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Stress-constrained topology optimization @i

using approximate reanalysis with
on-the-fly reduced order modeling

Manyu Xiao'", Jun Ma', Dongcheng Lu', Balaji Raghavan? and Weihong Zhang?

mamyeoamNpEduc Abstract

'Xi'an Key Laboratory of Scientic Most of the methods used today for handling local stress constraints in topology
g;?gggg?;;im’;'tfgmancs optimization, fail to directly address the non-self-adjointness of the stress-constrained
and Statistics, Northwestern topology optimization problem. This in turn could drastically raise the computational
Polytechnical University, Xi'an cost for an already large-scale problem. These problems involve both the equilibrium
ZCSSZQ&?ZQ Génie Civil et equations resulting from finite element analysis (FEA) in each iteration, as well as the
Génie Mécanique EA 3913, adjoint equations from the sensitivity analysis of the stress constraints. In this work, we
Institut National des Sciences present a paradigm for large-scale stress-constrained topology optimization problems,
ﬁgﬁ‘;?ées de Rennes, Rennes, where we build a multi-grid approach using an on-the-fly Reduced Order Model (ROM)
35tate LR Center of Aerospace and the p-norm aggregation function, in which the discrete reduced-order basis

Design and Additive functions (modes) are adaptively constructed for adjoint problems. In addition to
y;;gflfau‘éggumsg';ge;ﬁ; reducing the computational savings due to the ROM, we also address the

710072, China ' computational cost of the ROM learning and updating phases. Both reduced-order

bases are enriched according to the residual threshold of the corresponding linear
systems, and the grid resolution is adaptively selected based on the relative error in
approximating the objective function and constraint values during the iteration. The
tests on 2D and 3D benchmark problems demonstrate improved performance with
acceptable objective and constraint violation errors. Finally, we thoroughly investigate
the influence of relevant stress constraint parameters such as the p norm factor, stress
penalty factor, and the allowable stress value.

Keywords: Stress constraints, Topology optimization, PCA, ROM, Adjoint equations

Introduction

Mechanical stress is a critical factor that affects performance, service life, fatigue resistance
and safety of structural components, and is inarguably an important design criterion. Tra-
ditional topology optimization formulations (such as the minimum compliance problem
with a volume constraint [1-3]) typically do not consider stress constraints, which could
result in the phenomenon of high stress concentrations, leading to a final “optimized”
design that all too often fails to meet real engineering requirements, eventually requiring
manual adjustment or shape optimization as a subsequent step.
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In the past two decades, many researchers have worked on stress-constrained topology
optimization [4,5] in order to ensure that the design results are closer to engineering real-
ity. However, when compared with the stress-constraint-free problem, stress-constrained
topology optimization design presents a unique set of difficulties, which may be broadly
classified as follows:

1. The stress singularity phenomenon. This was first studied for the truss optimization
problem. Cheng and Jiang [6,7] gave a mathematical explanation for the singularity
in the topology optimization problem, attributing it to the discontinuity of the stress
constraint. Duysinx and Bendsee [8] linked stress singularity to the phenomenon of
non-vanishing stresses as the design variables tended towards zero, in other words,
a region with a very small relative density could end up with a non-zero strain which
then gives rise to non-zero (or even very high) stress, despite the fact that it represents
a hole (void area). Today, the singularity problem is typically resolved by adopting
the-relaxation approach [7-9], QP-relaxation method [10] and stress penalization
[11].

2. Large number of local stress constraints. Since stress is a local parameter, the greater
the number of elements for the domain discretization, the more there will be stress
evaluation points, resulting in a large number of local non-convex stress constraints,
which in turn will lead to a steep rise in computational cost for the sensitivity analysis
oflocal stress constraints [4, 12]. To reduce the computational complexity, local stress
constraints are usually transformed into a global stress constraint or some form of
cluster-based stress constraints by using a condensation function that approximates
the value of the maximum local function. Currently, the two most common types of
condensation functions are the Kreisselmeier-Steinhauser function (K-S) [4,12-16]
and the P-norm function [9,16-18], and they can merge a mass of local stresses into
a single constraint formula.

3. Highly nonlinear nature of the stress constraint. Any change in density value of the
adjacent region will significantly affect the stress level within some key regions [13,17]
such as depressions and corners. This requires the optimization procedure to be able
to effectively reduce or eliminate the stress concentration phenomenon, and that
the solution algorithm must maintain numerical consistency with the optimization

procedure in order to ensure stable convergence of the overall procedure [19,20].

In view of the three broad classes of problems associated with stress-based topology
optimization listed above, researchers have put forward a variety of effective methods to
deal with them.

However, with modern-day sophisticated numerical methods and the recent devel-
opment of advanced manufacturing technologies, the performance requirements for
mechanical parts in the aerospace industry have become increasingly demanding [21].
Modeling with highly refined finite element models typically results in a series of ultra-
large-scale problems with degrees of freedom ranging from tens of millions to even billions.
Given the presence of non-convex, non-linear stress constraints in large-scale topology
optimization, the main hindrances then are the solution of large-scale linear systems dur-
ing the FEA analysis (equilibrium equation) in each iteration, as well as the sensitivity
analysis of stress constraint functions due to the non self-adjoint nature [22]. Stress coag-
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ulation alone is then inadequate to improve the design, meaning that we need another
approach [23].

One highly effective and proven solution is Approximate Reanalysis (AR) using a
Reduced Order Model (ROM) technique [24—27]. Due to the non-self-adjointness of
the problem, we need to solve two high-dimensional systems during each iteration of the
optimization process, the first being the equilibrium equations from finite element anal-
ysis (FEA), the other being the adjoint equations for the sensitivity analysis of the stress
constraints. To the authors’ knowledge, virtually no work has been reported on coupling
stress-constrained topology optimization with approximate reanalysis using a ROM.

In this work, we first apply two previously proposed ROM approaches to the stress-
constrained topology optimization problem, the first being on-the-fly ROM using Prin-
cipal Components Analysis (PCA) [28] and the other being multi-fidelity ROM using the
multigrid method (MG) [29]. In addition, based on the proposed multi-fidelity ROM, we
develop two improved strategies for further reductions in computational costs, the first
one being the Adap-ROM where the residual threshold for the approximate solution of
the equilibrium equations can be adaptively selected according to the relative error of the
objective function value during the iteration; the second strategy being Bi-ROM where we
simultaneously apply the ROM to both the equilibrium equations and adjoint equations
(during the sensitivity analysis of the stress constraint). Instead of the classical Optimality
Criteria (OC) method, the Method of Moving Asymptotes (MMA) [30] is used as the
optimization algorithm in this work, and the P-norm function in [9] is adopted for coag-
ulating the local stress constraints to reduce the computational cost involved. The stress
singularity phenomenon is avoided by using stress penalization as in [11]. Recent years
there are more papers about stress constraint [31-33].

This paper is organized in the following manner: in “Theoretical formulation”, the
theoretical formulation is presented with a classical minimum compliance problem con-
strained by both stress and volume, followed by adjoint equation-based sensitivity analysis
of both the objective function and the stress constraint function. “Projection-based ROM
approaches” first introduces two projection-based ROM approaches including on-the-fly
ROM construction using PCA and multi-fidelity ROM construction using the multigrid
method, then combines both approaches into a single algorithm. In “Two improved strate-
gies”, we propose two improved strategies (i.e. Adap-ROM and bi-ROM). “Numerical
tests” details the numerical investigations using a benchmark 2D L-shaped beam exam-
ple. In “3D L-shaped beam”, we first apply a variety of ROM methods to the 3D compliance
minimization problem of L-shaped beam, and then analyze the impact of the p norm fac-
tor p, the stress penalty factor q and the allowable maximum stress value 6 on the design
results. The paper ends with discussion, concluding comments and recommendations for

future work.

Theoretical formulation

Topology optimization model

The essence of topology optimization is mathematically determining the distribution of
material in a geometrically fixed design domain under a set of constraints, such that
the resulting structure achieves some optimal combination of mechanical performance
objectives. Here, we consider the classical minimum compliance problem under stress
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and volume constraints, expressed as follows:
min, c(p) =fTu=u"Ku
K(pu=f
YN peVe _ (1)

where, p is the vector consisting of the design variables (i.e. element (e) density), and N,
is the total number of design variables.denotes the compliance of the structure (objective
function), f and u are external load vector and displacement vector of the structure
respectively, K is the global stiffness matrix of the structure.V, is the volume of element
e and V) is the initial volume of the structure, occupying the entire design domain,v; and
¥y is the material volume fraction and its allowable value respectively. oM represents the
von Mises stress for an arbitrary element, U;’M and 6 are the maximum von Mises stress
of structure and its constraint limit value.

To suppress the generation of gray elements (intermediate values between 0 and 1)
and obtain a clear black-and-white pattern, we use a modified solid isotropic material
with penalization (SIMP) interpolation [31], where the stiffness is penalized by a power
function relation between the Young’s modulus E, and element relative density p,, given
by:

Ec(pe) = Emin + pff)(Eo — Emin), (2)
where, @ > 1 is the SIMP penalty factor.is the Young’s modulus of solid material while
Enin is a vanishingly small positive value to avoid numerical instabilities such as a singular
global stiffness matrix. In this paper, @ assumes an empirical value of 3 while Epj, = 107°.

To alleviate the singular solution problem, in a manner similar to stiffness penalization
in SIMP model, we penalize the stress vectorin following scheme [12]:

Oe = (pe)qae() = (,Oe)qDOBue: (3)
where, g < 1 is the stress penalty factor, Dy is the constitutive matrix of solid materials
and B is strain-displacement matrix. ag = DyBu, is the stress vector (Voight notation)

calculated at the geometric center of the FE element (e), and the o has a different form
in 2D and 3D case, which is given by:

T
0 ;0 -0
0 <oex, Oy fexy) (2D case)
% = 0,050 0 0 0\ @
(aex, ey Oz Texy Teyn fezx) (3D case).

The corresponding von Mises stressis then calculated as follows [34]:

1
2 2 2)2
M (Gex + 0gy — OexOey + ZTey) (2D case)
o =
e

1
2 2, 2 2 2 2\2
(Gex + Oy + 047 — OexOey — OeyOez — Oez0ex + 3Teyy + 37 + 3‘5%) (3D case).

(5)

In order to reduce the calculation cost caused by massive local stress constraints, we adopt
the P-norm function [14] to coagulate the N, local stress constraints in Eq. (1) so that to

form a global stress constraint, given by:
1

N. r
UPN — (Z(UJM)P) , (6)
e=1
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where, p may be interpreted as the P-norm factor. And it determines the difference
between the original function and its approximate value. When larger values are used,
more weight is given to peak stress. Theoretically, as the value of the parameter p
approaches infinity, we have:

. PN M M
pango oY =max(c)") = ol (7)
Thus, the global stress constraint in Eq. (1) is transformed into,
o™N < 6. (8)

However, it’s impossible to choose an infinite value of p and global measure function o”N

may not approximate o4 very well. Therefore, we use following Eq. (8) to modify the

constraint in Eq. (7),

6PN — 6PN < 6, )
where, adjusted parameter £ = oM /o PN,
Generally, a high value of p could create problems with numerical accuracy since o*)?
could be very large. Actually when a high value of is used, the peak stress is weighted
more heavily, it often leads to oscillation or even divergence during the optimization
iterations. The oscillation results from the high non-linearity of the global stress function.

One work-around is to normalize the stress constraint, which is given by:
1
N, »
Gorm = § (Z(o;M>P> <L (10)
e=1

Sensitivity analysis
Using the adjoint method, the sensitivity of the objective function in Eq. (1) can be elegantly

derived as follows:
ac 7 0K

—=—u —u, (11)
3 pe 3 pe

where, Eq. (10) is the well-known self-adjoint gradient as seen in [29].

Using the chain rule, we obtain the sensitivity of the stress constraint function 62N

norm
- - T
a6t orN <8U;’M) 90,

norm
= , 12
9 pe oM\ do, 3 e (12)
where, the three terms are respectively calculated as follows:
1. the derivative of normalized P-norm function with respect to von Mises stress.
l_l)
~ PN Ne M\ P (P M P—1
aO—m)rm — i Z 0'eV X p Oev
oM pé & &
e=1
1 (13)
Ne vM\ P (Tl) vM NP1
G o) ¢ '
e=1
2. The derivative of the von Mises stress with respect to stress components.
For the 2D case:
HULI’M 1
doex — 204M (20‘3" - 063’)
BGVM 1
3;ey = 207 (zaey - Uex) (14)
do M 2Texy

00¢z Ug’M ’
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For the 3D case:

doiM
00y = ;’ ( )
3 vM
Ty = 507 (200 = Oex — 0cc)
s ; (15)
a;ez = % vM (2032 — Oex )
oM 3rexy doM 31y, d0M 3¢,
afexy - O'e"M’ afeyz - O'EVM, 0Tezs (TEW.
3. The derivative of the stress components with respect to the design variables:
ao, ou
¢ = gp¢ ' DoBue + pIDoB—— (16)
ape ap@
where, the term g% is obtained from the equilibrium equations:
Ku=f. (17)
By calculating the derivative of both sides of this equation, we have:
K e
—u.+K =0. (18)
3 pe d pe
Giving,
ou IK
¢ =K' —u,. (19)
3 pe 3¢

Substituting Eq. (18) into Eq. (15) and then Eq. (15) into Eq. (11) gives,

96 ~ PN 96 ~ PN P v\ T _ oK
Inorm _ “Inorm_ (9% x (g8 DoBu. — pIDoBK 12~ u,). (20)
3 e oM 30, 0 e

Here, an adjoint variable X is defined as:

96PN 9o vM T
AT = Znom (9% ) po pre=1 1)
oM\ do,

Thus, we obtain the adjoint equations:

agEN 9
K = Znom pTpr dog™ 22)
80 40,

Then, by solving Eq. (22), we obtain the adjoint variable A which is inserted into Eq.
(20) so that a final gradient of 6 &P

PN can be expressed as,

0 rlxjé\l{m 0 rllyé\l{m aUJM q—1 g4 T K
= DoBu, — pc A" —u,, 23
9% 8O'VM 90, qPe 0DUe — Pe 3% e (23)

doMand 30M /30, are determined by Eq. (13) and Eq.
(14) (or Eq. (15)) respectively. And as we know that,

oK
— = wp? EK°. (24)
0 pe

So we can substitute Eq. (24) into equation Eq. (23) to get

where, the terms 362N/

oG ~ PN 96 ~ PN aaevM
3 pe oM

norm — norm
0,

T
) qu_lDOBue - pr*‘” 1XTEeK0ue. (25)

Page 6 of 30
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Projection-based ROM approaches

On-the-fly ROM construction using PCA

For large-scale topology optimization problems, the main computational workload stems
from the numerical solution of the equilibrium equation at each iteration:

Ku =f, (26)

where, the computation of this high-precision full-field solution involves the inversion of
a high-dimensional linear systems that can consist of up to millions or billions of degrees
of freedom (DOF) [30]. Since the coefficient matrix K is typically ill-conditioned (due
to the SIMP interpolation) and also has a large number of DOFs, traditional methods
depending on iteration methods like PCG may still be inadequate to significantly reduce
the computational cost.

To alleviate this solution process, the authors call on a previously-proposed method
called on-the-fly ROM construction using PCA [28]. The gist of this approach is mapping
the displacement field solution of the large-scale problem Eq. (26) to a low-dimensional
space spanned by an appropriately obtained orthonormal basis ®(®T® = I) that is con-
structed on-the-fly and updated by implementing PCA for a set of stored solution snap-
shots obtained during the previous iterations. Here, we briefly present the salient features
of the approach.

Given a snapshot matrix consisting of Nj, displacement solutions at previous N}, succes-
sive iterations,

u= [ul, Uy, - ”Nb] € RN*Np, (27)

by zero-mean processing for matrix U, we obtain its centered version u,
- ; ; 1 . 1
U:[ul—u,uz—u,---,uNb—u],uZ—Zui, (28)

then performing singular value decomposition (SVD) on the centered matrix I, we have,
U = Wy un, ZN, <N, VN, <N, (29)
the reduced basis ® is obtained by truncating the first M < N}, columns corresponding

to the largest Nj, singular values in matrix ¥ which is composed of N, left singular vectors
¢i; i= 11 o ')Nb’

S <— [d1, Py D), (30)

usually, the value of M (i.e. the size of reduced basis ¢), is determined by following energy

rule:

M2
1- % < Etrunc (31)
Dty G
where, k; denotes the ith largest singular value of centered matrix I and &4,y is a user-
defined truncation error (in this paper 1%).
Now, by mapping the displacement field # on to the low-dimensional space spanned by

the reduced basis ® constructed above, we have the following ROM expression,
u~ig= da+i (32)

Substituting the approximate solution # into Eq. (26) and then projecting the equations
onto the basis, we get a reduced system with a much smaller dimensionality,

®'Kda = ' (f — Ku), (33)
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the high computational cost of solving full-scale system Eq. (26) may then be greatly
reduced through a significantly less expensive solution of Eq. (33). Finally, a linear com-
bination of projection coefficient « as in Eq. (32) is used to recover the full-filed solution.

The approximate accuracy of # is monitored during the optimization via the residual
equilibrium error which is given by,

ks
q

when the force residual of a certain optimization loop iteration (after at least N, iterations

(34)

have been completed so as to be able to obtain the basis) is lower than a pre-specified
threshold é,;,, we accept the reduced-basis solution in place of the full-field solution.
Once the force residual exceeds the tolerance &,,, we are forced to recompute a full-
field solution of Eq. (26) by the direct method, and then use this new solution to replace
the “oldest” stored displacement vector in current snapshot matrix. In order to reduce
the storage requirements for large scale problems, recalculating PCA basis for a single
snapshot update, the incremental PCA can be considered as shown in the reference [35].
In this way, the original basis is updated and improved using PCA for the next loop
iteration, which forms the so-called on-the-fly construction and updating of the ROM.

Here two points have to be noted. Firstly, the construction of the snapshot matrix,
requiring the solution of Nb linear systems, may be done by an iterative solver (see [28]),
avoiding full-size K construction. Secondly, the projection of the linear problem in Eq.
(33) also does not require the assembly of the global stiffness matrix K, as the reduced
matrix ®T K ® and the RHS term ® T K may be assembled directly by projecting individual
element contributions.

Multi-fidelity ROM construction using multigrid

Topology optimization with ROM-based reanalysis (as seen in “On-the-fly ROM con-
struction using PCA”) still suffers from a significant computational burden, as we need
to repeatedly update the reduced basis to obtain a "sufficiently good” prediction of the
displacement field when the accuracy of the ROM is insufficient. The new snapshot is
then treated as a full-field solution calculated on a fine fixed FE mesh (i.e. single-fidelity),
which should be effectively computed in some way. So, based on the above mentioned
method, [26] proposed an approach of multi-fidelity ROM construction using the multi-
grid method, where the original equilibrium equations are solved on grids of various
resolutions, and then quickly obtain a multi-fidelity snapshot solution for constructing
and updating the reduced basis. Next, A typical "V” cycle M@ iteration of recursive form
is given in Algorithm 1 as follows (¢ = 1,2,---,n — 1):

Algorithm 1 MG (KW, £ w(® ¢
1: procedure INrT1aLIZATION: (u(®), { K} (P (W,))
2: if 4+ 1 =n then

3. w1 (K(/+1))—1f(1+1)

1: else

5: Klu' = 7% u® W@(K(m, f(z),u([)) > Pre-smoothing, apply 51(681 < 3)
6 FUV = (PL)T(Y - Ku) g =0

7 wlHD)  MGKD | D 0D g4 1)) > Recursive iteration
8 ul® — u® 4 P§+1u(1+1> > Coarse-grid correction
9 Kl = fﬁz wl® W@(I((k)7 f([), u([)) > Post-smoothing, apply B2(82 < 3)
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In this paper, we set the level number » = 2 and 81 = By = 3, i.e. a simple two-
grid “V” cycle. And we choose the FE displacement solution obtained from the previous
main optimization loop as the initial guess uy, details of the coarse grid operators K1) =
(Pﬁ _H)TK ZPE 41 and prolongation operators can be seen in [24]. The smooth operators use
the PCG method. Algorithm 1 starts from MG(KW, fO, 4™, 1) , where K = K, f1) =
f. For the sake of accuracy, we repeat the above “V” cycle loop twice (initial guess for the
next loop is selected as the MG solution of the previous loop)

The algorithms for both approaches (introduced in “Projection-based ROM approaches”)
are combined in Algorithm 2, where SF-ROM stands for on-the-fly ROM construction
using PCA using single-fidelity (SF) snapshots calculated on a fixed FE mesh, and MF-
ROM for multi-fidelity ROM construction using multigrids where multi-fidelity (MF)
snapshots are obtained by M@ iteration. Full-order model (FOM) represents the full-field
solution in Eq. (26) obtained using either the direct method (for SF-ROM) or the MG
method (for MF-ROM).

Algorithm 2 SF-ROM and MF-ROM

1: procedure INITIALIZATION: (compute global stiffness matrix K; at i, iteration loop, given button,
seti=1)

2:if 1 <i < ]\“‘Vb then

3 " FOM by direct method Klui _ f

4: add u; to snapshot matrix U and compute its centered version U

5 if i = N, then

6 ® «+ SVD(U)

7: else

8 a+— ®"K,®a =" (f - Kw)

9: erp — ”K"f‘"f”

10: if e, > é,, then

11: remove the oldest snapshot from U

12: if button—1 then

13: w; FOM by direct method Kz"llzz _ f > SF-ROM
14: else

15: w; LOM by MG method gy — f > MF-ROM
16: add w; to snapshot matrix U and compute its centered version U

17: & «+ SVD(U)

18: else

19 u; M Pa+u

20: Update the cyclic variable : i =i + 1 Back to line 1

Two improved strategies

Adap-ROM

Whether we use the SF-ROM or the MF-ROM, a pivotal ROM parameter, the force
residual threshold &,, must always be predefined by users. Sometimes it’s hard to give an
appropriate value of é,; as it clearly involves a trade-off between calling the ROM solution
and the FOM solution during the optimization procedure. On the one hand, if we use a
smaller value, then the optimal objective may have better accuracy but would require more
CPU time as the FOM would ostensibly be called more frequently, on the other hand, if we
use a bigger value, then the optimal objective may have poorer accuracy but would require
less CPU time as the ROM would tend to be called more frequently. Therefore, in this
paper, we propose an adaptive selection strategy for the value of force residual threshold
which is then chosen according to the relative error variation of objective function value
during the iteration loop.

o = llcie1 — ci—all (i>3) (35)
llci—all
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¢i—1, ci—2 are the objective function values at two consecutive iterations i — 1 and i — 24,
here the relative erroris gradually decreasing because of the convergence behavior of the
compliance minimization problem. Details of the strategy are summarized in the following
Algorithm 3.

Algorithm 3 Adaptive parameter selection of force residual threshold

: procedure INPUT:(¢;_1, ¢i—a, éﬂb) > Two Objective function values ¢;_1,¢;—2
: > Initial force residual threshold &%,
: procedure INPUT: (0, €, <) > Scale factor 6,the relative error threshold &’
> Decay factor ¢

1
2
3
4
5 if e, > €2 then
6
7
8
9

érp =0 > No ROM
if ¢é¥ < e. < ¢é2 then
: else
10: set €.y = Gé[,)_b > Update the é,4

In this paper, we set @ > 1, so that the force residual threshold changes from a relatively
smaller value towards a bigger value as the relative error e, reduces. More specially,
the adaptive selection of &, is roughly divided into three stages: In the first stage, e, is
relatively higher and so the FOM rather than ROM is called on to maintain the stability
of the optimization procedure. In the second stage, the variation of the objective function
is less, so we begin using the ROM with a smaller value of é,, . Finally in the third stage, e,
is small enough (meaning that objective is sufficiently converged) therefore a larger value
&, of can be used, thus the ROM solution is more readily accepted. Note that the code in
Algorithm 3 may be directly inserted between lines 7 and 8 in Algorithm 2 for obtaining
a new version of ROM using adaptive parameter selection for the residual threshold.

Bi-ROM

Recall that in “Introduction”, we have mentioned that stress-constrained topology opti-
mization problems are generally non-self-adjoint, and will yield an additional adjoint
equation (see (Eq. (22)) derived from sensitivity analysis of the stress constraint function,
that needs to be solved. Taking advantage of the fact that the adjoint equation is of the
same scale as the FE equilibrium equations, it would seem logical to apply the ROM idea
given in Algorithm 2 to the adjoint equations, giving:

A=Eu+h (36)

where, E is the reduced basis, i represents the projection coefficients and A is the mean
snapshot for the set of adjoint solutions. An important feature here is that the construction
of the ROM for the adjoint equation and the equilibrium equations in this paper are
completely independent, which means the snapshot number and residual threshold of
the ROM for the adjoint equations could be completely different from those for the
equilibrium equations.

Numerical tests

In this section, we first apply the two ROM methods that were introduced in “Pro-
jection-based ROM approaches” SF-ROM and MF-ROM to a 2D benchmark stress-
constrained compliance minimization problem. Next, using MF-ROM, we demonstrate
the effectiveness of the two improved strategies that were presented in “Two improved
strategies”. In order to better understand the impact of the parameters associated with
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the stress constraints on optimal design, we use different values for the p norm factor
p, the stress penalty factor g and the allowable maximum stress 6 for numerical experi-
ments using a benchmark 3D L-shaped beam. Unless otherwise stated, the variables and
geometric parameters are dimensionless for all test examples in this paper. Pre-defined
parameters: Young’s modulus Ey = 1 for the solid material with a lower limit E,j, = 107°
for void material, Poisson’s ratio v = 0.3. The penalty factor of stiffness w = 3, density
filter rmin = 2.5 and the allowable volume fraction ¥y = 0.2. Since the objective function
(here compliance) is conveniently represented using a separable convex approximation
by the Method of Moving Asymptotes (MMA), which is easily adapted to different types
of topology optimization problems, we retain the MMA as the optimizer for iteration
loop. The optimization iterations stop either when the convergence condition is satisfied
or once the maximum allowable number of iterations is reached. Here, the convergence
criterion is defined as follows:

llpi-1 — pilly

loill2

where, ||-||, denotes the binary norm of a vector. i denotes the current iteration step, and

< Tol, (37)

Tol is the allowable convergence error, in this paper, Tol = 10~%.

2D L-shaped beam
Consider the classical optimization problem of the 2D L-shaped beam [4,5,8,10], the
design domain and boundary conditions are illustrated in Fig. 1. The structure’s top face
on the left side is fixed and an external load f = 1 is applied on the top right corner A. We
use 16384 bilinear quadrilateral elements to discretize the design domain, each element
having unit volume and thickness. To avoid stress concentration at the loading node 4,
the concentrated loadis evenly distributed over the 6 adjacent nodes between node A and
B, as shown in Fig. 1. For this 2D case, we set the p norm factor p = 8, the stress penalty
factor ¢ = 0.8 and the allowable maximum stress. The maximum iteration number is set
to 200. Note that for all test cases shown hereafter, the iterations were halted due to the
maximum allowable number of optimization loop iterations having been attained.

Table 1 shows the optimal topology and corresponding stress distribution obtained
using the reference method (without ROM), as well as the SF-ROM method and the
ME-ROM method using a fixed snapshot number N, and various values for the force

residual threshold é,,. Figures 2 and 3 compare the iteration histories for the convergence

vM

VM and P-norm stress o"V) between the

of the compliance and stress (von Mises stress o
SE-ROM and MF-ROM methods.

From Table 1 a macroscopic view leads us to the premature conclusion that the optimal
topology using SF-ROM and MF-ROM seem basically consistent with that using the
reference method; but on closer inspection more structural branches occur and the arc
of reentry of the L-shaped beam is more distinct when using a bigger value of &5, . And
it should be noted that for both SF-ROM and MF-ROM, stress concentration still exists
at the location of the applied force. Figure 2 shows that the objective optimization is
converged regardless of whether or not we use SE-ROM or MF-ROM. Figure 3 shows that
stress constraints using both the SF-ROM and MF-ROM are active and gradually satisfied
during the overall optimization procedure. Furthermore, due to the constraint violation
shown in Fig. 3, the convergence history of the objective function is non-monotonous as
shown in Fig. 2.
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Table 1 Comparison of optimal topology and stress distribution for 2D L-shaped beam obtained
using reference method(No ROM) and SF-ROM and MF-ROM under various é, = 0.1, 0.5 and fixed

Np =4
Method Optimal topology Stress distribution
Reference

H
|
U

SF-ROM Njp = 4, &, = 0.1

A

\Th

A

SF-ROM Np, = 4, &, = 0.5

MF-ROM N, = 4, = 0.1

@:fﬁzﬁ:éj

MF-ROM N, = 4,8, = 0.5
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Fig.2 Comparison of compliance iterative history between SF-ROM and MF-ROM usingand

The above design results are summarized in Table 2, where the relative error of the
optimal compliance (¢*) characterizes the approximate accuracy of the objective function
value using ROM,

ek —ck .|
error = M, (38)
|Crefe|
where, ¢} ofe and ¢},
method and the ROM method respectively.

From Table 2, as we increase the value of é,; , the CPU clock time using both SF-ROM

represent the optimal compliance obtained by using the reference

and MF-ROM show a significant decrease compared to the reference method, which is
easy to explain : the cheaper reduced-basis solution (ROM) is called more frequently, thus
the computational efficiency of the overall optimization routine is improved. However,
the optimal compliance using both ROM methods has a very poor accuracy if we use a
larger value of the force residual threshold (¢,;, = 0.5). This indicates that we must make

Page 13 of 30
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Fig.3 Comparison of stress iterative history between SF-ROM (a) and MF-ROM (b)

Table 2 Comparison of design results between SF-ROM and MF-ROM (after 200 iterations)
Method N, &, Callsto ROM CPU runningtime (/s) Optimal compliance (c¢*) Relative error of ¢*(%)

Reference — - 0/200 1884.26 29148 -

SF-ROM 4 0.1 135/200 1624.22 2923 0.28
0.5 164/200 1355.04 301.5 344

MF-ROM 4 0.1 129/200 1541.80 294.19 0.93
0.5 164/200 1296.32 300.11 296

Table 3 Comparison of design results between MF-ROM and Adap-ROM (after 200 iterations)

Method Ny, éy Calls to CPU running Optimal Relative error
ROM time (/s) compliance of c*(%)
(c*)
Reference - - 0/200 1884.26 29148 -
MF-ROM 4 0.05 105/200 1677.06 291.10 0.13
4 05 164/200 1296.32 300.11 2.96
Adap-ROM 4 0— 0.05— 0.5 116/200 1652.98 291.68 0.07

a trade-off between efficiency and accuracy. Furthermore, by comparing the performance
of the MF-ROM with the SF-ROM, we find that MF-ROM can further drive down the
computational cost with a minor loss of objective accuracy when using the same set of
values of N, and &,;,.

Next, we use the first improved strategy: adaptive parameter selection of the force resid-
ual threshold é,;, to modify the MF-ROM method in “Projection-based ROM approaches”.
Some parameters need to be predefined: initial force residual threshold &, = 0.05 and its
scale factor 6 = 10, initial limit of objective relative error (see Eq. (32)) &, = 2 x 1073
and its decay factor ¢ = 107! . The optimized design results are summarized in Table 3
and Fig. 4 shows the optimal topology using the MF-ROM and Adap-ROM as well as the
reference method.

From Table 3, we see that topology optimization using Adap-ROM has a clear advantage
in terms of accuracy compared to the MF-ROM method using a bigger force residual
(é,5 = 0.5), while requiring less computational time compared to the reference method,
as well as the MF-ROM method using a smaller &5, = 0.05 (as expected), which shows
that this improved method allows a good compromise between accuracy and speed. From
Fig. 4 we see that the optimal topology obtained using Adap-ROM is closer to that obtained
using the reference method, compared to the optimal topology obtained using MF-ROM,
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Fig.4 Comparison of optimal topology
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Table 4 Comparison of design results between MF-ROM and Bi-ROM (after 200 iterations)
Method N; é,, Callsto ROM CPU running time (/s) Optimal compliance (c*) Relative error of c*(%)

Reference - - 0/200 1884.26 29148 -

MF-ROM 4 0.1 129/200 1541.80 294.19 093

Bi-ROM 4 0.1 132/200 133892 293.88 0.82
6 005 148/200 133892 293.88 0.82

which is again expected. Next we give the change history of relative error e, generated by
using Adap-ROM in Fig. 5a, which allows us to decide when to use different force residual
thresholds. And Fig. 5b gives the evolutionary curve of the force residual e,.

Then, for the same 2D benchmark stress-constrained topology optimization problem,
we use another improved strategy Bi-ROM to modify the MF-ROM method in “Projec-
tion-based ROM approaches” . For the equilibrium equations (Eq. (23)), we set N = 4
and e,;, = 0.1, for adjoint equations (Eq. (21)), we set N, = 6 and e,;, = 0.05 . The design
results are summarized in Table 4 and Fig. 6 shows the optimal topology obtained using
ME-ROM and Bi-ROM as well as reference method.

From Table 4 we can see that Bi-ROM is less time consuming compared to the MF-ROM
and the accuracy of the optimized compliance is better. Figure 6 shows that the Bi-ROM
appears to yield a clearer optimal topology than the MF-ROM method.

Figure 7 shows the iteration history for the force residual e,;, of the equilibrium equations
as well as the adjoint equations, using the Bi-ROM method.
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Fig.7 Evolutionary curve of force residual e, using Bi-ROM method for equilibrium equations(left) and adjoint
equations(right)

A conclusion may be directly drawn from Fig. 8 that for the Bi-ROM, the ROM solution
of the adjoint equations is more readily “acceptable” than that of the equilibrium equations,
even for smaller values of e,;, . This is because the residual evolutionary curve of equilibrium
equations frequently oscillated above and below the threshold line(red) while the residual
evolutionary curve of equilibrium equations basically stays below the threshold line as the
iteration progresses.

Finally, we combine the Adap-ROM and Bi-ROM methods together (denoted by
AdapBi-ROM) to further improve the MF-ROM method. Some parameters are pre-
defined like before: initial limit of objective function relative error 82 = 2 x 1073 decay
factor ¢ = 107!, for the equilibrium equations: Nj, = 4, initial force residual threshold
¢0 = 0.05 with scale factor = 10, for adjoint equations Nj, = 6, initial force resid-
ual threshold &2 = 0.01 and its scale factor & = 10. The optimized design results are
summarized in Table 5 as follows.

From Table 5 we can see, the combined strategy AdapBi-ROM shows better perfor-
mance than any one of the individual strategies(Adap-ROM or Bi-ROM) from a holistic
perspective since this combined method can not only significantly reduce the computation
time but also ensure a high accuracy of the value of objective function.
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Table 5 Comparison of design results among AdapBi-ROM, Adap-ROM and Bi-ROM (after 200

iterations)
Method N, ép Calls to ROM CPU running Optimal Relative error
time (/s) compliance of c*(%)
(c*)

reference - - 0/200 1884.26 29148 -
Adap-ROM 4 0— 005— 05 116/200 1652.98 291.68 0.07
Bi-ROM 4 0.5 167/200 1294.97 299.09 261

6 0.1 153/200 1294.97 299.09 261
AdapBi-ROM 4 0— 0.05— 05 112/200 1352.96 291.52 0.01

6 0— 001 — 0.1 96/200 1352.96 291.52 0.01
Discussion

The multi-fidelity reduced-order-model (MF-ROM) approach clearly enhances the per-
formance of the topology optimization procedure with a superior reduction of computa-
tional effort and CPU time compared with single-fidelity reduced-order-model (SE-ROM)
for all the test cases studied, noting that a small loss of accuracy of the objective func-
tion is expected when using MF-ROM. By using the first proposed improved strategy
(Adap-ROM) of adaptively selecting the force residual threshold (&,;) in MF-ROM, we
found a trade-off can be made between optimization efficiency and objective accuracy. We
also note that the second proposed improved strategy (Bi-ROM) of applying MF-ROM
method to both adjoint equations derived from sensitivity analysis of stress constraint
function and equilibrium equations in FE analysis can reduce the CPU running time in a
more significant manner. In addition, even better accuracy of objective function can be
obtained compared with the original MF-ROM method (for this 2D case at least), this may
be because using a ROM for the adjoint equations corrects the convergence of the objec-
tive function. Finally, we combined both strategies and this can obtain better optimized
results because there is a significant improvement in efficiency with a higher accuracy of
approximation for the objective function.

3D L-shaped beam
In the previous section, we investigated the application of reanalysis using ROM in stress-
constrained topology optimization through a 2D numerical example. In this section, we
apply the previously described ROM methods to the 3D compliance minimization prob-
lem of the L-shaped beam. To better understand the influence of the stress constraint
on the optimization results, we then consider making an in depth analysis of some of the
parameters associated with the stress constraint based on the AdapBi-ROM method. The
L-shaped beam is shown in Fig. 8, where the structure’s top surface is fixed and a vertically
downward load f = 1 is applied along the top right side.

We use standard hexahedral elements to discretize the design domain with each element
having unit volume and thickness. The maximum number of iterations is set to 300.

ROM methods on 3D L-shaped beam

Here, we set L = 80 and W = 50, thus the design domain is discretized by a total of 32768
elements. 5 ROM methods were tested for this 3D case, The corresponding design results
are given in Table 6.
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Fig.8 Design domain and boundary conditions of 3D L-shaped beam

Table 6 Comparison of design results using several ROM methods (after 200 iterations)

Method N, & CallstoROM  CPU running Optimal Relative
time (/s) compliance error of
(c*) c*(%)
Reference - - 0/300 23406.28 45.02 -
SF-ROM 4 0.05 224/300 21388.52 45.02 0
MF-ROM 4 0.05 225/300 19682.72 45.02 0
4 0.5 260/300 19578.27 45.07 0.1
Adap-ROM 4 0— 005— 05 233/300 1965547 45.01 0.02
Bi-ROM 4 0.5 260/300 18663.07 45.09 0.16
6 0.1 281/300 18663.07 45.09 0.16
AdapBi-ROM 4 0— 005— 05 233/300 18896.49 45.00 0.04
6 0— 001 — 0.1 254/300 18896.49 45.00 0.04

From Table 6 we see that the combined AdapBi-ROM method behaves well both as far
as computational time saving as well as final objective accuracy are concerned, as expected,
in the 3D large-scale test case. Next, we will use this method as the ROM approach of
choice to conduct a parameter study.

Parametric study

For this, we set L = 50 and W = 6 in Fig. 8, thus the design domain is discretized by a
total of 9600 elements. Some parameters are predefined as follows: initial limit of objective
relative error &0 = 5 x 1073 and its decay factor ¢ = 1072, for equilibrium equations
N}, = 4:initial force residual threshold ¢2 = 0.04 and its scale factor § = 20, for adjoint
equations N, = 6;, initial force residual threshold ¢ = 0.01 and its scale factor § = 50.
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Table 7 Optimization results of AdapBi-ROM and reference method using varying p (after 300

iterations)
P Calls to ROM CPU running time (/s) Optimal compliance (c*)
Reference AdapBi-ROM Reference AdapBi-ROM Reference AdapBi-ROM
2 0 120/300 2269.06 209743 80.04 79.92
0 34/300
4 0 192/300 2401.96 2020.23 78.73 78.79
0 85/300
6 0 207/300 2354.69 1768.36 78.81 78.86
0 141/300
8 0 202/300 227797 1953.88 78.38 78.63
0 130/300
12 0 201/300 2209.22 1871.71 79.59 7845
0 147/300
20 0 227/300 2159.00 1560.70 80.33 80.30
0 255/300
30 0 231/300 2180.82 1558.75 80.30 80.29
0 252/300

Influence of p norm factor p
Here, we vary the p norm factor from 2 to 30, and while fixing the stress penalty factor at
q = 0.8 and the allowable maximum stress at 6. Table 7 gives the design results.

It can be seen from Table 7 that the CPU runtime trend for both the reference method
as well as the combined AdapBi-ROM method is not monotonic. More computation time
is spent when using a smaller p value (like 2 and 4) while less time is spent when using a
larger p value (like 20 and 30) for these two methods. However, both methods still have
some differences in terms of the changing trend of the CPU runtime, where the CPU time
of the reference method goes down while that of the AdapBi-ROM method goes up, when
we vary the p value from 6 to 8.

Interestingly, we find that the optimal compliance obtained using both methods has the
same trend of first dropping and then increasing as the value of p increases, which means
that we can likely obtain the smallest optimal compliance (meaning the “stiffest” possible
structure) by using a mid-range value for p. In general, to better balance CPU time and
structural performance, the p value should neither be too large nor too small.

Figures 9, 10 and 11 show the optimal topology and stress iterative history as well as the
volume fraction iteration history for different values of the P-norm p norm factor with
the AdapBi-ROM method.

We see from Fig. 9 that the optimal topologies obtained using different values of p based
on AdapBi-ROM method are visually different when using p = 4andp = 6 (or p = 12
and p = 20).

From Fig. 10, we can see that the stress value during the entire procedure satisfy its

constraint limit progressively faster with a larger value of p. Meanwhile, it seems that the
VM

larger the value of p, the smaller the value of the final maximum von Mises stress o,/.

For p = 20 and p = 30, the curves are below the stress limit within 50 iterations.
Fig. 11 shows that the volume fraction during the iterations can rapidly, and in a stable
manner, satisfy its respective constraint limiting value, provided p > 2.
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Fig. 12 Comparison of compliance iterative history using different values of p based on AdapBi-ROM method

Next, we give a comparison of the compliance (objective function) iteration history
using different values of p based on AdapBi-ROM method in Fig. 12 where it appears that
the larger the p value, the faster the rate of convergence of the optimization.

Investigation of varying stress penalty factor q
We vary the stress penalty factor g while fixing the p norm factor p = 8 and the allowable
maximum stress at. Table 8 gives the design results.

It can be seen from Table 8 that the trends for CPU time and optimal compliance
for both the reference method and the AdapBi-ROM method are exactly the same and
not monotonic as the g value decreases. Therefore, the ROM retains the same impact of
the stress penalty factor parameter as for the reference case. Interestingly, the CPU time
has a general tendency to first increase and then decrease while the optimal compliance
has the opposite tendency, implying a potential conflict between CPU time and optimal
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Table 8 Optimization results of AdapBi-ROM method and reference method using varying q (after
300 iterations)

q Calls to ROM CPU running time (/s) Optimal compliance (c*)
Reference AdapBi-ROM Reference AdapBi-ROM Reference AdapBi-ROM
0.9 0 228/300 2150.16 1584.64 80.00 79.98
0 236/300
0.8 0 202/300 227797 1953.88 78.38 78.63
0 130/300
0.5 0 146/300 218045 1825.66 79.90 79.74
0 151/300
03 0 198/300 223293 1884.87 80.76 80.76
0 128/300
0.1 0 226/300 219740 1698.84 80.26 80.27
0 172/300

(d)g=03 (€)g=0.1

Fig. 13 Comparison of optimal topology using different value of g based on AdapBi-ROM method

compliance for several g values. This means that g needs to be properly determined to
better balance the computational efforts and structural performance.

Just like in “Influence of p norm factor p”, we give the optimal topology and stress
iteration history as well as the volume fraction iteration history for different values of the
stress penalty factor, using the AdapBi-ROM method, as shown in Figs. 13, 14 and 15,
respectively.

From Fig. 13 we can see that the optimal topologies using different values of q based
on AdapBi-ROM method are visually distinguishable from each other, which can be seen
from the test case with ¢ = 0.5 and g = 0.8.

From Fig. 14 we note that the stress constraint is not satisfied when using relatively
smaller values of g(0.1 — 0.3) which means the stress penalization is not sufficient. In
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Fig. 15 Comparison of volume fraction iterative history using different value of g based on AdapBi-ROM method

addition, using a larger value of g can cause the maximum von Mises stress to satisfy its
constraint limiting value as soon as possible during the procedure. In the case of g = 0.9,
the curves end up below the stress limit after about 25 iterations.

Figure 15 shows that the volume fraction during the iterations can rapidly and in a stable
manner satisfy the constraint for all 5 different values of g tested here.

Next, we compare the compliance iteration histories using different values of g based
on the AdapBi-ROM method in Fig. 16 where different convergence rates of optimization
can be obtained by varying g, but no monotonicity is observed as g increases. It seems
plausible that a midrange value of ¢ would lead to a relative lower convergence rate as
shown below.

Varying the allowable maximum stress
In this case, we vary the allowable maximum stress 6 while simultaneously fixing the p
norm factor p at 8 and the stress penalty factor g at 0.8. Table 9 gives the design results.
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Fig. 16 Comparison of compliance iterative history using different values of g based on AdapBi-ROM method

Table 9 Optimization results of AdapBi-ROM method and reference method using varying ¢ (after
300 iterations)

I Calls to ROM CPU running time (/s) Optimal compliance (c*)
Reference AdapBi-ROM Reference AdapBi-ROM Reference AdapBi-ROM
0.15 0 112/300 241322 223727 65.20 65.09
0 35/300
0.3 0 96/300 240848 2250.57 96.30 98.64
0 26/300
045 0 136/300 2664.67 2332.58 78.58 78.88
0 103/300
0.65 0 229/300 224031 1566.90 80.18 80.18
0 251/300
0.75 0 227/300 217139 157341 80.00 80.00
0 248/300

From Table 9 we see that the trends for the CPU time are the same for both the reference
as well as the AdapBi-ROM methods, first increasing and then decreasing as the 6 value
increases. A similar trend is seen for the optimal compliance for both methods.

Just like in the previous investigations, we give the optimal topology and stress iteration
history as well as the volume fraction iteration history for different values of the allowable
maximum stress based on the AdapBi-ROM method, as shown in Figs. 17, 18 and 19,
respectively.

From Fig. 17 we can see that the optimal topologies using different values of 6 based on
the AdapBi-ROM method are clearly very different from each other. When using smaller
values of & (6 = 0.15,6 = 0.3 ), the final design structural branches are discontinuous
and in a “fractured” state which means that the optimized design has not yet converged
sufficiently despite having completed maximum iterations. Interestingly, we find a clear
curvature forming at the corner of the L-shaped beam by using these two smaller values
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Fig. 17 Comparison of optimal topology using different value of 6 based on AdapBi-ROM method

of 6 . As for other values of 6 , the optimal topologies are also different from each other
(see the case of 6 = 0.45and & = 0.65).

From Fig. 18 we can see that the stress constraint is not satisfied in the case of the smallest
value of 6 (6 = 0.15). Also the maximum von Mises stress constraint is increasingly easier
to satisfy during the procedure as & increases, but we note that an overtly large value of &
could potentially render the stress constraint inactive (as seen in the case of & = 0.65 and
6 =075).

From Fig. 19 we can see that the volume constraint is not satisfied for smaller values of
6 = 0.15 or 6 = 0.3 despite having been satisfied for larger values of 6.

Finally, we compare the compliance iteration history using different values of & and the
AdapBi-ROM method in Fig. 20, where the compliance clearly has different convergence
rate depending on the values of 6 and a relatively large value of 6 could potentially
accelerate convergence.

Conclusions and perspectives

In this paper, we first presented two novel ROM-based Approximate Reanalysis
approaches: on-the-fly ROM using Principal Components Analysis (SE-ROM) and multi-
fidelity ROM using multigrid method (MF-ROM) and applied them to the non-self-adjoint
stress-constrained topology optimization problem, and assessed their performance in
terms of efficiency and reduction in computation time, using a 2D benchmark problem.
Furthermore, we improved the second approach with two improved strategies: a so-called
Adap-ROM method where the residual threshold of the equilibrium equations is adap-
tively selected according to the relative error of the objective function value during the
iteration; and the so-called Bi-ROM method where the ROM is simultaneously applied
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Fig. 18 Comparison of stress iterative history using different value of & based on AdapBi-ROM method

to both the equilibrium equations as well as the adjoint equations obtained from the sen-
sitivity analysis of the stress constraint. The first improved strategy achieves a balance
between efficiency and accuracy, while the second improved strategy can further reduce
the computational effort needed. To amplify the effect of the ROM, we combined both
strategies for this 2D numerical example showing a good balance between efficiency and
accuracy.

We then tested various versions of the ROM methods in this paper through a 3D L-
shaped beam. Then using the combined version of Adap-ROM and Bi-ROM, we studied
various parameters associated with the stress constraint, including the P-norm factor, the



Xiao et al. Advanced Modeling and Simulation in Engineering Sciences(2022)9:17

0.4 0.4
—volume fraction vy —volume fraction vy
——volume fraction limit ¢ v racti imit
0.35 ! 035 volume fraction limit vy
c =
2 k=]
S 03 S 03
o o
&= &=
) )
Eo.25 Eo.25
° ©° /-/ﬁ\
> >
0.2 0.2 =
0.15 0.15
0 50 100 150 200 250 300 0 50 100 150 200 250 300
iteration number iteration number
(a)s=0.15 (b)s=03
0.4 04
ol T — —volume fraction vy
==voume ,lf‘L Hows . —volume fraction limit vy
0.35 —volume fraction limit o, 0.35
c c
Ke] o
S 03 © 03
g g
0 ‘
5025 o025
g g
0.2 [t 0.2
0.15 0.15
0 B0 100 180 00 30 900 0 50 100 150 200 250 300
iteration number iteration'number
(C) 6 =0.45 (d) 5 =065
0.4
—volume fraction vy
——volume fraction limit 0y
0.35
=
=]
S 03
o
)
Eo.25
©°
>
0.2
0.15

0 50 100 150 200 250 300
iteration number

(e)5=0.75

Fig. 19 Comparison of volume fraction iterative history using different value of 6 based on AdapBi-ROM
method

stress penalty factor as well as the allowable maximum stress value, in order to better
understand the influence of the stress constraint on the ROM-based optimization results.
We showed that the aforementioned parameters have a significant effect on the final opti-
mized results (efficiency, structural performance etc), and therefore a judicious selection
of these key parameters is required.

Furthermore, from the point of view of storage, the amount of storage required for
the proposed on-the-fly ROM approach is much smaller compared to that needed for
the full-field problem with finite element simulation calculation during the optimization

Page 27 of 30



Xiao et al. Advanced Modeling and Simulation in Engineering Sciences(2022)9:17 Page 28 of 30

=0.15

]

Q> QP QPP

0.3

compliance
-—
[3,]
o

100

0 50 100 150 200 250 300
iteration number
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process. The proposed method only needs to store a small dimension snapshot matrix of
small dimensionality to obtain the reduced basis. The only thing that needs to be done
sequentially is the on-the-fly updating of the reduced basis using the residual errors, in
order to ensure the quality of approximation.

A logical extension of this work would focus on efficient large-scale dynamic topology
optimization. In addition, other non-self-adjoint problems besides the numerical exam-
ples presented in this paper need to be addressed.
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