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Abstract: Ionizing radiation has become the most effective way to modify natural and synthetic
polymers through crosslinking, degradation, and graft polymerization. This review will include
an in-depth analysis of radiation chemistry mechanisms and the kinetics of the radiation-induced
C-centered free radical, anion, and cation polymerization, and grafting. It also presents sections
on radiation modifications of synthetic and natural polymers. For decades, low linear energy
transfer (LLET) ionizing radiation, such as gamma rays, X-rays, and up to 10 MeV electron beams,
has been the primary tool to produce many products through polymerization reactions. Photons
and electrons interaction with polymers display various mechanisms. While the interactions of
gamma ray and X-ray photons are mainly through the photoelectric effect, Compton scattering,
and pair-production, the interactions of the high-energy electrons take place through coulombic
interactions. Despite the type of radiation used on materials, photons or high energy electrons,
in both cases ions and electrons are produced. The interactions between electrons and monomers
takes place within less than a nanosecond. Depending on the dose rate (dose is defined as the
absorbed radiation energy per unit mass), the kinetic chain length of the propagation can be controlled,
hence allowing for some control over the degree of polymerization. When polymers are submitted
to high-energy radiation in the bulk, contrasting behaviors are observed with a dominant effect
of cross-linking or chain scission, depending on the chemical nature and physical characteristics
of the material. Polymers in solution are subject to indirect effects resulting from the radiolysis of
the medium. Likewise, for radiation-induced polymerization, depending on the dose rate, the free
radicals generated on polymer chains can undergo various reactions, such as inter/intramolecular
combination or inter/intramolecular disproportionation, b-scission. These reactions lead to structural
or functional polymer modifications. In the presence of oxygen, playing on irradiation dose-rates,
one can favor crosslinking reactions or promotes degradations through oxidations. The competition
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between the crosslinking reactions of C-centered free radicals and their reactions with oxygen
is described through fundamental mechanism formalisms. The fundamentals of polymerization
reactions are herein presented to meet industrial needs for various polymer materials produced or
degraded by irradiation. Notably, the medical and industrial applications of polymers are endless
and thus it is vital to investigate the effects of sterilization dose and dose rate on various polymers and
copolymers with different molecular structures and morphologies. The presence or absence of various
functional groups, degree of crystallinity, irradiation temperature, etc. all greatly affect the radiation
chemistry of the irradiated polymers. Over the past decade, grafting new chemical functionalities
on solid polymers by radiation-induced polymerization (also called RIG for Radiation-Induced
Grafting) has been widely exploited to develop innovative materials in coherence with actual societal
expectations. These novel materials respond not only to health emergencies but also to carbon-free
energy needs (e.g., hydrogen fuel cells, piezoelectricity, etc.) and environmental concerns with the
development of numerous specific adsorbents of chemical hazards and pollutants. The modification
of polymers through RIG is durable as it covalently bonds the functional monomers. As radiation
penetration depths can be varied, this technique can be used to modify polymer surface or bulk.
The many parameters influencing RIG that control the yield of the grafting process are discussed
in this review. These include monomer reactivity, irradiation dose, solvent, presence of inhibitor
of homopolymerization, grafting temperature, etc. Today, the general knowledge of RIG can be
applied to any solid polymer and may predict, to some extent, the grafting location. A special
focus is on how ionizing radiation sources (ion and electron beams, UVs) may be chosen or mixed
to combine both solid polymer nanostructuration and RIG. LLET ionizing radiation has also been
extensively used to synthesize hydrogel and nanogel for drug delivery systems and other advanced
applications. In particular, nanogels can either be produced by radiation-induced polymerization
and simultaneous crosslinking of hydrophilic monomers in “nanocompartments”, i.e., within the
aqueous phase of inverse micelles, or by intramolecular crosslinking of suitable water-soluble
polymers. The radiolytically produced oxidizing species from water, •OH radicals, can easily abstract
H-atoms from the backbone of the dissolved polymers (or can add to the unsaturated bonds) leading
to the formation of C-centered radicals. These C-centered free radicals can undergo two main
competitive reactions; intramolecular and intermolecular crosslinking. When produced by electron
beam irradiation, higher temperatures, dose rates within the pulse, and pulse repetition rates favour
intramolecular crosslinking over intermolecular crosslinking, thus enabling a better control of particle
size and size distribution. For other water-soluble biopolymers such as polysaccharides, proteins,
DNA and RNA, the abstraction of H atoms or the addition to the unsaturation by •OH can lead to
the direct scission of the backbone, double, or single strand breaks of these polymers.

Keywords: radiation induced polymerization; ionizing radiation; radiation synthesis nanogels;
radiation induced grafting; radiation of natural polymers

1. Introduction

Throughout this review ionizing radiation and radiation is defined as photons or particles with
sufficient energy to ionize atoms and/or molecular segments of covalent compounds. The deposition
of the energy through columbic interactions (in the case of charged particles such as electron, proton,
and alpha particles), and in the case of high-energy photons (through Compton scattering, photoelectric,
and pair production), takes place in approximately 10−18 to 10−12 s. During this period, localized
ionized and excited molecules are formed along the tracks. Most of the chemical reactions take place
from 10−12 to 10−1 s. Usually, the biological processes start one second after the interaction.

There is a huge body of literature on the effects of ionizing radiation such as gamma rays from
Co-60, high-energy electron from electron beam accelerators, and X-rays on the polymeric materials and
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composites [1–10]. For the last four to five decades, a wealth of knowledge on the effects of the radiation
dose (energy per unit mass) of ionizing radiation on polymeric materials has been accumulated.

1.1. Fundamental of Radiation Effects on Polymers

The interactions of gamma photons, X-rays, and high energy electrons with matters induce
ionizations leading to the formation of ions and expelled fast-moving electrons. While the interactions
of the Co-60 gamma rays and X-rays photons through mainly photelectric, Compton scattering,
and pair-production, the interactions of the high-energy electrons take place through coulombic
interactions. So, despite the types of irradiation of materials with photons or with electrons, both cases
produce ions and electrons. While the produced secondary and Compton, and photoelectric electrons
gives rise to more ionizations, the radiolytically produced ions undergo various chemical reactions,
mainly through deprotonation reactions leading to the formation of the C-centered radicals. Depending
on the dose-rate, presence of oxygen, and the presence of antioxidants, these free radicals undergo
various reactions. In the presence of oxygen, while the irradiation with high dose-rate such as X-rays
and electron beam enhance the crosslinking reactions of these free radicals, the irradiation with
low-dose, such as in the case of Co-60 gamma rays, promotes the degradation reactions through
oxidations. At a low dose rate, competition reactions are established between the crosslinking reactions
of these C-centered free radicals and their reactions with oxygen. The reaction of the C-centered free
radicals with molecular oxygen give rise to the formation of the corresponding peroxyl radicals. Finally,
these peroxyl radicals undergo various reactions leading to the degradation of the polymers.

1.2. The Complexity of the Chemical Structures of New Polymeric Materials Used in Advanced Technology

In present times, many new polymers have been used in advanced technology. The need to
investigate the effects of the radiation dose on them is vital. These polymers and copolymers contain
different molecular structures and morphologies and hence the radiation dose has different effects
on them. It has been known that the presence of quaternary carbon atoms, halogen atoms (in the
halogenated polymers), and C–O–C bonds on the backbone of the polymer chains, functional groups,
degree of crystallinity, and the presence of the oxygen, fillers, and antioxidants, have crucial effects on
the radiation chemistry of the irradiated polymers. While the absence of quaternary carbon atoms
enhances the crosslinking reactions such as in the case of polyethylene, their presence promotes the
scission along the backbone of the polymer chains leading to degradation. Also, the presence of
C–O–C bonds like in the case of cellulosic polymers materials, the radiation induces degradation
because of the scission of the O–O bonds and the production of the alkoxyl radicals. In addition to the
chemical structures, the ratio of crystallinity/amorphous also plays important roles in the radiation
effects of polymers. Remember that most of the radiation-induced reactions, such as crosslinking
and degradation, take place in the amorphous region of the polymers. However, H-hopping on the
backbone of the chain in the crystallinity region can occur. This allows for the gradual diffusion of the
free radicals towards amorphous zones where they can undergo bimolecular reactions.

2. Fundamental and Technological Aspects of Radiation-Induced Polymerization

Polymer synthesis is the art to produce macromolecules with specific features in terms of repeat
units, degree of polymerization, microstructure and topology, as well as a means to fabricate small
objects (nano- or micro- particles) and macroscopic three-dimensional networks. This can be achieved
either by a chain addition process or by step-growth polymerization [11]. Though most polymerization
reactions proceed by chemical reactions based on conventional initiation or catalysis combined with
thermal activation, alternative methods based on enzymatic or radiation-assisted processes exhibit
specific features that have been explored early in the history of synthetic polymers.

Ionizing radiation is a form of energy carried by high energy electromagnetic waves (gamma or
X-ray photons) by particles accelerated in an electric field (electrons, light ions, swift heavy ions (SHI)) or
by elementary particles emitted from unstable atomic nuclei (α or β− particles) [12]. Energy deposition
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occurs upon interaction with matter through a variety of extremely fast physical processes (time
span up to a few fs) that end up with a physio-chemical stage during which short-lived excited
species and chemical entities are generated, through a cascade process that is initially controlled by
nonhomogeneous kinetics. Then, the medium responds more homogeneously in the chemical stage
with solvated electrons and free radicals that exhibit longer lifetimes [13]. In-situ formation of such
reactive species can be utilized to initiate chain polymerization. The subsequent stages of the chain
process are, in principle, not directly affected by the ongoing radiolysis of the medium. Polymerization
essentially proceeds by a chain mechanism with free radical active centers, and in some specific cases
by ionic active centers generated at the end of the cascade processes of physical and chemical stages
following the interaction of high energy particles and photons with molecular substrates [14].

The early articles reporting on the discovery of radiation-initiated chain polymerization of simple
monomers date back to the year 1940 [7,15,16]. These studies were primarily conducted on styrene,
various vinyl derivatives, and some dienes to examine the effects of the monomer structure, the nature
of the solvent, and of irradiation conditions in terms of dose rate and of absorbed radiation dose.
The occurrence of ionic mechanisms was also evidenced during the late 1950s for particular monomers,
reaction media, and experimental conditions that could meet the demanding criteria of such reactions
being very sensitive to the presence of moisture and other impurities.

Though step-growth polymerization can be efficiently triggered by the generation of acidic or
basic catalysts via radiation-mediated processes, this possibility has not been studied extensively.
The few known examples are essentially based on UV-visible activation of photo-base and photo-acid
generators [17]. A case is found with thiol-ene polymerization that can be induced by electron beam
irradiation and also enters in this class of step-wise build-up of macromolecular materials [18,19].

Currently, radiation-induced chain polymerization continues to develop as an attractive alternative
to photo-initiated polymerization and UV-curing [20] in the perspective of advanced applications in
material science and technology. It has been used since the early 1980’s, on a continuously increasing
industrial scale, for curing thin layers of inks and coatings deposited on solid substrates (paper, plastic
films, wood panels, and metal foils) using low-energy electron beams. The accelerators typically
operate at a voltage between 80 and 500 kV with a strong beam current permitting short curing times
and high productivity on continuous industrial lines.

The increase in the scope of applications as well as the advent of more advanced analytical
methods and of dedicated irradiation equipment has fostered growing interest on a variety of new
scientific issues and technological perspectives. The status on the most significant results will be
discussed in this part of the review dedicated to polymerization. Another section is dedicated to
radiation-induced graft polymerization as a subtopic this review.

2.1. Specificities of Radiation-Initiated Polymerization

Radiation-initiated processes exhibit very unique features that can be exploited for the design of
basic investigations or for technological purposes:

2.1.1. Instantaneous Impact of Radiation Treatment

As radiation penetrates the substrate, almost instantaneously, the beam induces the desired
chemical processes. Thermal activation of chemical reactions is limited by heat transfer kinetics, and the
use of catalysts is dependent on mixing conditions. Continuous, fractionated, intermittent, or pulsed
irradiation can be applied to the substrate at a desired instant for inducing chemical reactions with a
high degree of temporal control.

This feature is exemplified by pulse radiolysis experiments using a high-energy radiation source
which allows to identify by time-resolved spectroscopic methods the nature and the concentration of
various transient species such as radical cations, anions, and radicals derived from monomers and
solvents, and to assess the kinetic parameters of their decay on timescales ranging from picoseconds to
seconds [21,22]. Using these techniques, considerable progress has been achieved in the understanding
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of initiation mechanisms and in the technological use of pulse irradiation for the control of material
properties [23,24].

In contrast, in the absence of any radiation stimulus, ink, paint, and resin formulations including
large amounts of very reactive monomers exhibit particularly long shelf-stability, which provides a
major technological advantage for the design of cure-on-command processes [25].

2.1.2. Spatial Control of Radiation-Induced Effects

Beam directing devices and masking systems allow for a spatial control of the response induced
within a substrate. 1D to 3D patterning can be achieved by localized polymerization at different
dimension scales. The resolution depends on physical factors associated with the precision of the
beam pathway and penetration, on the scattering effects of the cascading energy transfer processes,
and from the diffusion of the active chemical species that participate in the reaction. Three recent
works that tackle the challenges of nanometric resolution in radiation-polymerizable films can illustrate
this [26–28].

Cationic polymerization of the solid epoxy resin SU-8 has been successfully used to pattern organic
surfaces by electron beam lithography. Process parameters can be tuned to optimize the fabrication
process, in terms of spatial resolution and aspect ratio for the obtained pattern. The developed
technique allows for the fabrication of high-aspect ratio, surface bound nanostructures with heights
ranging from 100 to 4000 nm and with in-plane resolution below 100 nm. Direct writing on glass plates
as a transparent glass substrate is especially convenient for studying cell structures [29].

Irradiation of thin films of 4-vinyltriphenylamine with high-energy multiply charged Ag or
Os cations induces the solid-state polymerization and crosslinking of this monomer along the
ion trajectories, resulting in the formation of insoluble uniform nanowires with precise diameters.
Polymerization of this monomer in the track of the swift heavy ions proceeds quite efficiently
in comparison with crosslinking reaction of polymer layer treated under the same conditions.
Nanowires with a cross-section lower than 10 nm were obtained and characterized after dissolution by
chromatographic and spectroscopic methods to gain information on the free radical chemistry that
takes place during the process [26,27].

2.1.3. Random Energy Deposition

Energy deposition occurs at random as a function of the electron density in the atoms within
the irradiated substrate. Early physical events are therefore nonselective with respect to the specific
structure of the molecular assemblies interacting with radiation. This leads to low degrees of conversion,
the validity of the assumption that the stages of chain polymerization process that follow initiation are
not directly affected by the ongoing radiolysis of the medium. Larger contents in branched polymers
can be expected at high conversion, as a consequence of the radiolysis of the produced macromolecules
and subsequent initiation of a new kinetic chain starting from an activated repeat unit. Another
consequence is the possibility to induce graft polymerization from a molecular substrate in contact
with the monomer within the irradiated medium. This point is treated separately by another part of
this review [21].

The nonselective energy deposition process of ionizing radiation that penetrates deeply into
the reactive material is a significant advantage by comparison with the photochemical activation
by UV-visible sources of pigmented formulations and composites including fillers or fibers. This is
demonstrated by the capability to cure 3 cm-thick epoxy acrylate composites with about 66 wt % of
carbon fiber with a 10 MeV Linac accelerator [28].

Coreaction between the polymerizable matrix and a nanoparticulate organic filler due to the
nonselective activation by high energy radiation was recently evidenced for polyurethane acrylate
nanocomposite materials including 1 wt % of cellulose nanocrystals which exhibit, for similar degree
of conversion and glass transition temperature, a tensile strength twice as high for the electron beam
cured samples compared to the UV-cured ones [30].
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2.1.4. Decoupling of Primary Initiation Steps from Thermal Activation

Radiation processing allows decoupling initiation kinetics from the effects of temperature on the
induced chemical reactions, particularly on propagation and transfer reactions for polymer synthesis.
Fundamentally, thus overcoming a critical constraint in polymerizations involving thermally activated
initiators. Radiation-induced initiation, unlike chemical methods, generally generates reactive centers
at a constant rate. This makes it possible to follow polymerization kinetics under stationary and various
experimental conditions. Favorable conditions can thereby be achieved to ensure polymer chain
propagation with minimum transfer or elimination reactions, thus reducing the risks of chain branching.

This approach has been exploited to synthesize poly(vinyl iodide), a difficult case in the class of
simple halogenated polymers. Unlike other vinyl halides, vinyl iodide is quite unstable and undergoes
decomposition by the action of light and oxygen producing free iodine which acts as an inhibitor.
Poly(vinyl iodide) was prepared by radiation-initiated treatment of the monomer in various chlorinated
solvents and isolated as a white solid with an unprecedented degree of purity [31–33].

Another example of the benefits arising from the use of radiation-induced initiation as an additional
and versatile lever in polymer synthesis is found with butadiene and substituted analogues. These can
be polymerized by various mechanisms, cationic or free-radical, in bulk state, solution, or aqueous
emulsion with different kinetics and regioselectivities for monomer insertion, therefore with potential
control on the microstructure [34–36].

As initiating species are generated randomly and softly in the solid state, in particular with
X-rays and γ-radiation, it is relatively easy to polymerize conventional monomers in a variety
of inclusion compounds. Various substituted butadienes have been polymerized successfully
as clatrates in deoxycholic acid or thiourea crystal channels, yielding highly stereoregular
poly(2,3-dimethyl-1,3-butadiene) with 97% of 1,4-trans diene units and melting temperatures as
high as 272 ◦C [37–40]. Stereoselective polymerization of acrylonitrile also takes place in the canals of
crystallized urea with formation of isotactic poly(acrylonitrile) with controlled molecular weight [41,42].

2.2. Basic Aspects

Many basic aspects of radiation-initiated polymerization were established during the pioneering
period of this new domain of radiation chemistry by Williams, Hayashi, Okamura, Metz, Chapiro,
Machi, Stannett, and Charlesby, to name some of the most significant contributors [7,16,43,44].
Most conventional monomers have been studied both as bulk substrates in the liquid or in the solid
state, as well as in solution or in heterophase systems such as aqueous suspensions or emulsions.

In dilute monomer solution or in liquid heterogeneous systems, radiolysis of the solvent generally
drives the initiation process, whereas bulk monomers produce ionized species, i.e., radical cations,
and electronically excited species which produce in turn free radicals, by neutralization and by
monomolecular dissociation, directly or after charge recombination.

A simplified picture of the main stages of the complex mechanism leading to the initiating species
is presented in Scheme 1.

The fast electrons produced during the primary ionization of the substrate gradually lose their
energy during secondary acts thus causing the formation of numerous ions and electrons of high energy.
This primary electron e- is transformed into a thermalized electron e−th, i.e., in thermal equilibrium
with the medium. The thermal electron can be trapped by radical cations formed from monomers M•+

or from the solvent S•+ that are converted into electronically excited molecules with an energy excess
of 8–5 eV higher than the strength of covalent bonds in organic molecules (~3 eV). The molecule in a
dissociative excited state therefore decomposes into free radicals, some of which are able to initiate
the propagation. Energy deposition in some cases is not sufficient to induce ionization, the resulting
excited molecules M** can dissociate into free-radicals. The formation of M* and M** are estimated to
occur with similar probabilities [7].
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active centers.

Those free radicals will be subject to diffusion-controlled recombination, soon establishing a steady
state concentration in the chemically homogeneous system. The specific case of acrylate monomers that
involve the reduction of the conjugated unsaturation by thermalized electrons will be discussed in the
forthcoming section. The rate for the generation of radical cations by ionizing radiation is considered to
be two orders of magnitude lower than that of free-radical formation, but the recombination constants
for ions (ion and counter-ion) are approximately two orders of magnitude higher than those for free
radicals. The stationary concentration of ions can therefore be estimated to be about 100 times lower
than that of free radicals [7]. Consequently, radiation polymerization proceeds mainly by a free-radical
mechanism unless specific conditions are met.

Introducing onium salts such as triaryl sulfonium or diaryl-iodonium associated with low
nucleophilicity counter-anion in the reaction medium allows generating strong acids and/or carbenium
that can initiate cationic processes more efficiently [45–47].

2.2.1. Free Radical Polymerization

Radiation-induced polymerization has been studied with many monomers irradiated as bulk
liquids, in solution, aqueous suspension or emulsion, the gas and solid crystalline or glassy state, as for
other methods of initiation (conventional, thermal, photochemical initiation, etc.), potentially with the
additional advantages developed in the preceding section.

Intensive research has been conducted from 1960 to 1980 on monomer precursors of commodity
polymers, such as ethylene at various pressures and temperatures, [48–50], in solution or in supercritical
CO2 [51] and at pilot-scale [52–56]. It was confirmed that short chain branching is considerably reduced
by γ-ray initiation at low temperature [57].

Styrene is a versatile monomer in terms of polymerization mechanism. Depending on temperature
and the nature of the solvent, a free radical [58,59], or a cationic mechanism [60–62] can operate.
Most convincing arguments supporting the nature of the dominant mechanism were obtained by
experiments using specific inhibitors, such as benzoquinone or diphenylpicrylhydrazyl radical (DPPH)
for free radicals, or water, methanol, and ammonia for cationic species. Kinetic considerations were
based on the order n of the dose rate (Ḋ), dependence of the polymerization rate of the monomer,
(Rp), expressed as Rp = K·Ḋn

·CM and of the dependence of measured molecular weight of the isolated
polymers on Ḋ, monomer concentration CM, and temperature. It was however difficult to draw clear
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conclusions from several studies, since both mechanisms can take place simultaneously, with a complex
dependence on reactions parameters and strong sensitivity of cationic entities to trace amounts of
impurities present in the reaction medium. Copolymerization experiments with monomers compatible
of only one of the two possible mechanisms were used to obtain additional evidence on the nature of
the effective propagating centers [63].

A detailed study on the temperature-dependence of the polymerization rates for styrene and
2,4-dimethylstyrene upon irradiation in chlorinated solvents showed that an ionic mechanism is
involved in the temperature range in which the activation energy is negative (Figure 1) [64].
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Advanced studies on the γ-ray induced polymerization of styrene under pressure were conducted
from 1970 to 1983 to clarify mechanistic aspects and to determine kinetic constants and thermodynamic
parameters such as the activation volume, as a function of temperature and pressure in the bulk state
and in emulsion [65].

Rubbers based on butadiene were also studied quite intensively from the late 1950s to the early
1990s in solution and in emulsions [35,66–72].

Access to specialty polymers was explored with vinyl acetate and butyl acrylate polymerized in
emulsion [70,73,74], or butyl acrylate copolymerized with butadiene, or polymerized at the surface of
rubber particles to improve their compatibility with host matrices [75]. Water soluble poly(acrylamide)
was obtained by γ-ray induced polymerization in various hydro-organic solutions to improve its
efficiency as a flocculant [76].

The unique properties of fluorinated polymers stimulated studies on new synthetic
approaches based on radiation-induced homo- and copolymerization of tetrafluoroethylene [77–79],
hexafluoropropene [80], methyl trifluoroacrylate [81,82], in bulk conditions or in emulsion have
been studied.

Various other studies devoted to monomers including heteroatoms, such as diphenylvinyl
phosphine oxide obtaining polymers with polar yet aprotic properties useful as a host matrix [83],
vinylsulfonamide to produce functional polymers useful as synthetic fibers, adhesives, ion exchange
resins [84], vinylbenzyltrimethyl ammonium chloride, as a precursor of chemically stable separation
membranes and resins [85], and highly reactive multifunctional acrylates including Si, Sn, or Ge atoms
as a consequence of their high stopping power and/or for potential applications as high refractive
index materials [86–88] have been reported.
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Several new polymers or polymers with a specific microstructure have been synthesized by
radiation-induced polymerization. Many of those products exhibit excellent properties with potential
practical uses, however little if any commercial products are currently on the market.

Radiation-induced polymerization also proceeds in bulk solid state in spite of the limited molecular
diffusion for the propagation steps and of an expectable poor energetic efficiency. Topochemical
effects and confinement in solid guest materials have stimulated various fundamental investigations.
Contrasting behaviors were observed depending on monomer orientation and on the gap between the
reactive functions within the crystal lattice. In some systems, polymerization seems to be initiated
within crystalline defects, and continues as the formation of amorphous polymer domains affects the
original crystalline lattice. In some favorable systems, the relative orientation of monomers prefigures
the order of repeating units of the resultant polymer [44].

The potentialities of these self-orienting polymerizations has stimulated more studies on MMA [89],
a long series of articles by Hardy (e.g., N-vinyl succinimide in liquid and solid state [90,91]),
maleimides [92], vinyl chloride and trichlorofluoroethylene [93,94], methacrylamide, allylurea and
N-vinylpyrrolidone [95], diacetylenes [96,97], and various monomers confined in clathrates, as already
mentioned in the preceding section.

2.2.2. Ionic Polymerization

Due to the formation of active species of different natures, free radical and ions, the actual and
precise propagation mechanism requires careful investigation. Ionic polymerizations are sensitive
to the presence of impurities that may arise and to temperature, which activates the dissociation of
propagating species but also favors transfer reaction.

2.2.3. Cationic Polymerization

The radiation-induced polymerization of styrene is a good example of the intense debates which
took place when comparing the results obtained by different teams from the radiation chemistry
community [59]. The kinetic data obtained with styrene thoroughly dried by distillation over Na-K
alloy were quite different from the values reported from previous studies in conditions where the
radical mechanism was predominantly operating. In dry medium the free radical mechanism can be
ruled out on the basis of the following arguments. Addition of small amounts of water and ammonia
caused a remarkable reduction in the rate of polymerization (Rp), whereas the activation energy
for propagation was nearly zero between −20 and +80 ◦C and Rp was proportional to (dose rate)n,
with 0.8 < n < l, while the molecular weight was independent of dose rate. These results strongly
support the intermediacy of ionic species. The cationic or anionic nature of the mechanism was
further clarified by performing copolymerization of styrene with α-methyl styrene and with isobutyl
vinyl ether which proved to be effective, hence confirming the occurrence of a cationic mechanism.
This was established by additional evidence based on the retardation propagation by the addition
of ammonia and diethyl ether in the medium. Radical scavengers such as DPPH and oxygen also
retarded the polymerization, suggesting the intermediacy of an ion-radical in the initiation stages.
It can be concluded that the propagation mechanism involves free ions.

Many other advanced studies conducted on vinyl and diene derivatives irradiated in the liquid or
in the solid states include ethylene [97], isobutene [60], butadiene [34,98], α-methyl styrene, pinene
and other terpenes, vinyl ethers [99,100]. Cyclic oligo-acetals [101] and cyclic ethers such as trio-, tetra-,
and penta-oxane [102,103] were studied during the same period.

The radiation-initiated ring-opening polymerization of oligocyclosiloxanes has also been
considered to occur via a cationic mechanism on the basis of the molecular weight distributions
that show limited back-biting reactions. The intermediacy of a chelated silicenium has been proposed
to account for the small differences in reactivity observed in the reaction rates of the cyclic oligomers
and distribution of reaction products, in contrast with chemically initiated polymerization [104].
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Probably, the more important results from the viewpoint of the potential applications is the
cationic polymerization of epoxides [105,106] which will be further discussed later in this review.

2.2.4. Anionic Polymerization

Nitroethylene is among the most representative monomer proved to polymerize by
radiation-initiated anionic process. Its reactivity has been studied during the period 1966–1969 [107,108].
The anionic mechanism involves free ions. Its polymerization kinetics were investigated by using
hydrogen bromide as an anionic scavenger. G(initiation) was about 0.3 µmol J−1, which is much larger
than the value (0.01 µmol J−1) obtained for many ionic polymerizations of unsaturated hydrocarbons.
This difference may be explained by the large dielectric constant of the medium and high electron
affinity of this particular monomer. Additional information on the mechanism and on the lifetime of
transient species was obtained with pulse radiolysis experiments conducted at low temperature [109].
β-nitrostyrene [110] has also been confirmed to polymerize by an anionic mechanism.

2.2.5. Controlled Free Radical Polymerization

Since the early developments of controlled free-radical polymerization, radiation-mediated
methods have been tested and developed in tandem with RAFT because of advantages of the soft,
regular and penetrating mean of activation provided by γ irradiation [111]. This combined technique
is particularly useful to conduct mechanistic and kinetic investigations [112,113]. From a preparative
standpoint, it has been demonstrated as a unique approach to synthesize some polymers with the
features of controlled polymerization [114]. The potentialities for the precise modification of various
types of surfaces and substrates by radiation grafting are demonstrated by an increasing number of
reports [115,116].

In conclusion to this section, the potential advantages of radiation-induced polymerization as
an industrial method for the synthesis of commodity or low value-added polymers has not been
confirmed to a sufficient level nor with significant economic benefit to allow industrial development
for the production of commodity polymers. One of the basic limitations of the radiation-induced
process is that the advantages in terms of structural features of polymers in specific conditions are lost
at higher conversion, as a consequence of radiolytic effects on the polymer formed in situ.

However, the research that was conducted during these years has produced quite important
results with significant impact in polymer science. The radiation-induced grafting and radiation
curing by cross-linking polymerization, negative-tone lithography as well as specific applications
based on radiation-induced polymerization in confined or multiphase components and media have
been established as valuable technological options for specific and value-added applications.

2.3. Radiation-Induced Cross-Linking Polymerization

The curing of mixed monomers and prepolymers formulations is by far the largest application
domain of radiation-induced polymerization. Cross-linking polymerization is initiated almost
instantaneously upon interaction with the triggering beam to form covalent polymer networks
resembling those in thermosets (Scheme 2).
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Solvent-free formulations of adhesives, inks, overprint varnishes, coatings, and paints can be
cured by UV- or radiation-induced crosslinking polymerization. These methods are gaining shares over
conventional solvent-based and/or heat-curing processes which are gradually phased-out in graphic
arts and coatings industries because of their reduced environmental footprint and better sanitary
profile (reduced energy consumption and volatile organic compounds emission) [117].

Compared to UV-visible photon sources and accelerated electrons, high energy X-rays and γ

radiation indeed penetrate more deeply in heavily pigmented inks and paints and in composites with
high levels of fillers or fibers. High energy radiation can cure sealants which are sandwiched between
non-transparent materials. In addition to this advantage relating to the physical characteristics of
ionizing radiation, as no primary initiator nor photosensitizer are needed to generate free radicals upon
irradiation, the risk of producing toxic extractable chemicals is considerably reduced. The resulting
formulations and the cured materials are consequently even safer for food packaging, biomaterials,
and environmentally friendly applications [118].

These specific features are particularly well-exploited in the remarkable restauration process for
damaged archaeological objects made of wood, and for some other types of weak artistic pieces with a
porous structure. After infusion of a restorative monomer-based resins, the unique in-depth chemical
effects of high energy radiation result in the consolidation of the artefacts by solidification of the liquid
by polymerization, all stages of the process being conducted under mild conditions [119].

2.3.1. General Description

Two main classes of monomers are commercially available depending on the type of polymerization
mechanism. The first group is comprised of monomers fitted with ethylenic unsaturations, mainly
acrylates and methacrylates, but also styrene and its derivatives as well as some N-vinyl lactams. Most of
them undergo fast free radical polymerization. The second group includes molecules bearing epoxy or
vinylether functionalities for polymerization mechanisms mediated by cationic centers. The architecture,
the chemical nature of the backbone, and number of monomer units attached to these monomers
and prepolymers have a strong impact on their reactivity and on the physical properties of the cured
material. The requirements in terms of tensile strength, flexibility and elongation, gloss, scratch and
solvent resistance, adhesion to substrate or the reinforcing materials durability upon photochemical
and hygrothermal ageing may differ considerably, depending on the domain of application.

The different generic structures represented in Scheme 3 exist with aliphatic or aromatic
hydrocarbon scaffolds, with linear or branched polyethers, polyesters, polyurethanes, silicones,
with various molecular weight and number of attached monomer units. The balance between
the rigidity of the scaffold’s segments and the final crosslink density strongly influences the
thermo-mechanical properties of the obtained networks. Mono- or multifunctional reactive diluents
which are primarily added to the prepolymer blends to adjust its rheological properties also influence
the curing reactivity by acting on the initial concentration in monomer groups and on the density of
cross-links. A variety of reactive additives specifically developed for radiation-curing applications
help to improve surface properties.
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2.3.2. Initiation Mechanisms

Pulse-radiolysis experiments performed with simple acrylate monomers, either in the bulk state
or in solution in various solvents provide a better understanding of the pathways leading to effective
initiation of polymerization. Irradiation of acrylates and methacrylates were studied in cyclohexane
solution [21,120,121]. Diacrylates were studied in n-butyl chloride solution [122] and water-soluble
diacrylates in diluted aqueous solution [123,124]. Kinetic and mechanistic information are obtained
by analyzing the decay of the transient species known to appear upon irradiation of the solvent.
The bulk monomer generally behaves in a more complex manner, since it is composed of various
structural moieties. A schematic depiction of the mechanism operating aliphatic acrylates such as
tripropyleneglycol diacrylate irradiated in the bulk state can however be proposed by the sequence of
events shown in Scheme 4. Attachment of a thermalized electron to the carbonyl of acrylate esters,
and the subsequent formation of a radical anion dimer either represented by a charge transfer complex,
or by a covalent adduct. Protonation of the corresponding radical-anions leads to the effective neutral
free radical species that initiate propagation. The direct formation of free radicals by homolytic
dissociation of electronically excited monomer moieties is considered to be a minor initiation pathway.
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As mentioned earlier, radiation-induced cationic reactions are sensitive to the chemical nature
of the medium and to the presence of impurities. Cationic polymerization is preferably conducted
in the presence of onium salts to ensure efficient initiation. Many of the diaryliodonium and triaryl
sulfonium salts which are used as oxidative coinitiators in the radiolytic process can also operate by
direct and selective UV photolysis [125]. The two activation processes are actually quite different.
The dominant pathway in an irradiated medium rich in monomers and where energy deposition
occurs at random, is the production of free radicals which can be oxidized by electron transfer to
the onium salt, generating carbenium cations (Scheme 5) [126]. Reduction of the onium salt can also
occur from its interaction with solvated electrons (direct reduction pathway). More complex radiolytic
processes mechanism were confirmed by pulse radiolysis experiments on phenyl glycidyl ether in
the presence of an iodonium salt [126]. The decomposition of the low nucleophilicity counter-anions,
such as hexafluorophosphate or hexafluoroantimonate, has been also been reported based on early
observations of these systems, but still remains to be elucidated [127,128].
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At the dose rate provided by high energy radiation sources, preferably electron accelerators,
the number of active centers per time unit is generally sufficient to ensure the fast and extensive
polymerization of the organic binder. In this situation, inhibition by monomer stabilizers,
by atmospheric oxygen in the case of free radical initiation, or by nucleophiles and moisture that
deactivate cationic centers, are overcome during the first instants of irradiation by the formation of
a larger amount of reactive species. Thermal aspects related to the exothermal flux induced by the
polymerization and by the enthalpic conversion of the absorbed radiation are crucial since translational
and segmental mobility is needed to ensure the development of covalent networks by cross-linking
polymerization [129]. A precise control of temperature profiles is therefore required during the
elaboration of high-performance materials capable of withstanding high service temperature and
exhibiting high mechanical properties.

The simple bisphenol-A derived diepoxy monomer DGEBA, and the diacrylate EPAC shown
in Scheme 6 are representative models of the radiation-curable resins used for such applications.
Many studies have examined their reactivity upon radiation-induced cationic and free radical
polymerization, respectively. The idealized structure of the corresponding networks emphasizes
the very high cross-linking density in the two types of resulting networks which include quite rigid
bisphenol-A segments.

Beyond the already mentioned differences due to the chemical nature of the monomers and in
precise initiation mechanisms, a number of other contrasting features associated with the radiation
treatment or with the physical characteristics of the reactive system may exert, in a direct or indirect
manner, an influence on the build-up of the network and on the final properties of resulting material.

2.3.3. Gelation and Vitrification during Network Formation

The combination of spectroscopic and thermophysical analyses allows for a more precise
description of the curing behavior. The following results highlight the key aspects of polymerization
kinetics and network formation.

Crosslinking-polymerization of blends based on multifunctional monomers and prepolymers
undergo macroscopic gelation at rather low conversion degree [130]. The resulting auto-acceleration
or Trommsdorff effect is exemplified by comparing the conversion plots for a monoacrylate to those
recorded of diacrylates. Butyl acrylate (nBuA), hexanediol diacrylate (HDDA) and tripropyleneglycol
diacrylate (TPGDA) have comparable acrylate functionality contents in the bulk state (between 6.7 and
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8.8 mol kg−1). The conversion plots of Figure 2 were obtained by FTIR monitoring after cumulative
application of 10 kGy e-beam dose increments at the same dose rate of 11 kGy s−1. The profiles show
that the initial polymerization rates are 30 times faster for HDDA, and 60 times faster for TPGDA than
that of nBuA. Since the viscosities of the bulk monomers are not very different, assuming that the
generation of initiating species and that the intrinsic reactivity of the acrylate functions are similar
for the three monomers, the contrasting initial polymerization rates would essentially result from
differences in the steady-state concentration in free radicals due to the much slower bimolecular
termination rate in multifunctional monomers.Polymers 2020, 12, x 14 of 69 
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This phenomenon explains to a large extent the extremely fast polymerization of acrylate-based
ink formulations for graphic arts and for coatings for optical fibers, with curing speeds under UV
or high energy radiation as high as several hundreds of meters per minute on high-performance
industrial lines [131–133].
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Dramatic changes in the rheology arise as cross-linking polymerization progresses in solvent-free
radiation-polymerizable compositions. Initially, the blends viscosity ranges from 0.5 to 5 Pa s at
the application temperature which facilitates the spreading of the blend onto the substrate or the
impregnation of fibers or fillers during the fabrication of composite materials. Network formation
proceeds with a gradual reduction of mobility from the fluid state, to a gel, and eventually to a vitreous
material. The viscosity increases by several orders of magnitude until solidification, at first with the
positive influence on polymerization kinetics discussed in the previous section, and then by a strong
reduction of polymerization rate as the monomer is depleted and as the material approaches vitrification.

Comparison of the EB-curing kinetics for an aliphatic polyurethane triacrylate (APU) having an
initial acrylate content of 3.5 mol kg−1 with an aromatic epoxy-diacrylate (EPAC) with a higher initial
acrylate content (about 6 mol kg−1) is quite instructive. These experiments were conducted under
conditions minimizing the thermal effects due to polymerization exothermicity by applying small dose
increments onto thin films of the prepolymer mixtures cast on NaCl windows [134].

While the polyurethane acrylate possesses a flexible backbone, which yields a soft material upon
curing, the epoxy acrylate tends to form a glassy network even at low conversion levels. The kinetic
profiles illustrate quite clearly the effects of incipient vitrification that occurs at different conversion
levels. The acrylate plot shows a steep increase in monomer conversion to 0.75 for a dose lower than
10 kGy (Figure 3). The curve then levels off to a plateau with a conversion value about 0.9. The plot for
the aromatic epoxy diacrylate indicates that the fast-initial stage has abated at a low conversion level
of 0.2, the conversion approaching 0.4 only for a dose of 60 kGy. At this stage, the concentration of
unreacted acrylates is 3.6 mol kg−1, a value that is even higher than the acrylate concentration in the
unreacted APU sample. The poor reactivity observed in spite of the large concentration of monomer
reveals the influence of incipient vitrification that hinders propagation.Polymers 2020, 12, x 16 of 69 

 
Figure 3. Kinetic profiles of acrylate consumption in prepolymer films as a function of EB-radiation 
dose: (a) APU and (b) EPAC. 

As curing was performed at quasi-isothermal conditions, vitrification took place in the APU ma-
terial at conversion levels slightly above 0.7, the critical value at which the kinetics started to level 
off. The vitrification phenomenon took place at much lower conversion levels (typically 0.2) in the 
more rigid EPAC prepolymer when cured at room temperature. 

The dose rate-dependence of the quasi-isothermal kinetic profiles on polymerization kinetics of 
the EPAC diacrylate at EB currents corresponding to dose rates between 19 and 110 kGy s−1 is shown 
in Figure 4. 

 
Figure 4. Kinetic profiles of acrylate consumption for EPAC prepolymer processed at different dose 
rates. 

Three kinetic regimes were considered for each plot. At low conversion, the initial polymeriza-
tion rate was proportional to the square root of the dose rate Ḋ, as is expected from the bimolecular 
termination kinetics occurring for free radical chain processes in fluid media (Equation (1)). 𝑅௣ = 𝑘௣𝑅௜௡௜௧2ඥ𝑘௧ [𝐶 = 𝐶] ∝ 𝑘௣2ඥ𝑘௧ [𝐶 = 𝐶]𝐷ሶ ଴.ହ𝐺(𝑅⋅) (1) 

where kp: the reaction rate constant of the propagation reaction; 

Rinit: the rate of initiation reaction; 
kt: the reaction rate constant of the termination reaction; 

Figure 3. Kinetic profiles of acrylate consumption in prepolymer films as a function of EB-radiation
dose: (a) APU and (b) EPAC.

As curing was performed at quasi-isothermal conditions, vitrification took place in the APU
material at conversion levels slightly above 0.7, the critical value at which the kinetics started to level
off. The vitrification phenomenon took place at much lower conversion levels (typically 0.2) in the
more rigid EPAC prepolymer when cured at room temperature.

The dose rate-dependence of the quasi-isothermal kinetic profiles on polymerization kinetics of
the EPAC diacrylate at EB currents corresponding to dose rates between 19 and 110 kGy s−1 is shown
in Figure 4.
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Figure 4. Kinetic profiles of acrylate consumption for EPAC prepolymer processed at different dose rates.

Three kinetic regimes were considered for each plot. At low conversion, the initial polymerization
rate was proportional to the square root of the dose rate Ḋ , as is expected from the bimolecular
termination kinetics occurring for free radical chain processes in fluid media (Equation (1)).

Rp =
kpRinit

2
√

kt
[C = C] ∝

kp

2
√

kt
[C = C]

.
D

0.5
G(R·) (1)

where kp: the reaction rate constant of the propagation reaction;
Rinit: the rate of initiation reaction;
kt: the reaction rate constant of the termination reaction;
Ḋ: dose rate;
G(R•): G—value of carbon centered radicals;
Rp: reaction rate of the propagation reaction;
C=C: initial concentration of vinyl group.

Deviations from this initial regime were evidenced as soon as the initial slope is affected by incipient
vitrification. The curved part of the profile is assigned to a transition regime which evolves to the final
segment where the polymerization rate is directly proportional to the dose rate. This corresponds to a
monomolecular termination by occlusion of the growing free radicals in the vitrified matrix.

UV-curing experiments performed under iso-thermal conditions at controlled temperatures clearly
establish a correlation between the curing temperature and the conversion level at the beginning of
third regime. Dynamic mechanical analysis of samples prepared with this critical conversion level
indeed show that the glass transition of the network does not differ from the curing temperature by
more than 5 ◦C [135]. These results stress the importance of the relation between the effective curing
temperature and the conversion dependence of the glass transition on the material network. From a
practical view, it is therefore crucial to control the thermal profile in the processed materials along with
the radiation treatment, if one wants to take advantage of radiation processing as an out-of-autoclave
alternative to conventional curing of thermosets [136]. To achieve the desired degree of curing without
external heating, there should be a finely-tuned interplay between the control of the polymerization
exotherm (typically 80 and 100 kJ mol−1, for acrylates and epoxy functionality, respectively), the energy
conversion from the deposited radiation dose, the heat and radiative exchanges with the surrounding
environment, and the conversion dependence of vitrification.

The large thermal effects occurring upon exposure to the electron beam of a 20 kW/10 MeV
accelerator have been measured in a 125 g EPAC sample fitted with a series of thermocouples placed in
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thin-walled aluminum box and treated with a single 50 kGy dose in the configuration represented in
Figure 5a. The plots of Figure 5b show that in central positions where energy deposition is maximal and
where heat dissipation is minimal, the raise in temperature can be as high as 180 ◦C in the sample which
was at room temperature before irradiation. The temperature increase within the sample increases is
essentially due to the polymerization reaction. Assuming that the heat capacity of the epoxy resin is
about 2 J K−1 g−1 [137], the increase due to the absorption of the 50 kGy dose would amount to about
25 ◦C at best, a value calculated for a strictly adiabatic process which is not the case in practice.
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Figure 5. Position of thermocouples in a 125 g EPAC resin sample contained in a thin-walled aluminum
box to (dotted line indicating the dose-depth deposition profile) and plots of the variations of the
temperature in the sample submitted to a 50 kGy dose of 10 MeV electrons.

This explains why the glass transition temperature (Tg) of EB-cured EPAC networks can reach
values as high as 180 ◦C. The conversion-dependence of Tg determined by Dynamic Mechanical
Analysis of thin films and bar-shaped specimens treated under various irradiation conditions exhibits
a monotonous increase suggesting a continuous build-up of the network, as a consequence of the
increase in crosslinks density (Figure 6).
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The variations can be satisfactorily described by the DiBenedetto or Pascault–Williams relation
(Equation (2)), where Tg is the glass transition temperature of network at conversion degree x, Tg0 is
the glass transition temperature of the uncured resin (x = 0), Tg∞ is the glass transition temperature of
the fully reacted resin (x = 1), and λ is a structure-dependent parameter with value between 0 and 1),
as represented by the continuous line in Figure 6.

Tg − Tg0

Tg∞ − Tg0
=

λx
1− (1− λ)x

(2)

The established relation between Tg vs. monomer conversion can be used to describe the variations
of viscosity in the sample subject to curing by using the Williams–Landel–Ferry (WLF) model expressed
by Equation (3),

ηT

ηTg

= exp

 C1
(
T − Tg

)
C2 +

(
T − Tg

)  (3)

The WLF relation is commonly used to describe the increase in viscosity ηT when the temperature
of a softened polymer approaches Tg from higher temperatures T, ηTgC1 (unitless) and C2 (◦C) being
numerical parameters.

By adapting the reading of this description to a curing process, at a given polymerization
temperature T, it is possible to relate the decrease in segment mobility due to the progress of conversion
vitrification that gradually shifts the network Tg to higher temperatures.

A model was developed for predicting the Tg of a volume element in a radiation-cured material.
Studies on temperature effects on isothermal polymerization kinetics for EPAC monomers showed
that only regime 1 was thermally activated. Once vitrification has occurred in the sample, propagation
appeared unsensitive to thermal effects. The kinetics of isothermal polymerization is modeled on
the basis of the two extreme kinetic regimes observed in the conversion vs. dose plots and from the
assumption that a linear combination of the 2 regimes can describe satisfactorily the transition regime,
as written in Equation (4) [138],

Rp = [M]0(1−π)
{
α

[
A

.
D

0.5
e−

E1
a

RT

]
+ (1− α)

[
B

.
D
]}

(4)

the dependence of the weighing factors α and (1 − α) for each extreme regime as a function of the
progressive change of the Tg being expressed through the WLF equation by means of Equation (5),
where f N is a normalization factor.

α = fNexp

 C1
(
T − Tg(x)

)
C2 +

(
T − Tg(x)

)  (5)

The crosslinking polymerization of multifunctional monomers is known to yield brittle matrices,
therefore limiting the development of this technique for the production of high-performance composite
materials. Among the various possible causes of the brittleness, the spontaneous formation of
nanoheterogeneities during radiation-initiated polymerization. Solid state 1H NMR relaxation
experiments in radiation-cured materials prepared from model difunctional monomers allows one
to distinguish two phases inside the materials: one consisting in rigid domains, and a second one
with higher local mobility and distinct relaxation kinetic features [139]. The two-component decay
of the transverse magnetization are associated with one short and one long T2 value which can be
assigned to the highly cross-linked and the loosely cross-linked phase, respectively. The influence of
acrylate conversion on the relaxation behavior of cured samples was examined to describe the gradual
evolution of the different domains, in terms of local mobility and associated fraction of material,
along the curing process.
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AFM analysis of the EPAC samples in the phase imaging mode provides a complementary picture
of the network with indications on the actual dimensions of the soft and rigid domains. Topographically,
the images reveal a very flat surface with a roughness of 0.2 nm, whereas the phase contrast picture
highlights a more complex network structure [140]. Dense nodules appear very early at the brighter
zones with a mean cross-section of about 15 nm, whereas the darker interstitial zones correspond to
loosely crosslinked and swollen domains (Figure 7). Measurements of the number, Feret’s diameter, and
cross-section area of the rigid domains reveal that nanogel clusters are initially embedded in a soft gel,
undergoing limited evolution by growth and by aggregation up to a limiting size at higher conversion
levels. Nucleation within the monomer rich domains further continues up to a 50% conversion,
together with limited growth by aggregation of adjacent particles. Polymerization then continues in
interstitial domains, generating a stringy network with some discrete low conversion domains.
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Figure 7. Height (a) and phase contrast (b–d) AFM images recorded in tapping mode of EB-cured
epoxy diacrylate (EPAC) samples at conversion levels x = 0.41 (a,b), 0.46 (c), and 0.59 (d).

Differential scanning calorimetry (DSC) of UV- and EB-cured diacrylate materials exhibiting
a fractional degree of conversion ranging from 0.1 to 0.8 have been analyzed in the light of these
results [140]. Two main second-order thermodynamic transitions were observed by using the
temperature-modulated mode of DSC which avoids perturbations coming from irreversible heat
exchanges, as postpolymerization enthalpy. The bimodal distribution of transition temperatures
observed as fused peaks in the thermograms representing the first derivative of reversible heat capacity
dCp,rev/dT is satisfactorily resolved by a two-component fit, allowing for a quantitative exploitation
of the data in terms of Gaussian contributions, with a central relaxation temperature and a peak
width assigned to each domain. The domains exhibiting the high transition temperature undergo an
evolution towards a well-defined state with a narrowing distribution of relaxation temperatures at the
higher conversion values, whereas the low temperature relaxation is continuously extending over a
wider domain. Comparing the NMR relaxation data as well as the calorimetric features of networks
prepared by UV- or by EB-induced polymerization does not reveal noticeable differences to be related
to the initiation mechanism (UV, EB or X-ray) and/or curing conditions (anisothermal or isothermal,
dose rate). This was established for two undiluted aromatic diacrylates, but one should be careful
and not generalize this finding to systems where mixtures of monomers are involved, since phase
separation is likely to occur, hence inducing different reactivities in the segregated domains.

A common scenario accounting for these observations and measurements is proposed for the
build-up of the network (Scheme 7). Irradiation of the liquid monomer induces the nucleation of softly
interconnected gel nanoparticles within the swollen loose network, which will increase in number by
additional nucleation, and in size by aggregation while the crosslink density goes up to form glassy
nanoclusters. At a critical level, percolation of the nanoclusters induces syneresis of the material
that ends up as a monolithic glassy solid. This illustrates variations of Tg and the broadness of the
transitions in relation with the variety of defects and heterogeneities in the spatial distribution of
cross-links density [138,141].
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chain polymerization of epoxy-diacrylate EPAC.

Research activities aiming at the improvement of matrix toughness, at the reduction of the
matrix cure induced shrinkage, and at the design of fiber surface functionality are in progress with
significant results in each of these topics. Solutions for matrix toughening with higher processability
and compatible with environmental considerations are under development. A next step will consist of
aggregating the technological solutions developed for improving isolated aspects of curing, examined
from the viewpoints of processing, of curing kinetics, polymer network performances, and fiber-matrix
interactions. Encouraging results allow envisioning mass production of structural composites as
well as functional materials by means of a reliable, cleaner, and more productive out-of-autoclave
manufacturing [142].

3. Graft Copolymerization Induced by Ionizing Radiation

3.1. Radiation-Induced Grafting of Solid Polymers

Radiation-induced grafting (RIG) [143] allows a rapid functionalization of solid polymers which
can be easily upgraded from laboratory to industrial scale. This allows for a variety of applications [144].
Over the last 5 years, the major applications remain in accordance to societal needs with the
development of: adsorbents for depollution (removal of toxic metals [144–152], ammonia/ammonium
species [153,154], atmospheric CO2 [155]); exchange membranes for fuel cell (anion [156,157] and
proton [158,159], batteries or super capacitors [116]; functional fibers other than adsorbent applications
(flame-retardant [160], antistatic and antibacterial [161] properties); and numerous applications are
emerging in the field of renewable energies [162].

RIG brings a durable functionalization of solid polymers as it modifies the initial polymer
chemistry by covalent bonding of functional monomers [163]. Not just electron beams but also
other forms of ionizing radiation such as γ-rays, X-rays, plasma [164], and swift heavy ion (SHI)
irradiation can generate free radicals in the polymer and subsequently initiate grafting reactions.
Modification by the RIG has several advantages over the conventional chemical methods. First, it does
not involve any hazardous reactants, nor does it release any toxic side-products. These mild conditions
required for grafting are appropriate for sensitive biopolymers and favors advances in green chemistry.
Furthermore, by playing with the radiation penetration depth (energy range of incident particles),
one can treat any polymer shape (films, fibers, nanoparticles, membranes, etc) thus modifying polymer
surface or bulk. Commonly used monomers as styrene, acrylates, methacrylates, methacrylamides,
vinyl acetates, and vinyl chlorides can be grafted.

The key parameter is the grafting yield (GY), which is determined as the weight of grafted
copolymer with respect to the initial weight of polymer substrate:

GY =
mi −m f

m f
·100 (6)

where mi and mf are masses of the polymer before and after grafting, respectively. The grafting yield is mainly
controlled by the irradiation exposure parameters such as dose, dose rate, and linear energy transfer (LET).
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3.2. Radiation-Induced Grafting Processing

In total, three methods can be used for RIG: direct (mutual), peroxide, and preirradiation
methods (Scheme 8).
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In the direct method, the polymer substrate is immersed in a monomer solution and exposed to
ionizing radiation. The irradiation activates the polymer substrate by the formation of free radicals.
The free radicals of the polymer backbone initiate polymerization reactions of the monomer on its
surface. After the initiation, the propagation of monomer chains takes place. The process continues
until the growing macroradicals meet each other (recombination) and thus terminate the chain growth.
Since the monomer solution is also exposed to irradiation, it may result in homopolymerization in
solution limiting the GY value. For this reason, inhibitors or radical scavengers are generally added in
the monomer solution.

In the peroxide method, the polymer substrate is first irradiated under oxygen or air atmosphere to
form peroxides or hydroperoxides due to oxidation of alkyl radicals. At high temperature, the peroxide
bonds decompose on alkoxy and hydroxy radicals. The alkoxy radicals initiate the polymerization
reaction. In this method, which represents a special case of preirradiation method, the formation of
homopolymer is negligible since the monomer is not exposed to irradiation.

In the preirradiation method, irradiation is carried out in vacuum or in an inert atmosphere
to prevent radio-oxidation reactions. In contrast to the peroxide method, which involves
peroxides/hydroperoxides decomposition, the alkyl radicals are reactive enough to themselves initiate
the radical polymerization. To do so, a high concentration of radicals should be achieved, and high
dose rates are required. Depending on the monomer reactivity, an activated temperature is generally
needed. To avoid any radical quenching due to oxygen, the polymerization reaction should also be
run under inert atmosphere and monomer solutions are de-aerated prior to RIG. It is worth noting
that, under these precautions, the preirradiation method leads to covalent C–C bonding between the
polymer substrate and the grafted polymer chains. At industrial scale, the preirradiation method
makes the processes, i.e., irradiation and grafting, separable. Irradiated film rolls and bobbins of fibers
are thus treated in continuous and batch modes [150].

A selection of possible reactions between styrene and fluorinated ethylene propylene (FEP) during
direct and indirect irradiation is shown in Figure 8. Both the styrene and FEP are expected to form
C-centered free radicals. However due to the high electronegativity of fluorine, it is expected that the
FEP will produce higher yields of radicals and at a quicker pace than styrene. The desired products are
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those with increased covalently bonded styrene onto FEP while the undesired products increase the
homopolymerization and crosslinking. Al-Sheikhly and coworkers investigated the mechanism of the
radiation grafting of styrene to FEP [165].
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Figure 8. Possible chemical reactions between fluorinated ethylene propylene (FEP) and styrene
during direct and indirect irradiation. The radicals produced will undergo propagation resulting
in the polymerization of styrene. Undesired homopolymerization and FEP crosslinking may also
take place [165].

3.3. Parameters Affecting the RIG

The GY is dependent on many factors, such as the polymer chemistry, monomer
reactivity, solvent, dose, additives (e.g., inhibitor of homo-polymerization), reaction temperature,
and atmosphere [166,167]. Therefore, the yield of grafting process can be controlled by varying these
reaction parameters.

3.3.1. Irradiation Dose and Dose Rate

Radiation-induced grafting by the direct method is usually performed using γ-rays in contrast to
the preirradiation method, where the electron-beam is preferred [164,168]. In general cases, the higher
the dose, the larger the number of radicals formed and the higher the GY is expected. However,
the increase of the GY as a function of dose may exhibit a nonlinear dependence. At certain doses,
no further growth in GY is observed. In the direct method, this phenomenon may be attributed to
the restriction of monomer diffusion due to the increased viscosity of grafting solution due to the
above-mentioned homo-polymerization. In the preirradiation method, the decrease in GY may be
explained by achieving the gel–dose threshold of polymer. Crosslinking under irradiation can hinder
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the monomer diffusion inside the polymer but also the propagation of the grafting front. The inverse
tendency is observed for the GY as a function of dose rate [169]. High dose rates produce higher
density of radicals that favors their recombination and formation of gel.

3.3.2. Polymer Substrate Chemistry

Among many polymers whose surfaces are modified by RIG, the most commonly used
polymers are polyolefins such as polyethylene (PE) [146,148,155], polypropylene (PP) [148],
and with a new trend using recycled polyolefin waste (PPw) [145]. There are also a significant
number of reports of using surface modification of polyamide (PA) [155,161,170,171], poly(ethylene
terephthalate) (PET) [155,172,173], polyurethane (PUR) [174,175], fluoropolymers [154] such
as poly(tetrafluoroethylene) (PTFE) [176,177] poly(ethylene-co-tetrafluroethylene) [156,178] and
poly(vinylidene fluoride) (PVDF) [116,153,159,179–181], cellulose [182,183], and many biopolymers
such as chitosan [149]. Novel organic surfaces based on graphene oxide [151] have also emerged as
organic materials that can be grafted by radiation.

GY depends not only on the number of radio-induced radicals but also on their reactivity toward
the initiation of vinyl or allyl monomers. Electron paramagnetic resonance (EPR) spectroscopy is often
used to determine the radical nature and content in the irradiated polymer samples and help predict
the behavior in the RIG (see section on ‘Nature and trapping of radicals’ below).

Additionally, the total amount of radio-induced radicals is indirectly affected by some
functional groups that can either stabilize some of the radicals or quench them. For example,
considering polystyrene (PS), polypropylene (PP), and polyethylene (PE) irradiated at the same dose,
the concentration of radicals, stable at room temperature, is in the following order: PS < PP < PE.
Under comparable conditions, similar relationships were found for GY of poly(acrylic acid) (PAA)
onto these polymers using the direct method [184].

3.3.3. Monomer Concentration

The monomer reactivity is influenced by the type of solvent used for grafting as it involves the
monomer diffusion. In general, the higher the monomer concentration, the greater the GY. However,
both GY and rate of grafting tend to level off at certain monomer concentration beyond which further
increase causes sharp fall in both parameters. This decrease is often caused by the decrease in the
monomer concentration and the diffusion rate in the grafting zone. In the case of fluoropolymers,
e.g., PTFE, which barely swells in the grafting mixture, such decreasing effects are attributed to the
suppression of the monomer diffusion by the increase in the viscosity of the grafting close to polymer
surface [165]. This phenomenon is attributed to the grafting front mechanism (see section on ‘graft front
mechanism’ below).

3.3.4. Solvent

The nature of solvent determines not only the GY, but also the location of the grafting.
If poor-swelling solvent is used, surface grafting is most likely to take place due to the slow-down
in monomer diffusion. When good-swelling solvent is utilized, bulk grafting is highly favored and
homogenous grafting is preferably obtained. For example, PAA grafting preferentially occurs in the
volume of PVDF film when water is used as a solvent [181]. Whereas the use of a transfer agent or less
polar solvent promotes surface grafting. Furthermore, properly chosen swelling solvent may affect not
only the grafting efficiency but also the homogeneity of the grafted chains.

3.3.5. Grafting Temperature

Increasing temperature enhances the RIG by changing the kinetics of the reaction [185]. In the
peroxide method, decomposition of the peroxides leads to the formation of active sites that initiate
polymerization reactions. In the direct method, heating of irradiated solution above Tg of polymer,
enhances the mobility of chain segments, promoting the active sited migration to the surface and thus
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increasing the population of radicals involved in the grafting process. At the same time, elevated
temperature decreases the viscosity of monomer solution, making the diffusion of monomer inside the
polymer bulk easier.

3.3.6. Presence of Inhibitor of Homopolymerization

In the direct method, in order to suppress the undesired homopolymerization, inorganic salts,
such as iron (II) chloride, copper (II) chloride, copper (II) sulphate or ammonium iron (II) sulphate
(Mohr’s salt) may be used [186]. After dissolution, metal ions play a role of hydroxyl radical scavengers
deactivating •OH radicals into inactive OH− ions [187]. Therefore, fewer side reactions are involved
in the system and more monomers are available for grafting. This practice was also extended to
preirradiation method, notably in case of reactive monomers known to promote transfer reactions such
as acrylates [181].

3.4. Grafting Front Mechanism

The first radiation-induced grafting of fluorinated polymer substrates was reported in 1962 by
Chapiro [143]. The author reported that styrene and methyl methacrylate (MMA) could be grafted
inside of PTFE films using direct method at a low dose rate. Since PTFE substrates are not swollen in
the monomer solution, the term grafting front mechanism was proposed. Afterwards, the concept
of grafting front was shown by studying styrene or acrylic acid monomers onto PTFE or PVDF not
only by direct method but also by preirradiation method [181,188]. The grafting front mechanism was
evidenced in PVDF electron-grafted with N-vinylpyrrolidone using differential interference contrast
microscopy by Ellinghorst et al. [189]. This mechanism depends on various parameters among which
are the solubility properties of monomer and graft polymer. A good solvent of both monomer and graft
polymer is required. Monomer transport is thus possible by the swelling of the substrate polymer upper
layer at the solid–liquid interface due to graft polymer growing chains and subsequent diffusion of
monomer solution into the swollen zone. As a result of progressive diffusion of monomer through the
swelling layers, the grafting front moves towards the interior of the film. A homogeneous distribution
of the grafted copolymer across the film thickness can only be achieved when sufficient GY is obtained.

3.5. Radiation-Induced Grafting of Semi-Crystalline Polymers

Essentially, the polymers used as substrates for RIG have to meet certain requirements in order to
produce efficient grafting with desirable and functional properties. These polymers have to possess an
ability to easily generate free radicals upon exposure to ionizing radiation and high resistance towards
radiolytic degradation. Preferably, they are hydrophobic materials with high thermal, chemical and
mechanical stability. Both hydrocarbon (among them PE is frequently used) and fluorocarbon films
have been used in RIG technology. Compared to hydrocarbon, the fluorocarbon polymers have
remarkable thermal and chemical stability [190,191]. These properties arise because of the strong
C–F bond and the large size of the fluorine atoms can shield the carbon backbone of polymers from
chemical attack. However, while the C–F bond is much stronger than the C–H bond, the G values for
radical formation on high energy radiolysis of fluoropolymers are roughly comparable to those of their
protonated counterparts.

The G value is the number of chemical changes induced by a deposited energy of 100 eV.
For example, some typical G values for radical formation using γ-rays under vacuum at ambient
temperature are 0.14 for PTFE [192]; 2.0 for FEP [193]; 0.93 for PFA [194]; 3.3 for PVDF [195]. Besides
the thermal and mechanical stability, these polymers have also shown the capability to produce highly
stable radicals when exposed to irradiation.

3.6. Nature and Trapping of Radicals

The exposure to ionizing irradiation results in formation of alkyl, allyl, and peroxyl radicals in
polymer. Regardless the type of irradiation, radiation-induced radicals in polymers have identical
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nature [196]. EPR spectroscopy is generally used for specification and quantification of the paramagnetic
species. Signal amplitude (or integral intensity) increases with the increase of free radical content.
At the resonance frequency and set magnetic field, g-value can be calculated. The g-value is used for
identification of radical type. For example, the EPR spectra of irradiated β-PVDF films (Figure 9) show
an overlap of characteristic signals of commonly radio-induced radicals in fluoropolymers [12,197,198].
There are various alkyl radicals formed in PVDF: –CH2 –C•F2 and –CF2 –C•H2 for end-chain alkyl ones;
–CH2 –C•F–CH2 – and –CF2 –C•H–CF2 – for in-chain alkyl ones, and corresponding peroxyl radicals.
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The EPR parameters of identified radicals consistent with [199–202] are collected in Table 1.
Aymes-Chodur et al. have shown that alkyl radicals are the major species that induce PS grafting
in γ-irradiated PVDF [12]. The carbon-centered radicals were mainly attributed to in-chain –CH2

–C•F–CH2 – and end-chain –CF2 –C•H2 radicals.

Table 1. g-values of common radiation-induced radical species in PVDF.

Radical –CH2–CFOO.–CH2– –CF2–C·H–CF2 –CF2–C·H2
g− value g|| = 2.0327, g⊥ = 2.009 giso = 2.004 giso = 2.009

∆Bpp[Gauss] ∆B||pp = 20, ∆B⊥pp = 18 ∆Bpp = 33 ∆Bpp = 12
A[Gauss] - AF = 43, AH = 23 AH = 16

The ability of a polymer to trap and stabilize radiation-induced radicals in its structure is a
crucial parameter for RIG, notably in the preirradiation method. In case of semicrystalline polymers,
the crystalline fraction, remaining in the polymer after irradiation, significantly influences on radical
trapping. At high dose, when the polymer is totally amorphous, no trapped radicals are observed
in case of PVDF [203]. At lower doses, the radicals are trapped in zones driving different mobilities:
crosslinked zones, crystalline and amorphous regions, interface of crystallites. Radicals trapped in
inner polymer zones have less opportunity to react with monomer. Thus, depending on the location,
(i) different diffusion rates are needed for monomer to react with radicals and (ii) some of the radicals
may not be able to initiate grafting. Further work on PS grafting of SHI irradiated has shown that alkyl
and peroxyl radicals are primarily located at the interface of crystallites and at the intra/intercrystalline
amorphous zones of PVDF. This assumption was confirmed by FESEM observation that revealed the
grafted PS network essentially localized on the spherulite lamellae [204].
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3.7. Ion-Track Grafting

Despite the identical nature of radicals formed by ions and electrons in polymers, the distribution
of energy deposition during irradiation is different. In the case of electron beam, the energy is
randomly deposited in polymer substrate and grafted copolymer chains are homogeneously distributed.
Contrarily, ions induce in their pathways continuous trails of excitations and ionizations leading
to the formation of latent tracks. The deposited energy is highly localized along the ion trails;
thus, heterogeneous grafting occurs.

Small-angle X-ray scattering (SAXS) was used to investigate the location of PS grafting depending
on type of irradiation in α-PVDF [205]. It was found that the grafting in γ-irradiated polymer takes
place in the amorphous zones of while the grafting is located in the latent tracks after swift heavy-ions
(SHI) irradiation. Betz [206] made a detailed study of ion track grafting of MMA and styrene in
α-PVDF. The following phenomenon was observed. When GY increases, the graft polymer spreads
progressively around the track, destroying the crystalline structure in the bulk and covering the PVDF
surface. It is worth mentioning that at high ion fluences (greater than 1010 cm−2), overlapping of tracks
takes place. This may lead to radical recombination, which decreases the number of radicals and
consequently lowering the GY. Nevertheless, even at high GY, SHI-induced grafting remained more
heterogeneous than γ-induced grafting.

Similar to e-beam-induced grafting, one major application of ion-track grafting has been the
development of fuel cell proton exchange membranes for automotive applications [207,208].

Whatever the irradiation source, high GY generally promote a mechanical degradation of polymer
films. It is thus important to optimize obtained GY in irradiated polymers. A useful equation to
convert the SHI fluence f into the adsorbed dose is the following:

D = C· f
dE
dx

(7)

where C is a conversion constant equals to 1.6·10−7 J·mg·MeV−1
·kg−1, f the fluence of incident ions and

dE/dx is the stopping power (MeV·mg−1
·cm2) [209].

3.8. RIG in Ion Track-Etched Polymer Membranes

Due to a high value of LET during SHI irradiation, narrow cylindrical damaged regions, so-called
latent tracks, are formed inside irradiated polymer. The latent tracks are revealed by selective ion track
etching in a highly oxidizing solution leading to nano-porous membranes. Nowadays, track-etched
polymer membranes are used as filtration membranes and are commercially available. Several
innovative applications are still being studied, notably their properties of acting as ionic diodes when
asymmetrically etched are of greatest interest [210].

Concerning RIG in track-etched polymer membranes, only a few groups thus far have reported
on it. Recently, functionalization of nanopores of PET track-etched membranes was highly elaborated
by Korolkov and Güven for the development of membranes by either using radicals trapped after
etching or UV-induced grafting inside the nanochannels. The developed membranes were successfully
used for direct contact membrane distillation of liquid low-level radioactive waste [211] as well as salt
solutions [212]. PAA-grafted track-etched PET membranes were also employed as support to deposit
gold nanoparticles to be used in catalysis [213]. The idea is based on the fact that the etching process
removes only a part of polymer leaving many radicals inside the track nanopore wall (Figure 10).



Polymers 2020, 12, 2877 27 of 67

Polymers 2020, 12, x 27 of 69 

3.8. RIG in Ion Track-Etched Polymer Membranes 

Due to a high value of LET during SHI irradiation, narrow cylindrical damaged regions, so-
called latent tracks, are formed inside irradiated polymer. The latent tracks are revealed by selective 
ion track etching in a highly oxidizing solution leading to nano-porous membranes. Nowadays, 
track-etched polymer membranes are used as filtration membranes and are commercially available. 
Several innovative applications are still being studied, notably their properties of acting as ionic di-
odes when asymmetrically etched are of greatest interest [210]. 

Concerning RIG in track-etched polymer membranes, only a few groups thus far have reported on 
it. Recently, functionalization of nanopores of PET track-etched membranes was highly elaborated by 
Korolkov and Güven for the development of membranes by either using radicals trapped after etching or 
UV-induced grafting inside the nanochannels. The developed membranes were successfully used for di-
rect contact membrane distillation of liquid low-level radioactive waste [211] as well as salt solutions [212]. 
PAA-grafted track-etched PET membranes were also employed as support to deposit gold nanoparticles 
to be used in catalysis [213]. The idea is based on the fact that the etching process removes only a part of 
polymer leaving many radicals inside the track nanopore wall (Figure 10). 

 
Figure 10. Schematic image of swift heavy ions (SHI) irradiated polymer film before and after etching. 

In a peculiar polymer, namely PVDF, it was found that the radicals remained after etching were 
strong enough to initiate a RIG from the nanopore walls [214,215]. Due to the semi-crystalline struc-
ture of β-PVDF of about 40%, there is still a considerable number of radicals trapped in the crystal-
lites, and at the interfaces between the crystalline and amorphous regions which are capable to initiate 
grafting reaction in presence of vinyl monomers. Mazzei et al. performed grafting of PS inside track-
etched β-PVDF by means of SHI irradiation [214]. It was the first report assuming that the active sites 
remained after chemical etching were able to initiate grafting of styrene on the pore walls without 
using any supplementary irradiation source such as γ-rays or electron-beam. Confirming previous 
assumption, Cuscito et al. proved that, in the case of radiation-induced grafted PAA functionalities 
in track-etched β-PVDF (SHI of 78Kr 10 MeV/amu), the grafting location was solely inside the na-
nopores [215] (Figure 11). 

Chemical etching results in formation of oxidized species, particularly carboxyl groups. 

Figure 10. Schematic image of swift heavy ions (SHI) irradiated polymer film before and after etching.

In a peculiar polymer, namely PVDF, it was found that the radicals remained after etching
were strong enough to initiate a RIG from the nanopore walls [214,215]. Due to the semi-crystalline
structure of β-PVDF of about 40%, there is still a considerable number of radicals trapped in the
crystallites, and at the interfaces between the crystalline and amorphous regions which are capable
to initiate grafting reaction in presence of vinyl monomers. Mazzei et al. performed grafting of
PS inside track-etched β-PVDF by means of SHI irradiation [214]. It was the first report assuming
that the active sites remained after chemical etching were able to initiate grafting of styrene on the
pore walls without using any supplementary irradiation source such as γ-rays or electron-beam.
Confirming previous assumption, Cuscito et al. proved that, in the case of radiation-induced grafted
PAA functionalities in track-etched β-PVDF (SHI of 78Kr 10 MeV/amu), the grafting location was solely
inside the nanopores [215] (Figure 11).Polymers 2020, 12, x 28 of 69 
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Chemical etching results in formation of oxidized species, particularly carboxyl groups.
The presence of continuous fluorescence throughout the entire thickness of the membrane

(Figure 11b) indicated that the grafting was performed homogeneously inside track etched PVDF.
It also showed that the carboxyl groups of PAA remain chemically accessible and do not seem to
be hindered by the confined environment of the nanopores. These results emphasized that the
radical polymerization of acrylic acid monomer diffuse inside the PVDF polymer bulk as the grafting
conditions were tuned to keep a surface grafting process. Further, 8 years later, the same group in
France in collaboration with Güven’s team in Turkey succeeded to further exploit this remarkable
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property of β-PVDF track-etched membranes to tune nanopore size using RAFT-mediated controlled
radical polymerization [216]. Many applications derived from these pioneer works are now available
at prototype level for industrial needs such as sensors for toxic metal in waters [216–219].

It is worth repeating herein that the general knowledge of RIG of solid polymers can be applied
no matter the ionizing source of radiation. Typically, the nature of solvent affects the GY and coverage
of etched ion-track walls similar to the corresponding e-beam-induced grafting on polymer surfaces.
Figure 12 demonstrates very well the latter point as it shows the impact of a transfer agent such as
the thiolactic acid or the use of less polar solvent such as THF on PAA grafting in etched ion-tracks
PVDF membranes.

In each case, the radiation-grafted track-etched PVDF-g-PAA membranes were dried (red circle)
and immersed in acidic (blue triangles) and basic (green triangles) media. It shows that, whatever
the pH of the surrounded solution, the peak position corresponding to the nanopores diameter is not
affected when surface grafting occurs at the nanopores wall (case of b and c). In the case of water
(a), the PAA-grafted chains have penetrated inside the PVDF bulk, close to the surface, resulting in
nanopore diameter changes due to various swelling of PAA grafted chains. It is worth mentioning that
neutrons are only sensitive to high contrast of scattering diffusion length density meaning the interface
of nanopore wall (pure PVDF or PAA-g-PVDF) with the solution or air.Polymers 2020, 12, x 29 of 69 
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4. Radiation Synthesis of Polymer-Based Nanogels

4.1. Nanogels

In the last two decades there is a growing interest in polymer-based nanogels as potential
nanocarriers for controlled delivery of drugs, genes and radioisotopes, building blocks of scaffolds
for tissue engineering, active components of biosensors, and other functional materials [220–235].
Nanogels can be defined as a particular topological form of macromolecules (Figure 13). In solution,
flexible linear polymer chains typically attain the form of a coil. Such coils are dynamic structures,
their segments being able to move (without breaking the chain continuity), and thus undergo spatial
rearrangements. Additionally, such coils can easily unwind to stretched linear chains, what is observed
e.g., if the polymer solutions are made to flow, thus the formation of coiled conformation is fully
reversible. However, if additional “transverse” bonds are formed between the coil segments, the coiled
structure becomes fixed and form a macromolecular cage, still soft and dynamic, but of nearly constant
shape and dimensions. Such internally crosslinked polymer coils—nanogels, when made of hydrophilic
and biocompatible polymers—are of considerable interest as carriers in biological environments and in
this respect show some advantages compared to linear macromolecules.Polymers 2020, 12, x 30 of 69 
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One can also imagine a nanogel in an alternative way than the internally crosslinked single chain,
namely as a small (nanosized) piece of a hydrogel network. By setting various synthetic conditions
and inducing crosslinks either within one macromolecule or between many macromolecules, one can
synthesize gels of any particle size from nanogels, via microgels up to macroscopic (wall-to-wall)
gels. Patterns of micro-/nanoscale hydrophilic networks can also be fabricated on surfaces by
deposition on pretreated surfaces the network precursors and inducing spatially controlled crosslinking
reactions. In this chapter we will focus on nanogels as individual colloidal objects made of one or a
few macromolecules.

Nanogels differ from linear macromolecules not only by topology. In solution they occupy lower
volume than linear polymer chain of the same molecular weight [236], one of the practical aspects being
lower solution viscosity and modified rheology, which can be of advantage for instance in paints and
cosmetics formulations as well as in some applications as biomaterials [237–241]. Their conformation
is more stable; while they do react to external stimuli by change in size, the amplitude of these changes
is lower than for linear chains (see e.g., comparison of pH and ionic strength effect on poly(acrylic
acid)—PAA—chains and nanogels in [242]). This may be of importance in biomedical applications
(transport through biological membranes, endocytosis, etc.).

Furthermore, when compared to linear chains, nanogels are more resistant to degradation,
irrespective of the cause of chain breakage. Any chain breakage event in a linear chain inevitably
leads to disintegration and splitting up into shorter fragments. This is not necessarily so for nanogels,
where each chain segment is typically connected to the others by more than one link. A breakage of a
chain segment does not necessarily lead to disintegration and release of a chain fragment. This has
been experimentally demonstrated for poly(N-vinylpyrrolidone)—PVP—as well as PAA nanogels and
corresponding linear chains of these polymers subjected to oxidative degradation [242,243] and for
hydroxyl-radical-induced degradation of neat and crosslinked hyaluronic acid [237].
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4.2. General Synthetic Approaches

Nanogels can be synthesized by various methods. Actually, they are often formed as transient
products or by-products in many polymerization and crosslinking procedures run in the bulk or in
solution [243–246] (see Scheme 7 above and corresponding discussion), but such methods are not
practical if nanogels are our main synthetic goal. The useful methods vary by kind of substrate
(monomers vs polymers), phase composition of the reacting system (homogeneous vs. heterogeneous)
and means of initiating the reaction (using heat, light, ultrasound, or ionizing radiation).

If we consider a mixture of monomers and crosslinkers (being typically bifunctional monomers)
and initiate reactions in such a system, typically by generating free radicals, polymerization and
crosslinking will occur side-by-side and the resulting product will be a crosslinked, three-dimensional
polymer network. Performing such reaction in the bulk or in a homogeneous solution will usually lead
to the formation of a macroscopic network (called a “wall-to-wall” gel, since typically the crosslinked
product occupies the whole volume of the reaction vessel). But if our aim is to synthesize a crosslinked
polymer structure of the size of a single coiled macromolecule (usually not more than 100 nm when in
solution), we have to run the reaction in suitable “nanocompartments”, i.e., in micelles. Since we are
mostly interested here in hydrophilic nanogels, and thus the monomers, crosslinkers and the resulting
polymer structures should be soluble in water, synthesis should be performed in reverse miniemulsion
or reverse microemulsion, having small droplets of the aqueous phase dispersed in the continuous
oil phase [247,248].

In order to initiate crosslinking polymerization in such systems, one may use either a thermally
activated polymerization initiator, or alternatively a photoinitiator, or apply ionizing radiation that
allows for direct, initiator-free generation of radicals [249,250]. Such reactions can also be induced
by ultrasound, with or without an initiator. Ultrasound may also be used to facilitate dispersion
of components [251,252].

Such a synthetic approach, while effective, also has some drawbacks. It requires the use of many
chemicals, generates waste, and is a multistep procedure; the products must be isolated from the
oil/water system and purified. Unreacted monomer and crosslinker must be subsequently removed,
in particular for when the product is intended for biological or medical use. Initiators and sometimes
also surfactants may be embedded in the final product structure, which is often an undesired effect.
Moreover, thermal decomposition of an initiator is a process difficult to be precisely controlled thus,
also the product properties (e.g., crosslink density) are not easily controlled. Some of these deficiencies
can be nowadays alleviated by using controlled radical polymerization techniques (CRP, [113,253,254]).
In particular, the reversible addition–fragmentation chain transfer (RAFT, [255]) has been demonstrated
to be very useful in controlling radiation-induced polymerization and crosslinking processes [256–258].

Another way to synthesize nanogels is by using ready linear polymer as a substrate and performing
intramolecular crosslinking by utilizing the functional groups contained in the macromolecular structure.
Most often this approach requires a bifunctional cross-linking agent having at least two groups capable
of reacting with functional groups of the polymer (Figure 14). This reaction can be performed in
homogeneous aqueous solution. An example may be internal crosslinking of poly(vinyl alcohol) chains
by glutaraldehyde [259]. Care must be taken to optimize the reaction conditions, mainly the substrate
and crosslinker concentrations, to maximize the yield of intramolecular crosslinking while limiting
the extent of crosslinking between individual molecules. This method allows to eliminate the use of
the oil phase, surfactant and initiator, as well as to obtain the product not contaminated by unreacted
monomer. However, still purification steps are required to remove the rests of the crosslinking agent.
Moreover, not all hydrophilic polymers of interest can be easily internally crosslinked in this way.
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4.3. Synthesis of Nanogels by Radiation-Induced Intramolecular Crosslinking of Polymers

In order to further simplify the synthesis of nanogels and avoid the use of crosslinking agents,
in the end of 1990, an alternative method utilizing ionizing radiation has been proposed, based on
radiation-induced intramolecular crosslinking of macromolecules [260], for recent reviews see [236,261].
The only substrates are the hydrophilic polymer and water; neither initiators nor any other chemicals
are used (except in some special cases). This method is described in some detail below. It builds
upon the accumulated knowledge of radiation chemistry and in particular radiation crosslinking
of polymers.

4.3.1. Radiation Chemistry of Polymers in Aqueous Solution

Ionizing radiation is relatively widely used in industry. Applications range from simple devices
to measure the thickness and detect potential imperfections of products in steel industry to sterilization
of medical devices and technologies where radiation is used to synthesize or modify materials.
Commercial, large-scale irradiation facilities operate in many countries on all inhabited continents.

Ionizing radiation is defined as any kind of radiation (either photons or beams of accelerated
particles) having enough energy to ionize atoms and molecules. In radiation processing, mostly two
kinds of radiation are used: gamma rays and electron beams. Most large-scale gamma irradiation
facilities use a radioactive isotope of cobalt, 60Co, as the source of gamma rays. Due to its metallic form,
cobalt is relatively easy to process, handle, and store, while the gamma rays emitted by 60Co are high
energy (average energy of 1.25 MeV), providing high penetration depth in matter and thus allowing to
irradiate bulk materials (e.g., on standard palettes). Alternatively, electron beams (EB) generated by
accelerators are applied.

In describing the action of ionizing radiation with matter, three important parameters are used.
The dose is the amount of energy absorbed per unit mass of matter (in J/kg, which in radiation chemistry
is called a gray—Gy), the dose rate is the dose absorbed per unit time (Gy/s) and the radiation–chemical
yield (abbreviated simply as yield) is the number of moles of products or reactants (molecules, radicals,
cross-linking bonds, etc.) produced or consumed per unit of absorbed energy (mol/J). Basic information
on radiation chemistry and technology can be found in a number of books and reviews [262–264].

Electron beam technology provides high throughput due to high dose rates and does not require
handling of radioactive isotopes, but, on the other hand, due to the limited penetration depth of
fast electrons in matter, is less suitable for irradiation of bulk materials, typically requiring that the
goods to be irradiated are packed in flat boxes or trays. Gamma rays offer high penetration in matter,
allowing large boxes or whole pallets of goods to be irradiated, but the dose rates are lower and
the isotope sources require proper handling and disposal. A new technology, X-ray conversion,
combining the advantages and limiting the weak sides of gamma treatment and EB, is now being
launched, and, when technical and economic aspects are improved, it will probably find its place on
the market [265–267].

In general, polymers can be irradiated either in the solid state (i.e., in the bulk), or in solution,
either in organic or aqueous solvents. Due to the desired hydrophilic character of the nanocarriers
discussed in this chapter, our discussion will be focused on water as the solvent. The mechanisms and
kinetics of reactions taking place in irradiated aqueous polymer solutions depend primarily on polymer
concentration. The fraction of energy of ionizing radiation that is absorbed by a given component of



Polymers 2020, 12, 2877 32 of 67

the irradiated system is proportional to the electron density ratio of this component, which can be well
approximated by the weight ratio. If polymer makes up a considerable fraction of a polymer/water
system, a large part of the energy is directly absorbed by the polymer. While there are some important
practical examples of such cases (irradiation of highly hydrophilic polymers which, for practical
reasons, are not completely dry when irradiated [268] or irradiation of concentrated polysaccharide
solutions, in the so-called paste state, to obtain macroscopic gels [269,270]), most of basic studies and
applications are based on irradiating polymers in dilute or semi-dilute aqueous solutions. In dilute
solutions, the direct action of ionizing radiation on the polymer itself is of minor importance and
can be neglected in mechanistic considerations. It means that almost all energy is absorbed by water,
and then the reactive products of water radiolysis can in turn attack the macromolecules, thus inducing
reactions in the polymer component of the system. So, the polymer is subjected to an indirect effect
of irradiation.

Radiation chemistry of water has been the subject of intense and detailed studies for over a
century. Current state of knowledge on this topic can be found in relevant monographs [262–264,271],
while comprehensive reviews provide detailed kinetic data on the reactions involved [272,273]. Here we
only recollect the most basic facts relevant to nanogel synthesis.

Interaction of gamma rays or high-energy electrons with water leads to ionization and excitation
of water molecules, and subsequently the cascade of very fast reactions results in the formation
of transient radiolysis products, which can subsequently attack molecules of dissolved substrates.
For millimolar concentrations of the latter (in case of polymers this refers to the concentration of
monomer units), reactions with polymer chains occur on the timescale of nanoseconds and longer.

The most important transient products of water radiolysis, in the absence of oxygen, are hydroxyl
radicals •OH, hydrogen atoms H•, and hydrated electrons eaq

– (Equation (8)), their radiation-chemical
yields being ca. 2.9 × 10−7, 0.6 × 10−7, and 2.9 × 10−7 mol/J, respectively. In laboratory conditions or
small-scale synthesis, hydrated electrons can be easily converted into further hydroxyl radicals in a
reaction with nitrous oxide, which is highly soluble in water (Equation (9)).

H2O → eaq
−, •OH, H•, H2O2, H2, H+, OH− (8)

N2O + eaq
− +H2O →

•OH + OH− + N2 (9)

The most common reaction of water radiolysis products with simple aliphatic polymers is
hydrogen abstraction from C atoms by •OH radicals and by H• atoms. As a result, a radical is
formed at the carbon atom of the polymer, usually at a random position along the polymer chain,
with concomitant formation of water or hydrogen molecule (Figure 15).
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Now we should briefly consider the typical reactions of these radicals. If oxygen is present in the
solution, it reacts with the polymer alkyl radicals forming peroxyl radicals (Figure 16). This subsequently
leads to complex chemistry [274,275] involving chain oxidation processes, decomposition of peroxyl
radicals via unstable tetroxides, formation of carbonyl groups, etc. Since these processes usually do not
lead to crosslinking, at least in the sense of formation of stable covalent bonds between polymer chains
and/or chain segments, irradiation in the presence of oxygen is undesirable. However, under conditions
that are favorable for nanogel synthesis (i.e., low polymer concentration and N2O-saturated solutions),
oxygen is produced during irradiation in minor amounts. (see [241,242,276]).
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Usually in radiation processing of polymers the desired reaction is crosslinking, as discussed in
more detail below. However, one should be aware of the presence of other reactions that may influence
the outcome of irradiation, or even dominate the radiation chemistry thus preventing the polymer from
being crosslinked. In general, we may divide radiation-induced reactions in polymers into two groups,
i.e., processes involving one radical (mainly H-shift, degradation and addition to a multiple bond;
in these processes the number of radicals in the system does not change) or involving two radicals
(crosslinking, disproportionation; as a result of these reactions radicals decay).

In principle, H-shift (Figure 17) seems to be a benign process apparently not influencing other
reactions in the system, since the number of radicals on polymer molecules remains unchanged.
Moreover, such reactions have been shown to be relatively slow [277,278]. However, H-shift has
been demonstrated to have some impact on the kinetics of intramolecular recombination, due to its
influence on spatial distribution of radicals along a polymer chain [279]. Degradation (chain breakage,
Figure 18) is a common process in radiolysis of polymers. As discussed in detail above, for some
macromolecules (nonmodified polysaccharides, aliphatic polymers containing tertiary carbon atoms),
when irradiated at standard conditions, it can be the sole or at least the dominating reaction. Even in
the case of polymers undergoing predominantly crosslinking, often some contribution of degradation
can be observed [8]. Thus, it is considered as an important process that competes with crosslinking and
always should be taken into account when studying radiation effects on polymers. In particular cases,
chain breakage and the consequent formation of a terminal polymer radical can initiate chain process of
depolymerization [280]. In case the macromolecules in question contain double carbon–carbon bonds
(for instance formed as a result of previous disproportionation or degradation steps), a polymer-free
radical may add to such a bond, forming an inter- or intramolecular crosslink (Figure 19).
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The bi-radical reactions are recombination (crosslinking) and disproportionation. The ratio
between the two processes is mainly governed by chemical structure of the polymer and cannot be
easily influenced (for an exception where this ratio can be to some extent controlled by pH due to the
presence of carboxyl groups at the radical-bearing chain, see [281]). Disproportionation (Figure 20;
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the process can also occur intramolecularly) is often neglected as an unwanted side process in polymer
crosslinking. However, it should be kept in mind that in some cases the yield of disproportionation
may actually be much higher than the crosslinking yield, leading to considerable loss of radicals and
limitation of the crosslinking yield; a good example is poly(vinyl alcohol) where ca. 90% of radicals
disproportionate [282].
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Radical recombination, leading to polymer crosslinking, can occur in two ways, either between
two radicals located at separate macromolecules (Figure 21a), or between two radicals present at two
different segments of the same chain (Figure 21b). The former leads to covalent binding of the two chains
and an increase in the molecular weight. Consequent acts of intermolecular crosslinking may finally
lead to the formation of macroscopic, three-dimensional polymer networks, where most or all the chains
present in the system are linked together. This reaction is the basis of many implemented technologies:
reinforcing of tires, tubes, cable insulations and jackets, production of thermoshrinkable materials or
improving wear resistance of sockets of hip joint implants when polymers are radiation-crosslinked in
the solid state, or hydrogel wound dressings and drug delivery systems [283,284] when crosslinking is
performed in aqueous solution. In contrast, when intramolecular crosslinking occurs within a single
macromolecule, a nanogel particle is formed.
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4.3.2. Synthesis of Nanogels by Intramolecular Crosslinking

The competition between inter- and intramolecular recombination of polymer radicals can be
controlled by reaction conditions (Figure 22). The key factors to achieve this control are the average
number of radicals that are present simultaneously on each polymer chain and the concentration of
radical-bearing polymer chains. When discussing this issue, one should bear in mind that radicals are
very reactive species thus, except special cases (see [277,285,286]), in solution they disappear within a
fraction of second after being formed. If we irradiate a moderately concentrated polymer solution
(typically a few weight %) in a continuous way using a relatively low dose rate (as would be the
typical conditions for gamma irradiation), the rate of radical decay will soon approach the rate of
radical production, and a steady-state is established where the average number of radicals per chain
may be significantly less than one. If so, the probability of intramolecular reactions is very low (since
it is very improbable to find 2 or more radicals simultaneously on the same chain) and the radicals
would have to find reaction partners on other macromolecules (Figure 22a). In contrast, if we use a
dilute solution (typically below 1%) and deliver radiation energy in short, intense pulses (which is
the typical mode of irradiation when using electron accelerators), it is easy to generate many radicals
(even many tens of them) on each chain simultaneously, within the pulse duration, which may be
as short as nano- or microseconds. Since, due to low polymer concentration, the next chains are far
away and their diffusion is slow, and chances for intermolecular recombination are low (albeit not
zero, see below), while most of the radicals would recombine with their neighbors on the same chain
(Figure 22b). In this way nanogels are formed.
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The characteristic feature of radiation synthesis of nanogels is a significant decrease in coil
dimensions (radius of gyration, Rg) while the average molecular weight (Mw) remains nearly constant
or slightly increases (since it is difficult to totally eliminate intermolecular crosslinking). Decrease
in dimensions reflects the formation of internal bonds, which limit the ability of segments to diffuse
away from the center of mass of the macromolecule (for illustration, see Figure 23b below). This is also
a typical feature observed in chemical intramolecular crosslinking [259]. In some cases, the pattern
of Rg and Mw changes becomes more complex. For poly(acrylic acid) initially some decrease in Mw

is observed, due to degradation competing with crosslinking. However, when some internal bonds
are already formed, further degradation acts do not lead to detachment of chain fragments and thus
they do not cause any further decrease in molecular weight. Since some intermolecular crosslinking is
present, the Mw starts to increase, while the dimensions go down (Figure 23). It can be further seen
that the competition between intra- and intermolecular crosslinking can be influenced by polymer
concentration, since this, at a constant dose per pulse, influences the average number of radicals
per chain.
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Nanogel synthesis can also be performed on industrial electron beam installations with high
throughputs, such as those used for sterilization purposes, with no modification to the regular irradiation
procedures [287,288]. Solutions, contained in sealed vials, are irradiated within a box passing under the
scanner on a moving conveyor. The electron pulses are modulated with two frequencies; the frequency
of the accelerator and the frequency of the scanning horn at which the beam sweep across the width of
the samples box. The total adsorbed dose is also controlled by speed of the conveyor belt. Within certain
limits, the nanogel size and molecular weight can be fine-tuned by changing the polymer concentration.
At low polymer concentration, intramolecular crosslinking is the dominating process that leads
to nanogel formation. At higher polymer concentrations, intermolecular crosslinking is initially
competitive with intramolecular crosslinking but, through this process, the polymer concentration
decreases with dose to the point where intramolecular crosslinking becomes dominating [276]. Beyond
this point, no change in molecular weight or size is observed. The increase in size and molecular weight
generally occur well below 20 kGy [241,242]. Higher doses are imparted by multiple passes. When a
high dose range is explored (20 kGy to 80 kGy), e.g., with N2O-purged poly(N-vinyl pyrrolidone)
solutions (concentrations in the range 0.05–0.2 %w), the average molecular weight and hydrodynamic
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size of the produced nanogels do not significantly change with increasing the dose but low molecular
weight fractions appear at higher doses. New functional groups, such as primary amino groups and
carboxyl groups, only to mention the most interesting ones for postirradiation reactions, are formed in
a dose-dependent fashion [241,242,288]. Both experimental measurements and numerical simulations
suggest that O2 is also formed under these irradiation conditions. In fact, irradiation of a polymer in
dilute aqueous solution by high-dose pulses of electrons causes some hydroxyl radicals to recombine
rather than react with the polymer, and in this way substantial amounts of hydrogen peroxide are
formed. Under high-dose irradiation, some of the formed hydrogen peroxide is converted in molecular
oxygen. The reaction of molecular oxygen with polymer radicals is at the basis of the observed
dose-dependent polymer fragmentation and network functionalization. As mentioned above, double
bonds are also formed in radical-radical disproportionation reactions [242,276].

Nanogels can be visualized by AFM and SEM microscopy when adsorbed at a flat
surface [240,289–291]. Figure 24 illustrates PVP nanogels grafted with acrylic acid, as scanned
by AFM in the tapping mode under water, while exemplary SEM pictures of PVP nanogels cast on a
silicone surface and sputtered with gold are shown in Figure 25.
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Intramolecular recombination is an interesting process from the kinetic point of view and has
been the subject of numerous experimental and simulation-based studies [240,276,279,289,293–296].
When analyzing the general decay of radicals in the system it has often been observed to deviate from
the classical second-order kinetics typical for recombination of radicals located on small molecules.
Both experimental data and Monte–Carlo simulations indicate that the spatial distribution of radicals
along the chain is the decisive factor both for kinetics and the final structure of the nanogels [279,294].
A dispersive kinetics model developed by Plonka [297,298] is helpful both for kinetic description and
mechanistic interpretation of intramolecular radical recombination. Alternatively, for every pair of
radicals defined by a given combination of radical positions, a rate constant can be defined. In a
recently developed modeling approach, intramolecular radical-radical reactions were treated on the
basis of combinations of site-dependent rate constants. This model could reproduce the kinetics of
radical decay in single-pulse experiments [296] as well as the evolution in molecular weight in nanogel
synthesis using pulsed e-beams [276]. As this model took the complete set of radiation-induced
reactions into account, essential information about the evolution of other species in the system could
be derived. This includes the already mentioned formation of O2 as well as double bonds due to
radical–radical disproportionation [276]. Recently, new kinetic studies using the Dynamic Liquid
Lattice model [299–303] have been initiated on intramolecular crosslinking of macromolecules.

The above-described nanogel synthesis method is not limited to polymers of any particular
chemical structure, albeit it requires a polymer which predominantly crosslinks, and not
degrades, under irradiation. It has been successfully tested on simple synthetic water-soluble
polymers—(poly(N-vinylpyrrolidone) [236,287–292,304–311] and poly(vinyl alcohol) [260], on an
exemplary polyelectrolyte [poly(acrylic acid)] [240,312], and on a thermosensitive polymer—(poly(vinyl
methyl ether)) [313]. When working with polyelectrolytes, one should set appropriate pH where
ionization is suppressed. Otherwise the charges along the chain repel each other by Coulombic
forces, which makes the energy barrier for recombination (and disproportionation) so high, that the
radicals can live on chain segments for hours (at R.T., in water, with no stabilizing effects other
than the presence of charge) [277,285,286], and slow reactions such as degradation dominate over
recombination. For instance, for poly (acrylic acid) (average pKa for high-molecular-weight polymer
being ca. 6, [314,315]), crosslinking starts to prevail only when pH is lowered to 3 or less, and successful
nanogel synthesis has been demonstrated at pH 2.

4.3.3. Controlling the Physicochemical Properties of Radiation-Synthesized Nanogels

While the feasibility of radiation-induced intramolecular crosslinking for nanogel synthesis is
well established, recent studies have been focused on controlling the process, so that starting from
macromolecules of given molecular weight and dimensions one could arrive at nanogels of desired
Mw and Rg (which also determines the coil density of the final, crosslinked product).

Kadłubowski et al. proposed a two-step synthetic procedure of synthesizing tailored nanogels [305].
In the first step irradiation conditions are set to promote intermolecular recombination (relatively
high polymer concentration, moderate dose rate). As a result, both average molecular weight and the
nanoparticle size increase with dose. When the desired average molecular weight is reached, the solution
is diluted, and irradiation mode is changed to short, intense pulses. These conditions promote
intramolecular recombination; therefore, the molecular weight does not significantly change, but the size
is reduced to the desired value. Figure 26 shows the test of this approach for poly(N-vinylpyrrolidone).

An extensive study on the radiation synthesis of PVP nanogels has been recently published by
Sütekin and Güven [291]. The effects of various parameters as total absorbed dose, dose rate, polymer
concentration, molecular weight on the sizes of nanogels were investigated. It has been proved that
by careful control of these parameters, PVP nanogels of sizes varying in the range of 30–250 nm can
be prepared. It has been demonstrated that, when proper conditions are chosen, nanogels can also
be synthesized using gamma rays. The nanogels have been shown to maintain their parameters for
2 years of storage in solution at 4 ◦C.



Polymers 2020, 12, 2877 39 of 67

Polymers 2020, 12, x 40 of 69 

linking process. Pulsed EB irradiation of poly(vinyl methyl ether)—PVME—in dilute aqueous solu-
tion below the LCST (36 °C) leads to thermo-sensitive nanogels, which exhibit lower LCST (29 °C) 
than the parent linear polymer [316]. Irradiation of PVME solutions above LCST leads to the cross-
linking of collapsed polymer aggregates, resulting in nanogels of different sizes and structures than 
those obtained by irradiation at low temperature [317]. 

 
Figure 26. Two-step synthesis of PVP nanogels. Mw and Rg as a function of total absorbed dose. Black 
symbols denote continuous low-dose-rate gamma irradiation at a polymer concentration of 400 mM. 
In the two-step procedure, at the point marked by an arrow, irradiation conditions are changed—the 
second step (open symbols) is pulsed EB irradiation at the PVP concentration of 15 mM. Based on 
[305]. 

An and co-workers have demonstrated that formation of PVP nanogels by pulse irradiation in 
aqueous solution can also be influenced by temperature [289]. Above a threshold temperature of 50–
55 °C, due to the thermal collapse of polymer chains, probability of intramolecular recombination 
increases sharply and there is a strong change in the activation energy of radical decay, which leads 
to the formation of compact nanogels. The reaction rate constants of decay (2k2) were measured at 
temperatures ranging from 28 to 77 °C, Figure 27 shows their results. These results are not unex-
pected, as at higher temperature ranges, the distance between the carbon-centered radicals on a single 
change are smaller due to the polymer taking on a collapsed chain conformation. At low tempera-
tures, the polymer chain is a noncollapsed random coil whose dimensions are closer to those pre-
dicted by random walk statistics. The carbon-centered radical–radical distances are also longer point-
ing towards a lower 2k2 values as observed. 

  
Figure 27. (a) Second-order reaction decay rate constant (2k2) as a function of temperature; (b) Arrhe-
nius plot of 2k2 showing how the average activation energies were derived from two different tem-
perature regions (I and II) in N2O-saturated PVP aqueous solutions [289]. 

Figure 26. Two-step synthesis of PVP nanogels. Mw and Rg as a function of total absorbed dose.
Black symbols denote continuous low-dose-rate gamma irradiation at a polymer concentration of
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changed—the second step (open symbols) is pulsed EB irradiation at the PVP concentration of 15 mM.
Based on [305].

For polymers that undergo temperature-induced phase transition, for instance, those characterized
by lower critical solution temperature (LCST), temperature can be used for controlling the crosslinking
process. Pulsed EB irradiation of poly(vinyl methyl ether)—PVME—in dilute aqueous solution below
the LCST (36 ◦C) leads to thermo-sensitive nanogels, which exhibit lower LCST (29 ◦C) than the parent
linear polymer [316]. Irradiation of PVME solutions above LCST leads to the crosslinking of collapsed
polymer aggregates, resulting in nanogels of different sizes and structures than those obtained by
irradiation at low temperature [317].

An and co-workers have demonstrated that formation of PVP nanogels by pulse irradiation in
aqueous solution can also be influenced by temperature [289]. Above a threshold temperature of
50–55 ◦C, due to the thermal collapse of polymer chains, probability of intramolecular recombination
increases sharply and there is a strong change in the activation energy of radical decay, which leads
to the formation of compact nanogels. The reaction rate constants of decay (2k2) were measured at
temperatures ranging from 28 to 77 ◦C, Figure 27 shows their results. These results are not unexpected,
as at higher temperature ranges, the distance between the carbon-centered radicals on a single change
are smaller due to the polymer taking on a collapsed chain conformation. At low temperatures,
the polymer chain is a noncollapsed random coil whose dimensions are closer to those predicted by
random walk statistics. The carbon-centered radical–radical distances are also longer pointing towards
a lower 2k2 values as observed.
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In addition, An and co-workers also provide a mathematical model for determining the
concentration of radicals on a chain to analyze the decay kinetics of the radicals formed. The calculations
were based on a monodisperse PVP model. The spatial distribution of the polymer molecules was
based on Poisson distribution of Z molecules in N cells as follows (Equation 10)

P(m) = (
Z
N
)

m e
−Z
N

m
(10)

where P(m) is the probability that a cell has exactly m polymer molecules [289].
To study the radicals generated and their reactions, the effective concentration has to be determined.

This can be accomplished by taking the volume of reactive radicals aka the hydrodynamic volume into
consideration. The effective molar concentration is then (Equation 11)

Cr =
1

NAVb
(11)

where NA is Avogadro number and Vh is the hydrodynamic radius.

4.3.4. Controlling the Chemistry of Radiation-Synthesized Nanogels

While nanogels made of homopolymers may be themselves interesting materials for various
applications, and, in some cases—such as nanogels based on poly(acrylic acid)—can be easily
functionalized, it is of considerable interest to adjust the above-described synthesis method to provide
ability of chemical modification of the parent polymer, ideally already in the synthesis step. For many
applications it would be of interest to obtain nanogels possessing some specific chemical functions,
while having the main structure based on a well-tested and fully biocompatible polymer as PVP.
Such functional groups can either render the nanogels some specific properties (e.g., surface charge) or
allow for easy functionalization, for instance with drugs and/or targeting moieties needed to transform
a nanogel into a targeted nanocarrier for controlled drug delivery. It has already been mentioned
that such functionalization effect can be achieved, in some cases, just by careful adjustment of the
conditions of the radiation synthesis itself, with no chemical additives [241,242].

One can also introduce chemical modifications to the nanogel structure by adding suitable
chemicals, for instance monomers, to the polymer solution before irradiation. Monomer molecules
can add to the polymer-derived radicals and either remain there as single-unit branches or they
can initiate graft polymerization. If the monomer concentration is low, the branched chains will
remain short. Other reactions of the added monomers are also possible, such as homopolymerization
terminated by recombination with polymer-derived radical or by addition to the polymer double
bond resulting from disproportionation. The product will contain short grafted chains and/or just
single monomer units of the added monomer, providing the required functionality. In this way,
PVP nanogels containing carboxyl groups can be synthesized by pulse-irradiation of PVP solution
containing acrylic acid [225,292,308,318,319]. A similar approach has been demonstrated to yield poly
(N-vinyl pyrrolidone)-graft-(3-N-aminopropyl) methacrylamide nanogels [287]. This indicates the
great versatility of the radiation method for synthesizing nanogels of various physical and chemical
properties, adjusted to the needs of particular applications, especially in pharmacy and medicine.

Another interesting option to obtain nanogels containing different chemical functions is by
radiation crosslinking of interpolymer complexes. Such complexes may be based on various
interpolymer interactions. One of the most interesting classes of interpolymer complexes are those
based on hydrogen bonding [320–322]. They are formed by two polymers, one being a donor and the
other an acceptor of hydrogen atom. As the donor, most often polymers bearing carboxylic groups
are applied, while polymers possessing ether or carbonyl groups are usually used as counterparts.
Hydrogen-bonded interpolymer complexes (IPCs) not only combine the chemical properties of the
parent polymers, but also form heterogeneous structures containing hydrophobic domains, which may
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be useful for instance in solubilization and controlled delivery of hydrophobic drugs or drugs that
have to be protected from low pH and enzymes in the stomach [323–325].

Hydrogen-bonded IPCs based on polymers with carboxylic groups are formed only below a
specific, critical pH, pHcrit. This may seem obvious, since at high pH the dissociated carboxylate groups
lack the hydrogen atom capable of forming the H-bond. However, pHcrit is typically much lower than
pKa of the parent polyacid. This is because for the stable complex to be formed, an uninterrupted
sequence of several protonated carboxylic groups must be present along the chain. For instance, average
pKa of poly (acrylic acid) is ca. 6 [315], while pHcrit for its complexes with poly(N-vinylpyrrolidone) is
ca. 3.7–4.0 [321,325]. As a result, the complexes exist only at low pH, and dissociate in neutral and
alkaline solutions. This instability at typical physiological pH may be perceived as a disadvantage
in some applications. Radiation crosslinking, performed at pH < pHcrit, in an analogous way to the
intermolecular crosslinking of homopolymer chains described above, can be a simple and efficient way
to “fix” the complexes and make them permanent. This, of course, does not prevent the complexed
domains to become dissociated at neutral and high pH (albeit complexation in a crosslinked system
may differ in some respects from complexation of two separate chains [326]), but it prevents the whole
structure from disintegration. From the chemical point of view, the product is an internally crosslinked
block copolymer. Crosslinking of PAA-PVP complexes, leading to the formation of permanent nanogels,
by pulses of fast electrons in acidic aqueous solution has been described by Henke et al. [325,327].
This idea has been further developed by Güven et al. in their detailed studies on radiation crosslinking
of PAA-PVP [328] and PAA-PEO complexes [329]. In the latter work it has been clearly demonstrated
that by adjusting the solvent composition (acetone has been used as co-solvent) one can influence
the size of the formed nanogels. An alternative way of synthesizing PAA-PVP nanogels has been
developed by Abd El-Rehim and co-workers. Gamma irradiation has been used to initiate template
polymerization and crosslinking in aqueous solutions of PVP and acrylic acid [330–333].

4.4. Biomedical Applications of Radiation Engineered Nanogels

The success of nanogels is mainly due to their promising applications in the biomedical field.
Nanogels, as stand-alone nanoparticles, have been proposed as nanocarriers of chemical and biological
entities for therapeutic purposes and/or contrast agents for medical imaging [229,334,335], as active
components of biochips or biosensors [336], building blocks of in-situ forming scaffolds for tissue
engineering [337,338], cell culture systems [339,340], and antimicrobial coatings [341,342], and as
components of wound dressing formulations [343,344]. Other noticeable applications of nanogels
in related fields include iron chelation therapy [345], biochemical separation and contaminant
removal [346,347], and bio-catalysis [348].

In drug delivery, nanogels can offer some distinct advantages compared with other nano-constructs
due to their inherent features, such as high colloidal stability in aqueous media and potentially
also in blood, reduced adsorption of plasma proteins and hence prolonged circulatory half-life,
flexibility, and possibility to take lateral drift velocity components when moving with the blood
stream favoring extravasation, tunable adhesiveness to epithelial and endothelial cells, sizable
drug loading capacity with a variety of loading and controlled release mechanisms, amenability
to be combined with lipid cores or shells (nanolipogels), or with inorganic nanoparticles to enable
multiple functions, e.g., for chemo-photothermal or chemo-photodynamic cancer therapy, or for
image-guided therapies [349].

Nanogel features such as size, morphology, and composition all impact on nanogels circulation
residence time and influence their biodistribution and clearance profiles. While early clearance is not
desirable, accumulation at the disease site, and degradation or elimination after the delivery function
has been accomplished are highly desirable. Several targeting strategies have been proposed and
evaluated, that also set requirements on each of the above features of the nanocarrier. The impact of
size, surface charge density, and surface chemistry on biodistribution, accumulation at the target site
and clearance, have been the topic of several review papers [349–354]. One important consideration
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that emerges is that even subtle changes in the nanogel network can impact the biodistribution and
tumor accumulation [355] as well as their cellular internalization mechanism, degree of uptake and
potential for toxicity [225,356].

Although more and more scientific papers describing new nanogel formulations, synthesis
methodologies, and potential applications in the biomedical field are appearing, only very few
nanogels have already been introduced in clinical trials [357]. Today’s research in nanogel design
and development for biomedical applications mainly focuses on how to overcome of the restrictions
imposed by cost for commercial scale production and on some medical requirements and technological
issues for their full exploitation as new platforms in biomedicine.

As already discussed before, the main advantages of using high-energy irradiation to synthetize
hydrogel nanoparticles for biomedical applications include minimal recourse to potentially toxic
chemicals, simple production schemes, possibility of fine-tuning nanogel size, crosslinking density and
functionality by a proper selection of irradiation conditions, polymer concentration, and composition of
the atmosphere (N2, N2O, air), and the possibility to obtain simultaneous sterilization when the absorbed
doses are within the sterilization dose range. One major limitation of nanogel radiation-synthesis is
related to the fact that crosslinking cannot be the dominant process for a few classes of potentially
interesting hydrophilic polymers, such as polysaccharides and polypeptides, that mainly degrade
under irradiation, but would undergo appropriate biodegradation if used as main components of
nanogels. Crosslinking for these polymers may become competitive only upon chemical modification to
introduce short alkyl chains and/or by achieving significant local increases of their concentration [358].

5. Radiation Chemistry of Natural Polymers

There are a large number of natural polymers and to review the radiation chemistry of all of
them is beyond the scope of this review. This review will focus on five classes of natural polymers,
polysaccharides, lignin, natural rubber (cis-1,4 polyisoprene), proteins, and RNA/DNA.

5.1. Radiation Chemistry of Polysaccharides

Polysaccharides are the most abundant natural polymers. They are long chains of carbohydrate
(sugar) molecules, specifically polymeric carbohydrates are composed of monosaccharide units bound
together by glycosidic linkages, as seen in Figure 28. Polysaccharides are widely distributed and are
found in plant cell walls, seeds, and roots; algae; animals; bacteria; and fungi [359]. The most abundant
monosaccharide in nature is the six-carbon sugar glucose and its derivatives as seen in cellulose and
chitin. Polysaccharides can be amorphous as in hemicelluloses; crystalline such as cellulose and
chitin and semicrystalline including amylopectin. Amorphous polysaccharides are most often highly
branched polymers with linear polymers being more crystalline. The amount of crystallinity has
been shown to affect the radiation chemistry of polysaccharides [360]. The type of glycosidic linkage
can have a major effect on the physical and chemical properties of polysaccharides. Cellulose and
amylose are both polymers of glucose, (1→4) linked d-glucose units. The difference is that cellulose is β
(1→4) linked d-glucose units and amylose is α (1→4) linked d-glucose units. While both cellulose and
amylose are insoluble in cold water amylose is soluble in hot water and cellulose is not [359]. This is
attributed to the higher amount of hydrogen bonding, both inter and intra, in cellulose, Figure 29.
Polysaccharides can also be made up of more than one saccharide. Alginate is a linear copolymer of
β-(1–4) linked d-mannuronic acid and β-(1–4)-linked l-guluronic acid units [359]. There are many
review articles and books on polysaccharides for additional information see [361–363].

5.2. Sold State Irradiation

When polysaccharides are irradiated in the solid state the energy is absorbed directly by the
polymer and radicals are formed. This type of interaction is called a direct effect. When a polymer is
irradiated two reactions can take place chain scission and crosslinking, with one predominating. In the
case of polysaccharides chain scission predominates. In polysaccharides the absorbed energy causes
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the breakage of the glycosidic bond leading to a reduction of the molecular mass of the polymer [270].
After chain scission there are still free radicals present which can lead to ring opening of sugar units.
These radicals can also lead to additional fragmentation of the polymer chain. Many studies have
been conducted on the irradiation of natural polysaccharides and their derivatives in the sold state
including cellulose and its derivatives [360,364–381], chitin and chitosan [382–388], starch [389,390],
alginate [391,392], pectin [393,394], and dextran [395,396] to name a few. It should be noted that
polysaccharides are hydroscopic and absorbed moisture can affect the radiation chemistry [397].
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5.3. Aqueous Irradiation

In the case of a dilute aqueous solution of polysaccharides the energy will most likely be absorbed
by the water producing the primary radiolysis products of hydrated electrons (eaq), hydrogen atoms
(•H) and hydroxyl radicals (•OH). These primary radiolysis products can produce secondary products
including hydrogen peroxide, perhydroxyl radical, and super oxide [398]. The most reactive of the
primary radiolysis products towards polysaccharides is the hydroxyl radical. The hydroxyl radical
randomly extracts hydrogen atoms from carbon hydrogen bonds. In polysaccharides the extraction is
not selective, with all carbon-bound hydrogens equally likely to be extracted. The rate constant for the
reaction of hydrogen atom is about an order of magnitude lower than for •OH [398]. As with •OH, •H
extracts hydrogen randomly from carbon hydrogen bonds. The reaction rate of hydrated electrons
towards is at least two orders of magnitude lower than for •OH. This is due to the fact that while
eaq react quickly with carbonyl groups they are slow to react with ethers and alcohol groups [399].
The extraction of hydrogens by •H and •OH produce radicals that lead to ring opening and chain
scission [399]. There are many articles on the irradiation of polysaccharides in solution [400–407].
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5.4. The Effect of Oxygen

The above discussion assumed the irradiations were conducted in an oxygen-free environment.
In the presence of oxygen, carbon-centered radicals can react with oxygen to produce peroxyl radicals.
As with carbon-centered radicals, peroxyl radicals can lead to ring opening, chain scission and stable
products most often containing carbonyl groups [270]. Unlike many polymers, which tend to degrade
much more in the presence of oxygen, polysaccharides degrade both in the presence of oxygen
and without. In fact, some studies show that oxygen may reduce that amount of degradation in
polysaccharides [359].

5.5. Radiation Crosslinking of Polysaccharides

While polysaccharides most often degrade upon irradiation, crosslinking can be accomplished
under the right conditions. In concentrated solutions, cellulose derivatives have been shown to
crosslink. This crosslinking is dependent on degree and type of substitution and at higher dose
hydrogels can be formed [375–377,408,409]. Other polysaccharides have also been studied including
substituted chitin and chitosan, and gum arabic [382,410,411].

Polysaccharides can also be crosslinked in solution and in the solid state in the presence of
an acetylene gas. Carboxymethyl cellulose, dextran, pullulan, gum arabic and others have been
studied [270,412–415]. Crosslinking is dependent on the degree of chain branching and degree and
type of substitution [270]. At higher doses hydrogels can be formed.

5.6. Radical Lifetime in Polysaccharides

Polysaccharide radicals in solution decay very quickly when irradiation is suspended. Thus, there is
no post irradiation effect. When crystalline and semicrystalline polysaccharides are irradiated in
the solid-state radicals can be trapped in the crystalline structure after irradiation has stopped.
These trapped radicals can slowly migrate to the amorphous region of the polymer where they undergo
reactions including ring opening and chain scission [416–421]. Trapped radical can remain in the
crystalline region for months. When processing crystalline polysaccharides, or other polymers, in the
solid-state, post irradiation effects must be understood.

5.7. Radiation Chemistry of Lignin:

Lignin is a group of amorphous polyphenolic polymers that are produced in vascular plants
and some algae. The structure of lignin is unknown, but it is believed that there are a number of
different lignin structures. While the true structure(s) of lignin is not known, a model structure is
illustrated in Figure 30 [422]. When lignin or model compounds are irradiated, phenoxyl and peroxyl
radicals are produced and the glass transition of lignin is increased [423–427]. While there appears to
be some reactions in lignin upon irradiation work by LaVerne et al. [360] has shown that the hydrogen
production G-value for lignin is an order of magnitude lower than cellulose.
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5.8. Radiation Chemistry of Natural Rubber

Natural rubber also known as latex, India rubber and Amazonian rubber is a polymer of
cis-1,4-polyisoprene with a molecular mass range of 100,000 to 1,000,000 Daltons. The worldwide
production of natural rubber in 2018 was about 13.9 million metric tons. For most commercial use the
rubber needs to be vulcanized (crosslinked). The main reaction when natural rubber is irradiated is
crosslinking. In 1933 a patent was issued for the radiation crosslinking of rubber [429]. One of the
main advantages of radiation crosslinking is that it is conducted at room temperatures which prevents
thermal degradation. Many studies have been published on the crosslinking of rubber and rubber
blends [430–441]. Blending rubber with other polymers changes the physical and chemical properties
of the final polymer. While rubber can be crosslinked without the use of accelerator the dose required
is high thus an accelerator is used for economic purposes.

5.9. Radiation Chemistry of Peptides and Proteins

Proteins are the most abundant organic compounds in animals. They are macromolecules of
amino acids linked together by a peptide bond between the C1 carbon of one amino acid and the N2
nitrogen of the other. Molecules of less than 50 amino acids are called peptides while greater than 50 are
proteins. In the solid or frozen-in-solution irradiation of proteins, only direct effects occur. This leads
to random bond breakage resulting in fragmentation, backbone and disulfide bond breakage, and loss
of helicity [442–448]. In aqueous solutions the most abundant reactions are due to primary radiation
products of water. The hydroxyl radical is believed to be the most reactive primary product towards
proteins. The radical will extract hydrogens from any accessible part of the protein with the backbone
peptide and thiol hydrogens the most susceptible. Side change amino acids can also be attached with
aromatic side chains more reactive than aliphatic [442,449–453]. More recently methionine oxidation
by HO, H, eaq and H2O2 has been studied [454,455]. The radiation effects of the primary radiation
products of water are much greater than those of direct effects [442].

5.10. Radiation Chemistry of RNA and DNA

It has been very well known that ionizing radiation induces damage to biological systems.
The mechanisms of radiation-induced damage are very complicated and vary tremendously from
biological system to another. For example, the mechanisms involved from the radiation effects
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on DNA and RNA, proteins, fatty acids, and carbohydrates are different. The mechanisms of the
radiation-induced damages strongly depend on the type of irradiation (high LET such as protons
and alpha particles versus low LET such as gamma rays, X-rays, and electrons), dose and dose-rate,
the presence of the molecular oxygen, the presence of antioxidants, and the presence of water.

Since most biological organisms contain a large amount of water, the research on radiation effects
on biological systems has been concentrated in the presence of H2O. Under these conditions, most of
the radiation effects are indirect, caused by the radiolysis of H2O and the radiolytically produced •OH,
eaq
−, and H-atoms. These reactive species attack the DNA and RNA molecules at a diffusion controlled

limit with reaction rate constants 108–109 L mol−1s−1. The radiolytically produced free radicals (DNA•

and RNA•), DNA and RNA cations (DNA+ and RNA+), and DNA and RNA anions (DNA•− and
RNA•−) undergo various complicated mechanisms leading to deadly damages such as single and
double strand breaks and base and phosphate release. These damages are enhanced tremendously
by the presence of O2. DNA• and RNA• radicals react with O2 to produce the corresponding
peroxyl radicals; DNAO2

• and RNAO2
•. These peroxyl radicals are very active and undergo various

reactions, such as O2
•−-elimination, and formation or decay of tetraoxides (DNAOO-OODNA and

RNAOO-OORNA) leading to more damages. Similarly, the results of attacking the protein molecules
by •OH, eaq

−, and H-atoms, from radiolysis of H2O, lead to the amine-release and damages. As for the
carbohydrates, the •OH radicals attack the glycosidic bonds leading to direct sessions on the backbone
of the molecules. Finally, the fatty acids and liposomes are very prone to ionizing radiation. The •OH
radicals abstract H atoms from the backbone of the fatty acids or liposomes producing C-centered
free radicals. These free radicals react with O2 to produce the corresponding peroxyl radicals (RO2

•).
The RO2

• abstract H atoms from another fatty acid (or liposome) producing another free radical and
initiating a chain reaction.

In the absence of H2O, the ionizing radiation interacts directly and rapidly with the biological
molecules producing intermediates such as excited molecules, radicals, cations, and anions.
These intermediates have a short life in the microsecond timescale or even less. Again, depending
on the presence and absence of oxygen, the presence of traces amounts of water, the dose, and the
dose-rate, these intermediates undergo various reactions. Similar to the indirect interaction (in the
presence of H2O), radiolysis of DNA and RNA lead to single and double strand breaks, and base
and phosphate release. Due to very strong hydrogen bonding, even very dry samples of DNA and
RNA contain traces of water, which can contribute to indirect effects on the radiolysis of DNA and
RNA. Although very little work has been published on the direct effects on proteins, fatty acids,
and liposomes, most of the published results show that the direct ionizing radiation has the same effects
as the indirect interactions. In both cases, the radiolytic products are amine-release, and oxidation in
the proteins, and fatty acids and liposomes, respectively.

6. Summary

This survey emphasizes the evolution of research on radiation-initiated polymerization. Early
investigations on radiation-initiated polymerization were mainly driven by the need for basic knowledge
in this new field at the interface between polymer science and radiation chemistry, and by the perspective
to develop processes competing with conventional methods for polymer production. Current activities
are now oriented toward the study of radiation-induced processes of more complex chemical blends
and/or in more complex media, using the recent developments for radiation sources and analytical
methods. Besides the now well-established use of EB-curing in graphic arts, adhesives, and coatings,
a variety of new applications are envisioned for advanced structural materials and for the production
of key technological components for the healthcare and energy sectors. Promising prospects are
under evaluation.

The use of radiation as an initiation source in controlled free radical graft copolymerization
seems to open the door to designing new tunable surfaces in a controlled manner. The graft
copolymers thus prepared may also lead to more complex structures via further chain growth or block
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extension by subsequent addition of monomer due to postpolymerization activity of their chain ends.
Radiation-induced RAFT-mediated graft polymerization seems to be a very powerful technique for the
achievement of tailored polymeric surfaces with well-defined properties.

Nanogels have been studied as potential carriers for the delivery of genes, proteins, and drugs;
use in tissue engineering; as biosensors; and other materials. Since most of these applications are
biomedical applications being able to synthesis nanogel without the need for toxic chemicals is
important. The use of ionizing radiation for the crosslinking of the nanogels reduces or eliminates the
need for toxic chemicals.

With more and more interest in the use of natural materials and green chemistry understanding
how to control the effects of ionizing radiation on natural polymers is important.
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