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Exploration of the chemical space of DNA-encoded 
libraries 
Regina Pikalyova[a], Yuliana Zabolotna[a], Dmitriy M. Volochnyuk[c][d], Dragos Horvath[a], Gilles Marcou[a], Alexandre 
Varnek*[a][b]  

 
Abstract: DNA-Encoded Library (DEL) technology has 
emerged as an alternative method for bioactive molecules 
discovery in medicinal chemistry. It enables the simple 
synthesis and screening of compound libraries of enormous 
size. Even though it gains more and more popularity each 
day, there are almost no reports of chemoinformatics analysis 
of DEL chemical space. Therefore, in this project, we aimed 
to generate and analyze the ultra-large chemical space of 
DEL. Around 2500 DELs were designed using commercially 
available BBs resulting in 2,5B DEL compounds that were 
compared to biologically relevant compounds from ChEMBL 
using Generative Topographic Mapping.  

This allowed to choose several optimal DELs covering the 
chemical space of ChEMBL to the highest extent and thus 
containing the maximum possible percentage of biologically 
relevant chemotypes. Different combinations of DELs were 
also analyzed to identify a set of mutually complementary 
libraries allowing to attain even higher coverage of ChEMBL 
than it is possible with one single DEL.  

Keywords: DNA-encoded libraries, libraries design and comparison, GTM, drug design, hit identification 
 
 

1 Introduction 

Identifying compounds that bind to a biomacromolecule and 
show a desired therapeutic effect is a fundamental step in any 
drug discovery process. The most common method to find 
such molecules is high throughput screening (HTS)[1]. Since 
its emergence in the 1990s, HTS has delivered numerous lead 
molecules for drug development[2]. Nevertheless, this 
technology has several limitations, such as expensive robotic 
equipment and compound libraries, that are available mostly 
to large pharmaceutical companies[3]. The number of 
compounds that can be screened in one HTS campaign is 
usually limited to a million[4], while the chemical space of 
synthetically accessible molecules is far larger[5]. 

DNA-encoded library (DEL) technology has partially 
solved these problems[6]. It consists of the creation of 
libraries of DNA-encoded compounds using water-based 
combinatorial chemistry and their screening against 
soluble target proteins using binding affinity selection[7]. 
DNA-encoded compounds are molecules labeled with 
single- or double-stranded DNA. The latter plays a role of 
a “barcode” that encodes information about the building 
blocks (BBs) from which the compounds were 
synthesized. This DNA barcode allows to quickly identify 
successful ligands bound to the protein after affinity 
selection. The creation and screening of DELs offer many 
advantages compared to the conventional HTS approach. 
First of all, they are usually synthesized using a 
combinatorial split-and-pool approach[8] and thus allow to 
produce chemically versatile libraries of enormous size[9]. 
DEL compounds are screened all at once in a single 
vessel in contrast to individual compound screening in 
HTS[7]. Simple experimental setup of affinity selection 
accessible both in industry and university laboratories 
allows cheap and fast hits identification[10]. Many 
successful stories of employing this technology were 

published, including DEL-derived hits that progressed to 
the clinic[8]. 

However, up to this point, most efforts were focused 
on the analysis of the libraries of BBs or identified active 
compounds[3]. Authors were less keen to explore the 
entire chemical space covered by DELs because it is 
extremely vast. To our best knowledge, only one paper 
reported the analysis of DEL space using Reduced 
Complexity Molecular Frameworks (RCMF) 
methodology[11]. However, in that work, the analysis was 
limited to only four DELs (>5 × 108 compounds). Since 
DEL technology is actively being developed and new 
methodologies for DEL synthesis were being elaborated, 
the aforementioned pioneering work no longer reflects the 
status quo. 

This work is focused on the generation of possible 
DELs from commercially available BBs using a tool for 
DELs generation called eDesigner[12]. Since screening 
thousands of DELs containing billions of compounds is 
unfeasible, we suggest choosing the so-called “golden” 
DEL(s) that covers the chemical space of biologically 
tested compounds to the highest extent. Such a library 
would have high structural diversity and contain the 
majority of biologically relevant chemotypes, which is 
critical for the success of the primary screening against 
novel biological targets. It was identified by comparing the 
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generated DEL space to the chemical space of 
biologically relevant ChEMBL[13] compounds using 
Generative Topographic Mapping (GTM) – an efficient 
dimensionality reduction method[14]. GTM has proved to 
be a powerful tool for “Big Data” analysis and visualization 
(up to 1B compounds)[15]. Notably, the prior development 
of quantitatively validated, polypharmacologically 
competent Universal Maps (uMaps) allowed us to propose 
a chemically meaningful representation of the to-date 
explored drug-like chemical space[16]. Only one of the 
several uMaps (uMap1, see the corresponding article) 
was used in this study for simplicity, but the study could 
be extended to consensus mapping on several uMaps. 

2 Methods  

2.1 General workflow 

The workflow consists of seven parts, as shown in Figure 1. 
First, DEL-compatible chemical building blocks (BBs) were 
selected from the eMolecules and Enamine in-stock BB 
libraries described in the Data section. It was done on the 
basis of the Goldberg rule of two (Ro2)[17] and eDesigner built-
in filters for selecting DNA-compatible BBs. Using these BBs, 
thousands of DELs were designed and generated with the 
help of eDesigner. The size of each DEL varied from 1M to 1B 
but for easier and quicker analysis, only a representative 
subset of 1M compounds per DEL was enumerated using the 
random sampling approach. In the third step, generated 
compounds were standardized according to the protocol 
explained in the Data section. ISIDA descriptors[18] were used 
to represent molecular structures in a machine-readable form 
of numerical N-dimensional vectors. They were then projected 
onto uMap1. Comparative landscapes were created and 
visualized to compare DEL compounds to biologically relevant 
molecules from the ChEMBL database. Then a so-called 
“golden” DEL that provides the highest coverage of ChEMBL 
chemical space was identified using responsibility patterns 
(RPs)[19]. To achieve even better coverage, complementary 
DELs were added to the “golden” one to give a “platinum” pool 
of DELs.  

2.2 Selection of building blocks 

Before DEL design and generation, input BBs were filtered 
according to Ro2 with the help of SynthI[20]. Ro2 is a guideline 
to choose high-quality BBs that can give access to drug-like 
molecules[17]. According to it, BBs should contribute to the final 
molecule only structural fragments that satisfy the following 
rules: MW < 200 Da, clogP < 2, number of H-bond donors ≤ 2, 
and number of H-bond acceptors ≤ 4. This filtration allows to 
limit the size of DEL compounds shifting corresponding 
libraries towards drug-like subspace of the chemical space. In 
addition to physicochemical properties, eDesigner built-in 
DNA-compatibility filters were also applied. The selection of 
building blocks by eDesigner is made by excluding 
compounds with unwanted functionalities that can lead to the 
reaction with water such as imines, benzyl halides, etc. 

2.3 DEL generation with eDesigner 

For the generation of chemical space of DELs, the 
eDesigner[12] tool was used. At first, based on the list of the 
most efficient DNA-compatible reactions encoded in the tool 
(see Supporting Information of respective article[12]) and a 
user-provided list of BBs, it generates a special set of 
instructions for DEL compound enumeration called 
libDESIGNs. Each libDESIGN contains information about the 
starting headpiece (the whole DNA part for computational 
convenience is formally represented as a 13C atom), the 
reaction types, and BBs which will be used in them, as well as 
deprotection reactions for the final stage of DEL generation. 
There are also several restrictions that can be applied to 
control some of the properties of the resulting DEL. They 
include, for example, the maximum and the median value of 
heavy atom count in the generated molecules, minimum 
library size, etc. Once the libDESIGNs are created, the 
representative DELs subsets of the selected size can be 
enumerated by the LillyMol tool[21]. An example of such 
enumeration is shown in Figure 2. The isotopic mark on the 
carbon atom specifies the place of attachment of the DNA tag. 
For clarity reasons, before physicochemical properties 
calculation and GTM analysis, the 13C atom is removed, 
therewith obtaining the compound that would have been 
resynthesized off-DNA for validation in case of being selected 
during a real screening campaign.

 
Figure 1. Workflow of the project. The rectangles represent separate DELs. 
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Figure 2. Example of DEL compound generation by eDesigner. The user should provide the headpiece and the list of BBs; an appropriate list 
of reactions will be selected automatically by eDesigner, and respective compounds will be generated. The isotopic mark is placed by 
eDesigner in order to know the position of DNA attachment and is removed prior to GTM analysis and physicochemical properties calculation.

2.4 Generative Topographic Mapping (GTM) 

In the chemical space molecules are represented as data 
points, with their position being defined by a vector of 
numerical values called descriptors. The main idea of GTM[14] 
consists in inserting a flexible hypersurface called manifold 
into the high dimensional descriptor space with a subsequent 
projection of these data points into a 2D latent space grid.  

The manifold is defined by a grid of Radial Basis 
Functions (RBFs, represented by Gaussian functions). It 
generates a probability distribution and is fitted to 
maximize the likelihood of the training set. The probability 
distribution generated by the GTM is evaluated over 
another grid of predefined locations, termed nodes. The 
number of RBFs is the key user-defined operational 
parameters; the number of nodes controls the map's 
resolution: it impacts the rendering but not the model itself. 
The GTM algorithm “bends” the manifold to pass through 
the densest areas of the data cloud formed by the points 
representing molecules of the input dataset. Then, the 
molecules are projected from the high-dimensional space 
onto the 2D map by associating each molecule to the 
several closest grid nodes. The degrees of association of 
each molecule to each node of the grid are called 
“responsibilities”. The responsibility of a node for a 
compound is the contribution of this node to the likelihood 
of this compound. Therefore responsibilities are real 
number vectors summing up to 1 over all nodes. Finally, 
the manifold is flattened out to obtain a 2D representation 
of the map with compounds projected onto it. 

Based on the responsibility vectors, different types of 
landscapes can be created, where each node is colored 
using the weighted average of the properties of the 
compounds projected there. Properties assigned to each 

node are calculated as a weighted average of the 
properties of all residents, where weights are compound 
responsibilities to reside in this node. Depending on the 
information used for its coloration, there are two types of 
landscapes: class and property. The class landscape is 
used to analyze the distribution of the molecules of two 
classes in the chemical space. In this work, the class 
landscapes are used to visualize and analyze the 
distribution of the molecules of two classes – DEL 
(library 1) and ChEMBL (library 2) compounds. Property 
landscapes represent the distribution of molecular 
property or activity values. Using these landscapes, GTM 
can be applied for chemical space analysis, library 
comparison, or even virtual screening[22]. 

2.5 Universal GTM 

The concept of Universal GTM (UGTM) was introduced by 
Sidorov et al.[23] and further developed by Casciuc et al.[16] as 
a general-purpose map that can accommodate ligands of 
diverse biological targets on the same GTM manifold. A 
genetic algorithm was used to choose the best descriptors set 
and GTM operational parameters (number of nodes and RBFs, 
manifold flexibility controls, etc.) so as to maximize the mean 
predictive performance over hundreds of biological activities 
from ChEMBL. The resulting best uMap1 allowed to separate 
molecules by their activity class (active/inactive) against 618 
(later extended to 749) biological targets, which makes it 
“polypharmacologically competent”. This map was built based 
on ISIDA atom sequence counts with a length of 2−3 atoms 
labeled by CVFF force field types and formal charge status[18]. 
The size of the map was chosen to be 41x41 nodes and the 
number of RBFs - 18x18. 

Since the ChEMBL database is the most reliable 
source of the compounds with experimentally measured 
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biological activity[13], the universal maps trained on the 
ChEMBL data series are highly oriented towards 
biologically relevant compounds. Apart from predicting 
biological activity, these maps can also be used as 
frameworks for analyzing large chemical libraries in 
medicinal chemistry and drug design context. The uMap1 
has been used in this project to compare biologically 
relevant compounds from ChEMBL with the DNA-encoded 
compounds. This choice was motivated by previous 
results in identifying biologically relevant molecules 
missing from the chemical market, as well as untested 
commercially available compounds when comparing 
ChEMBL and ZINC[15]. 

2.6 Responsibility patterns 

As mentioned previously, compounds are mapped on the 
GTM with certain responsibilities - probabilities of these 
compounds to populate a specific node of the map. Since 
these values are real numbers, finding two molecules with 
identical responsibility vectors is highly improbable. This 
makes it challenging to identify structurally similar compounds 
by their responsibility vectors – they may be slightly different 
even for very similar compounds. To solve this problem, it was 
suggested by Klimenko et al.[19] to discretize the vector, with 
all responsibility values less than 0,01 being reassigned to 
zero and all others - to a number from 1 to 10. This discretized 
vector is referred to as Responsibility Pattern (RP) and is 
calculated for each compound according to the formula in 
Figure 3. 

Molecules whose R vectors round up to the same RP 
are considered to be grouped in the same cell of the 
chemical space and thus to form a cluster of similar 
structures[22]. For example, in Figure 3, a GTM density 
landscape, featuring compound sets associated with two 
different RPs is shown. Colors encode the cumulative 

sum of responsibilities of all compounds residing in the 
particular node (grey regions are moderately populated, 
while colored ones contain a higher number of 
compounds). RP1 corresponds to the 221 indoles that 
contain additional amino and/or guanidino functional 
groups. These compounds occupy a small compact area 
of the chemical space distanced from the island of RP 
vector 2, populated by 173 naphthols, polyphenols, and 
their methyl ethers. In this work, RPs were used to 
compare each separate DEL to ChEMBL, i.e. to evaluate 
the proportion of ChEMBL RPs (“structural motifs”) also 
covered by a given DEL. 

2.7 ChEMBL coverage estimation 

First, RPs for all compounds are calculated as described 
above. Then the pairwise overlap between each DEL and 
ChEMBL is determined by dividing the number of common 
RPs for both libraries by the total number of ChEMBL RPs: 
 

𝐶𝐶ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 %

=  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐶𝐶ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅
 

 
However, the analysis of the percentage of covered ChEMBL 
RPs does not consider the number of compounds 
corresponding to each RP, although different RPs can be 
populated differently – from 1 to ≈12 000 compounds. As a 
result, increasing RP coverage does not necessarily mean 
significantly increasing the compound coverage. Thus the 
ChEMBL RPs coverage (%), weighted by RP population (the 
number of ChEMBL compounds per RP), is also used: 
 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐶𝐶ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 %

=  
∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 𝑜𝑜𝑜𝑜 𝐶𝐶ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷

∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅
 

 

 
Figure 3. Left: formula for responsibility pattern (RP) calculation. Right: example of compounds sharing the same RPs and their position on the 
density landscape - a map colored by the local density of compounds. Highly populated zones are colored in red, underpopulated ones - in grey.
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3 Data 

3.1 Commercially available BBs 

A set of 450K commercially available BBs was provided by 
eMolecules Inc.[24] They were complemented by an 
“orthogonal” (i.e. containing completely different BBs) dataset 
of 10K Enamine[25] in-stock BBs. Among them, only 79 141 
BBs that satisfy Ro2 and eDesigner built-in DNA-compatibility 
filters were selected.  

3.2 ChEMBL (biologically tested compounds) 

ChEMBL is a database containing >2M diverse and 
biologically relevant compounds against >14K biological 
targets[13]. The major goal of this project was to find 
structurally diverse DELs suitable for primary screening. Since 
similar structures tend to have similar properties, finding a 
DEL containing compounds structurally similar to ChEMBL 
means finding a DEL that contains biologically relevant 
molecules. Such DEL will have a high potential to contain hit 
compounds. Hence, ChEMBL (version 28) was used as a 
reference library that guides our choice of the best DEL for 
primary screening. First, 2 086 898 molecules were 
downloaded from ChEMBL. After standardization, 1 853 565 
unique compounds with known biological activities remained. 
The standardization of chemical structures was done using 
ChemAxon Standardizer[26] according to the procedure 
implemented on the Virtual Screening Web Server of the 
Laboratory of Chemoinformatics in the University of 
Strasbourg[27]. It included dearomatization and final 
aromatization (heterocycles like pyridone are not aromatized), 
dealkalization, conversion to canonical SMILES, removal of 

salts and mixtures, neutralization of all species, except 
nitrogen(IV), generation of the major tautomer according to 
ChemAxon. After the standardization, the ISIDA fragment 
descriptors used to construct the first universal map 
(described in Experimental section 4) were calculated for all 
molecules. The same procedure was also applied to 
generated in this work DEL compounds. 

4 Results and discussion 

4.1 DNA-compatible BBs and reactions for DEL 
generation 

The scope of synthetic procedures used in DEL chemistry is 
limited to high-yielding DEL-compatible reactions. Synthetic 
efforts to adapt reactions for use in DEL technology have been 
underway for several years, but the number of optimized for 
DEL chemistries is still rather restricted[28]. For example, only 
a few heterocyclisations optimized for DEL synthesis were 
described, such as benzimidazole, imidazolidinone, thiazole 
synthesis, and some others[29]. Nevertheless, even a few 
reactions can give rise to structurally diverse DELs if abundant 
building blocks (BBs) sets are employed for their generation.  

In this work, 79 141 mono-, bi-, and trifunctional BBs 
were used for DEL generation. They were obtained by 
applying the Goldberg rule of two and built-in eDesigner 
DEL-compatibility filters to the combined in-stock library 
provided by eMolecules and Enamine. Prevalent 
monofunctional BB classes in the resulting dataset are 
secondary and primary amines, aryl halides, and 
carboxylic acids (Figure 4). 

 

 
Figure 4. Monofunctional DNA-compatible commercially available BBs. 



Running title 

 6 

Due to their participation in common DNA-compatible 
combinatorial reactions (such as condensation of 
carboxylic acids with amines, aldehyde reductive 
amination, bromo-Sonogashira coupling, etc.), there is an 
active development of such BBs, making these four 
classes more structurally rich and widely available 
commercially. Note that in this work, all structures were 
stereochemistry-depleted (a unique skeleton graph is 
used to represent all stereoisomers). Therefore, the 
number of different BBs is higher.  

In the case of bifunctional BBs (Figure 5), protected 
amino acids (AA) (such as amino esters, N-Boc-AA, N-

Fmoc-AA, etc.) represent the most abundant class (3 796). 
The reason for such abundance is the popularity of 
peptide bond formation for DEL compounds’ synthesis 
that requires this type of reagents. However, the number 
of actual AA fragments available from BBs with multiple 
protective groups is slightly smaller (2 885). It appears 
that the majority of AA fragments (2 173) occur in only one 
protected form, and 712 AA were found in the library more 
than once with different protecting groups. Figure 6 (I) 
shows an example of AAs that occur in the maximum 
number of protected variations in the BB library.

 

 
Figure 5. Bifunctional DNA-compatible commercially available BBs. 

 

 
Figure 6. AA (I) and diamines (II), represented in the commercially available libraries of DNA-compatible BBs with the highest number of 
protected variations (N-Boc, N-Fmoc, various esters, etc.).
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A similar tendency is also observed for protected 
diamines that occupy third place in the bar chart in Figure 
5 after BBs containing both aryl halide and carboxylic acid 
functionality (2 359). A total of 737 protected diamines are 
equivalent to only 632 unique diamine fragments. Among 
them, 510 are represented by only one protected variant, 
while the other 122 occur in several differently protected 
copies. Four diamines, each occurring in the highest 
number of protected variations, are shown in Figure 6 (II). 
The number of trifunctional BBs is significantly lower than 
other reagents due to higher structural complexity (Figure 

7). The most highly populated class of trifunctional BBs is 
haloaryl nitrocarboxylic acids containing 110 members. In 
DEL technology nitro group usually pose as a latent amino 
group that can be obtained upon reduction. 

Using these BBs and user-defined library limitations in 
eDesigner, 2 497 DELs were designed. The maximal 
number of heavy atoms in DEL compounds was set to be 
45, and at least half of all compounds in the library needed 
to have less than 35 non-hydrogen atoms. The frequency 
of the use of a particular reaction to generate all DELs is 
shown in Figure 8. 

 

 
Figure 7. Trifunctional DNA-compatible commercially available BBs. 

 

 
Figure 8. Frequency of the use of a particular reaction in DELs generation. 
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The most frequently used reactions, each being 
exploited in more than 500 libraries, were: condensation 
of carboxylic acids with amines (R1), aldehyde reductive 
amination (R2), 1,2,3-triazole synthesis (R3), 
guanidinylation of amines (R4), Migita thioether synthesis 
(R5), and bromo-Sonogashira coupling with TMS 
acetylene (R6). The high frequency of reaction usage is 
mainly caused by the prevalence of the respective BB 
classes in the input library (B1, B2, B3, B4 in Figure 4). 
Indeed, the amines are coupling partners in three 
reactions mentioned above (R1, R2, and R4), aryl halides 
- in two (R5 and R6), and carboxylic acids in R1. 

Not all compounds were enumerated for every DEL, 
but random sets of 1M representative compounds were 

produced by eDesigner. In order to verify that such a 
library core is indeed representative, the whole library of 
88M was enumerated for one of the DELs, and density 
landscapes were built for the whole library and 1M dataset 
on the same density scale. As one can see in Figure 9, 
each region of the map, occupied by the members of the 
whole library, also has representatives in the 1M 
randomly generated dataset – colored regions coincide on 
both maps, and only the density of residents differs. 
Therefore, 1M randomly enumerated compounds will be 
considered in this work as a sufficient representation of 
the whole DEL for GTM-based analysis. 

 

 
Figure 9. Comparison of the density distribution for the 1M randomly generated compounds and the whole DEL (88M). The color scale encodes 
the corresponding number of compounds residing in each colored node of the map. 

4.2 Physicochemical properties of generated libraries 

Out of a total of 2 497 generated DELs, 77 are produced by a 
single coupling reaction of 2 BBs (hence the label “2BB 
libraries”). The remaining 2 420 DELs are “3BB libraries”. The 
physicochemical properties were calculated using RDKit[30]. 
Drug-like[31] (MW≤500; LogP≤5; the number of H-bond 
donors≤5; the number of H-bond acceptors≤10; ring 
counts≤10) and lead-like[32] (MW≤400; -3.5≤LogP≤4; the 
number of H-bond donors≤5; the number of H-bond 
acceptors≤8; ring counts≤4; rotatable bonds≤10) filters were 
applied. Figure 10 depicts how many of 2BB and 3BB libraries 
(in percentage) contain a specified portion of drug-like (Figure 
10 (I)) and lead-like (Figure 10 (II)) compounds. 

As expected, 2BB libraries contain smaller compounds, 
and thus the portion of drug- and lead-like compounds for 
them is higher than for 3BB DELs. For almost a half of 
2BB libraries, all generated compounds fall into the 
category of drug-like, while in the case of 3BB DELs, only 
2% of libraries are fully drug-like. However, the content of 
such compounds in 3BB libraries is still relatively high – 
the majority of DELs (68%) contain at least 50% of drug-
like compounds. At the same time, the number of lead-
like compounds is significantly lower for both categories 
of DELs. Almost a quarter of all 2BB libraries do not 
contain them, and another quarter is less than 50% lead-
like. In the case of 3BB libraries, the lead-like compounds 
are almost entirely absent – 70% of DELs do not contain 
such molecules at all, and the remaining 30% of libraries 
have only up to 30% of lead-like molecules.

 

 
Figure 10. Comparison of (I) drug- and (II) lead-likeness of 2BB and 3BB libraries: percentage of 2BB and 3BB libraries having a particular 
portion of compounds satisfying respective filters is given. 
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4.3 Search for the “golden” DEL 

The “golden” DEL can be defined as a library that is diverse 
enough to cover the highest possible proportion of biologically 
relevant compounds from ChEMBL. This coverage was 
calculated in terms of common responsibility patterns (RPs) 
explained in the Methods section. In Figure 11 (a) one can see 
the number of libraries with particular coverage of ChEMBL 
RPs. The majority of libraries cover 10-20% of ChEMBL 
chemical space in terms of unweighted RPs coverage score. 
64 DELs showed the highest coverage of ChEMBL RPs – 30-
33%. Figure 11 (b) depicts the coverage of the ChEMBL RPs 
weighted by the number of compounds that correspond to 
each RP. This time, 90 DELs showed high coverage of 
ChEMBL chemical space, ranging from 50 to 60%. 

Figure 12 displays three comparative landscapes: 
DEL1857 with 13%, DEL167 with 27%, and DEL3589 with 
57% coverage of ChEMBL (here, weighted coverage is 
considered). Dark grey zones are populated exclusively 
by ChEMBL molecules, while all other colors indicate 
areas also containing DEL compounds in a different ratio. 
Below each landscape, the IDs of reactions used for the 
corresponding library generation are given (see Figure 8 
for reaction IDs). From the landscape of DEL1857, it is 

apparent that this library does not cover many areas of 
ChEMBL chemical space – there are few multi-colored 
spots on the landscape. It is an indicator that DEL1857 is 
not chemically diverse enough, and there are plenty of 
biologically relevant chemotypes absent from this library. 
DEL167, in its turn, allows achieving higher coverage of 
ChEMBL. DEL3589, on the other hand, is one of the 
leaders among all 2,5K DELs - multi-colored areas are not 
focused in one place of the map, but rather distributed on 
different islands that correspond to different chemotypes, 
and dark grey areas are less present.  

There are around 90 libraries with similar chemical 
space coverage and diversity, but here, we will limit the 
discussion to the DEL3589 as an example of a “golden” 
DEL. The 84 M compounds of this DEL can be obtained 
by a succession of three reactions: two aldehyde 
reductive amination steps followed by Ullmann-type N-
aryl coupling (see Figure 14, DEL3589). BBs used are 3 
138 aldehydes, 275 bromoarylaldehydes, and 97 amines. 
As was discussed earlier, the latter is the class with the 
highest number of diverse BBs (Figure 4). Therefore, a 
random selection of BBs for DEL generation from such 
various and numerous collection results in higher 
coverage of ChEMBL chemical space. 

 

 
Figure 11. (a) Number of DELs with different coverage of ChEMBL responsibility patterns (RPs) (b) Number of DELs with different 
percentages of ChEMBL RPs coverage weighted by the RPs population (number of ChEMBL compounds per RP).   

 

 

Figure 12. Class landscapes comparing a particular DEL with ChEMBL. From left to right: comparison of ChEMBL to DEL1857, DEL167, and 
DEL3589. Dark grey zones are populated exclusively by ChEMBL compounds, while all other colors indicate areas also containing DEL 
compounds in a different ratio. White regions correspond to the empty areas of the chemical space. Below each landscape, a library ID and IDs 
for corresponding reaction types are given. 



Running title 

 10 

4.4 Search for the “platinum” set of DELs 

As shown on the class landscape for DEL3589 in Figure 12, 
there are still some dark-grey zones left that are not covered 
even by this “golden” DEL, which means there is space for 
improvement. To fill uncovered parts of the chemical space, 
the approach of library pools[33] was considered. According to 
it, several distinct DELs may be combined to create a more 
complex mixture, called “library pool”, which can then be 
screened all at once. In order to obtain the highest coverage 
of ChEMBL, composing DELs for constructing such library 
pools should be complementary to each other, and each new 
DEL should cover previously unrepresented areas of the 
biologically relevant space.  

The 90 DELs with the highest weighted coverage of 
ChEMBL RPs were chosen as possible “root” library. 
Each of these was then iteratively completed with up to 
14 other libraries. Every complementary DEL was chosen 
in a way to cover the maximal portion of the ChEMBL 
chemical space that was not covered in the previous steps. 
Each time a complementary DEL was added to the pool, 
the weighted ChEMBL coverage was calculated. The line 
chart in Figure 13 was used to identify a pool of DELs that 
can enhance ChEMBL coverage to the highest possible 
extent. It shows how the weighted ChEMBL coverage 
increases over the addition of complementary libraries. 
According to this chart, after the fifth DEL, each 
complementary library provides less than 1% of additional 
weighted ChEMBL coverage – irrespectively of the 
chosen root DEL. Considering that the size of each DEL 
can vary from 1M to 1B compounds, adding a library of 
such large size to the pool only to increase ChEMBL 

coverage by 1% is not justified. Therefore, it is irrational 
to use a pool of DELs composed of more than five libraries. 

If above-described DEL3589 is used as root DEL, the 
“platinum” pool of five DELs will be composed of such 
libraries: DEL3589, DEL1613, DEL159, DEL1161, and 
DEL845. Overall, they contain 776M compounds. 
Reactions used for the generation of these five DELs are 
shown in Figure 14: aldehyde reductive amination (R2), 
Ullmann type N-aryl coupling (R7), condensation of 
carboxylic acids with amines (R1), guanidinylation of 
amines (R4), and SnAr ether synthesis (R11). Almost all 
of them are among the most frequently used reactions for 
DEL generation (Figure 8) that employ BBs from highly 
represented classes (Figure 4). On the other hand, a pool 
of three DELs (DEL3589, DEL1613, DEL159) can be even 
more convenient since it contains fewer compounds 
(around 487M) and yet still allows to cover a large portion 
of ChEMBL (77%). 

The physicochemical properties of the selected 
libraries were calculated and analyzed (Table 1). The 
proportion of drug-like and lead-like compounds varies for 
all DELs. The 2BB DEL159 shows the highest percentage 
of drug-like and lead-like molecules, 98% and 78%, 
respectively. This result is not surprising due to the lower 
molecular weight of compounds from 2BB libraries. 
Regarding 3BB libraries, it appears that the golden 
DEL3589 possesses higher drug-likeness (80% of such 
compounds) and lead-likeness (12% of such compounds) 
than the 3BB complementary DELs. Indeed, 52% of 
molecules from DEL1613 are drug-like while for DEL1161 
the proportion of such compounds is only 30%. The 
portion of lead-like molecules for these libraries is 
negligible.

 

 
Figure 13. The percentage of the ChEMBL coverage, weighted by the number of compounds sharing common RPs, as a function of the number 
of libraries in the set. Green and blue dashed lines highlight the points for three and five DELs.  
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Table 1. The percentage of drug-like and lead-like compounds in the 
selected DELs that form “platinum” pools of three and five DELs. All 
DELs are 3BB libraries except DEL159 which is a 2BB library. 

 % drug-like compounds % lead-like compounds 

DEL3589 80% 12% 
DEL1613 52% 5% 

DEL159 98% 78% 

DEL1161 31% 1% 

DEL845 71% 6% 

To better illustrate how ChEMBL coverage increases 
when a pool of DELs is used instead of a single DEL, four 
comparative landscapes – featuring the “golden” DEL, the 
“platinum” pools of three and five DELs, and ≈2,5K DELs 
against ChEMBL were created (Figure 15). Structural 
analysis of underrepresented in DELs zones was carried 
out (Figure 16). The obtained landscapes show that as we 
go from one (Figure 15 (I)) to three DELs (Figure 15 (II)), 
the ChEMBL coverage increases drastically. 

 
Figure 14. Reactions and BBs required for the synthesis of the “golden” DEL and libraries composing “platinum” pools. 
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On the landscape of the “platinum” pool of three DELs, 
the ChEMBL areas from A1 to A6 became a lot more 
populated. However, the addition of the following two 
libraries does not have the same impact. There are almost 
no new previously uncovered areas, only the increase in 
the population of previously occupied areas is observed 
(Figure 15 (III)). However, neither three nor five libraries 
succeeded in covering areas A7 and A8 completely. To 
see whether it is even possible to do so, a comparative 
landscape for all DELs versus ChEMBL was created 

(Figure 15 (IV)). It appears that neither of the DELs can 
cover these regions of the chemical space – areas A7 and 
A8 remained dark-grey. This result is not surprising 
because they contain natural products (NP) and NP-like 
compounds such as cardiac glycosides, steroids, and 
steroid-like compounds, saccharides, nucleotides, 
oligopeptides, coumarins, macrolides, chalcones, etc., 
which are indeed inaccessible by DEL technology as 
employed in this analysis. 

 
Figure 15. Comparison of ChEMBL and I) “golden” DEL, II) a pool of three DELs, III) a pool of five DELs, and IV) all 2,5K DELs. Multicolored 
zones are populated by both ChEMBL and DEL compounds, dark grey zones – only by ChEMBL compounds. White regions correspond to the 
empty areas of the chemical space. Examples of compounds populating highlighted areas A1-A8 are provided in Figure 16. 
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Figure 16. Examples of CHEMBL compounds populating areas from A1 to A8 highlighted in landscapes in Figure 15. 

5 Conclusions 

In this work, for the first time, the ultra-large chemical space 
of DNA-encoded libraries (DELs) containing 2,5B compounds 
in total (2.5K libraries 1M each) was designed and generated 
using eDesigner and analyzed with the help of GTM. Owing to 
the probabilistic nature of GTM and efficiency of the libraries 
analysis and comparison based on the responsibility patterns, 
it was possible to develop a GTM-based approach for quick 
selection of DELs occupying the same areas of the chemical 
space as the reference library. In this work, the goal was to 
detect the “golden” DEL or “platinum” pool of DELs for primary 
screening - the libraries containing the highest portion of 
biologically relevant chemotypes. Therefore, ChEMBL, as the 
largest database of dose-response activity tests and thus an 
optimal representation of biologically relevant space, was 
used as a reference. However, the approach described herein 
could be applied to any reference library, e.g., actives of a 
particular biological target. 

This approach allowed to identify so-called “platinum” 
pools of five and three DELs providing the highest 
coverage of ChEMBL chemical space – 81% and 77%, 
respectively. Our results suggest that an optimal set for 

primary screening is the one encompassing three DELs, 
which, even though containing fewer compounds than in 
five DELs, still succeeds in covering a large portion of 
ChEMBL chemical space.  

In this project, only a brief structural analysis of DEL 
chemical space was performed. Without a doubt, a more 
detailed GTM-based analysis of chemical structures 
composing DELs and their comparison to ChEMBL and 
commercially available HTS libraries will improve our 
understanding of the chemical space accessible via this 
technology. Further GTM analysis and comparison of 
generated DELs can be helpful for the enhancement of 
available BBs libraries and prioritizing some promising 
synthetic procedures in order to improve the biological 
relevance of DEL chemical space. 
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