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Abstract

The trustworthiness of neural networks is often challenged because they lack the ability to express
uncertainty and explain their skill. This can be problematic given the increasing use of neural networks
in high stakes decision-making such as in climate change applications. We address both issues by
successfully implementing a Bayesian Neural Network (BNN), where parameters are distributions
rather than deterministic, and applying novel implementations of explainable AI (XAI) techniques.
The uncertainty analysis from the BNN provides a comprehensive overview of the prediction more
suited to practitioners’ needs than predictions from a classical neural network. Using a BNN means we
can calculate the entropy (i.e. uncertainty) of the predictions and determine if the probability of an
outcome is statistically significant. To enhance trustworthiness, we also spatially apply the two XAI
techniques of Layer-wise Relevance Propagation (LRP) and SHapley Additive exPlanation (SHAP)
values. These XAI methods reveal the extent to which the BNN is suitable and/or trustworthy. Using
two techniques gives a more holistic view of BNN skill and its uncertainty, as LRP considers neural
network parameters, whereas SHAP considers changes to outputs. We verify these techniques using
comparison with intuition from physical theory. The differences in explanation identify potential
areas where new physical theory guided studies are needed.

1 Introduction

There is already scientific certainty that global heating is changing the climate, but understanding ex-
actly how the climate will change and the potential impacts is an open problem. Increasingly, artificial
intelligence techniques, such as neural networks, are being used to better understand climate change (for
example Ham et al., 2019; Huntingford et al., 2019; Rolnick et al., 2019; Cowls et al., 2021), but as
neural network techniques become evermore ubiquitous, there is a growing need for methods to quantify
their trustworthiness and uncertainty (Li et al., 2021; Mamalakis et al., 2021). Following Sonnewald and
Lguensat (2021), we define a method to be trustworthy if its results are explainable and interpretable,
and therefore these two concepts are somewhat linked as improving uncertainty quantification also im-
proves result interpretability. Quantifying uncertainty using classical neural networks is particularly
difficult because they lack the ability to express it and are often overconfident in their results (Mitros
and Mac Namee, 2019; Joo et al., 2020). A range of techniques have been used to address this uncer-
tainty quantification issue (Guo et al., 2017) and a particularly common one is to use an ensemble of
deep learning models (for example Beluch et al., 2018). However, choosing a good ensemble of models is
non-trivial (see Scher and Messori, 2021) and may be computationally expensive because it requires the
network to be trained multiple times. This lack of uncertainty analysis limits the extent to which classical
neural networks can be useful for ocean and climate science problems. For example, lack of knowledge
of uncertainties in future projections of sea level rise limits how effective coastal protection measures can
be for coastal communities (Sánchez-Arcilla et al., 2021). Measures of uncertainty are also important for
out-of-sample predictions, which are common in climate change science because neural networks must
be trained on historical data and applied to a changed climate scenario where the dynamics governing a
region may have fundamentally changed. Thus, quantifying uncertainty within a climate application is of
paramount importance as decisions based on neural network predictions could have wide ranging impacts.
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Moreover, there can be distrust of neural network predictions in the climate science community because
of the potential for spurious correlations giving rise to predictions that are nonphysical. Predictions are
more trustworthy if they are explainable (i.e. if the reason why the network predicted the result can be
understood by members of the climate science community). However, adding explainability techniques
to uncertainty analysis is an understudied area.

In this work, we address both issues of uncertainty and trustworthiness by implementing a Bayesian
Neural Network (BNN) (Jospin et al., 2020) with novel implementations of explainable AI techniques
(known as XAI) (Samek et al., 2021). We focus on applying this technique to assess uncertainty in
dynamical ocean regime predictions due to a changing climate following the THOR (Tracking global
Heating with Ocean Regimes) framework (Sonnewald and Lguensat, 2021). This is the first time BNNs
have been used to predict large-scale ocean circulations, although they have been used for localised
streamflows in Rasouli et al. (2012, 2020). Our work is particularly pertinent with a recent IPCC Special
Report (Hoegh-Guldberg et al., 2018) highlighting uncertainty in ocean circulation as a key knowledge
gap area that must be addressed. Both (Sonnewald and Lguensat, 2021) and our work are designed
to predict future changes to ocean circulation using data from the sixth phase of the Coupled Model
Intercomparison Project (CMIP) (used in IPCC reports) (Eyring et al., 2015). We note however that,
as CMIP6 is a large international collaboration, data dissemination and quality control can be difficult,
which in turn limits the capability for good analysis. Sonnewald and Lguensat (2021) is an example of
using sparse data in this context, and resolving this issue generally is an area of ongoing research (Eyring
et al., 2019).

Unlike classical neural networks, BNNs make well-calibrated uncertainty predictions (Mitros and
Mac Namee, 2019; Jospin et al., 2020) and clearly inform the user of how unsure the outcome is. This
provides a more comprehensive description of the neural network prediction compared to a classical neural
network and one which better meets the needs of climate and ocean science researchers. Furthermore,
the uncertainty measures provided by the BNN approach reveal whether a prediction made on a sample
that differs greatly from the training data can be trusted. For example, it is known that the wind
stress over the Southern Ocean will change in the future, with implications for the dynamics key to
maintaining global scale heat transport. However, the region already has extreme conditions, so a change
here could result in entirely new dynamical connections. The BNN outputs would allow us to understand
if the prediction based on the new conditions can still be trusted. This uncertainty analysis is possible in
BNNs because the weights, biases and/or outputs are distributions rather than deterministic point values.
Moreover, these distributions mean BNNs can easily be used as part of an ensemble approach (a very
common approach in climate science), by simply sampling point estimates from the trained distributions
to generate an ensemble (Bykov et al., 2020).

Using BNNs is a large step towards trustworthy predictions, but results also gain considerable trust-
worthiness to climate researchers and practitioners if their skill is physically explainable. Note that
throughout we define explaining skill to mean explaining the correlations between the input features that
give rise to the predictions. Governments and regulatory bodies are also increasingly imposing regulations
that require trustworthiness in AI processes used in certain decision-making (see Cath et al., 2018) and
imposing large fines if the standards are not met (see for example recent directives from the European
Commission (2021) and the USA government (E.O. 13960 of Dec 3, 2020)). XAI techniques can be used
to explain the skill of neural networks (Samek et al., 2019, 2021; Arrieta et al., 2020), but there has been
little work combining explainability with uncertainty analysis in part because the distributions in BNNs
add extra complexity. In this work, we adapt two common XAI techniques so that they can be used to
explain the skill in BNN results: Layer-wise Relevance Propagation (LRP) (Binder et al., 2016) which is
here applied to BNNs for only the second time after having been first applied to BNNs in Bykov et al.
(2020) and SHAP values (Lundberg and Lee, 2017) which are here applied to a BNN for the first time.
These XAI methods reveal the extent to which the BNN is fit for purpose for our problem. Moreover,
our approach means we can gain a reliable notion of the confidence of the explanation, which has been
highlighted as a key area where XAI techniques must improve (Lakkaraju et al., 2022). Applying our XAI
techniques to BNNs trained on real-world ocean circulation data in an application designed to understand
future climate has the added benefit that we are able to validate and confirm these novel applications
of XAI using physical understanding of ocean circulation processes, improving confidence in our BNN
predictions. Thus, our novel framework is able to quantify uncertainty and improve trustworthiness (i.e.
explainability and interpretability) in predictions, marking a significant step forward for using neural
networks in climate and ocean science.

In this work, we choose to apply two different XAI techniques specifically to gain a holistic view of the
skill of the BNN as LRP considers the neural network parameters whereas SHAP considers the impact of
changing input features on the BNN outputs. This is important to ensure that what the BNN has learned
is genuinely rooted in physical theory. The two different approaches also give a more overall impression of
uncertainty as they capture different aspects with LRP capturing model uncertainty and SHAP capturing
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(a) Classical deterministic Neural Network. Weights and
biases are point estimates.

(b) Bayesian Neural Network (BNN). Weights and biases
are distributions.

Figure 1: Comparing a standard neural network to a BNN.

prediction sensitivity to this model uncertainty. Furthermore, by considering two different techniques,
we can explore whether they agree as to which features are important in each region of the domain. This
allows us test if the ‘disagreement problem’ exists in this work, where two techniques explain network
skill in different ways (Krishna et al., 2022), which is a growing area of interest in XAI research.

To summarise the main contributions of our work are that we present the first application of BNNs to
quantify uncertainty in large-scale ocean circulation predictions, and explain the skill of these predictions
through novel implementations of the XAI techniques, SHAP and LRP, thereby improving trustworthi-
ness. The remainder of this paper is structured as follows: Section 2 explores the theory behind BNNs
and applying XAI techniques to BNNs, Section 3 explores the dataset used to train the BNN, Section
4 shows the results of applying the BNN and novel XAI techniques to the dataset and finally Section 5
concludes this work.

2 Methods

2.1 Bayesian Neural Networks (BNNs)

Unlike classical deterministic neural networks, Bayesian Neural Networks (BNNs) are capable of making
well-calibrated uncertainty predictions, which provide a measure of the uncertainty of the outcome (Jospin
et al., 2020). This is possible due to the fact that the weights and biases on at least some of the layers
in the network are distributions rather than single point estimates (see Figure 1). More specifically, as
BNNs use a Bayesian framework, once trained, the distributions of the weights and biases represent the
posterior distributions based on the training data (Bykov et al., 2020). Note that for brevity in this section
hereafter, we refer to the weights and biases as network parameters. The distributions in the output layer
facilitate the assessment of aleatoric uncertainty (uncertainty in the data) and the distributions in the
hidden layers facilitate the assessment of epistemic uncertainty (uncertainty in the model) (Salama, 2021).
In this work, we choose to assess both types of uncertainty and use distributions for the output layer, as
well as for the network parameters of the hidden layers. Our BNN approach therefore provides a more
holistic view than previous work to assess uncertainty in large-scale ocean neural network predictions in
Gordon and Barnes (2022) where a deterministic neural network is used to predict the mean and variance
of the output distribution.

Following Jospin et al. (2020), the posterior distributions in the BNN (i.e. the distributions of the
network parameters given the training data) are calculated using Bayes rule

p (W |Dtr) =
p(Dtr|W )p(W )

p(Dtr)
=

p(Dtr|W )p(W )∫
W
p(Dtr|W )p(W ) dW

, (1)

where W are the network parameters, Dtr = (xn, yn) the training data and p(W ) the prior distribution
of the parameters. The probability of output y given input x is then given by the marginal probability
distribution

p(y|x,Dtr) =

∫
W

p(y|f(x;W ))p(W |Dtr) dW, (2)

where f(·;W ) is the neural network. However, computing p (W |Dtr) directly is very difficult, especially
due to the denominator in (1) which is intractable (Jospin et al., 2020; Bykov et al., 2020). A number of
methods have been proposed to approximate the denominator term including Markov Chain Monte Carlo
sampling (Titterington, 2004) and variational inference (Osawa et al., 2019). We use the latter which
approximates the posterior using a variational distribution, qΦ(W ), with a known formula dependent
on the parameters, Φ, that define the distribution (for example for a normal distribution, Φ are its
mean and variance). The BNN then learns the parameters Φ which lead to the closest match between the
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variational distribution and the posterior distribution i.e. the parameters Φ which minimise the following
Kullback–Leibler divergence (KL-divergence)

DKL(qΦ||p) =

∫
W

qΦ(W ′) log

(
qΦ(W ′)

p (W ′|Dtr)

)
dW ′. (3)

This formula still requires the posterior to be computed and so following standard practice, we use the
ELBO formula instead ∫

W

qΦ(W ′) log

(
p(W ′, Dtr)

qΦ(W ′)

)
dW ′, (4)

which is equal to log(p(Dtr)) −DKL(qΦ||p). Thus maximising (4) is equivalent to minimising (3) since
log(p(Dtr)) only depends on the prior (Jospin et al., 2020). In our work, we follow standard practice and
assume that all variational forms of the posterior are normal distributions and thus the Φ parameters the
neural network learns are the mean and variance of these distributions. Furthermore, for all priors in the
BNN, we use the normal distribution N (0, 1), which is again standard practice because of the normal
distribution’s mathematical properties and simple log-form (Silvestro and Andermann, 2020).

In our work, we also calculate the entropy of the final distribution as a measure of uncertainty. In
information theory, entropy is considered as the expected information of a random variable and for each
sample i is given by

Hi = −
Nl∑
j=1

pij log(pij), (5)

where Nl is the number of possible variable outcomes and pij is the probability of each outcome j for
sample i (Goodfellow et al., 2016). Hence, the larger the entropy value, the less skewed the distribution
and the more uncertain the model is of the result.

Finally, for the layer architecture of the BNN, we use the same architecture as in Sonnewald and
Lguensat (2021), who use a deterministic neural network to predict ocean regimes from the same dataset
as ours (see Section 3). Thus, our BNN has 4 layers with [24, 24, 16, 16] nodes and ‘tanh’ activation,
where the layers are ‘DenseVariational’ layers from the TensorFlow probability library (Dillon et al.,
2017), rather than the ‘Dense’ layers used in Sonnewald and Lguensat (2021). For the output layer of
the network, we use the ‘OneHotCategorical’ layer from the TensorFlow probability library instead of a
‘SoftMax’ layer and thus use the negative log-likelihood function as the loss function. The network is
compiled with an Adam Optimizer (Kingma and Ba, 2014) with an initial learning rate of 0.01, which
is reduced by a factor of 4 if the loss metric on the validation dataset does not decrease after 15 epochs
(i.e. after the entire training dataset has passed through the neural network fifteen times). The network
is trained for 100 epochs and the best model network parameters over all epochs are recorded and saved
as the trained parameters.

2.2 Explainable AI (XAI)

Whilst using a BNN enables scientists to determine how certain the network is of its results, being able to
explain the source of the predictive skill is also of key importance particularly because of the potential for
spurious correlations in neural networks giving rise to nonphysical predictions. As discussed in Section
1, XAI techniques have recently been developed to explain the skill of neural networks (i.e. explain the
correlations between the input features that give rise to the predictions). These techniques can then be
used to reveal the extent to which neural networks are fit for purpose for a given problem (Samek et al.,
2019; Arrieta et al., 2020). However, there has been little research into combining XAI techniques with
uncertainty analysis. In this section, we outline how to adapt the two common XAI techniques, LRP and
SHAP, so that they can be applied to BNNs. We remind the reader that we selected two XAI techniques
originating from two different classes to gain a holistic view of the skill of the BNN. This is important
to ensure that what the BNN has learned is genuinely rooted in physical theory, and we compare the
outcomes of these methods with intuition from that theory.

2.2.1 Layer-wise Relevance Propagation (LRP)

LRP explains network skill by calculating the contribution (or relevance) of each input datapoint to the
output score (Binder et al., 2016). This leads to the construction of a ‘heatmap’ where a positive/negative
‘relevance’ means a feature contributes positively/negatively to the output (Bach et al., 2015). For a
neural network, this relevance is calculated by back-propagating the relevance layer-by-layer from the
output layer to the input layer.

LRP has been successfully used to explain neural network skill in fields as diverse as medicine (Böhle
et al., 2019), information security (Seibold et al., 2020) and text analysis (Arras et al., 2017), and has also
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already been applied to deterministic neural networks in climate science (Sonnewald and Lguensat, 2021;
Toms et al., 2020; Mamalakis et al., 2022). However, there has been little research into applying LRP
to BNNs, because the formulae used to calculate the relevance are difficult to apply when the network
parameters are distributions.

BNNs do however have the advantage that it is easy to generate a deterministic ensemble of networks
from them, simply by sampling network parameters from the distributions. We therefore follow the novel
methodology in Bykov et al. (2020) and use LRP on this ensemble of networks, efficiently generating an
ensemble of LRP values which serve as a proxy for explaining the skill of the BNN. Each datapoint has
its own distribution of LRP values and own level of uncertainty. If a datapoint has positive or negative
relevance for every ensemble member, we can be increasingly confident about this point’s relevance for
explaining the skill of the BNN. For the remaining points, still following (Bykov et al., 2020), quantile
heatmaps of the ensemble of LRP values can be used to visualise how many ensemble members have
positive relevance and how many have negative.

There are many different formulae for calculating the relevance score with LRP (see Montavon et al.,
2019), but in this work, we follow Sonnewald and Lguensat (2021) and use the LRP-ε rule which is good

for handling noise. The relevance at layer l of a neuron i is then the sum of R
(l,l+1)
i←j for all neurons j in

layer l + 1 where

R
(l,l+1)
i←j =

zij
zj + ε sign(zj)

R
(l+1)
j . (6)

Here zij is the activation at neuron i multiplied by the weight from neuron i to j and zj =
∑

i zij (see
Montavon et al. (2019) for more details).

2.2.2 SHapley Additive exPlanation (SHAP) values

For our second XAI technique, we consider Shapley Additive Explanation values, known more commonly
as SHAP values. These were first proposed in the context of game theory in Shapley (1953), but have since
been extended to explaining skill in neural networks (Lundberg and Lee, 2017) and have been applied in
climate science to deterministic neural networks in Dikshit and Pradhan (2021); Mamalakis et al. (2022).
There has been work adding uncertainty to the SHAP values of deterministic neural networks by adding
noise (Slack et al., 2021), but this work represents the first time SHAP values are used to explain the
skill of a BNN.

SHAP values are designed to compute the contribution of each input datapoint to the neural network
output using a type of occlusion analysis. They test the effect of removing/adding a feature to the final
output i.e. calculating fF (x)−fF\i(x), where f is the model, F is the set of all features and i the feature
being considered (Lundberg and Lee, 2017). To calculate the SHAP value, we must combine this for all
features in the model with a weighted average meaning the SHAP value of feature i for output y = fF (x)
is

φi(x) =
∑

S⊂F\i

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(x)− fS(x)], (7)

where S are all the sub-sets of F excluding feature i. Note that summing the SHAP value for every
feature i gives the difference between the model prediction and the null model i.e.

fF (x) = E[y] +
∑
i

φi(x), (8)

where E[y] is the average of all outputs y in the training dataset (Mazzanti, 2020). We remark here
that evaluating (7) for every feature can be computationally expensive; the complexity of the problem
scales by 2|F |. Therefore various techniques have been proposed to speed up the evaluation of SHAP
values, the most popular of which is KernelSHAP (Lundberg and Lee, 2017). In this work, however, we
choose to calculate the exact SHAP values because we only have eight features (see Section 3) and these
more efficient techniques assume feature independence (which our dataset does not have), and can lead
to compromises on accuracy if not handled appropriately (Aas et al., 2021).

Like with LRP, we apply SHAP to an ensemble of deterministic neural networks generated from the
BNN. We note here that SHAP is model agnostic so in the future, with changes to implementation, it
may be possible to apply SHAP directly to the BNN itself. We expect the SHAP results to differ from
the LRP results because the LRP ensemble captures the model uncertainty as LRP values are a weighted
sum of the network weights, whereas SHAP captures the sensitivities of the outputs as a result of these
uncertainties.
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Figure 2: Global representation of dynamical ocean regimes in ECCOv4 data. For a full description of the ocean regimes
see Sonnewald and Lguensat (2021).

3 Data

A recent IPCC Special report highlights the need for a better understanding of uncertainty in ocean
circulation patterns (Hoegh-Guldberg et al., 2018). An understanding of emergent circulation patterns
can be gained using a dynamical regime framework (Sonnewald et al., 2019). These regimes simplify
dynamics and each regime is then defined to be the solution space where the simplification is justifiable
(Kaiser et al., 2021). Sonnewald et al. (2019) show that unsupervised clustering techniques such as k-
means clustering can be used to identify and partition dynamical regimes if the equations governing the
dynamics are known. Specifically they use k-means clustering of model data from the numerical ocean
model ECCOv4 (Estimating the Circulation and Climate of the Ocean) to identify dynamical regimes
and develop geoscientific utility criteria. In our work, we follow Sonnewald and Lguensat (2021) and
use this regime deconstruction framework as the labelled target data that the BNN seeks to predict at
each point on the grid. Because the dynamical regimes were found in the model equation space, we
have an automatic way to verify the explainable AI results. Figure 2 shows a global representation of
these six dynamical ocean regimes, which we have labelled A, B, C, D, E and F corresponding to the
regimes ‘NL’, ‘SO’, ‘TR’, ‘N-SV’, ‘S-SV’ and ‘MD’ in Sonnewald and Lguensat (2021). We have made
this label simplification because the aim of this work is to develop a neural network technique to improve
trustworthiness in ocean predictions. Thus anything other than a high-level understanding of the physics
is beyond the scope of this work and we refer the reader to Sonnewald et al. (2019) and Sonnewald and
Lguensat (2021) for a more in-depth discussion.

Features

Wind stress
curl

Bathymetry
Dynamic
sea level

Coriolis
Gradient

bathymetry

Gradient
dynamic
sea level

A High High High High High High
B High High High High High High
C High Med Med High Med Med
D Low Low Low Med Low Low
E Med Med Med High Med Med
F Med Med Med Med Med Med

Table 1: Approximate importance of features for predicting each regime according to the equation space, using analysis
from Figure 1 in Sonnewald et al. (2019).

For our input features, we follow Sonnewald and Lguensat (2021) and use data from the numerical
ocean model ECCOv4 (Estimating the Circulation and Climate of the Ocean), but the framework is set
up so that it can be readily trained on CMIP6 data in the future (Forget et al., 2015). The following
features are then used for prediction: wind stress curl, Coriolis (deflection effect caused by the Earth’s
rotation), bathymetry (measurement of ocean depth), dynamic sea level, and the latitudinal and lon-
gitudinal gradients of the bathymetry and the dynamic sea level. These features are chosen following
the dynamical regime decomposition in Sonnewald et al. (2019) and Table 1 shows which features are
important for each regime according to the clustering of the equation space based on theoretical intuition.
The specific composition of these features into terms in the equation space then manifests as different
key ocean circulation patterns. Finally, for the training and test dataset split, we split by ocean basin
and use shuffle for validation. The Atlantic Ocean basin (80oW to 20oE) is the test dataset and the rest
of the global ocean dataset is the training dataset.
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Figure 3: Training accuracy and loss metrics for the BNN showing that the training has converged. Recall from Section 3
that the training dataset is the global ocean, excluding the Atlantic Ocean basin, and that shuffle is used for validation.

4 Results

In this section, we first use a BNN to make a probabilistic forecast of ocean circulation regimes and
show the value added by the uncertainty analysis that can be conducted through using a BNN instead
of a deterministic neural network. We then use two modified XAI techniques to explain the skill of this
network, comparing the two techniques with each other and with physical understanding.

4.1 Bayesian Neural Networks (BNNs)

The advantage of BNNs over deterministic neural networks is the uncertainty estimate they provide.
However, for BNNs to be of value they must also make accurate predictions. Figure 3 compares the
accuracy metrics of the BNN applied to the training dataset (the global ocean, excluding the Atlantic
Ocean basin) and the validation dataset (shuffled) during training. The accuracy metric clearly converges
and the level of accuracy is high, indicating that the architecture and learning rates chosen are appropriate
for this dataset. When the trained BNN is applied to the test dataset (the Atlantic Ocean basin), the
accuracy is 80%, which is approximately the same as the accuracy achieved by the deterministic neural
network in Sonnewald and Lguensat (2021) on the same data. Thus, by using a BNN we have not lost
accuracy. Figure 4b shows the spatial distribution of the correct and incorrect regime predictions. Most
incorrect predictions occur for regime A for which errors are not unexpected – it is a composite regime
with a less Gaussian structure meaning it is less clearly defined and less easily determined by k-means
(Sonnewald et al., 2019).

As we are considering aleatoric uncertainty (uncertainty in the input data), the BNN output is not
deterministic but is instead a distribution. Moreover, as we are also considering epistemic uncertainty
(uncertainty in the model parameters), the network parameters are distributions, the full output is an
ensemble of distributions. In Figure 5, we show both types of uncertainty using a box-and-whisker plot for
the predictions for three example datapoints. The narrower the box and whisker, the lower the epistemic
uncertainty in the prediction for this regime. For example, in Figure 5a there is almost no width to the
box and whisker indicating low epistemic uncertainty, whereas for Figure 5b there are a range of possible
probabilities of the most likely regime occurring, indicating epistemic uncertainty. In both Figures 5a
and 5b the highest probability is high (almost 1 for Figure 5a and just under 0.8 on average for Figure
5b), which indicates that the aleatoric uncertainty is low. Therefore, practitioners can be confident in the
results for both these datapoints, with Figure 5a being more trustworthy than Figure 5b. By contrast,
Figure 5c has high levels of epistemic uncertainty and fairly high levels of aleatoric uncertainty meaning
that although the practitioner can trust that the regime is either A or F, the overall regime prediction
for this datapoint is not very trustworthy.

Using these distributions, we can calculate the difference between the probability the BNN assigns
to the predicted regime and the probability it assigns to the correct regime. If the BNN has predicted
the correct regime then this difference is zero, and, if the BNN is very certain in its prediction of the
incorrect regime, the maximum possible probability difference is one. The spatial distribution of this
value is shown in Figure 4c and unsurprisingly corresponds closely with the spatial distribution of the
correct and incorrect BNN predictions in Figure 4b. The probability difference map adds value compared
to the accuracy map because we can see where errors are more substantial. For example, although the
BNN appears to perform poorly in the accuracy statistics around Greenland (especially around 50◦W
and 50◦N and 20◦W and 70◦N), the difference between the probability of the correct regime and the
highest probability is low. Therefore the BNN is still assigning a high probability to the correct regime
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(a) Correct dynamical ocean regimes map. (b) Accuracy (T = Correct; F = Incorrect).

(c) Difference between P(predicted
regime) and P(correct regime).

(d) Entropy. (e) Confidence Interval value.

Figure 4: Spatial distribution of key metrics calculated from the BNN predictions for the test dataset (Atlantic Ocean
basin), as well as the correct regimes in this region. The diamonds are the three locations of the example datapoints in

Figure 5.
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(a) Example where correct regime predicted with high
certainty (Location is blue diamond in Figure 4).

(b) Example where correct regime predicted with some
epistemic uncertainty (Location is black diamond in Figure

4).

(c) Example where incorrect regime predicted with both
epistemic and aleatoric uncertainty (Location is magenta

diamond in Figure 4).

Figure 5: Box-and-whisker plot of BNN predictions of ocean regimes, generated using an ensemble of outputs. The
correct regime is coloured green and the incorrect regimes are coloured purple.
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Figure 6: Distribution of entropy values for the correct and incorrect regime predictions. Recall that the lower the
entropy, the more certain the result.

here which is useful for practitioners. In contrast, off the north coast of South America, the probability
difference is almost 1 meaning the BNN is doing a poor job here and should not be used in its current state
for predictions here. Comparing Figure 4c with Figure 4a reveals that almost all the high probability
differences occur at the boundaries between regime A and other regimes (for example in the Southern
Ocean at the boundary between regimes B and D with regime A), indicating this is a weakness in the BNN.
Thus by analysing this probability difference, we have gained valuable information for future predictions
and learnt that to improve the BNN accuracy, we should provide more training data on the boundaries
between regime A and other regimes.

The distributions outputted by the BNN can also be used to numerically quantify the uncertainty in
the network predictions. We can calculate the entropy value using (5), where we recall that the higher
the value the more uncertain the result. Figure 4d shows the spatial distribution of this entropy and
comparing with Figure 4b shows that the higher entropy values tend to be where the BNN prediction is
incorrect. More precisely, Figure 6 compares the distribution of the entropy when the BNN predictions
are correct and when they are incorrect, and clearly shows that the entropy for the correct predictions is
skewed towards lower values, whereas the entropy for the incorrect predictions is skewed higher. This is a
good result because it means that the predictions are notably more uncertain when they are incorrect than
when they are correct, i.e. the correct results are also the results that the BNN informs the practitioner
are the most trustworthy.

Finally, Figure 5 show that there can be substantial overlap between the box-and-whisker for each
regime. However this can be misleading as box-and-whisker plots consider upper and lower quartiles
which are not useful for assessing statistical significance. Therefore, we also consider the confidence
intervals and in Figure 4e show the spatial distribution of their size. Note that unsurprisingly, the
spatial distribution for the confidence intervals is very similar to that for the entropy because they are
calculated using similar statistics. Using confidence intervals, we find that for the majority of cases, the
probabilities for the most likely regime are statistically significantly different from the probabilities for
the other regimes. Figure 7a highlights the datapoints for which this is not the case, and unsurprisingly
shows these datapoints correspond to points for which there is high entropy (see Figure 4d). For the vast
majority of the datapoints in Figure 7a, the top two most likely regimes are statistically significantly
different from the other regimes and the correct regime is one of the two regimes. Therefore although the
neural network is uncertain for these datapoints, it is still predicting a high probability for the correct
regime. Finally, there are approximately 20 datapoints where only the top three most likely regimes are
significantly different from the others. An example of one such datapoint is shown in Figure 7b, where
half the regimes have the same probability. Although this is not ideal, this is an example of where a BNN
is better than a deterministic neural network, because it clearly informs the user that it is very uncertain
of its prediction and that using this BNN on this datapoint is inappropriate.

Therefore, in this section we have shown that by looking at the probabilities and confidence intervals
produced by the BNN, practitioners can make an informed decision as to whether to trust the BNN
prediction for the dynamical regime or whether further analysis is required for these datapoints.

10



(a) Spatial distribution of points where the most
likely regime is not statistically significantly

different from other regimes.

(b) Confidence interval plot of example datapoint,
where the probabilities for the top three regimes

are not statistically significantly different.

Figure 7: Considering whether the differences between the probabilities for each regime are statistically significantly
different. The star on (a) is the location of the example datapoint in (b). In both figures, incorrect predictions are

coloured purple and correct predictions green.

Features

Wind stress
curl

Bathymetry
Dynamic
sea level

Coriolis
Gradient

bathymetry

Gradient
dynamic
sea level

(lon)

Gradient
dynamic
sea level

(lat)
Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel.

A Med Med – Med Med + Med High + Med Med + Low Low Med High – Med Med –
B Low High + Low Med – Med High + Low Low Low Low Low Low Low Low

C Med High + Low
Med – (NH)
Med + (SH)

Low Low Low Low Low Low Low Low Low Low

D Med High + Med Med – Low
Med + (NH)
Med – (SH)

Med Med – Low Low Med Med + Low Low

E High High + Low Low Low High + Med High – Low Low Low High + Low Med +

F Med Med – Med Med – Low Med – High Med – Low Low High Med + High
Med

(– >+)

Table 2: General trends in the variance and relevance of LRP values for each regime and each feature. Here + indicates
that the feature is actively helpful and – that it is actively unhelpful (so High + indicates high positive relevance). Note (–

>+) indicates that between the 25th and 75th quantiles, the variable changes from unhelpful to helpful.

4.2 Explainable AI (XAI)

To explain the BNN’s skill, we apply two common XAI techniques, LRP and SHAP, to an ensemble of
deterministic neural networks generated from the BNN. We consider LRP in Section 4.2.1 and SHAP in
Section 4.2.2, and then compare results from the two techniques in Section 4.2.3 to test the ‘disagreement
problem’ discussed in Section 2.2. If LRP and SHAP largely agree with each other as to which features
are relevant in each region (i.e. there is no disagreement problem) and also agree with our intuition from
physical theory then this increases the trust in our XAI results. This is important to ensure that what
the BNN has learned is genuinely rooted in physics.’ Moreover, the use of a BNN allows us to explore
whether disagreement between SHAP and LRP is more likely to occur when predictions have higher
entropy (i.e. higher uncertainty).

4.2.1 Layer-wise Relevance Propagation (LRP)

Applying LRP using our ensemble approach means that each input variable has its own distribution
of LRP values and own level of uncertainty. Figure 9 shows the values for which the sign of the LRP
value (i.e the relevance) remains the same between the 25% to 75% quantiles of the ensemble. Note that
throughout the LRP values are scaled by the maximum absolute LRP value for any variable across the
ensemble. If the LRP value consistently has the same sign across the quantiles, then we can be confident
of the effect this feature has on the output; the piece of information of most interest to practitioners in
a recent survey in Lakkaraju et al. (2022).

In Figure 9, red indicates that the variable in this area is actively helpful for the BNN in making
its predictions, blue that it is actively unhelpful, and white that it is too uncertain to have consistent
relevance. Note that certain areas of white may also be because the variable does not contribute (see
Figure 12 in A which shows the actual LRP values for the 25%, 50% and 75% quantiles of the ensemble).
An important point to note when interpreting these trends is that our network predicts using a gridpoint-
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Figure 8: Most probable ocean regime predicted by Bayesian Neural Network.

(a) Wind stress curl. (b) Bathymetry. (c) Dynamic sea level. (d) Coriolis force.

(e) Gradient bathymetry
(lon).

(f) Gradient bathymetry (lat).
(g) Gradient dynamic sea

level (lon).
(h) Gradient dynamic sea

level (lat).

Figure 9: LRP values which are consistent across the whole ensemble. Red indicates that the variable in this area is
actively helpful, blue that it is actively unhelpful, and white that it is too uncertain to have consistent relevance.
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Figure 10: Locations of key dynamical processes and physical features of interest in Table 3: the North Atlantic Drift is
the blue region at ∼ 40◦N; the Gulf Stream leaving the continental shelf is the green region near coastline at ∼ 70◦W and
40◦N; the wind gyre is the pink region at ∼ 0◦ and 30◦S; and the part of the Mid-Atlantic Ridge we are focusing on is are

the gray-scale contours crossing the wind gyre at ∼ 30◦W.

Features

Wind stress
curl

Bath.
Dynamic
Sea Level

Coriolis
Gradient

bath.

Gradient
sea level

(lon)

Gradient
sea level

(lat)
Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel.

NAD Low Med + Low Low Med Med + Low High – Low Low Med Med – Low High –

GS Med High + Med Med – Low Low Med High + Med Med – High
High

(– >+)
Med Med +

Gyre Low High + Med Med – Low Low Med High – Low Low Med Med + Low Low

MAR High
Med

(– >+)
Low High – Med Med – Med High – Med Med – Med High + High Med +

Table 3: Variance and relevance of LRP values for the key dynamical processes of the North Atlantic Drift (NAD); the
Gulf Stream leaving the continental shelf (GS), the wind gyre and the key physical feature of the Mid-Atlantic Ridge as it
crosses the wind gyre (MAR) (see Figure 10). Here + indicates that the feature is actively helpful and – that it is actively
unhelpful (so High + indicates high positive relevance). Note (– >+) indicates that between the 25th and 75th quantiles,

the variable changes from unhelpful to helpful.

by-gridpoint approach and does not see the overall global map, thus making the spatial coherence striking
in its consistency. To aid with the interpretation of the LRP values for each regime, we include Figure
8 (which shows the most probable ocean regime predicted by the BNN) to help qualitatively see the
trends, and Table 2 which highlights the general trends in the relevance and variance of the LRP values
for each regime with respect to each feature. By comparing Table 1 with Table 2, we can compare the
general trends of the LRP values with what is expected from the clustering of the equation space. A
strong difference is that according to LRP the gradients of the bathymetry are irrelevant to the BNN
predictions with high certainty (apart from in key regions discussed in Table 3), whereas the equation
space suggests the bathymetry gradients are relevant for some regimes.

Of particular interest when comparing Tables 1 with 2 are the differences for Regimes A and B.
From the equation space (see Table 1), we would expect all features to be actively helpful for these
regimes. However, in the case of Regime A, the LRP values conclude that both the wind stress curl
and the longitudinal gradient of the dynamic sea level are actively unhelpful. Figure 4 shows that both
the highest areas of inaccuracy and the highest areas of entropy (i.e uncertainty) in the BNN occur for
Regime A. These LRP values suggest that the reason for these errors and uncertainty is that the BNN
is not correctly weighting the wind stress curl and the longitudinal gradient of the dynamic sea level
for Regime A. By contrast, for Regime B, there are no features which are actively unhelpful. Instead,
there are some features for which the BNN has no relevance (gradients of both the bathymetry and the
dynamic sea level). The BNN predictions for Regime B are generally accurate and certain, and therefore
this implies that, despite the conclusions from the equation space, the BNN can rely on certain key
features it has identified to make accurate certain predictions. There is therefore scope for learning about
the physical ocean processes guided by understanding of what the BNN determines as important and
unimportant.

For reasons of brevity, we do not detail all the physical interpretations in Figure 9 and Table 2 but
instead focus on the key dynamical processes of the North Atlantic Drift, the Gulf Stream leaving the
continental shelf, and the North Atlantic wind gyre; and the key physical characteristic of the mid-Atlantic
ridge specifically as it crosses the wind gyre (hereafter simply referred to as the mid-Atlantic ridge). The
location of these processes is shown in Figure 10 and the variance and relevance of the LRP values in
these regions are summarised in Table 3. The table highlights that for the North Atlantic Drift, there are
no features which have strong positive relevance; in fact, the Coriolis force and latitudinal gradient of the
sea level have strong negative relevance. Instead, the highly relevant areas for this region are not for the
regime of the North Atlantic Drift (Regime F), but for the other regimes, for example, both the dynamic
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sea level and its longitudinal gradient are strongly positively relevant for Regime A in this region. This
is also noted in Sonnewald and Lguensat (2021), who suggest this could be because of multiple inputs
contributing medium importance to predictions for Regime F (see Table 1). In contrast, where the Gulf
Stream leaves the continental shelf, the Coriolis effect and wind stress curl are both strongly helpful.
This conclusion greatly agrees with physical intuition, which states that these features are the key drivers
for the Gulf Stream’s movement across the North Atlantic (Webb, 2021). Table 3 also shows that the
bathymetry gradient is unhelpful for this process. Before leaving the coast, physical intuition suggests
that the gradient of the bathymetry is the key driver of the Gulf Stream and this can be seen in the LRP
values, (particularly for the latitudinal gradient in Figure 12h). It is therefore likely that the BNN is
using the same weightings for the bathymetry gradient as the Gulf Stream leaves the continental shelf,
but the key drivers have changed meaning the bathymetry gradient is no longer helpful. Also of interest is
the longitudinal gradient of the sea level, which is unhelpful for the North Atlantic Drift, very uncertain
for the Gulf Stream leaving the continental shelf (a region which has high entropy in Figure 4d) and
then helpful for the wind gyre. This suggests the this feature is acting as an indicator between the three
regimes discussed here. For the wind gyre, the wind stress curl is also strongly helpful, which agrees with
the intuition from physical theory of gyres, which states that they are largely driven by the wind stress
curl (see Munk, 1950). Note however that the theory also indicates that Coriolis should be somewhat
helpful but it is actively unhelpful. This variation may be because the BNN does not seem to be able
to accurately weight low values of Coriolis (near the equator). Nevertheless the general agreement with
physical intuition for the dynamical processes discussed here highlights our BNN’s ability to learn key
physical processes.

Unlike the other processes highlighted, the mid-Atlantic ridge is a physical characteristic of the
bathymetry that will remain unchanged by a future climate. The ridge is clearly identifiable in the
features in Figure 9 and it is therefore interesting to highlight the differences between the relevance of
this ridge and the relevance of the other gridpoints in the wind gyre around it. The most noticeable
difference is that the ridge adds uncertainty to the BNN predictions – for almost all features, the rel-
evance of the mid-Atlantic ridge is more uncertain than that of the wind gyre. The exception is the
bathymetry, which becomes strongly unhelpful with high certainty at the mid-Atlantic ridge. Added to
the fact that the bathymetry gradients are also more unhelpful at the ridge than at the surrounding
gridpoints, this suggests that the BNN is able to identify the ridge in the bathymetry but unable to
weight it correctly, which leads to uncertainty in the relevance of the other features. We observe that, in
contrast to bathymetry, both gradients of the dynamic sea level increase in helpfulness at the ridge, in
particular the longitudinal gradient. Moreover, Figure 4 shows the BNN predicts the correct regime for
the mid-Atlantic ridge with high certainty. Therefore, this suggests that reliable and accurate predictions
for regimes at the mid-Atlantic ridge should be based more on the gradient of the dynamic sea level than
the bathymetry itself.

To summarise, our discussion of LRP values in this section has highlighted both our BNN’s ability
to identify known physical characteristics and the potential scope to advance physical theory through
analysing its skill.

4.2.2 SHapley Additive exPlanation (SHAP) Values

Whereas LRP considers the relevance of a feature for all regimes simultaneously, the SHAP approach sees
the problem as binary for each regime: including a feature at a gridpoint either increases the probability
of the specific regime being considered there or decreases it. There is therefore a SHAP value for each
gridpoint for each regime, meaning we have six times the number of SHAP values as we do LRP. Moreover
our ensemble approach means each input variable and regime pairing has its own distribution of SHAP
values and own level of uncertainty. Table 4 summarises the general trends in the SHAP values and
in particular highlights that for all regimes and features the variance in the ensemble is low, and most
features considered are actively helpful. The main exceptions to the latter are the latitudinal gradient
of the dynamic sea level and both bathymetry gradients, which are not important for regime predictions
(apart from in certain key areas discussed later).
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Features

Wind stress
curl

Bathymetry
Dynamic
sea level

Coriolis
Gradient

bathymetry

Gradient
sea level

(lon)

Gradient
sea level

(lat)
Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel.

NAD Low High + Low Low Low Med + Low Med + Low Low Low Med + Low Low
GS Low High + Low Med – Low Med – Low Med + Low Low Low High – Low Med +
Gyre Low High + Low Low Low Low Low Low Low Low Low Med + Low Low
MAR Low High + Med Med– Low Low Low Low Med Med – Low Med + Med Med +

Table 5: Variance and relevance of SHAP values for the key dynamical processes of the North Atlantic Drift (NAD); the
Gulf Stream leaving the continental shelf (GS), the wind gyre and the key physical feature of the Mid-Atlantic Ridge as it

crosses the wind gyre (MAR) (see Figure 10).

Features

Wind stress
curl

Bathymetry
Dynamic
sea level

Coriolis
Gradient

bathymetry

Gradient
sea level

(lon)

Gradient
sea level

(lat)
Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel.

A Low Med + Low High + Low High + Low Med + Low Low Low High + Low Low
B Low High + Low Med + Low High + Low High + Low Low Low Low Low Low

C Low High + Low
Med – (NH)
Med + (SH)

Low High + Low Med + Low Low Low High + Low Low

D Low High + Low Low Low
Med + (NH)
Med – (SH)

Low Med + Low Low Low Med + Low Low

E Low High + Low Low Low High + Low Med – Low Low Low High + Low Low
F Low High + Low Low Low Med – Low Med + Low Low Low Med + Low Low

Table 4: General trends in the variance and relevance of SHAP values for each regime and each feature, where NH refers
to the values in the Northern Hemisphere and SH to those in the Southern Hemisphere. To allow direct comparison with

LRP, for each regime, we only consider the SHAP values in the region of the regime rather than the whole domain.
Therefore + means the feature is actively helpful and – that it is actively unhelpful.

Figure 11 shows the gridpoints for which the sign of the SHAP value remains the same between the
25% and 75% quantiles of the ensemble. Note that even though our BNN uses a gridpoint-by-gridpoint
approach, for ease of interpretation, we display the SHAP results using a spatial representation, as if
SHAP had been applied to a full image. For simplicity, we focus here on Figure 11a which shows the
SHAP values for Regime A, although note that the following statements hold true for the regimes for
the other figures too. In Figure 11a, red indicates that the probability of Regime A is increased here
by including this feature, blue that the probability is decreased and white mainly that this feature has
no effect on the probability of predicting Regime A here (although it can also mean there is uncertainty
in the SHAP value). If the red matches with the region where the BNN predicts Regime A or the blue
matches with the region where the BNN does not predict Regime A, this means that including this
feature is actively helpful for predicting this regime in this location. An example of this in Figure 11a
is the SHAP values for the longitudinal gradient of the sea level. If, however, the red matches with a
region where the BNN does not predict Regime A or the blue matches with the region where the BNN
does predict Regime A, then including this feature is actively unhelpful for predicting this regime. An
example of this in Figure 11a is the dynamic sea level where including it increases the probability of
Regime A everywhere below 40◦S and above the North Atlantic Drift, but Regime A is only predicted in
certain parts of this region. Notably, Figure 4d shows that at the latitudes where the dynamic sea level
is unhelpful, the BNN predictions have high entropy (i.e. high uncertainty) suggesting that the dynamic
sea level may be a key contributing factor to the uncertainty here.

As in the LRP section, we also consider the key dynamical processes of the North Atlantic Drift,
the Gulf Stream leaving the continental shelf and the North Atlantic wind gyre, as well as the physical
characteristic of the mid-Atlantic ridge where it crosses the wind gyre (see Figure 10). For the North
Atlantic Drift, the SHAP values show that the wind stress curl is strongly helpful, and that the Coriolis,
dynamic sea level and the longitudinal gradient of the sea level are also helpful. The North Atlantic
Drift is a geostrophic current and therefore this feature relevance agrees strongly with the physical theory
which governs these types of currents (Webb, 2021). It is also in contrast to the conclusions from the
LRP values where no feature is strongly helpful, only the dynamic sea level and the wind stress are at all
helpful and the Coriolis is strongly unhelpful. This difference in the relevance of the Coriolis is also seen
for the gyre, which SHAP values say is irrelevant and the LRP values say is strongly unhelpful. Neither
agree with intuition from physical theory, which suggests that Coriolis should have some relevance for
the gyre. The SHAP values and LRP values do however both identify that for the gyre, the wind stress
curl is strongly helpful and the longitudinal gradient of the sea level is helpful, which we recall from
Section 4.2.1 agrees with physical intuition. The SHAP and LRP relevance patterns for where the Gulf
Stream leaves the continental shelf are also similar to each other. Furthermore, the increased certainty
in the SHAP values makes it clear that the longitudinal gradient of the sea level is strongly unhelpful
for predictions of this process, whereas for LRP the relevance is very uncertain. Like with LRP, there is
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Features

Wind stress
curl

Bathymetry
Dynamic
sea level

Coriolis
Gradient

bathymetry

Gradient
sea level

(lon)

Gradient
sea level

(lat)
A Med – >Med + Med + >High + = = = High – >High + Med – >Low
B = Med – >Med + = Low >High + = = =
C = = Low >High + Low >Med + = Low >Med + =
D = Med – >Low = Med – >Med + = = =
E = = = High – >Med – = = Med + >Low
F Med – >High + Med – >Low = Med – >Med + = = Med >Low

Table 6: Comparing the general trend in the relevances of LRP >SHAP. If the relevance changes sign, the change is
coloured red.

also a clear distinction in the SHAP values between the North Atlantic Drift, the Gulf Stream leaving
the continental shelf and the wind gyre, strengthening the hypothesis that this feature is an indicator
between the three regimes. Finally, the mid-Atlantic ridge is not as prominent in the SHAP values as
it is in the LRP values, but the SHAP values still have increased uncertainty there, which is particular
significant when the general uncertainty in the ensemble of SHAP values is so low. Furthermore, like
the LRP values, the SHAP values also show that both bathymetry and its gradients are more unhelpful
at the mid-Atlantic ridge than for the surrounding gridpoints. This supports the conclusions made in
Section 4.2.1 that the BNN is able to identify the ridge but not weight it properly.

To summarise, we have shown that SHAP values provide further evidence of the BNN’s ability to
identify known physical processes. We have also begun to demonstrate the benefit of using two different
XAI techniques, and in the next section compare the findings from the two different techniques more
systematically.

4.2.3 LRP vs. SHAP

As discussed in 2.2.2, LRP and SHAP use two very different approaches to explain skill and hence
different types of uncertainty are reflected in their values: LRP considers the neural network parameters
and therefore captures the model uncertainty, whereas SHAP captures the sensitivities of the outputs
as a result of the uncertainties. Comparing Tables 2 and 4 clearly shows that this different approach
results in SHAP values being more certain in their assessment of feature relevance than LRP values.
This difference suggest that our BNN is fairly robust because the uncertainty in the network is greater
than the uncertainty in the predictions. This is equivalent to the findings in Section 2.1 where our BNN
predictions have low entropy (i.e. low uncertainty) despite the weights in the BNN being distributions
(see Figure 4d).

Table 6 directly compares the trends in the relevances of LRP and SHAP. Some differences between
SHAP and LRP are due to the fact that SHAP values separate out the relevance of each feature for
each regime, whereas LRP values consider the relevance of a feature for all regimes simultaneously. For
example, in the upper part of the Atlantic (∼ 60◦N), the SHAP values for Regime A (Figure 11a) show
that the wind stress curl is helpful for predicting that regime. However, the SHAP values for regimes C
and E (Figures 11c and 11e respectively) show that the wind stress curl also increases the probability of
regimes C and E at that location. Therefore when the SHAP values for all regimes are considered, the
wind stress curl may actually be more unhelpful than helpful, agreeing with LRP.

As in Sections 4.2.1 and 4.2.2, for brevity we do not discuss all differences between SHAP and LRP.
Instead, we summarise the key comparisons for each regime in the following list:

Regime A

• Wind stress curl is helpful in SHAP but unhelpful in LRP (see discussion in text previously).

• The locations where the dynamic sea level has strong relevance in the LRP values coincides directly
with the regions where regime A is predicted. The dynamic sea level is also helpful in SHAP, but
SHAP shows that this feature also increases the probability of Regime A in areas where Regime A
is not predicted. Note that the latter are areas of high entropy (see Figure 4d).

• The longitudinal gradient of the dynamic sea level is strongly unhelpful in LRP and strongly helpful
in SHAP. Again this region of difference corresponds to areas of high entropy in the BNN predictions.

Regime B

• Wind stress curl is strongly helpful in both LRP and SHAP, but along the east coast of Greenland,
in the SHAP values, the wind stress curl increases the probability of regime B, but the BNN does
not predict this regime nor would regime B be accurate there. This region has high entropy and
in the LRP values the relevance of the wind stress curl switches here from unhelpful in the 25th
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quantile to helpful in the 75th quantile. This suggests that the BNN has high uncertainty in the
relevance of this input feature here.

• In the SHAP values, the bathymetry is helpful but in LRP it is unhelpful. This is despite the fact
that regions where this regime is predicted by the BNN, generally have low entropy

• Coriolis is strongly helpful in SHAP (as would be expected from physical intuition) but has low
relevance in the LRP values, apart from around the tip of South America where it is strongly
helpful.

Regime C

• In regime C, particularly in the southern hemisphere, most features have no relevance in the LRP
values but a medium or high relevance in the SHAP values. In particular, the dynamic sea level
and its longitudinal gradient have no relevance with high certainty in the LRP values but strong
positive relevance with high certainty in the SHAP values. Note that entropy is low for this regime,
particularly in the southern hemisphere

• Wind stress curl is strongly helpful in both LRP and SHAP. This likely explains the irrelevance in
other features in the LRP values: LRP values consider the weightings in the BNN, and the wind
stress curl has such a strong weighting that all other features are comparatively close to zero. In
contrast, SHAP values consider the sensitivity of the output to other features, which does change

Regime D

• In both SHAP and LRP, the dynamic sea level is helpful in the northern hemisphere but unhelpful
in the southern hemisphere.

• Coriolis is strongly helpful at high latitudes in the SHAP values and irrelevant at mid-latitudes.
In contrast, Coriolis is unhelpful in the LRP values especially at the mid-latitudes. This variation
suggests the BNN does not accurately weight low values of Coriolis (near the equator), resulting
in unhelpful LRP values. Nearer the poles, the weighting improves enough for SHAP to become
helpful but not enough for LRP to become helpful.

• The wind stress curl is strongly helpful in both the SHAP and LRP values but the SHAP values
for wind stress curl do not have increased uncertainty at the mid-atlantic ridge. This reflects the
general trend of greater certainty in SHAP values than LRP values.

Regime E

• Wind stress curl is strongly helpful for SHAP and LRP, but the LRP values in the southern
hemisphere have high variance especially around 35◦S where the BNN entropy is highest.

• Coriolis is strongly unhelpful in LRP especially at mid-latitudes but only slightly unhelpful in SHAP
(see discussion for Regime D).

• The latitudinal gradient of the dynamic sea level is irrelevant in the SHAP values but has relevance
in the LRP values. There is however a split in the LRP relevance at 35◦S – above this latitude the
relevance is positive and below the relevance is negative. This split corresponds with an increase in
entropy, where entropy is higher below this latitude.

Regime F

• Wind stress curl is strongly helpful in SHAP but unhelpful in LRP. We would expect wind stress
curl to be helpful from Table 1 so this is an example where SHAP agrees more closely with physical
intuition than LRP.

• Bathymetry is unhelpful for this regime in LRP but in SHAP only has relevance at the coastlines.

• Coriolis is unhelpful in LRP at mid-latitudes but has no relevance in SHAP except at high latitudes
(see discussion for Regime D).

• The latitudinal gradient of the dynamic sea level is very uncertain in LRP changing from unhelpful
to helpful, despite the fact that the entropy is low for predictions of this regime. This gradient has
no relevance according to SHAP , and thus the mean of the SHAP and LRP values agree for this
feature. This reflects the general trend of greater certainty in SHAP values than LRP values.
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In general, SHAP and LRP agree on how to explain the skill of the BNN, thus meaning that in our
work we do not have a ‘disagreement problem’. There are however some small differences, which can
either be explained by the different ways in which these two techniques interpret skill or by the fact
that they occur where there is high entropy in the BNN predictions reflecting the BNN’s uncertainty
in feature relevance. We have thus demonstrated that both techniques are helpful for understanding
the BNN’s interpretations of physical processes. Moreover, where the two techniques agree with each
other and in particular also agree with physical intuition, this greatly improves the trustworthiness of the
feature relevance explanations in the BNN and where the techniques differ between themselves and/or
with physical intuition there is scope for further analysis and learning of both BNN and physical ocean
processes.

5 Discussion and Conclusion

In this work, we have successfully applied a BNN and two different XAI techniques to explore the trust-
worthiness of ocean dynamics predictions made using a machine learning technique. We have shown that
using a BNN rather than a classical deterministic neural network adds considerable value to predictions,
by making uncertainty analysis possible and allowing practitioners to make informed decisions as to
whether to trust a prediction or conduct further investigation. Furthermore, our analysis of the entropy
(i.e. uncertainty) of the BNN predictions shows the promising result that the predictions are notably
more certain when they are correct than when they are incorrect.

Through our novel applications of the XAI techniques, LRP and SHAP, we have also shown that
it is possible to explain the skill of a BNN, conduct uncertainty analysis of explainability values, and
hence use XAI techniques to understand the extent to which the BNN is fit for purpose, where we here
demonstrate this using comparison with theory. Our spatial representation of both the SHAP and LRP
values means that the relevance of specific important dynamical processes such as the North Atlantic Drift
can be identified, thereby improving the interpretability and hence trustworthiness of the results. This
comparison with physical theory is important to ensure that what the BNN has learned is genuinely rooted
in physical theory. Moreover, the spatial coherency of both the uncertainty and XAI assessments suggest
that our framework could be leveraged to identify potential new physical hypotheses in areas of interest,
guided by the BNN’s ability to highlight hitherto unrecognised correlations in the input space. However,
we stress that these correlations do not necessarily imply causation (Samek et al., 2021). Therefore for
deployment of developed neural network applications for high-stakes decision making within geoscience,
these correlations should only be used to postulate new hypotheses, which must then be explored using
a well-conducted study driven by physical theory.

Our comparison of LRP and SHAP values has shown that in general they agree with each other as
to which features are relevant in each area of the domain, building trust in the BNN predictions and
their explanations. This is particularly striking given that SHAP is model-agnostic and does not consider
any internal architecture of the network, exploring only how sensitive the predictions are to the removal
of input features, whereas LRP uses a model-intrinsic approach based on the internal architecture of
the network. These two different XAI techniques do result in different levels of uncertainty in the
feature relevances because LRP better captures the neural network model uncertainty and SHAP better
captures BNN prediction sensitivity. Any disagreements in feature relevance also tend to occur due to
these different approaches and/or in regions of high entropy. Knowledge of these disagreements is useful
to practitioners as it highlights areas where the explanation of the BNN’s skill is less trustworthy and may
require further analysis. Furthermore the use of an ocean dynamical framework allows the accuracy of
the XAI results in this work to be verified with physical intuition. It also enables a better understanding
of how SHAP and LRP explain skill which is beneficial to the machine learning community. Where
there are differences between the XAI techniques and physical intuition, this provides another potential
opportunity to learn more about physical theory, although with the same caveats discussed above.

We hypothesise that the good agreement with physical intuition demonstrated in this work is in
part due to the overall normally distributed covariance structure of the problem, which is helpful for
the K-means clustering and thus directly beneficial for the BNN training (Sonnewald et al., 2019). The
methodology outlined in this work has many potential applications in geoscience and beyond, for more
complex and nonlinear covariance structures. Besides classification problems, where the re-application
of our methodology is straightforward, a promising research avenue is the use of XAI, augmented with
uncertainty quantification, for regression problems. An example of high interest to the climate mod-
eling community is subgrid scale parametrization efforts for numerical models. So far, subgrid scale
parametrizations based on neural networks have limited generalization capacities, especially in areas of
the numerical model space that they are not explicitly trained on (Bolton and Zanna, 2019). A regression
based XAI framework could thus accelerate the development of such techniques, because the reasons why

20



the networks fail to generalise might be better understood for both specific local scale features such as
where the Gulf Stream leaves the continental shelf and larger scale processes. In further work, we will
benefit from the ongoing recent research developments in XAI for regression, for example in Letzgus et al.
(2021), and aim to apply our methodology to this more challenging problem.

Finally, we recommend that for trustworthy explainability results for more complex covariance struc-
tures, a BNN should be used along with one model-intrinsic XAI technique, like LRP and one model-
agnostic XAI technique like SHAP, so as to consider both neural network model properties and output
sensitivity. For an accurate and robust network, we would expect the similarities between the two XAI
techniques to dominate and the differences to highlight areas that require further analysis, thus being of
valuable use to practitioners and might hint at new scientific hypotheses.
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A LRP figures

Figure 9 in Section 4.2.1 reveals the LRP values which have a consistent sign across the 25%, 50% and
75% quantiles. However, there is also considerable variability across the ensemble of LRP values and
thus to give a better idea of this uncertainty, we also include Figure 12 which shows the 25%, 50% and
75% quantiles of the LRP ensemble. Using this figure, we see, for example, that for many regions the
bathymetry gradients go from being strongly unhelpful at the 25% quantile to strongly helpful at the
75% quantile, showing a high degree of uncertainty. The figure also illustrates better the regions which
are irrelevant to BNN predictions (i.e. where the LRP value is zero).
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