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Abstract: 

Centromeres are key architectural components of chromosomes. Here, we examine their 

construction, maintenance, and functionality. Focusing on the mammalian centromere- 

specific histone H3 variant, CENP-A, we highlight its co-evolution with both centromeric DNA 

and its chaperone, HJURP. We then consider CENP-A de novo deposition and the importance 

of centromeric DNA recently uncovered with the added value from new ultra-long-read 

sequencing. We next review how to ensure the maintenance of CENP-A at the centromere 

throughout the cell cycle. Finally, we discuss the impact of disrupting CENP-A regulation on 

cancer and cell fate. 
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CCAN: Constitutive Centromere Associated Network 
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ESC: Embryonic Stem Cell 

FISH: Fluoresence In Situ Hybridization 

GIC: Glioblastoma Initiating Cell 

HAC: Human Artificial Chromosome 

HAT: Histone Acetyltransferase 

HJURP: Holliday Junction Recognition Protein 

HOR: Higher-Order Repeat 
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MEF: Mouse Embryonic Fibroblast 

ncRNA: non-coding RNA 

PLK1: Polo-Like Kinase 1 

siRNA: small interfering RNA 

T2T: Telomere-to-Telomere 

TCGA: The Cancer Genome Atlas 

 

1. Introduction: 

Centromeres are a key architectural component of eukaryotic chromosomes essential for 

faithful chromosome segregation during cell division. First described as the primary 

constriction between sister chromatids (Flemming 1882), centromeres provide the foundation 

for kinetochore assembly that is the sites where spindle microtubules attach to chromosomes 

in mitosis and meiosis (Darlington 1936). In 1985, using the sera of scleroderma patients with 

autoantibodies targeting human centromeres (Moroi et al. 1980), William Earnshaw and 

Naomi Rothfield identified the first CENtromere/kinetochore Proteins: CENP-A, -B, and -C 

(Earnshaw and Rothfield 1985). Among these centromeric proteins, CENP-A proved to be a 

variant of histone H3 (Palmer et al. 1987, 1991; Sullivan et al. 1994), one of four major classes 

of core histones (including H3, H4, H2A, H2B), the proteins contributing to the core particle of 

the nucleosome, the basic unit of chromatin. The presence of CENP-A as a specific mark of 

centromeres raised the concept of its key role as an epigenetic mark defining centromere 

location (reviewed in (Probst et al. 2009)). With less than 50% sequence identity compared 

with the other H3 variants in humans, CENP-A is the most divergent H3 variant (reviewed in 

(Ray-Gallet and Almouzni 2021)). In turn, CENP-A-containing nucleosomes show distinct 

features and wrap only 121 bp of DNA, compared to the 147 bp in nucleosomes containing 
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H3.1, H3.2, or H3.3 (Tachiwana et al. 2012; Hasson et al. 2013; Lacoste et al. 2014). CENP-A is 

incorporated into chromatin specifically at centromeres via a dedicated chaperone protein 

called Holliday Junction Recognition Protein (HJURP) (Dunleavy et al. 2009; Foltz et al. 2009), 

initially identified for its ability to bind Holliday junction cruciform DNA (Kato et al. 2007). 

Importantly, this CENP-A deposition determines where on DNA active centromeres can form 

(Barnhart et al. 2011; Fachinetti et al. 2013). Directly binding to CENP-A nucleosomes (Carroll 

et al. 2010; Kato et al. 2013), CENP-C is a key centromeric protein (Fukagawa et al. 1999), 

considered the organizing scaffold of the inner kinetochore (Klare et al. 2015). The inner 

kinetochore complex, called the constitutive centromere associated network (CCAN), 

includes, along with CENP-C, several sub-complexes (CENP-LN, CENP-HIKM, CENP-OPQUR, 

and CENP-TWSX) (Figure 1). These components form a hierarchy of interactions that promote 

the stability of the CCAN at the centromere throughout the cell cycle and enable the 

recruitment of the outer kinetochore components in mitosis and meiosis (reviewed in 

(Navarro and Cheeseman 2021)). The multi-protein kinetochore complexes couple the 

centromeres to the spindle microtubules, enabling the orchestrated movement and alignment 

of the chromosomes to the metaphase plate and ensuring faithful segregation of the genetic 

material to the two daughter cells as cells divide (reviewed in (Musacchio and Desai 2017)). 

Thus, CENP-A-containing nucleosomes are the foundation for centromere formation enabling 

kinetochore assembly (Figure 1).  

 

This chapter is about understanding how to build and maintain functional centromeres. 

Following a summary concerning how CENP-A, centromeric DNA, and HJURP have co-evolved 

across diverse species, we then focus on the human centromere. We highlight the genetic 

characteristics of human centromere DNA that favor the establishment of CENP-A chromatin. 

We then discuss how to maintain CENP-A at the centromere throughout the cell cycle. Finally, 

we discuss the regulation and misregulation of CENP-A in healthy and diseased states. 

 

2. Co-evolution of centromere DNA, CENP-A and HJURP 

2.1. Diversity of centromere DNA and CENP-A 

There is an incredible diversity in the organization of centromeres, both in nature and size 

across eukaryotes (reviewed in (Talbert and Henikoff 2020)). Three major categories of 

centromeres can be distinguished: point centromeres exemplified in S. cerevisiae; regional 
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centromeres, observed in most organisms studied to date; and holocentromeres spanning 

over an entire chromosome, found in diverse groups of animals and plants. Centromere sizes 

range from the smallest ~125 bp in S. cerevisiae to a variety of sizes depending on the nature 

of the centromere, the organism, and even the chromosome. Regional centromeres range 

from short (~1–5 kb) to very long (up to several megabases), as is the case in humans. In short 

regional centromeres, the centromeric DNA usually consists of unique sequences flanked by 

pericentric repeats. Larger regional centromeres are often strongly enriched for transposons 

or highly structured repetitive sequences, flanked by less structured but still highly repetitive 

DNA. Within this complex repetitive structure, frequent DNA breaks at centromeres can arise 

when challenged during replication (reviewed in (Barra and Fachinetti 2018)) and by mitotic 

spindle defects (Guerrero et al. 2010). They are thus prone to an increased rate of mutations. 

Indeed, a common feature of centromeres across different categories and sizes is that 

centromere DNA sequences are rapidly evolving (Melters et al. 2013)(reviewed in (Thakur et 

al. 2021)). Most centromeric DNA also tends to be AT-rich, gene-free and very lowly 

transcribed, suggesting a conserved role of these characteristics in centromere function 

(reviewed in (Talbert and Henikoff 2020)). Importantly, point centromeres (Carbon and Clarke 

1984; Kobayashi et al. 2015), and potentially some short regional centromeres (e.g., red alga 

(Maruyama et al. 2007), diatoms (Diner et al. 2017)), are determined genetically by their 

centric DNA sequences. However, in most centromeres, the centromeric DNA is neither 

sufficient nor necessary for centromere function, suggesting an epigenetic mechanism of 

centromere determination (reviewed in (Das et al. 2017)). Since in most eukaryotic organisms 

studied to date, orthologs of CENP-A are essential centromere components, the presence of 

the centromeric histone variant has been considered as a key epigenetic parameter in defining 

centromere sites (reviewed in (Balzano and Giunta 2020)). Notably, CENP-A, like centromere 

DNA, is also highly divergent across even closely related species (Malik and Henikoff 2001; 

Cooper and Henikoff 2004; Schueler et al. 2010; Kursel and Malik 2017). Thus, both 

centromere DNA and the centromeric histone variant show high levels of evolutionary change. 

This observation led to studies exploring the functional co-evolution of the two components. 

2.2. Centromere drive 

To explain the apparent paradox of the diversity and rapid evolution of centromere 

components with the centromere’s essential conserved function, researchers proposed the 
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“centromere drive” model (Henikoff et al. 2001). In this model, centromere proteins and 

centromere DNA are under constant co-evolutionary forces in species where one sex has 

asymmetric meiosis, and the other has symmetric meiosis, as is the case for many plants and 

animals. Female gametogenesis in mammals is an example of asymmetric meiosis, as only one 

of the four daughter cells forms a gamete, while the other cells cannot pass on their DNA. This 

creates an environment for the positive selection of mutations in centromeric DNA that 

increase the likelihood that a chromosome will migrate to the gamete. Indeed, changes to 

centromere DNA sequences that enhance CENP-A recruitment (Iwata-Otsubo et al. 2017), 

enrichment of microtubule-destabilizing activity (Akera et al. 2019) and increase spindle 

microtubule binding (Chmátal et al. 2014) show increased retention in the gamete of female 

mouse models. However, when gametogenesis is symmetric, this imbalance in centromere 

strength between homologous chromosomes can be deleterious for the species, resulting in 

skewed sex ratios or male sterility (Fishman and Saunders 2008). This suggests that positive 

selection also works on mutations that suppress centromere strength (Henikoff et al. 2001), 

such as alterations to centromere proteins that change how efficiently kinetochores are 

recruited to centromeres (Rosin and Mellone 2016; Hori et al. 2020; Kumon et al. 2021). As 

predicted by the centromere drive model, clades with only symmetric meiosis (such as Ferns, 

Saccharomyces, and Plasmodium) show much less adaptive evolution of CENP-A than clades 

with asymmetric meiosis (including Brassicaceae, Drosophila, and Primates) (Zedek and Bureš 

2016). Thus, centromere drive depicts a tug-of-war between changes in centromere 

sequences that increase centromere strength in asymmetric meiosis while mutations in CENP-

A, its chaperone, or other DNA-interacting centromere proteins counteract the DNA-

dependent advantages.  

 

2.3. Co-evolution of HJURP and CENP-A 

Importantly, but perhaps not surprisingly, the histone chaperone responsible for depositing 

CENP-A into centric chromatin (HJURP in humans) is also highly divergent across species 

(Sanchez-Pulido et al. 2009; Phansalkar et al. 2012). Indeed, the Drosophila chaperone (called 

CAL1) does not share common ancestry with either the vertebrate HJURP chaperone or the 

related yeast ortholog (Scm3), and so far a chaperone specific for the centromere- H3 variant 

has not been identified in plants or protists (reviewed in (Drinnenberg et al. 2016; Zasadzińska 

and Foltz 2017)). This variability in the chaperone likely occurred through co-evolution to 
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maintain its interaction with the divergent centromeric H3 variant (Phansalkar et al. 2012; 

Rosin and Mellone 2016). Notably, in mice, Hjurp was among the genes with the highest level 

of copy number variation, exhibiting population-specific expansions indicative of involvement 

in local adaptations (Pezer et al. 2015), with common lab strains C57BL/6 and BALB/cJ both 

showing multiple duplication events encompassing the Hjurp locus (Filipescu et al. 2017). 

Interestingly, a recent study by Hori et al. identified a lethal mutation in chicken CENP-A that 

inhibits its interaction with HJURP in chicken cells, while the equivalent mutation in human 

cells does not prevent CENP-A-HJURP interaction and is non-lethal (Hori et al. 2020). With a 

humanized HJURP mutant, the researchers could rescue the chicken CENP-A-HJURP 

interaction and cell survival.  Therefore, this study provides an interesting example of how 

HJURP mutation can compensate for a mutation in CENP-A to maintain their critical 

interaction. Overall, the interlinked co-evolution of centromere DNA, CENP-A, and HJURP 

highlights the evolutionary pressures on each of these centromere components. Notably, this 

indicates that while CENP-A-containing nucleosomes contribute epigenetically to defining the 

centromere, the importance of centromeric DNA should not be underappreciated (reviewed 

in (Dumont and Fachinetti 2017)), as we will discuss below. Excitingly, with the advent of high 

fidelity long-read sequencing technologies, the complex highly repetitive sequences of large 

regional centromeres, like those in humans, are now finally accessible for detailed analysis 

(reviewed in (Suzuki and Morishita 2021)). In the next section, we discuss the structure and 

organization of centromere DNA in humans and its impact on centromere function. 

 

3. Building the centromere foundation on DNA 

3.1. Characterizing the human centromere before long-read sequencing 

The original characterization of human centromeric sequences began in the mid-1970s, long 

before long-read sequencing could be used to accurately sequence and annotate centromeres 

(Miga et al. 2020; Logsdon et al. 2021). The restriction enzyme digestion of purified human 

heterochromatic DNA enabled the identification of prominent ~170 bp monomer and ~340 

bp dimer satellite DNA repeats (Manuelidis 1976). In situ hybridization revealed that these 

satellite repeats localized to centromeres (Manuelidis 1978). Sanger sequencing identified the 

sequence of the 171 bp monomer (Manuelidis and Wu 1978), now known as alpha satellite 

DNA, the core repeating unit of human centromeric sequences. Later work revealed that each 

human centromere contains a distinct organization of alpha satellite DNA (Willard 1985). The 
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alpha satellites are organized into sets ranging from two to 34 monomers, called higher-order 

repeat (HOR) units, with 50-70% sequence identity between alpha satellite monomers within 

each HOR unit (Mitchell et al. 1985; Jørgensen et al. 1987; Tyler-Smith and Brown 1987; Waye 

and Willard 1987). These HOR units—generally chromosome-specific—are arranged in 

thousands of tandem-repeated sequences within the centromere, forming long stretches of 

HOR arrays of up to five million base pairs in length. The repeating HOR units are 97-99% 

identical within a HOR array (reviewed in (Hartley and O’Neill 2019)). In contrast, total HOR 

array length varies substantially between individuals for every chromosome (Wevrick and 

Willard 1989) and even chromosome-specific HOR units can display significant variation in 

monomer number between homologous chromosomes, despite otherwise maintaining 99.8% 

sequence identity (Roizès 2006). Importantly, kinetochores attach to only a discrete domain 

within the HOR arrays, namely the functional core of the centromere. Interestingly, 

evolutionarily younger HOR arrays (more homogenous/less mutated) locate close to the 

functional core of the centromere, flanked by layers of increasingly divergent ancestral alpha 

satellites (Schueler et al. 2005; Rudd et al. 2006; Shepelev et al. 2009). Finally, the regions 

flanking the HOR arrays, called the pericentromeres, devoid of HOR units, contain arrays of 

alpha satellite monomers interspersed with LINEs, SINEs, and various other repeat elements 

(Schueler et al. 2001; Nusbaum et al. 2006; Rudd et al. 2006). These regions are marked by 

characteristic constitutive heterochromatin, namely Heterochromatin Protein 1 (HP1) 

binding, enrichment of H3K9me2/3, H3K27me3 and H4K20me3, hypoacetylation of histones 

H3 and H4, and transcriptional silencing (reviewed in (Fioriniello et al. 2020)). In contrast, the 

functional centromeres display unique features, where CENP-A nucleosomes are interspersed 

with both H3.1 and H3.3 nucleosomes (Dunleavy et al. 2011). The latter present an enrichment 

for H3K4me2 and H3K36me2 marks and hypoacetylation of histones H3 and H4, as shown 

using immunofluorescence of stretched chromatin fibers (Sullivan and Karpen 2004; 

Bergmann et al. 2011, 2012). Further work based on immunoprecipitation and mass 

spectrometry of CENP-A-associated chromatin also found enrichment for dual H3K9me2-

K27me3 and H4K20me1 (Bailey et al. 2016). Thus, the functional centromere presents marks 

distinct from both heterochromatin and euchromatin. Overall, a first detailed framework of 

the centromeres emerged with their repeated sequence properties and the associated 

chromatin features. 
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3.2 New insights from telomere-to-telomere sequencing 

The Human Genome Project announced the completion of the human genome sequence in 

2001 (Lander et al. 2001). However, due to the limitations of short-read DNA sequencing 

technology at the time, up to 20% of the genome annotations remained largely unassembled, 

corresponding mainly to regions of heterochromatin and repetitive DNA, including all 

centromeres. Recently, in 2020 and 2021, the Telomere-to-Telomere (T2T) consortium used 

long-read sequencing technologies to fully sequence human chromosomes from telomere to 

telomere without gaps for the first time (chromosome X (Miga et al. 2020) and 8 (Logsdon et 

al. 2021, p. 8); see also Figure 2), using CHM13hTERT cells, a human cell line derived from a 

complete hydatidiform mole, where a single sperm undergoes post-meiotic chromosomal 

duplication resulting in uniformly homozygous alleles across the genome. Shortly after, they 

revealed the first complete sequence of an entire human genome (preprint, Nurk et al., 2021), 

accompanied by a sister preprint focused on the centromeres (Altemose et al. 2021). The 

sequencing and assembly of the entire human genome open up many possibilities, in 

particular, to illuminate variability at centromeres. On average, centromeres show more than 

double the structural variation between human individuals compared to the rest of the 

genome (45.05 events/Mb vs. 21.16 events/Mb), according to long-read sequencing data 

analysis (Suzuki and Morishita 2021). This approach confirmed the previously established 

framework of centromere DNA structure at base-pair resolution for all human chromosomes, 

including the characterization of all alpha satellite monomers, HOR units and arrays, and all 

pericentromeric repeats and satellite arrays (Altemose et al. 2021). They resolved the minute 

differences in centromeres with near-identical HOR arrays (including chromosomes 13/21, 

14/22, and 1/5/19), identified previously hidden HOR array inversions and interruptions, and 

confirmed the high degree of centromeric genetic variation between individuals. Based on the 

unique and region-specific markers of the centromeres, they provide a method for repeat-

sensitive mapping of short-read sequencing results to the completed centromere sequences. 

Applying this method to CENP-A ChIP-Seq and CUT&RUN, they confirm across all 

chromosomes the layered expansion of centromere arrays with CENP-A enrichment mapping 

to the evolutionarily youngest HOR arrays. Notably, alpha satellite DNA contains methylated 

CpG repeats that are important in human health (reviewed in (Scelfo and Fachinetti 2019)). 

However, precise sequencing of DNA methylation of centromeres was previously limited to 

non-repetitive neocentromeres, which revealed DNA hypermethylation of the domain with 



   
 

   
 

9 

notable pockets of active transcription and hypomethylation (Wong et al. 2006). Importantly, 

the current long-read sequencing methods simultaneously delineate DNA methylation, 

making it possible to accurately assess DNA methylation in endogenous centromeres for the 

first time. Strikingly, they revealed that while centromeres are indeed hypermethylated, 

CENP-A enrichment corresponds to a clear domain of reduced CpG methylation (Miga et al. 

2020; Logsdon et al. 2021). Interestingly, CENP-A enrichment extends outside of this reduced 

CpG hypermethylation domain by several hundred kilobases for every chromosome 

(Altemose et al. 2021), including some chromosomes with smaller regions of CENP-A 

enrichment overlapping a secondary methylation dip or no dip at all. Interestingly, the drop 

in methylation also correlates with extreme inaccessibility, linked to the enrichment of CENP-

A binding (Gershman et al. 2021). Overall, this work marks the first exploration of the fully 

assembled centromere sequences, solidifying and expanding the findings of previous studies 

on centromere structure and providing a detailed reference in specific cultured human cells. 

Future studies will need to undertake analyses in other normal cells, tissues, and organisms 

to comprehend centromere diversity and function fully.  

 

3.3 Impact of centromere DNA on centromere function 

CENP-A nucleosomes wrap discrete blocks of centromere DNA within a single HOR array on 

each chromosome, but CENP-A binding is not sequence-specific, and the subdomains of CENP-

A localization are not limited to particular sequence motifs (Blower et al. 2002; Sullivan et al. 

2011; Hayden et al. 2013; Ross et al. 2016; Aldrup-MacDonald et al. 2016). In fact, 

neocentromeres, whether naturally occurring in the human population (Tyler-Smith et al. 

1999; Amor et al. 2004), in disease (Marshall et al. 2008), or artificially-induced (Murillo-

Pineda et al. 2021), can support stable, fully functional centromeres in the absence of HOR 

arrays or pericentromeric repeats. Similarly, evolutionarily new centromeres in humans 

typically lack HORs (reviewed in (Rocchi et al. 2012)). This is also observed in many other 

species (Rothfels and Mason 1975; Suja et al. 1986; Ventura et al. 2001; Carbone et al. 2006; 

Giulotto et al. 2017), with the most striking examples in equids that have been studied in detail 

(Giulotto et al., 2017). Finally, even in the absence of any detectable alpha satellite DNA, the 

establishment of stable human artificial chromosomes (HACs) can be efficiently achieved 

(Logsdon et al. 2019). Thus, the centromere is indeed a prime example of an epigenetically 

determined chromosomal domain. Why then do all endogenous human centromeres occupy 
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these complex repetitive DNA regions? What are the evolutionary advantages offered by this 

DNA? The fact is that neocentromeres or centromeres devoid of these sequences do not 

harbor the same properties as those that do have these sequences, in particular when 

assessing genome stability. Indeed, both HOR arrays (Hartley and O’Neill 2019; Dumont et al. 

2020) and pericentromeres (Janssen et al. 2018) provide significant advantages to maintaining 

genome stability. Thus, below we discuss several mechanisms for how these complex 

repetitive DNA elements contribute to the establishment, maintenance, and function of 

human centromeres. 

 

3.3.1. CENP-B binding 

One of the most explicit advantages of centromeric HOR arrays is their capacity to recruit one 

of the centromeric proteins, CENP-B, in a DNA sequence-specific manner. CENP-B binds 

specifically to the alpha satellite DNA at a specific 17 bp sequence, called the CENP-B box 

(Masumoto et al. 1989). This sequence is present in the HOR arrays of all human centromeres, 

except for the Y chromosome (Earnshaw et al. 1987). Since CENP-B proved dispensable for cell 

survival (Hudson et al. 1998; Perez-Castro et al. 1998; Kapoor et al. 1998), it was initially 

discarded as a critical component in defining centromeres. However, uterine and reproductive 

defects are associated with CENP-B deficiency (Fowler et al. 2000, 2004). Furthermore, to 

produce de novo functional HACs carrying centromeric DNA, CENP-B was necessary (Ohzeki et 

al. 2002; Okada et al. 2007), except when bypassed with CENP-A seeding (Logsdon et al. 2019). 

Of note, CENP-A itself can be bypassed by artificially targeting CENP-C or CENP-T, which is 

sufficient for kinetochore assembly and microtubule binding (Gascoigne et al. 2011; Hori et al. 

2013). So, CENP-B is considered more as a stabilizer of kinetochores through its interaction 

with CENP-A nucleosomes and CENP-C (Suzuki et al. 2004; Fachinetti et al. 2013, 2015; Fujita 

et al. 2015). These properties of CENP-B culminate to enhance centromere fidelity, particularly 

upon CENP-A perturbation (Fachinetti et al. 2015). Notably, while kinetochores do not 

assemble in the absence of CENP-A, CENP-B can sustain kinetochore binding and efficient 

chromosome segregation if CENP-A is degraded after kinetochore assembly, including 

removal of all detectable CENP-A from centromere chromatin (Hoffmann et al. 2016). 

Furthermore, centromeres with higher concentrations of CENP-B boxes (and CENP-B) show 

increased chromosome segregation fidelity when CENP-A is degraded (Dumont et al. 2020). 

Interestingly, upon loss of CENP-A from the centromere, CENP-B can also act as a memory 
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signal for CENP-A localization, as observed naturally in the immune system. Indeed, quiescent 

human lymphocytes, CD4+ T cells, start to show detectable CENP-A only once activated and 

re-assemble CENP-A at centromeres as they re-enter the cell cycle, but only if CENP-B is 

present (Hoffmann et al. 2020). CENP-B also helps in recruiting histone chaperones and 

chromatin modifiers required for the unique chromatin characteristics that are important for 

efficient CENP-A assembly (Otake et al. 2020). Thus, CENP-B binding represents an important 

aspect of HOR array functionality through direct CENP-A-kinetochore stabilization, as a mark 

for centromere memory and as a multi-functional recruitment hub for the maintenance of 

centromeric chromatin. 

 

3.3.2 Centromere transcription 

As recently reviewed (Corless et al. 2020; Leclerc and Kitagawa 2021), all human HOR arrays 

produce low levels of array-specific non-coding RNAs (ncRNAs) transcribed by RNA 

polymerase II (Chan et al. 2012; McNulty et al. 2017; Bury et al. 2020). Specific depletion of 

ncRNAs transcribed from a given (CENP-A bound) HOR array, in turn, reduces CENP-A 

localization and prevents de novo recruitment of CENP-A to the corresponding targeted array, 

without affecting CENP-A localization at other centromeres (McNulty et al. 2017). Thus, 

centromere transcription is important for CENP-A recruitment in cis. Notably, recent single-

molecule RNA FISH studies revealed that centromere ncRNAs did not stably remain at 

centromeres; thus, the cis function of centromeric ncRNAs could arise because of the act of 

nascent transcription (Bury et al. 2020). However, since the two studies above targeted 

different centromere ncRNAs, one cannot exclude distinct dynamics for the respective 

centromeres considered. How these ncRNAs, or the act of transcription, precisely aid in CENP-

A recruitment is not yet clear. Another role for nascent transcription at centromeres could 

operate through a positive feedback loop involving cohesin and SGO1 proteins (Zhang and Liu 

2020) to maintain centromere cohesion (Chen et al. 2021). Finally, low levels of centromere 

transcription may also help in maintaining the delicate balance of euchromatin and 

heterochromatin marks at functional centromeres. Several engineering studies modifying 

different aspects of chromatin marks in HAC centromeres showed that centromeres are 

remarkably permissive to alterations to histone marks. However, both too much and too little 

transcription can interfere with the recruitment and maintenance of CENP-A and ultimately 

results in loss of centromere function (Nakano et al. 2008; Bergmann et al. 2011, 2012; Molina 
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et al. 2016). On the one hand, H3K4me2 is particularly important for centromere transcription 

to prevent the spread of H3K9me3 from pericentromeric heterochromatin, which otherwise 

blocks CENP-A assembly (Molina et al. 2016). This aspect of maintenance echoes work in 

Drosophila cell lines (Bobkov et al. 2018), where centromere transcription may be required to 

ensure a stable presence of the Drosophila centromeric H3 variant. On the other hand, too 

much transcription actively displaces pre-established CENP-A and may interfere with CENP-A 

loading by HJURP (Bergmann et al. 2012). Thus, how precisely low levels of centromere 

transcription is tuned in the setting of this unusual chromatin with mixed features is an 

important question. One regulatory factor, the zinc finger protein ZFAT promotes 

transcription of centromeric ncRNAs by binding an 8 bp motif present in all centromere 

sequences of human chromosomes (Ishikura et al. 2020). By recruiting the histone acetylase 

KAT2B, H4K8ac levels increase and, in turn, recruits the bromodomain protein BRD4, which 

brings RNA polymerase II and thereby increases centromere transcription. Conversely, 

repression of centromere transcription may depend on proximity to nucleoli, as alpha satellite 

transcription showed a strong negative correlation with nucleolus proximity across a panel of 

cell lines, and disruption of the nucleoli increased alpha satellite transcription (Bury et al. 

2020). Further investigation into the specific factors and mechanisms that control centromere 

transcription is still needed. Overall, HOR arrays produce low levels of ncRNAs that are 

important for maintaining the specialized chromatin environment that enables stable CENP-A 

nucleosome assembly on centromere DNA.  

 

3.3.3 Nucleosome phasing and cruciform formation 

Another potential advantage of the centromeric DNA derives from the physical properties of 

the repeating alpha satellite sequences. Nucleosome phasing is the phenomenon where 

underlying DNA sequences influence the positioning and spacing of an array of nucleosomes 

(Blank and Becker 1996). This occurs in centromeres as the 10 bp periodicity of AA 

dinucleotides, observed in the satellite monomers of many species, reduces the bending 

energy required for wrapping DNA around core histones and favors nucleosome formation 

(Struhl and Segal 2013). Furthermore, alpha satellite sequences can affect nucleosome 

positioning by enriching CENP-A nucleosome occupancy within the 5’ end of the monomer, 

just 3’ of the CENP-B box (Hasson et al. 2013). Notably, this phasing also occurs in HOR units 

devoid of CENP-B boxes, though to a lesser extent. Thus, HOR arrays may favor a regular 
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spacing of CENP-A nucleosomes where they all interact with the same “face” of the DNA 

double helix to possibly stabilize the centromere-kinetochore interaction during the tension 

of anaphase. This property could provide a selective advantage for these sequences (reviewed 

in (Talbert and Henikoff 2020)). HOR arrays are also highly amenable to the formation of non-

B form DNA, since AT-rich sequences are considered as more open (Dekker 2007) and CENP-

B binding bends DNA (Tanaka et al. 2001), both of which could promote negative supercoiling 

(reviewed in (Talbert and Henikoff 2020)). Negative supercoiling enables cruciform formation 

(Palecek 1991; van Holde and Zlatanova 1994; Krasilnikov et al. 1999). Interestingly, 

centromeres that lack CENP-B boxes, including the Y chromosome and neocentromeres, often 

present short dyad symmetries that, like CENP-B binding, could potentially promote negative 

supercoiling (Kasinathan and Henikoff 2018). Furthermore, permanganate sequencing shows 

that cruciform structures correlate with CENP-A occupancy (reviewed in (Kasinathan and 

Henikoff 2018; Talbert and Henikoff 2020)). Considering that HJURP was originally identified 

as a Holliday Junction recognizing protein (Kato et al. 2007), the formation of cruciform DNA 

in HOR arrays is interesting. These secondary DNA structures could facilitate HJURP binding 

and consequently CENP-A recruitment for nucleosome formation. Thus, the physical 

properties of HOR alpha satellite DNA may promote advantageous CENP-A nucleosome 

phasing and facilitate HJURP binding. 

 

3.3.4 Pericentromere heterochromatin 

Pericentromeric DNA is important for centromere function as a hub for constitutive 

heterochromatin. Heterochromatin is required for sister chromatid cohesion, promoted by 

HP1α, which assembles the SGO1 cohesion complex and chromosomal passenger complex 

INCENP (reviewed in (Janssen et al. 2018)). Pericentric heterochromatin also recruits cohesin 

through H4K20me3, which is required for developing tension between sister chromatids and 

ensuring the bi-orientation of sister chromatids during mitosis and meiosis (reviewed in 

(Smurova and De Wulf 2018)). Furthermore, pericentric heterochromatin prevents internal 

recombination events between centromere sequences, including meiotic crossing over, which 

can result in acentric or dicentric chromosomes and subsequent mitotic catastrophe 

(reviewed in (Nambiar and Smith 2016)). In mouse cells, disrupting the integrity of pericentric 

heterochromatin by inhibition of histone or DNA methylation resulted in increased CENP-A 

levels in the centric domains, suggesting an interplay between centric and pericentric 



   
 

   
 

14 

chromatin (Boyarchuk et al. 2014). The pericentromeric heterochromatin may also play an 

important role in regulating centromere clustering in interphase (Jagannathan et al. 2018). 

Common features between the pericentromere and the nucleolus, such as DNA looping, 

condensin and cohesin binding, recombination control, and phase separation (reviewed in 

(Lawrimore and Bloom 2019)) suggest interesting parallels that remain to be explored 

between these two major architectural components of the nucleus. Overall, the constitutive 

silencing of pericentromeres ensures the fidelity of the centromere during cell division and 

protects against genome instability. Further studies are required to characterize how precisely 

the pericentromeric DNA performs these functions.  

 

4. Deposition and maintenance of CENP-A at the centromere 

4.1. Licensing centromere chromatin during kinetochore assembly 

Once a functional centromere is established, it should be maintained throughout the cell cycle 

(reviewed in (Muller and Almouzni 2017; Navarro and Cheeseman 2021)). New CENP-A must 

be loaded specifically to the CENP-A-bound centromere domains each cell cycle to ensure the 

continued function of the centromere through multiple cell divisions (Figure 3). In humans, 

new CENP-A loading occurs exclusively in late telophase/early G1 (Jansen et al. 2007). The 

discovery of HJURP by biochemically purifying the complex of proteins associated with CENP-

A was key to understanding how CENP-A could be deposited specifically at centromeres 

(Dunleavy et al. 2009; Foltz et al. 2009). This specificity was linked to the CENP-A targeting 

domain (CATD) in the HJURP N-terminal region that is key for binding soluble CENP-A-H4 

(Shuaib et al. 2010; Bassett et al. 2012). HJURP (loaded with a CENP-A-H4 dimer) is only stably 

targeted to centromeres in late telophase/early G1 through a process of centromere licensing 

(Figure 3a-b), whereby CENP-C recruits the Mis18 complex (Moree et al. 2011; Dambacher et 

al. 2012; McKinley and Cheeseman 2014), which in turn recruits HJURP (Barnhart et al. 2011). 

This licensing occurs simultaneously with the assembly of the kinetochore and chromosome 

segregation (summarized in Figure 1; reviewed in (Navarro and Cheeseman 2021)), and is 

tightly regulated according to the cell cycle by Cyclin Dependent Kinases (CDKs) (reviewed in 

(Hochegger et al. 2008; Ding et al. 2020)). In late G2, as CDK1/2 activity increases, there is an 

increase in the localization of several CCAN components at the centromere, including CENP-

C, -TW, and -HI (Prendergast et al. 2011; Gascoigne and Cheeseman 2013). During the M 

phase, CENP-C is phosphorylated by CDK1, which stabilizes its interaction with CENP-A 
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nucleosomes (Watanabe et al. 2019). CENP-C then recruits the Mis18 complex subunit 

M18BP1 (also known as Knl2) to centromeres (Moree et al. 2011; Dambacher et al. 2012; 

McKinley and Cheeseman 2014). However, CDK1/2 phosphorylation of the Mis18 complex 

components (M18BP1, MIS18α, and MIS18β) prevents the recruitment of MIS18α/β to the 

centromere until anaphase onset, when reduced CDK1/2 activity allows their site-specific 

dephosphorylation (Silva et al. 2012; McKinley and Cheeseman 2014). This dephosphorylation 

enables the binding of MIS18α/β to M18BP1, forming a hetero-octameric complex at a 4:2:2 

ratio (MIS18α:β:M18BP1) (Pan et al. 2017; Spiller et al. 2017). Reduced CDK1/2 activity at 

anaphase also allows dephosphorylation of HJURP (loaded with CENP-A-H4), which promotes 

its interaction with the Mis18 complex (Wang et al. 2014; Stankovic et al. 2017) and targeting 

to the centromere (Muller et al. 2014). In this way, dephosphorylated HJURP brings soluble 

CENP-A-H4 dimers to the centromere for loading through interaction with the Mis18 complex 

only after anaphase onset. At the level of chromatin, increased centromere histone 

acetylation also affects licensing of CENP-A loading. The histone binding proteins RBAP46 and 

RBAP48 are recruited to centromeres with the MIS18 complex and are similarly required for 

CENP-A recruitment (Hayashi et al., 2004). RBAP46 and RBAP48 are subunits of many 

chromatin-remodeling complexes, chromatin-assembly complexes, and histone-modifying 

enzymes, including histone acetyltransferases (HATs). Work exploring the impact of chromatin 

modifications in HACs demonstrated that tethering a HAT to alpha satellite DNA could 

promote HAC establishment (Bergmann et al. 2012) and even bypass the requirement for 

MIS18α (Ohzeki et al. 2012). Furthermore, the acetyltransferase KAT7/HBO1/MYST2 

interacted directly with M18BP1, and tethering KAT7 to ectopic alpha satellite DNA promoted 

CENP-A deposition (Ohzeki et al. 2016). Thus, centromeric histone acetylation may play an 

important function in counteracting heterochromatinization at the centromere to enable new 

CENP-A loading. Altogether, as kinetochores assemble and chromosomes divide, centromere 

chromatin is primed for CENP-A reloading. In the late M phase, CENP-C recruits the Mis18 

complex, which in turn recruits HJURP bound to new CENP-A-H4, which is timed in the cell 

cycle through CDK phosphorylation. 

 

4.2 Loading of new CENP-A in early G1 

As cells complete mitosis, Polo-like kinase 1 (PLK1) site-specifically phosphorylates the Mis18 

complex to maintain its localization at the centromere (Figure 3c) (McKinley and Cheeseman 
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2014). Artificial inhibition of PLK1 or alanine mutations of key PLK1 consensus sites in M18BP1 

(which cannot be phosphorylated), prevent the centromeric localization of the Mis18 complex 

in G1, while not affecting its recruitment to centromeres in the M phase. These perturbations 

also prevent centromeric localization of HJURP in G1 and thereby prevent the incorporation 

of de novo CENP-A. Thus, while CDK phosphorylation of M18BP1 in the late G2/M phase 

negatively regulates centromere licensing by preventing the formation of the Mis18 complex, 

PLK1 phosphorylation in late M/early G1 positively regulates centromere licensing by 

maintaining M18BP1 localization. In complex with Mis18, HJURP brings together two dimers 

of CENP-A-H4 for deposition into chromatin (Zasadzinska et al. 2013; Nardi et al. 2016). As 

such, new CENP-A is loaded onto chromatin in early G1 (Jansen et al. 2007). This is achieved 

by exploiting the histone chaperone HJURP in promoting CENP-A-H4 deposition onto DNA 

(Dunleavy et al. 2009; Foltz et al. 2009). Recent work by Pan and colleagues revealed that a 

single HJURP binds to the 4:2:2 Mis18 hetero-octamer complex through the R1 and/or R2 

regions in the C-terminal half of HJURP and suggests that for HJURP to tetramerize CENP-A-

H4 dimers for nucleosome assembly, two Mis18-HJURP complexes must simultaneously or 

consecutively deposit CENP-A-H4 (Pan et al. 2019). Previous work also indicated the 

involvement of remodeling factors in the stable integration of CENP-A nucleosomes in the 

latter half of G1, as the kinetochore disassembles (Figure 3d). First, for example, there is the 

Remodeling and Spacing Factor (RSF) complex, which can reconstitute and space CENP-A 

nucleosomes in vitro, and induced loss of centromeric CENP-A when depleted (Perpelescu et 

al. 2009). Second, another complex enabled the stable incorporation of new CENP-A at 

centromeres, consisting of a Rho family GTPase activating protein (MgcRacGAP) that interacts 

with M18BP1, as well as Ect2, a Rho family guanine nucleotide exchange factor, and GTPases 

Cdc42 and Rac (Lagana et al. 2010). Various CENP-A post-translational modifications also play 

important and, in many cases, disputed roles in CENP-A recruitment and/or assembly 

(reviewed in (Mahlke and Nechemia-Arbely 2020)), with a recent article confirming previous 

findings (and contradicting others) that CENP-A-K124Ub is non-essential (Salinas-Luypaert et 

al. 2021) and a current preprint re-affirming the disputed essentiality of CENP-A-S68 

phosphorylation for centromere function in mice (Liu et al. 2021). These conflicting findings 

highlight the potential impacts of different model systems and molecular perturbations. 

Altogether, maintenance of CENP-A at the centromeres is a dynamic, cell cycle-regulated 

process that is essential for the faithful segregation of chromosomes during cell division. 
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4.3 Recycling CENP-A at the replicating centromere 

Every time the DNA replicates (Figure 3e), it dilutes the number of CENP-A nucleosomes at 

the centromere by half (Jansen et al. 2007). Previously established (parental) nucleosomes 

containing H3.1/2, H3.3 and CENP-A are disrupted by the replication fork and need to be 

recycled to the new daughter strands (Dunleavy et al. 2011). This recycling can possibly take 

advantage of the histone chaperone activity of the subunit of the DNA helicase MCM2 

together with the general histone chaperone ASF1 (Richet et al. 2015; Clement and Almouzni 

2015; Huang et al. 2015). Interestingly, the chaperone needed for CENP-A de novo deposition, 

HJURP, is also important for CENP-A recycling at centromeres during replication (Zasadzińska 

et al. 2018). Indeed, HJURP transiently localizes to centromeres and binds parental CENP-A 

during the S phase, co-purifies with MCM2 and CENP-A simultaneously in vitro, and its rapid 

degradation in the S phase dramatically reduces parental CENP-A retention (Zasadzińska et al. 

2018). Thus, in the centromeres, each daughter strand receives an equal distribution of CENP-

A nucleosomes through CENP-A recycling, which is usually constrained to the original CENP-A 

chromatin domain (Ross et al. 2016; Nechemia-Arbely et al. 2019). However, outside of the 

centromeres, replication evicts ectopic CENP-A without recycling them (Nechemia-Arbely et 

al. 2019), acting as an intrinsic cellular mechanism to protect genome integrity by preventing 

the accumulation of CENP-A in chromosome arms. Interestingly, similar to the effect of 

degradation of HJURP (Zasadzińska et al. 2018), degradation of CENP-C in the S phase 

significantly diminishes retention of centromeric parental CENP-A at centromeres (Nechemia-

Arbely et al. 2019), suggesting that CENP-C is also an important player in ensuring CENP-A 

retention during centromere replication. Importantly, since loading of new CENP-A by HJURP 

is restricted to the end of telophase/early G1, cells go through mitosis with only half the full 

complement of CENP-A. In contrast, new H3.1/2 incorporation is coupled to replication via 

CAF-1, and new H3.3 is incorporated throughout the cell cycle via HIRA and DAXX/ATRX 

(reviewed in (Mendiratta et al. 2019)). Notably, while both H3.1 and H3.3 are incorporated 

into centromeric chromatin during the S phase, only H3.3 is lost from centromeres at the time 

of CENP-A loading (Dunleavy et al. 2011), supporting the hypothesis that H3.3 acts as a 

placeholder for CENP-A. Furthermore, HIRA fills nucleosome gaps using H3.3 when CAF-1 

depletion limits H3.1/2 incorporation behind the replication fork (Ray-Gallet et al. 2011), 

suggesting that a similar mechanism could be employed at centromeres when new CENP-A is 
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not available. Future work investigating the dynamics of H3.1, H3.3, and CENP-A at the 

replicating centromere will be important to understand how CENP-A is retained through the 

cell cycle, and how centromeric H3.3 influences CENP-A loading and ultimately centromere 

function.  

 

5. CENP-A regulation from healthy to diseased states 
5.1. Transcriptional regulation of CENP-A 

Beyond positional and post-translational modification, CENP-A is also tightly regulated at the 

transcriptional level (reviewed in (Mendiratta et al. 2019)). CENP-A in mammals is encoded by 

a single gene that undergoes conventional processing, splicing, and poly-adenylation (Sullivan 

et al. 1994; Régnier et al. 2003), located in the p-arm of chromosome 2 in humans. Unlike its 

loading to centromeres in early G1 (Jansen et al. 2007), transcription of CENPA peaks in G2, 

which is important for its later targeting to the centromere (Shelby et al. 1997). This 

expression is coordinated with the expression of HJURP as well as a major network of other 

kinetochore and centromere-related factors, including AURKB, PLK1, and CENPB, by direct 

binding of the FOXM1 master transcriptional regulator (Wang et al. 2005; Chen et al. 2013). 

These FOXM1 target genes, including CENPA and HJURP, all contain a Cell cycle-Dependent 

Element (CDE) and a Cell cycle genes Homology Region (CHR) in their promoters (Müller et al. 

2014), which are coordinately repressed in G1 phase by the binding of the Dimerization 

partner, Rb-like, E2F, and MuvB (DREAM) complex, and then subsequently activated in late 

S/G2 phase by the binding of FOXM1 to MuvB (reviewed in (Sadasivam and DeCaprio 2013)). 

Notably, activation of the tumor suppressor p53 inhibits transcription of CENPA and HJURP 

through the CDE/CHR elements, in a manner dependent on p21 (Filipescu et al. 2017), likely 

by promoting repressive DREAM binding (Quaas et al. 2012; Fischer et al. 2016). The p53 gene 

TP53 is the most commonly mutated gene in cancer. It acts as a master regulator of stress 

response through activation or repression of a variety of target genes controlling key cellular 

processes, including cell cycle, apoptosis, senescence, cell metabolism, DNA repair, and stem 

cell differentiation, amongst others (reviewed in (Levine 2020)). Interestingly, recent work has 

revealed that CENP-A transcription is also regulated by a CDK5 regulatory subunit (CDK5RAP2), 

involved in spindle formation and spindle checkpoint signaling (Zhang et al. 2009; Barrera et 

al. 2010), and is a direct transcriptional activator of CENPA in human cells (Wang et al. 2021). 

Notably, depletion of CDK5RAP2 globally reduced CENP-A levels and caused mitotic defects 
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that were partially rescued by exogenous expression of CENP-A. How or if p53 or Cdk5rap2 

impacts the cell cycle timing of CENP-A transcription remains to be explored. Overall, the tight 

regulation of CENP-A transcription involving the DREAM complex, FOXM1, p53/p21, and 

CDK5RAP2 is essential for faithful chromosome segregation and cell division in healthy cells. 

 

5.2 Potential role for CENP-A in stem cell differentiation 

As a regulator of stem cell differentiation, the negative control of p53 in CENP-A expression is 

intriguing as high CENP-A levels are linked to stemness. Human pluripotent stem cells maintain 

p53 in an inactive state through post-translational regulation (Jain and Barton 2018) and have 

been shown to naturally overexpress CENP-A mRNA (Ambartsumyan et al. 2010; Milagre et 

al. 2020). Cultured human cardiac progenitor cells showed high CENP-A protein levels that 

reduced as cells aged. Similarly, in the mouse heart, CENP-A levels were highest in the embryo 

and lowered in the adult (McGregor et al. 2014). Furthermore, a meta-analysis of microarray 

data from various human cell types revealed increased levels of CENP-A, along with various 

other CENPs, upregulated predominantly in undifferentiated cell types, including embryonic 

stem cells (ESCs), neural stem cells, and glioblastoma initiating cells (GICs), relative to more 

differentiated cells. As well, siRNA knockdown of CENP-A in GICs led to reduced stemness, as 

measured by sphere-forming ability (reduced size and frequency) and immunofluorescence of 

the stemness marker SOX2 (Behnan et al. 2016). In Drosophila, intestinal stem cells 

preferentially retain pre-existing CENP-A during asymmetric divisions, when one daughter cell 

differentiates and the other daughter cell maintains stemness (García del Arco et al. 2018), 

suggesting that CENP-A nucleosomes may epigenetically mark stem cell identity in this system. 

Indeed, asymmetric mitosis depends on the asymmetric loading of CENP-A loading on sister 

chromatids in both male (Ranjan et al. 2019) and female (Dattoli et al. 2020; Carty et al. 2021) 

Drosophila germline (reviewed in (Kochendoerfer et al. 2021)). This asymmetry in CENP-A is 

also associated with asymmetry in CENP-C, CAL1 (HJURP-like chaperone for Drosophila CENP-

A), and NDC80. Remarkably, overexpression of CENP-A (Dattoli et al. 2020) but not CENP-C or 

CAL1 (Carty et al. 2021) promotes stem cell self-renewal in the female germ line. Thus, how 

CENP-A overexpression contributes to stem cell renewal and pluripotency in human cells, as 

well as its connection to p53 regulation, will be an important avenue for future research. 

 

5.3 CENP-A misregulation in cancer 
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CENP-A is commonly overexpressed in many cancer types (Sun et al. 2016; Saha et al. 2020) 

and correlates with tumor aggressiveness in patients, including associations with increased 

tumor stage/size (Ma et al. 2003; Li et al. 2011; Qiu et al. 2013; Gu et al. 2014), increased 

invasiveness/metastasis (Ma et al. 2003; McGovern et al. 2012; Gu et al. 2014; Sun et al. 2016), 

increased rates of recurrence (McGovern et al. 2012; Sun et al. 2016) and poor patient 

prognosis (McGovern et al. 2012; Wu et al. 2012; Qiu et al. 2013; Gu et al. 2014; Sun et al. 

2016). Similarly, HJURP overexpression is also associated with poor patient survival (Kato et 

al. 2007, p. 200; Hu et al. 2010; de Tayrac et al. 2013; Valente et al. 2013; Montes de Oca et 

al. 2015) and increased tumor grade (Hu et al. 2010; de Tayrac et al. 2013). Indeed, CENP-A 

and HJURP, along with other centromere, kinetochore and cell cycle-regulated genes, are 

coordinately overexpressed in tumors (Thiru et al. 2014; Zhang et al. 2016; Saha et al. 2020), 

which may be a result of deregulated FOXM1 (Thiru et al. 2014). In human cell lines, 

overexpression of CENP-A leads to its mislocalization to chromosome arms, in addition to 

increased localization at centromeres (Van Hooser et al. 2001; Lacoste et al. 2014; Nechemia-

Arbely et al. 2017). In particular, mislocalized CENP-A is enriched at areas of high histone 

turnover, corresponding to promoters, enhancers, and CTCF binding sites, amongst others, 

which overlap with H3.3-enriched DNA (Lacoste et al. 2014). Remarkably, this mislocalization 

in HeLa cells can be attributed to the H3.3-dedicated chaperone DAXX, as siRNA depletion of 

DAXX eliminated the bulk of CENP-A mislocalization, presenting a model whereby DAXX 

promiscuously picks up excess CENP-A-H4 and loads it onto chromatin in place of H3.3-H4 

(Lacoste et al. 2014). Mislocalization of CENP-A by ATRX and HIRA has also been proposed in 

colorectal cancer cell lines with naturally high levels of CENP-A (Athwal et al. 2015; Nye et al. 

2018). Importantly, induced CENP-A overexpression results in chromosomal instability (CIN) 

as evidenced by various mitotic defects, including increased rates of both congression and 

segregation errors, associated with decompaction of endogenous centromeres and reduced 

recruitment of CENP-T and components of the Ndc80 complex (Shrestha et al. 2017, 2021). 

Interestingly, depletion of DAXX rescued these phenotypes, suggesting that mislocalization of 

CENP-A, rather than CENP-A overexpression itself, may cause the mitotic errors. Notably, CIN, 

defined as an increased rate of chromosome segregation errors that results in numerical 

and/or structural chromosomal abnormalities, occurs in up to ~80% of cancers (Carter et al. 

2012), contributes to tumor progression, aggressiveness, and therapeutic resistance, and 

correlates with tumor stage, relapse, and metastasis (reviewed in (Bakhoum and Cantley 
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2018)). Furthermore, centromere breaks, neocentromeres and dicentric chromosomes are all 

linked to CIN in disease (reviewed in (Barra and Fachinetti 2018)). Thus, CENP-A 

overexpression and mislocalization could be a driver of cancer aggressiveness through the 

promotion of CIN. On the other hand, excessive CIN can also be deleterious to cancer cells by 

creating unsustainable levels of genotoxicity (reviewed in (Potapova et al. 2013)). Accordingly, 

while CENP-A overexpression is generally associated with worse cancer patient prognosis, as 

discussed above, some lung and breast cancer cohorts also showed a link between high CENP-

A levels and increased sensitivity to genotoxic agents (McGovern et al. 2012; Sun et al. 2016; 

Zhang et al. 2016). Overall, both CENP-A and HJURP overexpression are common in cancer 

and correlate with tumor aggressiveness. However, what drives their overexpression and how 

it impacts cancer biology is still under investigation. 

 

5.4 Impact of p53 status on CENP-A overexpression in cancer  

In line with its negative regulation of CENP-A and HJURP transcription, p53 loss-of-function 

mutations correlate with high CENP-A and HJURP levels across cancers (Filipescu et al. 2017). 

Importantly, ectopic CENP-A or HJURP overexpression in a classic two-hit tumorigenesis 

model combining the knockout of p53 with the expression of a putative oncogene in mouse 

embryonic fibroblasts (MEFs) was not sufficient alone to drive oncogenesis in this system. 

However, p53 knockout in MEFs increased HJURP and CENP-A levels, which increased further 

upon oncogenic transformation, and tumorigenic cells proved addicted to this overexpression 

(Filipescu et al. 2017). Importantly, inducible HJURP knockout (KO) by CRISPR-Cas9 in MEFs, 

human cancer cell lines, and MEF in vivo grafts resulted in distinct phenotypes depending on 

p53 status. In p53-WT cells, HJURP KO led primarily to cell cycle arrest, but in p53-null cells, it 

led to severe aneuploidy and apoptosis, halting tumor growth in vivo (Filipescu et al. 2017). 

Thus, excess HJURP becomes essential for maintaining tolerable genome integrity and survival 

in cancer cells, particularly with loss of p53 and cell cycle checkpoints. Interestingly, while 

ectopic overexpression of CENP-A in mouse cells showed mislocalization to chromosome 

arms, similar overexpression levels upon p53 knockout and oncogenic transformation did not 

(Filipescu et al. 2017). This suggests that CENP-A and HJURP levels need to be co-regulated. 

When unbalanced, this could lead to a deleterious situation for cells and represent an Achilles 

heel in tumor cells. Studies comparing the impact of different CENP-A and HJURP dosages on 

cell survival and how it translates to prognosis in human cancers are needed. 
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The impact of p53 status on cell fate upon CENP-A overexpression is also significant. Notably, 

CENP-A levels vary widely between tumors and even different cell types in healthy tissue 

(Figure 4). Induced CENP-A overexpression in isogenic human cell lines with or without 

defective p53 revealed dramatically distinct effects on both cell state and cell identity (Jeffery 

et al. 2021). In terms of cell state, CENP-A overexpression in p53-WT cells led to mitotic 

defects, prolonged cell cycle arrest, and ultimately senescence, showing reduced 

proliferation, increased sensitivity to X-irradiation, and decreased colony-forming ability. 

Meanwhile, the p53-defective cells escaped cell cycle arrest, evaded senescence, and showed 

tolerability for X-irradiation. A striking change in cell identity also occurred that depended on 

p53 status, specifically in the non-tumoral breast epithelial cell line MCF10-2A (Figure 5). 

While the p53-WT cells maintained their epithelial identity long-term, prolonged CENP-A 

overexpression promoted epithelial-to-mesenchymal transition (EMT) in the p53-defective 

cells. Since EMT is associated with increased stemness and cell plasticity, this provides another 

link between CENP-A and its role in stem cell identity, discussed above. EMT is also strongly 

linked to invasiveness and metastasis (reviewed in (Shibue and Weinberg 2017; Pastushenko 

and Blanpain 2019)). Thus, these findings support a mechanism by which CENP-A 

overexpression could promote these aggressive phenotypes in p53-defective cancers. In 

agreement, a recent study by Shrestha et al. found that induced CENP-A overexpression in 

p53-defective cancer cells (DLD1) increases cell invasion in vitro (Shrestha et al. 2021). Overall, 

these studies demonstrate that while CENP-A or HJURP overexpression may not necessarily 

be direct drivers of oncogenesis, they are not passive passengers either. Notably, the very 

concept of driver mutations is evolving, as even mutations of well-established tumor 

suppressors (TP53) and oncogenes (KRAS) cause a continuum of phenotypic effects, rather 

than categorizing them into discrete categories (Ursu et al. 2022). In any event, depending on 

p53 status, misregulation of CENP-A and HJURP can result in distinct cellular consequences 

with implications for cancer prognosis and therapy. 
 

5.5. Centromere nuclear positioning in healthy tissues and cancer 

Centromere clustering in the nucleus influences 3D genome interactions that regulate diverse 

cellular processes (reviewed in (Muller et al. 2019)). From yeast to humans, centromeres from 

different chromosomes cluster near the nuclear periphery or the nucleolus throughout 
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interphase. This contrasts with the spatial organization of chromosomal territories, which 

favor intra-chromosomal rather than inter-chromosomal interactions. In humans, studies 

assessing centromere positioning in solid tissues and malignancies are rare, but FISH and/or 

immunofluorescence microscopy in hematopoietic progenitor cells, mature blood cells (B and 

T lymphocytes, granulocytes, monocytes) (Salníková et al. 2000; Alcobia et al. 2003; Ollion et 

al. 2015), primary fibroblasts (Bartholdi 1991), and ESCs (Wiblin et al. 2005) have shown 

consistent centromere clustering. Noncycling lymphocytes and terminally differentiated 

monocytes showed robust centromere clustering to the nuclear periphery, with only rare 

single foci associated with the nucleolus (Weimer et al. 1992; Weierich et al. 2003; Solovei et 

al. 2004). Centromere clustering in cycling cultured cells is more dynamic. During G1, 

centromere foci only briefly associated with the nuclear periphery, with a greater proportion 

adjacent to the nucleolus in comparison to the non-cycling cells (Solovei et al. 2004; Ollion et 

al. 2015). In late G1/early S, centromere foci partially disperse in non-random patterns that 

often resemble rings or lines, followed by doubling upon replication and further dispersal as 

cells enter G2. Finally, in prometaphase, with condensation of chromosomes and 

chromosome alignment, the centromere foci separate entirely for entry into mitosis 

(Bartholdi 1991; Solovei et al. 2004). Notably, dynamic centromere clustering is also linked to 

cell differentiation. Human embryonic stem cells showed a smaller proportion of centromere 

foci at the nuclear periphery than differentiated lymphoblastoid cells or primary fibroblasts 

(Wiblin et al. 2005). Meanwhile, different centromeres clustered together according to cell 

type and at different stages of hematopoietic differentiation (Alcobia et al. 2000, 2003). More 

recently, chromatin capture experiments (e.g., 4C, Hi-C) confirmed the strong interaction of 

centromeres and pericentromeres in sub-compartments across many species, including S. 

cerevisiae, S. pombe, C. albicans, D. melanogaster, A. thaliana, and vertebrates, though to a 

weaker extent in mouse and human cells (reviewed in (Muller et al. 2019)). Chromatin capture 

experiments also demonstrated that centromeres act as a topological barrier to intra-

chromosomal contacts between p and q arms for inactive regions in human cells (Kalhor et al. 

2011). Centromere clustering may also play a key role in genome integrity as its disruption led 

to nuclear budding, formation of micronuclei, DNA damage and cell death in both Drosophila 

and mouse cells (Jagannathan et al. 2018). Interestingly, phase separation has been proposed 

for centromere clustering considering pericentric heterochromatin foci bound by HP1 in 

Drosophila and mouse cells (Strom et al. 2017). However, which factors are involved in 
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regulating centromere clustering during the cell cycle and as cells differentiate remains to be 

determined. Furthermore, the impact of centromere clustering on gene expression and the 

functional consequences of this clustering in human cells are still open questions. 

 

Another major question is how centromere positioning is altered in human cancers. Recent 

work, using a variety of fixed normal and malignant tissue sections from patients, assessed 

centromere positioning by CENP-A immunohistochemistry (Verrelle et al. 2021). Remarkably, 

all healthy and benign tissues tested, independently of proliferation, consistently showed 

regularly spaced CENP-A clustering close to the nuclear periphery, including tissues from 

breast, head and neck, stomach, kidney, pancreas, liver, lymph node, gall bladder, colon, and 

placenta. In striking contrast, all neoplastic tumors showed loss of regular centromere spacing, 

reduced localization to the nuclear periphery, diversification of the number and size of CENP-

A foci, and greater heterogeneity in CENP-A patterning and intensity across nuclei (Figure 6a). 

Thus, disruption of centromere positioning, likely accompanied by changes in genome 

architecture, can provide a hallmark of malignancy. Furthermore, CENP-A nuclear patterning 

for a cohort of patients with head and neck cancer treated with chemoradiation predicted 

curability with 96% accuracy and a clear overall survival advantage (Figure 6b and c), 

independent of proliferation (as measured by Ki67 immunohistochemistry). The distinct 

CENP-A pattern, termed “Pattern-C”, proved to be a prognostic/predictive marker that 

outperformed all other tumor characteristics, including HPV status and tumor stage. Given the 

conservation of CENP-A patterning across tissues, the ability of Pattern-C to predict sensitivity 

may extend to other cancers treated with genotoxic agents. Future work should focus on 

validating the current findings in other cohorts and identifying the functional mechanisms 

behind this striking correlation. So far, our understanding of the relationship between 3D 

genome architecture and tumor heterogeneity remains limited, but CENP-A staining by 

immunohistochemistry represents a simple and efficient method to explore this relationship 

further. Until recently, the use of genome-wide chromatin capture technologies in primary 

human cancers has been limited to acute lymphoblastic leukemia (Kloetgen et al. 2020) and 

gastric cancer (Ooi et al. 2020) due to high input requirements. However, low input methods 

are also emerging (Díaz et al. 2018; Animesh et al. 2021). These are avenues opening up the 

possibility of characterizing alterations to 3D genome architecture across cancers. Finally, the 

complete sequencing of the human genome (Nurk et al. 2021; Altemose et al. 2021) and the 
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accompanying methods for mapping short-read sequencing results to centromeres enables 

the precise characterization of centromere chromatin contacts genome-wide in healthy and 

diseased states. 

 

Overall, the tight cell cycle regulation of CENP-A expression is essential for the faithful 

inheritance of DNA in healthy cells, and CENP-A levels are held in check by the tumor 

suppressor p53. But CENP-A is commonly overexpressed in cancer, with links to CIN and tumor 

aggressiveness. However, it may also play an important role in stemness and cell identity, 

depending on p53 status. Finally, CENP-A staining as a readout of centromere positioning 

represents a novel marker of tissue malignancy and may help predict treatment outcomes. 

 

6. Conclusions: 

Centromeres are a striking example illustrating how genome architecture can change in 

healthy and diseased cells across species. Essential for proper chromosome segregation as 

cells divide, the rapid co-evolution of centromeric DNA sequences, the centromere-specific 

histone H3 variant, and its dedicated chaperone underline how evolutionary forces on each 

of these centromere components can align with a functional role. While CENP-A represents a 

prime example of a bona fide transgenerational epigenetic mark for defining centromeres, the 

complex genetic repetitive structure of human centromeric DNA provides advantages for 

enhancing centromere fidelity. Importantly, centromere establishment and maintenance 

across cell divisions depends on coordinated transcriptional and post-translational control, 

operating on a key network of centromere, kinetochore, and cell cycle factors across the cell 

cycle. Finally, perturbation of CENP-A and centromere architecture commonly occurs in 

cancer. Thus, evaluation of centromere function represents an important area to further 

explore with implications for normal development, cell fate, tumor aggressiveness, and 

patient treatment.  
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Figure Legends 
 
Figure 1. Schematic diagram of human centromere and kinetochore components in M phase. 

Recently reviewed in (Kixmoeller et al. 2020; Navarro and Cheeseman 2021), the centromere 

is the site of kinetochore assembly and microtubule attachment in mitosis and meiosis, visible 

as a chromosomal constriction in condensed chromosomes (represented on the left). 

Centromere chromatin contains CENP-A nucleosomes interspersed with H3.1 and H3.3 

nucleosomes (not shown). CENP-B binds a specific 17 bp motif (CENP-B box) within 

centromeric alpha satellite DNA and stabilizes kinetochores through direct interaction with 

CENP-A and CENP-C. CENP-C also interacts directly with CENP-A nucleosomes, forming the 

scaffold for the CCAN sub-complexes CENP-NL and CENP-HIKM, and the Mis12 complex of the 

outer kinetochore. In addition to CENP-C, CENP-NL interacts directly with CENP-A, CENP-T, 

and CENP-HIKM, which binds CENP-OPQUR. CENP-T binds DNA non-specifically and interacts 

directly with CENP-HIKM, as well as Knl1 and Mis12. While all 16 CCAN components remain 

localized to the centromere throughout the cell cycle, the different CCAN sub-complexes show 

dynamics in their intra-CCAN interactions and relative abundance. The outer kinetochore 

assembles in late G2/M. The Mis12 complex is phosphorylated by Aurora B, which allows its 

binding to CENP-C. The Knl1 complex then binds Mis12. Mitotic CDK1 phosphorylates CENP-T 

in early M phase, enabling CENP-T to recruit Mis12 as well. After nuclear envelope breakdown, 

the Ndc80 complex is recruited to Mis12 and/or phosphorylated CENP-T. Ska1 and 

Astrin/SKAP bind Ndc80 to promote its binding to spindle microtubules. In the absence of 

microtubule interaction, the spindle assembly checkpoint proteins and fibrous corona are also 

recruited (not shown). Once microtubule interaction is established and kinetochores bi-

oriented, the spindle assembly checkpoint proteins are released, and segregation occurs. 

Simultaneously with outer kinetochore assembly, CENP-C recruits the Mis18 complex 

(M18BP1, MIS18α, MIS18β), which recruits HJURP loaded with new CENP-A-H4 dimers so they 

can be incorporated into centromere chromatin in early G1. Complex names are indicated in 

bold. 

 

Figure 2. Schematic diagram of chromosome 8 with zoom on centromere showing DNA 

structure and organization, DNA methylation, and CENP-A enrichment, adapted from (Logsdon 

et al. 2021). 
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Schematic diagram of G-banded chromosome 8 with approximate centromere highlighted in 

pink. Approximate “pericentric” and “centric” domains are indicated within the centromere, 

with the “functional domain” defined by CENP-A localization indicated at the bottom. The 

diagram shows the precise structure, organization, DNA methylation, and CENP-A localization 

for the centromere of chromosome 8, as characterized by (Logsdon et al. 2021). Repeat 

elements in top rectangle colored according to classification type: a-satellites, grey; b-

satellites, blue; g-satellites, purple; LINEs, pink; LTRs, orange; SINEs, turquoise. The a-satellite 

structure colored by HOR unit length: monomeric/divergent, black; 4-monomer, blue; 7-

monomer, red; 8-monomer, green; 11-monomer, purple. 

 

Figure 3. Dynamics of centromere components during the cell cycle, adapted from (Muller and 

Almouzni 2017). 

A) Increased enrichment of various CCAN components begins in late S/G2/M, including CENP-

C (Gascoigne and Cheeseman 2013) and CENP-T–CENP-W, recruited de novo in late S phase–

G2 phase (Prendergast et al. 2011) via the chaperone FACT (Prendergast et al. 2016). 

Kinetochore assembly begins.  

B) Centromeres are licensed in the late G2 phase in a process involving the Mis18 complex 

(M18BP1, MIS18α, MIS18β). M18BP1 is recruited to CENP-C (Moree et al. 2011; Dambacher 

et al. 2012; McKinley and Cheeseman 2014). The Mis18 complex (Silva et al. 2012; Pan et al. 

2017; Spiller et al. 2017) and HJURP (Wang et al. 2014; Muller et al. 2014) are site-specifically 

dephosphorylated and sequentially recruited after anaphase onset upon reduced cyclin-

dependent kinase 1 (CDK1) and CDK2 (CDK1/2) activity (Stankovic et al. 2017).  

C) Mis18 complex is phosphorylated site-specifically by Polo-like kinase 1 (PLK1) and 

maintained at centromeres (McKinley and Cheeseman 2014). HJURP dimerizes in complex 

with Mis18 (Zasadzinska et al. 2013; Pan et al. 2019), interacts with DNA (Muller et al. 2014), 

and deposits CENP-A-H4 in early G1 (Jansen et al. 2007; Dunleavy et al. 2009; Foltz et al. 2009). 

It also interacts directly with CENP-C and possibly helps to reposition CENP-C at centromeric 

chromatin (Tachiwana et al. 2015). H3.3, as a placeholder for CENP-A, is possibly evicted in 

the process (Dunleavy et al. 2011).  

D) In G1, kinetochores are disassembled, and the Mis18 complex and HJURP leave the 

centromere. 
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E) During late S phase, centromeric chromatin is replicated. H3.1, H3.3, and CENP-A 

nucleosomes are disrupted as the replication fork progresses, and old histones are recycled in 

a process involving MCM2 and ASF1 (Richet et al. 2015; Clement and Almouzni 2015; Huang 

et al. 2015). Recycling of old CENP-A depends on HJURP (Zasadzińska et al. 2018) and CENP-C 

(Nechemia-Arbely et al. 2019). New H3.1 and H3.3 are deposited through mechanisms 

involving the dedicated chaperone complexes indicated. CENP-A is diluted onto both daughter 

strands, and H3.1 and/or H3.3 may be deposited to fill the gaps (Dunleavy et al. 2011). The 

H2A–H2B pool is handled by the FACT complex (Formosa 2013). PTM, post-translational 

modification.  

 

Figure 4. Variation in CENP-A expression levels in cancer, normal tissues, and single cells. 

A) Box and dot plots indicating CENPA mRNA expression levels in patient tumors relative to 

normal samples (z-score, log2 RNA SeqV2 RSEM) from cBioPortal (TCGA PanCancer Atlas 

studies) (Cerami et al. 2012; Gao et al. 2013). The plot was generated using the cBioPortal web 

interface. X-axis indicates Cancer Type: Bladder Urothelial Carcinoma (Blad.), 

Cholangiocarcinoma (Chol.), Colorectal Adenocarcinoma (Col.), Endometrial Carcinoma 

(Endo.), Esophageal Squamous Cell Carcinoma (ESCC), Esophagogastric Adenocarcinoma 

(Eso.), Fibrolamellar Carcinoma (FLC), Head and Neck Squamous Cell Carcinoma (HNSCC), 

Hepatocellular Carcinoma (Liver), Invasive Breast Carcinoma (Breast), Non-Small Cell Lung 

Cancer (Lung), Prostate Adenocarcinoma (Pros.), Renal Clear Cell Carcinoma (RCCC), Renal 

Non-Clear Cell Carcinoma (RNCCC), Undifferentiated Stomach Adenocarcinoma (Stom.), Well-

Differentiated Thyroid Carcinoma (Thy.). TCGA: The Cancer Genome Atlas. 

B) RNA expression consensus data of normal tissues obtained from the Human Protein Atlas 

(Uhlén et al. 2015) showing normalized Transcripts Per Million (nTPM) expression values from 

the Human Protein Atlas RNA-seq data and RNA-seq data from the Genotype-Tissue 

Expression (GTEx) project. X-axis indicates tissue type. Bar plot colored according to tissue 

groups, as indicated in the legend on the right. Plot source: 

http://www.proteinatlas.org/ENSG00000115163-CENPA/tissue  

C) Single-cell RNA sequencing data from the Human Protein Atlas meta-analysis of 10X 

Genomics Chromium single-cell gene expression databases containing healthy human tissues 

(Karlsson et al. 2021), showing normalized Transcripts Per Million (nTPM) expression values. 

The X-axis indicates cell type. Bar plot colored according to cell type groups, as indicated in 
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the legend on the right. Plot source: https://www.proteinatlas.org/ENSG00000115163-

CENPA/single+cell+type  

 

Figure 5. CENP-A overexpression promotes distinct cell fates depending on p53 status, adapted 

from (Jeffery et al. 2021). 

A) High CENP-A promotes EMT in p53-defective cells: Immunofluorescence images of breast 

epithelial cells (MCF10-2A) with wild-type p53 (p53-WT) or dominant-negative p53 (p53-DN), 

with or without prolonged CENP-A overexpression (34 days). Scale bars = 40µm. DAPI in cyan. 

E-cadherin (epithelial marker) in yellow. Vimentin (mesenchymal marker) in magenta.  

B) CENP-A overexpression reprograms cell fate with distinct effects on cell state and cell 

identity depending on p53 status. Perturbation (a) by CENP-A overexpression (in blue) induces 

mitotic defects in both wild-type p53 (p53-WT, top panel blue) and p53-defective cells (p53-

DN, dominant-negative, bottom panel green). These defects provoke distinct cell fate 

decisions according to p53 status, impacting cell state (b) or identity (c). When p53 is 

functional, the cell state shifts towards acute cell cycle arrest and senescence, reducing self-

renewal capacity. Additional stress, like DNA damage from X-irradiation, amplifies this 

response, resulting in radiosensitivity. Furthermore, functional p53 ensures the preservation 

of epithelial identity. In contrast, when p53 is defective, the cells evade arrest and continue 

cycling, allowing CENP-A overexpression to promote epithelial-mesenchymal transition (EMT). 

* symbol: reprogramming stimulated by CENP-A overexpression. 

 

Figure 6. CENP-A staining patterns distinguish normal from malignant tissues and predict 

prognosis for chemoradiation-treated head and neck cancers, adapted from (Verrelle et al. 

2021).  

A) Example images of CENP-A staining by immunohistochemistry in breast normal and breast 

tumor tissues. Samples were fixed with AFA and paraffin-embedded. Normal tissues across all 

tissue types tested show a similar CENP-A staining pattern, characterized by the presence of 

CENP-A loci at the nuclear periphery, disrupted in all malignant tissues tested. The scale bar is 

10 µm. Zoom in the inset shows an example nucleus.  

B) Example images, as in (A), but comparing different CENP-A staining patterns between 

malignant head and neck tumors. Pattern-C is characterized by homogeneity in the number, 

size, shape, localization and intensity of CENP-A foci across all the nuclei in the tissue section, 
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with intra-nuclear rather than peripheral localization of centromeres, medium to strong 

intensity of CENP-A immunostaining, and mild anisokaryosis (i.e., mild heterogeneity in size 

and shape of nuclei). Any other patterns were designated Pattern Non-C. 

C) Kaplan–Meier survival curve of patients treated by concurrent chemoradiation therapy 

with CENP-A pattern-C (black) and CENP-A pattern non-C (red). 
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