

1≤n≤N
Xn

]
≳

√
2 ln(N)

2
. (24)

Applied to our setting this yields:

E

[
sup
x∈BR

∆ε(x)

]
≥ E

[
max

x∈Z∩(2KN)D
∆ε(x)

]
= E

[
max

x∈Z∩(2KN)D
⟨h(Z − x), ε⟩

]
≳
√
D ln(R/RL).
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The term ln(I) The term ln(I) = ln(⌈log2(1+log2(Rµ/r))⌉) is likely an artefact of the
proof. It appears when we derive a tail bound (see (D.8)) for the term supx∈Br

∆ε(x).
In [6, 8], the authors propose a different proof strategy based on the Rice theorem,
which is more elegant, but restricted to the 1D case. We did not find a way to extend
the proof to the multivariate case. In 1D, the results coincide, apart from constants
and the logarithmic term ln(I). It can be safely neglected in practice. For instance
ln(⌈log2(1 + log2(10

100000))⌉) < 3!

4.5. Notable consequences

Theorem 4.1 has a few interesting consequences.

Phase transition An important consequence of Theorem 4.1 is a phase transition
behavior. Whenever (Cond1) and (Cond2) are satisfied with a sufficiently high value
of ρ (say ρ = 3), it becomes very unlikely to see the global minimizer x̂ escaping from
the ball B(x̄, r). In applications, we would typically set a small value of r (e.g. one
tenth of a pixel in single molecule localization) and the theorem tells that whenever
the condition is satisfied, the estimator will nearly always succeed.

Relationship to Cramér-Rao The condition (Cond1) is strongly connected to the
Cramér-Rao lower-bound. Using assumptions (10) and (11), we obtain

µ2 ≤ λmin(ℓ
′′
0(x̄)) ≤ λmax(ℓ

′′
0(x̄)) ≤ L2. (25)

Given that ℓ′′0(x̄) =
∑M

m=1 h
′(zm − x̄) h′(zm − x̄)T , we get

µ2 ≤ λmin (ℓ
′′
0(x̄)) ≤

∥h′(Z − x̄)∥2F
D

≤ λmax (ℓ
′′
0(x̄)) ≤ L2 (26)

since for any matrix A ∈ RD×M with D ≤M

∥A∥2F =

D∑
d=1

σ2
d(A) =

D∑
d=1

λd(AA
T ) (27)

where σd(A) and λd(A) are respectively the singular values and the eigenvalues of A.
Finally, from (Cond1) we get that asymptotically,

r ≳

√
DσL

µ2
≳

D · σ
∥h′(Z − x̄)∥F

=
√

CRσ. (28)

This is in line with the asymptotic analysis existing in the literature [20, 23].

PSF engineering - How to optimize a kernel? A few authors proposed to optimize
the point spread function of optical systems by maximizing ∥h′(Z − x̄)∥F , motivated
by the Cramér-Rao bound, see e.g. [26, 15]. The second part of Theorem 2.1, shows
that this might not be enough. Our results highlight that other facts must be taken
into account.

Let us assume that we wish to obtain a localization precision of order r. Looking
only at the sufficient condition, the most important factors are then:
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• The quadratic growth parameter µ in BR. A good upper-bound for this term is:

µ(r)
def
= inf

x∈Br

∥h′(Z − x)∥F . (29)

This term is essentially equivalent to the Cramér-Rao bound, except that it needs
to be controlled uniformly in Br.

• We also need to ensure that ℓ0(x) is sufficiently large for all x ∈ BR \ Br. This
condition is there to ensure the identifiability of the problem. For example, this
condition discards the pathological sine kernel discussed in Section 3.2. This
would not be taken into account using the Cramér-Rao bound only.

• Finally, taking R too large increases the probability of false positives at the slow
rate

√
ln(R). This means that cameras with large field of views can be safely

used without increasing the false detection rate significantly.

Notice that the factors mentioned above do not include any support size or decay
rate constraints, which are usually added for PSF engineering [26]. Hence, unlocalized
kernels could yield interesting results, in the low density regime, where only scattered
sources are present. Such unlocalized PSFs are physically realistic [33, 17] and our
results suggest that they may be of interest in the context of SMLM for instance. To
our knowledge, this has not been investigated to date.

4.6. Analysis for well sampled bandlimited kernels

In this section, we analyze the theorems in the specific case of well sampled bandlimited
kernels. This case is of major importance in optics applications. Let us introduce the
Fourier transform defined for all f ∈ L2(RD) by

F(f)(ω)
def
=

1

(2π)D/2

∫
RD

f(x) exp(−i⟨x, ω⟩) dx. (30)

Let us recall the Plancherel formula ∥f∥L2(RD) = ∥F(f)∥L2(RD).

Definition 4.1 (Paley-Wiener space). For W > 0 we say that f ∈ L2(RD) is
W -bandlimited if supp (F(f)) ⊆ [−W,W ]D. We let PW(W ) denote the set of W -
bandlimited functions in L2(RD).

A bandlimited function belongs to C∞(RD). Let us recall the following
fundamental result.

Theorem 4.3 (A variant of Whittaker’s theorem [18]). Assume that f, g ∈ PW(π).
Set a sampling step τ ≤ 1. Then for all x ∈ RD, we have:

⟨f, g⟩L2(RD) =
( τ
2π

)D ∑
z∈τZD

f(z − x)g(z − x). (31)

In particular, taking f = g, we get

∥f∥2L2(RD) =
( τ
2π

)D ∑
z∈τZD

f(z − x)2. (32)

Proof. The proof is given in Appendix F for completeness.
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Now assume that h ∈ PW(π) and that it is sampled on Z = [−R,R]D ∩ τZD,
where τ < 1 is the grid size (1/τ is the oversampling factor). By Theorem 4.3, we
have for all x

∥h(Z − x)∥22 =
∑
z∈Z

h2(z − x) =

(
2π

τ

)D

∥h∥2L2(RD) −
∑

z∈τZD\Z

h2(z − x)

≈
(
2π

τ

)D

∥h∥2L2(RD)

for sufficiently large R and decaying h. Similarly, we have for all x, x′

∥h′(Z − x)∥22 ≈
(
2π

τ

)D

∥h′∥2L2(RD)

⟨h(Z − x), h(Z − x′)⟩ ≈
(
2π

τ

)D

⟨h(· − x), h(· − x′)⟩L2(RD)

using the fact that h ∈ PW(π) ⇒ h′ ∈ PW(π). We then get that

ℓ0(x) ≈
(
2π

τ

)D (
∥h∥2L2(RD) − ⟨h(· − x), h(· − x̄)⟩L2(RD)

)
.

Now let Λ, L, and µ be defined according to equations (9) to (11), and 4.1 for
x 7→ ℓ0(x)τ

D so that they are independent of τ . Then, the conditions (22) and (23)
read

σ ≲
µ

τD/2
min

(
rκ−1

√
D
,
Rµθ

−1

√
D

ln

(
R

RL

)−1/2
)

(33)

σ ≲
L

τD/2
min

(
rκ2,

RLθ√
D

ln

(
R

Rµ

)−1/2
)
. (34)

where κ, θ, RL, and Rµ are independent of τ .
Hence, for well sampled bandlimited kernels, we have the following qualitative

behaviour:

• The performance does not depend on x̄ (as ∥h′(Z − ·)∥2 is nearly constant).

• Over-sampling with τ < 1 leads to improved performances (from (33) and (34)).

5. Acknowledgments

This work was supported by the ANR Micro-Blind (grant ANR-21-CE48-0008), the
University Research School EUR-MINT (State support managed by the National
Research Agency for Future Investments program bearing the reference ANR-18-
EURE-0023) and by the ANR LabEx CIMI (grant ANR-11-LABX-0040) within the
French State Programme “Investissements d’Avenir”. P. Weiss acknowledges the
support of AI Interdisciplinary Institute ANITI funding, through the French “Investing
for the Future— PIA3” program under the Grant Agreement ANR-19-PI3A-0004.
The authors thank Yaw Tze Bong and Yann Delaporte for a preliminary study of
this problem during a summer internship. They are grateful to the anonymous
reviewers who really helped improving the overall presentation and guided us to
relevant references.



The MLE is a reliable source 19

Appendices

A. Derivatives of ℓε

Let us start with a set of identities that will be used continuously throughout the
proofs. We have

ℓε(x) =
1

2
∥h(Z − x)− y∥22 , (A.1)

ℓ′ε(x) = −h′(Z − x)(h(Z − x)− y), (A.2)

ℓ′′ε (x) = h′′(Z − x)(h(Z − x)− y) + h′(Z − x)h′(Z − x)T . (A.3)

Thus evaluating at x = x̄ gives

ℓε(x̄) =
∥ε∥2
2

, (A.4)

ℓ′ε(x̄) =

M∑
m=1

εm h′(zm − x̄), (A.5)

ℓ′′ε (x̄) =

M∑
m=1

(
h′(zm − x̄) h′(zm − x̄)T − εm h′′(zm − x̄)

)
. (A.6)

B. Proof of Theorem 2.1

B.1. Establishing the Cramér-Rao lower-bound

By [16, (3.20)], we know that the covariance matrix of any unbiased estimator x̂
satisfies

cov(x̂) ≽ I−1(x̄) with [I(x)]d,d′
def
= E

[
∂ ln p(y|x)

∂xd
· ∂ ln p(y|x)

∂xd′

]
. (B.1)

In our case, we have

p(y|x) ∝ exp

(
−∥y − h(Z − x)∥22

2σ2

)
. (B.2)

Hence

∂ ln p(y|x)
∂xd

=
1

σ2

M∑
m=1

(h(zm − x)− ym) · h′d(zm − x), (B.3)

where we use the notation h′d = ∂dh in this proof. This yields for any unbiased
estimator x̂

E
[
|x̂d − x̄d|22

]
≥ E

[
∂ ln p(y|x̄)

∂xd
· ∂ ln p(y|x̄)

∂xd

]−1

= σ4 · E

[(
M∑

m=1

−εmh′d(zm − x̄)

)(
M∑

m=1

−εmh′d(zm − x̄)

)]−1

= σ4 · E

[
M∑

m=1

ε2mh
′
d(zm − x̄)2

]−1

=
σ2

∥h′d(Z − x̄)∥2
2

.
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Summing over d yields

E
[
∥x̂− x̄∥22

]
≥

D∑
d=1

σ2

∥h′d(Z − x̄)∥2
2

≥ D2σ2

∥h′(Z − x̄)∥2F
, (B.4)

where the last inequality is obtained by the fact that the arithmetic mean is greater
than the harmonic one (i.e., 1

D

∑D
d=1 ad ≥ D(

∑D
d=1

1
ad
)−1).

B.2. Necessary and sufficient condition for attainment

Now, let us prove that the Cramér-Rao bound can be attained only in dimension
D = 1 and for affine kernels h. To this end, we recall the second part of [16, Thm.
3.2], adapted to our setting.

Proposition B.1. An unbiased estimator x̂ of x̄ that attains the Cramér-Rao bound
exists if and only if

∇x̄ ln p(y|x̄) = I(x̄) · (g(y)− x̄), (B.5)

for all y, x̄ and some D-dimensional functions g and D ×D matrix I. The optimal
estimator is then x̂ = g(y) and the covariance matrix is I(x̄)−1.

Corollary B.1 (Necessary conditions for attaining Cramér-Rao). In our case, there
exists an unbiased estimator x̂ of x̄ that attains the Cramér-Rao bound if and only if
D = 1 and h is an affine non constant function.

Proof. Firstly, assume that such an estimator that attains the Cramér-Rao bound
exists. Let’s show that h should be affine. In our case, the condition from the general
case reads

1

σ2
Jh̃(x̄)T · (h(Z − x̄)− y) = I(x̄) · (g(y)− x̄) (B.6)

where we have introduced the following notations

h̃ : RD −→ RM

x̄ 7−→ h(Z − x̄)
def
= (h(zm − x̄))m

and for a function f : RD −→ RI we have fixed the Jacobian of f to be

Jf(x)
def
=

(
∂fi
∂xd

)
i,d

= (∇f1(x) . . . ∇fI(x))T ∈ RI×D.

Differentiating the equality with respect to y yields

− 1

σ2
Jh̃(x̄)T = I(x̄) · Jg(y). (B.7)

The left-hand side does not depend on y. Hence, Jg(y) is constant, meaning that

g(y) = A · y + b (B.8)

for some A ∈ RD×M and b ∈ RD. This simplifies equation (B.7) as

Jh̃(x̄)T = −σ2I(x̄) ·A. (B.9)
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Now let us rewrite (B.6) by replacing g(y) and Jh̃(x̄)T :

−I(x̄) ·A · (h(Z − x̄)− y) = I(x̄) · (A · y + b− x̄).

Since from the general case, I(x̄)−1 is well defined and is the covariance matrix, one
has that I(x̄) is invertible. The previous equality simplifies as

−A · h(Z − x̄) = b− x̄. (B.10)

Differentiating this expression with respect to x̄ and injecting (B.9) gives

−σ2I(x̄) ·AAT = IdD (B.11)

which implies that I(x̄) does not depends on x̄. With (B.9), we finally get that h̃ (and
thus h) is affine.

To complete the proof, it remains to show that D = 1 and that h cannot be
constant. As h is affine, let us set h : x 7→ ⟨a, x⟩+ β with a ∈ RD and β ∈ R. Then

Jh̃(x̄)T = [a a · · · a] ∈ RD×M . (B.12)

We then deduce two facts from the invertibility of I(x̄). First, from (B.11) AAT is
also invertible. Second, from (B.9) there exists c ∈ RD such that

A = c · 1T ∈ RD×M and AAT = c · 1T · 1 · cT =M · ccT .
Clearly, these two properties can be satisfied at the same time only if D = 1 and
a ̸= 0. This shows that D = 1 and h is affine non constant.

Conversely, any affine non constant function h in the case D = 1 attains
Cramér-Rao bound since I(x̄) = Ma2 and g(y) = β

a + 1
M

∑M
m=1 h

(
zm − ym

a

)
are

appropriate.

C. Proof of Proposition 4.1

Proof. The function ℓ0 and its derivatives read for any v ∈ RD

ℓ0(x) =
1

2

∫
RD

(h(z − x)− h(z − x̄))
2
dz

ℓ′0(x)v = −
∫

RD

(h(z − x)− h(z − x̄)) · ⟨h′(z − x), v⟩ dz

ℓ′′0(x̄)(v, v) =

∫
RD

⟨h′(z), v⟩2 dz.

If x is another minimizer of ℓ0, then ℓ0(x) = 0 and thus h(z − x) = h(z − x̄) for
almost every z ∈ RD. This is equivalent to h(z) = h(z + (x− x̄)) which means that h
is (x− x̄)-periodic.

Let’s show that ℓ′′0(x̄) ≻ 0 ⇐⇒ h ̸= 0. We proceed by contraposition

ℓ′′0(x̄) = 0 ⇐⇒ ℓ′′0(x̄)(v, v) = 0, ∀v ∈ RD

⇐⇒ ⟨h′(z), v⟩ = 0, ∀v, z ∈ RD

⇐⇒ h′ = 0
h∈L2(RD)⇐⇒ h = 0.

This concludes the discussion in the continuous case. In the discrete case however,
the study is more involved as it depends on the measurement grid and the PSF h. It
should be handled on a case by case basis.
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D. Proof of Theorem 4.1

D.1. An intermediary result

For r ≥ 0, let Br
def
= {x ∈ RD, ∥x− x̄∥2 ≤ r}.

Theorem D.1 (A general result). Let (ri)0≤i≤I denote an increasing sequence with
r0 = r and rI = R. Define Ωi = Bri \ Bri−1

and

Ēi
def
=

cσ
√
DΛ ri

RL
if ri ≤ RL

2

cσ
√
DΛ

√
ln
(

3ri
RL

)
otherwise

and Λ̄i
def
= Λmin

(
1,

ri
RL

)
. (D.1)

where c is a universal constant. Set ρ > 0. From (9), (10) and under Assumption 4.1.
We have x̂ ∈ Br with probability larger than 1 − exp(−ρ2/2) under the I conditions
1 ≤ i ≤ I:

Ēi +
√
ρ2 + 2 ln(I)σΛ̄i ≤ inf

x∈Ωi

ℓ0(x). (Ci)

Proof. The proof of this result is quite long and technical.

D.1.1. The general strategy Let Br = {x ∈ RD, ∥x − x̄∥2 ≤ r}. We can decompose

ℓε as ℓε = ℓ0 −∆ε +
1
2∥ε∥22, where ∆ε(x)

def
= ⟨h(Z − x)− h(Z − x̄), ε⟩. Without loss

of generality, we consider here that Ω = BR. We partition the domain Ω, as

Ω =
⊔

0≤i≤I

Ωi with Ωi = Bri \ Bri−1 for i ≥ 1, (D.2)

with Ω0 = Br, (ri)0≤i≤I an increasing sequence with r0 = r and rI = R. Now, remark
that

[∥x̂− x̄∥2 ≤ r] ⇔
[
inf

x∈Br

ℓε(x) < inf
x∈Bc

r

ℓε(x)

]
⇔
[
inf

x∈Br

ℓ0(x)−∆ε(x) < inf
x∈Bc

r

ℓ0(x)−∆ε(x)

]
⇔
[
inf

x∈Br

ℓ0(x)−∆ε(x) < inf
x∈Ωi

ℓ0(x)−∆ε(x), ∀1 ≤ i ≤ I

]

⇐

ℓ0(x̄)−∆ε(x̄)︸ ︷︷ ︸
0

< inf
x∈Ωi

ℓ0(x)− sup
x∈Ωi

∆ε(x), ∀1 ≤ i ≤ I

 (D.3)

⇔
[
inf
x∈Ωi

l0(x) > sup
x∈Ωi

∆ε(x), ∀1 ≤ i ≤ I

]
.

Here c denote the relative complement with respect to BR. The reason we
partition the domain in concentric annuli is for the event at line D.3 and the one
before to be close. The interest of D.3 is that we only need to control the supremum
of the centered process ∆ε instead on the non centered process ℓ0−∆ε. The sequence
of radii (ri)0≤i≤I will be optimized at the end of the proof.
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D.1.2. Bounding the suprema The main technical difficulty is to find probabilistic
bounds on the supremum supx∈Ωi

∆ε(x). To this end, we will use a combination of
Gaussian concentration results and Dudley’s type inequality. We refer to the three
excellent monographs [27, 5, 31] for an in depth treatment of this topic. In our specific
case, we obtain the following result.

Lemma D.1 (Expectation and tail bounds for the supremum ). Let

Ei
def
= E

[
sup
x∈Ωi

∆ε(x)

]
. (D.4)

For t ≥ 0, we have

P

(
sup
x∈Ωi

∆ε(x) ≥ t

)
≤ exp

(
− (t− Ei)

2

2σ2L2 min(R2
L, r

2
i )

)
. (D.5)

with

Ei ≤ c · σ · L ·
√
D ·

ri if ri ≤ RL

2 ,

RL ·
√

ln
(

3ri
RL

)
otherwise.

(D.6)

Proof. First notice that the random process ∆ε is Gaussian since ε ∼ N (0, σ2Id). It
can be written alternatively as σ∆ϵ with ϵ ∼ N (0, Id). Let D ⊂ RD denote a domain
and define the mapping fD : ϵ 7→ supx∈D σ∆ϵ(x). Let us define

Dh(x1, x2)
def
= h(Z − x1)− h(Z − x2) and ΛD

def
= sup

x∈D
∥Dh(x, x̄)∥2 . (D.7)

We have for δ ∈ RM

fD(ϵ+ δ) = σ sup
x∈D

⟨Dh(x, x̄), ϵ+ δ⟩ ≤ σ sup
x∈D

⟨Dh(x, x̄), ϵ⟩+ σΛD ∥δ∥2 ,

fD(ϵ+ δ) = σ sup
x∈D

⟨Dh(x, x̄), ϵ+ δ⟩ ≥ σ sup
x∈D

⟨Dh(x, x̄), ϵ⟩ − σΛD ∥δ∥2 .

Hence |fD(ϵ + δ) − fD(ϵ)| ≤ σΛD ∥δ∥2 and we can conclude that fD is Lipschitz
continuous with constant σΛD. Using [5, Theorem 5.6], we therefore get that, for any
u > 0 and D ⊂ RD,

P

(
sup
x∈D

∆ε(x) ≥ E

[
sup
x∈D

∆ε(x)

]
+ u

)
≤ e

− u2

2σ2Λ2
D . (D.8)

From (9) and (10), we have

∥Dh(x, x̄)∥2 ≤ min(Λ, L ∥x− x̄∥2).

Hence for D = Ωi, we obtain

ΛΩi ≤ min(Λ, Lri).

The remaining technical difficulty is to find an upper-bound for E
[
supx∈Ωi

∆ε(x)
]
.

which is a hard problem in general. In this work, we will use Dudley’s inequality



The MLE is a reliable source 24

together with (9) and (10). Let us introduce the pseudo-metric d : RD × RD → R
defined by

d(x, x′)
def
=

√
E
[
(∆ε(x)−∆ε(x′))

2
]
=

√
E
[
(⟨h(Z − x)− h(Z − x′), ε⟩)2

]
(D.9)

=

√
σ2 ∥h(Z − x)− h(Z − x′)∥22 = σ ∥h(Z − x)− h(Z − x′)∥2 . (D.10)

It will be used in conjunction with the following tool.

Definition D.1 (Covering number). The covering number N (δ,S, d) is defined as the
minimal number of balls of radius δ in the pseudo-metric d needed to cover S.

We are ready to present Dudley’s inequality (see e.g. [5, Cor. 13.2]).

Theorem D.2 (Dudley’s inequality ). The following inequality holds:

E

[
sup
x∈S

∆ε(x)

]
≤ c

∫ δ

0

√
ln(N (u,S, d)) du, (D.11)

where c is a universal constant and δ > 0 can be taken as the smallest number such
that N (u,S, d) ≥ 1.

Lemma D.2. We have for some universal constant c,

Ei ≤ c · σ · L ·
√
D ·

ri if ri ≤ RL

2 ,

RL ·
√

ln
(

3ri
RL

)
otherwise.

(D.12)

Proof. In what follows, c is a universal constant that may change from one line to the
other. From (9) and (10), we have

d(x, x′) ≤ σ ·min (L∥x− x′∥2,Λ) (D.13)

and we can upper bound Ei as

Ei = E

[
sup
x∈Ωi

∆ε(x)

]
≤ E

[
sup

x∈Bri

∆ε(x)

]
.

Using (D.13) and [31, Cor. 4.2.13], we obtain

N (u,Bri , d) ≤
{
1 if u ≥ σ ·min(2Lri,Λ),(
3riσL

u

)D
otherwise.

(D.14)

Hence, in the case 2Lri ≤ Λ, we obtain using Theorem D.2:

Ei ≤ c

∫ 2riσL

0

√
ln(N (u,Bri , d)) du ≤ c

∫ 3riσL

0

√
ln(N (u,Bri , d)) du

≤ c
√
D

∫ 3riσL

0

√
ln

(
3riσL

u

)
du = c · ri · σ · L ·

√
D.
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In the case 2Lri > Λ, we get

Ei ≤ c

∫ σΛ

0

√
ln(N (u,Bri , d)) du

≤ c
√
D

∫ σΛ

0

√
ln

(
3riσL

u

)
du

= cσΛ
√
D

∫ 1

0

√
ln

(
3riL

Λv

)
dv

= cσΛ
√
D

(√
ln

(
3riL

Λ

)
+

√
π

2

3riL

Λ
erfc

(√
3riL

Λ

))

≤ cσΛ
√
D

(√
ln

(
3riL

Λ

)
+

1

2

√
3riL

Λ
exp

(
−3riL

Λ

))

where we use the inequality erfc(z) < exp(−z2)√
πz

for z > 0 to get the last inequality.

Finally, since 1
2

√
ze−z ≤

√
ln(z) for z ≥ 3/2, the condition 2ri > RL implies the

simplification:

E

[
sup

x∈Bri

∆ε(x)

]
≤ c · σ · Λ ·

√
D ·
√
ln

(
3ri
RL

)
. (D.15)

D.1.3. Concluding the proof of Theorem D.1 Let θi
def
= infx∈Ωi

ℓ0(x). Now, assume
that

θi ≥ Ei, ∀1 ≤ i ≤ I. (D.16)

Then, the probability of the event x̂ ∈ Br can be bounded above as follows:

P (x̂ ∈ Br) ≥ P

 ⋂
1≤i≤I

[
sup
x∈Ωi

∆ε(x)− θi < 0

]
≥ 1− P

 ⋃
1≤i≤I

[
sup
x∈Ωi

∆ε(x)− θi ≥ 0

]
≥ 1−

I∑
i=1

P

(
sup
x∈Ωi

∆ε(x)− θi ≥ 0

)

≥ 1−
I∑

i=1

exp

(
− (θi − Ei)

2

2σ2L2 min(RL, ri)2

)
.

Set ρ ≥ 0 and ρ′ =
√
ρ2 + 2 ln(I). Under the conditions

Ei + ρ′σLmin(RL, ri) ≤ θi, (D.17)

we get that the probability of success is higher than 1− exp(−ρ2/2).
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D.2. Concluding the proof of Theorem 4.1

Proof. From Theorem D.1, the inequality (15) is valid if

Ēi +
√
ρ2 + 2 ln(I)σΛ̄i ≤ inf

x∈Ωi

ℓ0(x) ∀1 ≤ i ≤ I. (D.18)

Assumption 4.1 allows us to get

inf
x∈Ωi

ℓ0(x) ≥ min

(
µ2r2i−1

2
,
µ2R2

µ

2

)
.

Let us assume that R > RL

2 . Without loss of generality, we can also assume that

Rµ ≤ RL

2 , since the inequalities in (11) are still valid when replacing BRµ by BR′ with
R′ ≤ Rµ. In this setting, the success condition (CI) reads

cσ
√
DΛ

√
ln

(
3R

RL

)
+ σ

√
ρ2 + 2 ln(I)Λ ≤ µ2R2

µ

2
. (D.19)

Now, let us set rI−1 = Rµ. For 1 ≤ i ≤ I − 1, the conditions (Ci) read:

σriL
(
c
√
D +

√
ρ2 + 2 ln(I)

)
≤ µ2r2i−1

2
. (D.20)

This can be rewritten as:

2

µ2
σL
(
c
√
D +

√
ρ2 + 2 ln(I)

)
≤ r2i−1

ri
. (D.21)

Now, by setting ri = 22
i−1r, we get

r2i−1

ri
= r

2 for all i. In addition 22
i−1r ≥ Rµ for

i ≥ ⌈log2(log2(2Rµ/r))⌉. Hence, we can set I = ⌈log2(1 + log2(Rµ/r))⌉. This value is

larger than 2 for r <
Rµ

2 . Hence, under this condition, we get x̂ ∈ Br given that

4

µ2
σL
(
c
√
D +

√
ρ2 + 2 ln(I)

)
≤ r

2

µ2
σΛ

(
c
√
D

√
ln

(
3R

RL

)
+
√
ρ2 + 2 ln(I)

)
≤ R2

µ.

In the case r ≥ Rµ

2 , we can set I = 1, Ω1 = BRµ
and only the second condition is

sufficient for success:

2

µ2
σΛ

(
c
√
D

√
ln

(
3R

RL

)
+ ρ

)
≤ R2

µ.

The case R ≤ RL

2 can be treated as previously, but only Cond1 matters, since the
other one is automatically verified.
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E. Proof of Theorem 4.2

Proof. First notice that

inf
x∈Br

ℓ0(x)−∆ε(x) ≥ inf
x∈Br

ℓ0(x)− sup
x∈Br

∆ε(x) ≥ − sup
x∈Br

∆ε(x).

Using Lemma (D.1), we obtain

Er
def
= E

[
sup
x∈Br

∆ε(x)

]
≤ crσL

√
D,

where c is a universal constant and for ρ1 > 0

P

(
sup
x∈Br

∆ε(x) ≥ Er + ρ1σLr

)
≤ exp(−ρ21/2).

Define the event

E1 def
=

[
inf

x∈Br

ℓ0(x)−∆ε(x) ≥ −σLr
(
c
√
D + ρ1

)]
.

The previous inequalities imply that

P (E1) ≥ 1− exp(−ρ21/2).

Proof of the part related to (Cond′1) Now, set t ∈ (r,Rµ] and take an arbitrary point
x with ∥x− x̄∥2 = t. Let’s consider the following inequalities

inf
x∈St

ℓε(x) = inf
x∈St

ℓ0(x)−∆ε(x) ≤ ℓ0(x̃)−∆ε(x̃) ≤ sup
x∈St

ℓ0(x) + inf
x∈St

−∆ε(x) (E.1)

where x̃
def
= argminx∈St

−∆(x). It only remains to impose the two following
inequalities

sup
x∈St

ℓ0(x) + inf
x∈St

−∆ε(x) < −σLr
(
c
√
D + ρ1

)
≤ inf

x∈Br

ℓε(x) (E.2)

in order to get the result x̂ /∈ Br. Indeed, this inequality provides the relevant relation
infSt ℓε < infBr ℓε. The second inequality is controlled by the event E1, whereas we
will control the first inequality with the event

E2 def
=

[
inf
x∈St

−∆ε(x) < −σLr
(
c
√
D + ρ1

)
− sup

x∈St

ℓ0(x)

]
. (E.3)

Since the law of the random variable ∆ε is even, the event E ′
2 defined as

E ′
2

def
=

[
sup
x∈St

∆ε(x) > σLr
(
c
√
D + ρ1

)
+ sup

x∈St

ℓ0(x)

]
(E.4)

has the same probability than E2.
Applying the same reasoning as the one for Lemma D.1 to the random variable

supx∈St
∆ε(x), implies that

P

(
sup
x∈St

∆ε(x) > E

[
sup
x∈St

∆ε(x)

]
− u

)
≥ 1− exp

(
− u2

2σ2(Lt)2

)
(E.5)
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for any u > 0. Setting u = E
[
supx∈St

∆ε(x)
]
− supx∈St

ℓ0(x)−σLr
(
c
√
D + ρ1

)
, this

allows us to get

P (E2) = P (E ′
2) ≥ 1− e−ρ2

2/2 (E.6)

under the condition
ρ2 ≤ u

σLt

which rewrites as

ρ2σLt ≤ E

[
sup
x∈St

∆ε(x)

]
− sup

x∈St

ℓ0(x)− σLr
(
c
√
D + ρ1

)
. (E.7)

The next step is to find a lower bound for the expectation E
[
supx∈St

∆ε(x)
]
given

in (E.22). This is accomplished thanks to the following lemmas:

Lemma E.1. For D ≥ 2, let B1,B2 be two intersecting balls of RD of respective radius
0 ≤ r1 ≤ r2. Denoting S1,S2 their associated spheres, we define two sphere caps as

C1 = S1 ∩ B2 and C2 = S2 ∩ B1. (E.8)

Then the sphere cap C1 has a greater surface area than C2, i.e.

λD−1(C1) ≥ λD−1(C2). (E.9)

Proof. Denote ϕ1 (resp. ϕ2) the polar angle of the sphere cap C1 (resp. C2). A simple
formula to compute the surface area of a sphere cap can be found in [24] for example.
Denoting AD(r) (resp. Acap

D (r, ϕ)) the surface area of a sphere in RD of radius r (resp.
of a sphere cap in RD of radius r and polar angle ϕ), one has the following formulae

AD(r) =
2π

D−1
2

Γ(D−1
2 )

rD−1, (E.10)

Acap
D (r, ϕ) =

∫ ϕ

0

AD−1(r sin θ)rdθ =

∫ r sinϕ

0

1√
1− s2

r2

AD−1(s)ds. (E.11)

The last equality is obtained thanks to the change of variables s = r sin θ. Because
the two balls are intersecting each other, the radius a of the base is common to the
two sphere caps. Indeed, one has

r1 sinϕ1 = a = r2 sinϕ2. (E.12)

Finally, since r1 ≤ r2, for any s < a, the inequality 1√
1− s2

r22

≤ 1√
1− s2

r21

allows to find

the relation
Acap

D (r2, ϕ2) ≤ Acap
D (r1, ϕ1) (E.13)

which concludes the proof.

Lemma E.2. For any 0 < u ≤ tµσ, noting d the pseudo-metric defined in (D.9), one
has

N (u,St, d) ≥
(
tµσ

u

)D−1

. (E.14)
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Figure E1: Example of two sphere caps C1 and C2. The representation gives their
intersection on a plane passing through the centers of the spheres.

Proof of Lemma E.2. From Assumption (16), the problem is reduced to the Euclidean
metric as

N (u,St, d) ≥ N
(
u

µσ
,St, deucli

)
. (E.15)

From definition of the covering number, let’s take balls B1, . . . ,BN of radius ũ
def
= u

µσ <

t covering the sphere St with N = N (ũ,St, deucli). The result will come by considering

the surface area of the caps Cn def
= St ∩ Bn. Indeed, since the balls B1, . . . ,BN cover

St we have St ⊆
⋃N

n=1 Cn. Then, taking the Lebesgues measure leads to

λD−1(St) ≤
N∑

n=1

λD−1(Cn). (E.16)

We set ϕn the polar angle of the sphere cap Cn. With the notations introduced in the
proof of Lemma E.1, we can reformulate the previous inequality as

AD(t) ≤
N∑

n=1

Acap
D (t, ϕn). (E.17)

Moreover, we get the following bounds from Lemma E.1

Acap
D (t, ϕn) ≤ Acap

D (ũ, ψn) ≤ AD(ũ) (E.18)

where ψn is the polar angle of the counter-part sphere cap Bt ∩ Sn. This implies that

AD(t) ≤ N ·AD(ũ). (E.19)

This equation combined with the area formula (E.10) concludes since

N (ũ,St, deucli) ≥
AD(t)

AD(ũ)
=

(
t

ũ

)D−1

. (E.20)
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Going back to the necessary condition (E.7), using Sudakov’s inequality [31, Thm
7.4.1] or [5, Thm 13.4], one gets thanks to lemma E.2

E

[
sup
x∈St

∆ε(x)

]
≥

√
D − 1

2
sup

v∈[0,tµσ]

v

√
ln

(
tµσ

v

)
. (E.21)

Taking v = t
2µσ, we get

E

[
sup
x∈St

∆ε(x)

]
≥

√
ln 2

4
tµσ

√
D − 1. (E.22)

Injecting this inequality in (E.7), we have

ρ2σLt ≤
√
ln 2

4
tµσ

√
D − 1− L2

2
t2 − σLr

(
c
√
D + ρ1

)
. (E.23)

Denoting t = αr with α ≥ 1, this simplifies as

σ

(√
ln 2

4
α
µ

L

√
D − 1− ρ2α−

(
c
√
D + ρ1

))
≥ Lα2

2
r. (E.24)

We fix the value of α (and thus also the value of t) such that

ρ2α+
(
c
√
D + ρ1

)
=

√
ln 2

8
α
µ

L

√
D − 1. (E.25)

Moreover we check that the condition α ≥ 1 is well verified since it is equivalent to
the statement (for small ρ2)

c
√
D + ρ1 + ρ2 ≥

√
ln 2

8

µ

L

√
D − 1 (E.26)

which is true since c > 1 and µ ≤ L. Thanks to this setting, the necessary condition
(E.24) becomes

σ

√
ln 2

8
µ
√
D − 1 ≥ L2α

2
r. (E.27)

By adding the condition t = αr ≤ Rµ, we finally get

r ≤ 1

α
min

(
Rµ, σ

√
ln 2

4

µ

L2

√
D − 1

)
. (E.28)

Plugging the definition of α allows to conclude that (Cond′1) is a necessary condition.

Proof of the part related to (Cond′2) Here, we assume that R > Rµ and that the
growth condition is globalized:

∥h(Z − x)− h(Z − x′)∥2 ≥ µmin (∥x− x′∥2, Rµ) ∀x, x′ ∈ BR.

Hence, we get using [31, Cor. 4.2.13]:

N (u,BR, d) ≥
(
Rµσ

u

)D

for u ≤ Rµσµ.
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Using Sudakov’s inequality [31, Thm 7.4.1] or [5, Thm 13.4], we obtain:

E

[
sup
x∈BR

∆ε(x)

]
≥

√
D

2
sup

u∈[0,Rµσµ]

u ·
√
ln

(
Rµσ

u

)
.

Taking u = Rµσµ, we get

E

[
sup
x∈BR

∆ε(x)

]
≥

√
D

2
Rµσµ

√
ln

(
R

Rµ

)
. (E.29)

Applying the same reasoning as the one for Lemma D.1 to the random variable
− supx∈BR

∆ε(x), implies that

P

(
E

[
sup
x∈BR

∆ε(x)

]
− sup

x∈BR

∆ε(x) ≥ t

)
≤ exp

(
− t2

2σ2Λ2

)
. (E.30)

Define the event

E2 def
=

[
sup
x∈BR

∆ε(x) ≥
√
D

2
Rµσµ

√
ln

(
R

Rµ

)
− ρ2σΛ

]
.

Combining the previous results, we obtain

P (E2) ≥ 1− exp(−ρ22/2).

The event E1 ∩ E2 happens with probability larger than 1 − exp(−ρ21/2) −
exp(−ρ22/2). In addition, this event together with the condition

Λ2

2
−

√
D

2
Rµσµ

√
ln

(
R

Rµ

)
+ ρ2σΛ < −σLr

(
c
√
D + ρ1

)
implies that x̂ /∈ Br.

F. Proof of Theorem 4.3

The equality (31) is a consequence of standard results in sampling theory. Set
W > 0 and let sW denote the function which Fourier transform equals to F(s) =

1
(2πW )D/21[−πW,πW ]D . A direct calculation shows that it corresponds to a scaled and

tensorized cardinal sine. It is well known that the family (sW (· − n/W ))n∈ZD is an
orthonormal basis of PW(πW ) (see e.g. [18, Thm. 3.5] in 1D, and use the fact that
the tensor product of an orthogonal basis is still an orthogonal basis). In addition, we
have the identity for any fW ∈ PW(πW ) (obtained by direct calculation again)

⟨fW , sW (· − n/W )⟩L2(RD) = fW (n/W ) · (2πW )−D/2. (F.1)

Combining the two results yields

fW =
∑

n∈ZD

⟨fW , sW (· − n/W )⟩L2(RD)sW (· − n/W )

=
1

(2πW )D/2

∑
n∈ZD

fW (n/W )sW (· − n/W ),
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which is nothing but Shannon-Whittaker theorem. Using again the fact that
(sW (· − n/W ))n∈ZD is an orthonormal basis yields:

⟨fW , gW ⟩L2(RD) =
1

(2πW )D

∑
n∈ZD

fW (n/W )gW (n/W ) (F.2)

for fW , gW ∈ PW(πW ).
We have PW(π) ⊂ PW(π/τ). Hence, we can apply the previous identity with

W = 1
τ . This yields

⟨f, g⟩L2(RD) =
τD

(2π)D

∑
n∈ZD

f(τn)g(τn). (F.3)

The result is still valid by shifting f and g by x, resulting in the claimed result.
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