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When surface-active molecules are released at a liquid interface, their spreading dynamics is con-
trolled by Marangoni flows. Though such Marangoni spreading was investigated in different limits,
exact solutions remain very few. Here we consider the spreading of an insoluble surfactant along
the interface of a deep fluid layer. For two-dimensional Stokes flows, it was recently shown that the
non-linear transport problem can be exactly mapped to a complex Burgers equation [Crowdy, SIAM

J. Appl. Math., 81, 2526 (2021)]. We first present a very simple derivation of this equation. We
then provide fully explicit solutions and find that varying the initial surfactant distribution – pulse,
hole, or periodic – results in distinct spreading behaviors. By obtaining the fundamental solution,
we also discuss the influence of surface diffusion. We identify situations where spreading can be
described as an effective diffusion process but observe that this approximation is not generally valid.
Finally, the case of a three-dimensional flow with axial symmetry is briefly considered. Our findings
should provide reference solutions for Marangoni spreading, that may be tested experimentally with
fluorescent or photoswitchable surfactants.

I. INTRODUCTION

The spreading of surface-active species at aqueous in-
terfaces is a long-standing issue in interfacial science [1].
Surfactants, of which amphiphilic molecules are the
prime example, accumulate at interfaces where they
lower the surface tension [2]. As a consequence, a gradi-
ent in surface concentration induces a Marangoni stress
at the interface [3, 4]. Inhomogeneities in the distribu-
tion of surfactants thus drive a liquid flow, that in turn
couples with the surfactant distribution. This complex
feedback mechanism may eventually lead to the rigidifi-
cation of the interface that can alter the rising motion
of gas bubbles [5–8]. Another striking effect observed
in microfluidic experiments is that traces of surfactants
can severely limit the drag reduction of superhydropho-
bic surfaces [9–11]. More generally, Marangoni stresses
due to the presence of surfactants, even at a very low
concentration, are ubiquitous through fundamental pro-
cesses [12–14], the natural world [15–17] and industrial
applications [18]. The consequences are essential for a
variety of phenomena, including film thickness in coat-
ing [19], dispersion relation for capillary waves [20] and
stability of foams [21, 22].

The dynamics of surfactant spreading is also relevant
in the field of active matter through the propulsion mech-
anism of Marangoni swimmers [23–25]. When a particle
filled with surface-active molecules such as camphor is
placed at the air-water interface, the resulting surface-
tension gradient drives the spontaneous motion of the
particle, even if the latter is perfectly symmetric [26–
28]. Although camphor swimmers are known for cen-
turies [27], their rich individual and collective dynam-
ics is still a matter of investigation [29–32]. To eluci-
date their propulsion mechanism, a fine understanding
of the transport of surfactants is required. In particu-
lar, it has been suggested both experimentally [33] and

theoretically [34, 35] that the transient spreading of cam-
phor molecules could be described by an effective diffu-
sion process that would account for the advection by the
Marangoni flow. This point is actually quite subtle and
requires an in-depth investigation.

When a surfactant is released at the air-liquid inter-
face, the surfactant-covered domain grows in time and
its size L(t) is governed by a balance between viscous
stresses and surface tension gradients. At large time, the
size generally follows the scaling law L(t) ∼ tα. The ex-
ponent α depends on the dominant features of the system
such as inertia, gravity, capillarity or viscous dissipation,
among others. Although most of previous studies focused
on thin films [36–40], where the lubrication approxima-
tion applies, we consider here the deep layer limit. Re-
garding the dynamics of surfactant spreading, asymptotic
self-similar solutions have been thoroughly discussed in
the wake of the seminal work of Jensen [41]. More re-
cently, the hydrodynamic signature of surfactant trans-
port in a semi-infinite liquid has also been investigated
at steady state [42–45]. This line of works focuses mainly
on the large Reynolds limit, where the surfactant-driven
flow develops in a boundary layer.

In contrast, much less is known regarding the prop-
erties of Marangoni spreading with Stokes flow. In this
case, the vorticity created by the Marangoni shear stress
at the interface penetrates deep into the liquid, so that
the transport equations are generally both nonlocal and
nonlinear [1]. An important step forward was achieved,
however, when it was recognized that the interfacial ve-
locity can be expressed as a convolution of the surface
concentration [46]. Another essential finding, achieved
recently by Crowdy [47], has revealed that the mathe-
matical problem for insoluble surfactant can be mapped
to a complex Burgers equation, opening new perspectives
for its resolution.

The aim of the present work is to exploit those ad-
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vances to build a complete set of exact solutions for vis-
cous Marangoni spreading. In contrast to self-similar so-
lutions that apply asymptotically, our solutions are valid
at all time. We find that the non-linear character of
the spreading problem leads to a rich variety of possi-
ble behaviors and that the initial surfactant distribution
has a key influence on the subsequent evolution. Be-
sides, our exact solutions provide reference cases and a
range of physical insights. In particular, the question of
Marangoni spreading as an effective diffusion process can
now be settled.

The study is organized as follows. In Sec. II, we first
present the hydrodynamic model with its underlying as-
sumptions and propose a particularly simple derivation
of the complex Burgers equation that governs the dynam-
ics of insoluble surfactants in one dimension. Section III
focuses on transient Marangoni spreading in the absence
of diffusion. Exact solutions are obtained for a variety of
initial surfactant distributions. The influence of surface
diffusion is investigated in Sec. IV, where we provide a
fundamental solution and discuss the resulting effective
diffusion coefficient. Finally, we examine in Sec. V the
spreading dynamics in two dimensions with axial sym-
metry. We conclude in Sec. VI with a physical discussion
of our findings.

II. FROM MARANGONI SPREADING TO
BURGERS EQUATION

A. Dimensionless numbers and simplifying
assumptions

We consider the spreading of surfactants at the air-
water interface, as illustrated in Fig. 1. Initial inhomo-
geneities in the surfactant distribution induce Marangoni
constraints and a fluid flow that drives the system to-
ward a homogeneous state. Our goal is to provide an ex-
act description of this relaxation process. We assume a
two-dimensional flow and an infinitely deep liquid layer.
The liquid is Newtonian and incompressible, with dy-
namic viscosity η, mass density ρ and kinematic viscos-
ity ν = η/ρ. The surface-active molecules are insoluble,
i.e. they are irreversibly adsorbed at the interface. We
note Ds their surface diffusion coefficient.

To introduce further modeling assumptions, we first
discuss the relevant dimensionless numbers. The contri-
bution of advection to momentum and mass transport
can be rationalized by the Reynolds and Péclet numbers

Re ≡ LU

ν
and Pe ≡ LU

Ds

, (1)

with L the length scale of the initial concentration per-
turbation and U the velocity associated with the corre-
sponding Marangoni flow. Both quantities may span a
large range in experiments, namely L = 10−3 − 10−1 m
and U = 10−3 − 1m s−1, resulting in Reynolds number
Re = 1 − 105 much above or around unity. Because

FIG. 1. Spreading of an insoluble surfactant above a
semi-infinite liquid layer with two-dimensional flow. The
inhomogeneous distribution of surfactant Γ(x, t) induces a
Marangoni flow with bulk velocity u(x, z, t) and interfacial
velocity us(x, t).

the surface diffusion coefficient Ds ≃ 10−9 m2 s−1 [48]
is several orders of magnitude smaller than the momen-
tum transport coefficient ν ≃ 10−6 m2 s−1, the hierar-
chy Re ≪ Pe always applies [49]. The thickness of the
hydrodynamic boundary layer is therefore much larger
than that of the mass boundary layer [43]. In the fol-
lowing, we neglect fluid inertia and focus on the Stokes
regime. This assumption is reasonable when L lies be-
low or within the millimeter range and U in the mm s−1

range at most. While this choice of the Stokes limit is
certainly restrictive, we will show in the following that
it is interesting in its own right. Emphasis is placed on
nonlinearities that occur in the mass transport equation
and on the methods to handle them exactly.

The spreading of surfactant can induce an unsteady
displacement of the free interface. The competition be-
tween surface deformation and viscous stress is quantified
by the capillary number

Ca ≡ ηU

γ
, (2)

with γ the surface tension of the interface. With η ≃
10−3 Pa s, γ = 10−2 − 10−1 Nm−1 and the range of ve-
locity scale given above, one gets Ca = 10−5 − 10−1. We
can therefore neglect capillary effects and assume that
the interface remains flat in the formulation of the hy-
drodynamic problem. Still, interfacial deformations can
be determined afterward by invoking the normal stress
continuity condition [41].

Finally, some surface-active species such as camphor or
alcohol molecules may evaporate from the liquid to the
gas phase. To account for this phenomenon, we include
a first-order kinetic evaporation with rate k. The ratio
of evaporative to convective mass transport is set by the
Damköhler number

Da ≡ kL

U
, (3)
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that can take values in a very wide range, spanning from
negligible (Da ≪ 1) to prevalent (Da ≫ 1) evaporation.

B. Marangoni flow and surfactant transport

In the viscous regime, the velocity field u = (u, v) and
pressure p satisfy the incompressible Stokes equations

∇ · u = 0, η∆u = ∇p, (4)

with ∇ the nabla operator and ∆ the Laplacian. The
velocity is assumed to vanish far away from the initial
disturbance. Along the free interface, variations in sur-
face tension γ induce a tangential stress given by the
Marangoni boundary condition

η ∂zu
∣

∣

z=0
= −∂xγ, (5)

where the interface remains flat and corresponds to z = 0.
The surface tension is related to the local surfactant con-
centration Γ through an equation of state γ = γo − κΓ
that is linear [50], a convenient but approximate as-
sumption [40, 51]. Surface activity is then measured by
the positive constant κ ≡ −∂γ/∂Γ. Finally, the con-
centration Γ(x, t) of surfactant evolves according to the
advection-diffusion equation

∂tΓ + ∂x (Γus) = Ds ∂
2
xxΓ− kΓ, (6)

where us(x, t) ≡ u(x, z = 0, t) is the velocity at the inter-
face. The last term in Eq. (6) accounts for evaporation.

C. Closure relation and Thess’ equation

Since the Stokes equation is linear, it should be possible
to relate the flow anywhere in the bulk to the distribution
of Marangoni stress at the interface, and thus ultimately
to the distribution of surfactant. This step has indeed
been achieved by Thess and collaborators [46, 49, 52]
(see also Ref. [53]). The end result is a closure relation
giving the surface velocity as a convolution of surfactant
concentration with a dimension-dependent kernel. When
the surface velocity is one-dimensional, the closure rela-
tion reads

us(x, t) =
κ

2η
H[Γ(x, t)]. (7)

Here, we define the Hilbert transform H of a function f

H[f ](x) ≡ f̆(x) ≡ 1

π
p.v.

∫ ∞

−∞

f(x′)

x− x′
x.
′, (8)

where the integral is understood in the sense of Cauchy
principal value (p.v.). The closure relation of Eq. (7) is
non-local: the velocity at position x depends on the sur-
factant distribution everywhere on the surface. This is

in clear contrast with the thin layer limit, where the sur-
face velocity is simply proportional to the concentration
gradient ∂xΓ [49].

It is convenient at this point to switch to dimension-
less variables. From now on, we focus on the reduced
surfactant concentration f = Γ/Γo and the reduced ve-
locity u = us/U , with Γo the concentration scale and
U = κΓo/2η the characteristic velocity associated with
the Marangoni flow. The length and time scales are also
expressed in units of L and τ = L/U , with L the rele-
vant size pertaining to the initial perturbation. Expect-
ing no confusion by the reader, we keep the same nota-
tions x and t for the dimensionless variables. According
to Eq. (7), the closure relation in dimensionless form sim-

ply reads u(x, t) = f̆(x, t).
Putting all pieces together, the flow and surfactant dy-

namics described by Eqs. (4)–(6) can finally be replaced
by a unique equation originally introduced by Thess [52]

∂tf + ∂x(f f̆) = −αf + ǫ ∂2
xxf , (9)

where α and ǫ stand respectively for the Damköhler num-
ber α ≡ Da and the inverse Péclet numer ǫ ≡ Pe−1. By
“integrating out” the features of the flow, the coupled
problem of momentum and mass transport is reduced to
a single equation, which is, however, nonlinear and non-
local.

D. Complex Burgers equation

Although some specific solutions of Thess’ equation
have been discussed previously in the literature [35, 49,
52, 53], a systematic method for solving the problem is
still missing. A major breakthrough has been achieved
very recently by Crowdy [47], recognizing that the prob-
lem defined by Eqs. (4)-(6) can be mapped to a complex
Burgers equation. The derivation is based on the com-
plex variable representation of the stream function and
therefore relies on advanced properties of analytic func-
tions. Here we propose a different route, inspired by an
approach originally developed in the context of vorticity
transport [54].

By exploiting properties of Hilbert transforms, let us
show that Crowdy’s result can be derived in a straight-
forward manner. The first step is to apply the Hilbert
operator to Eq. (9) to obtain

∂tf̆ + f̆∂xf̆ − f∂xf = −αf̆ + ǫ ∂2
xxf̆ . (10)

Here, we made use of the relations H[∂xf ] = ∂xf̆ ,

H[fg] = f̆ g + f ğ + H[f̆ ğ] and H2[f ] = −f , from which

one also gets H[f f̆ ] = (f̆2 − f2)/2 [54, 55]. The second
step is to introduce the complex function Ψ(x, t) as

Ψ(x, t) ≡ f̆(x, t)− if(x, t). (11)

Combining Eqs. (9) and (10), it is then a simple calcula-
tion to recover Crowdy’s equation [47]

∂tΨ+Ψ∂xΨ = −αΨ+ ǫ ∂2
xxΨ, (12)
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with an additional term that accounts for evaporation.
This equation expresses that in the present setting,
Marangoni spreading is formally governed by a viscous
Burgers equation for the complex function Ψ(x, t). If a
solution can be found, the interfacial velocity and the
concentration are deduced from

u(x, t) = Re[Ψ(x, t)], f(x, t) = −Im[Ψ(x, t)]. (13)

Note that, since f is a concentration, it should always
satisfy f(x, t) ≥ 0.

The inverse Péclet number ǫ appearing in Eq. (12)
plays the role of viscosity in the more common form of the
Burgers equation, which was initially introduced in the
context of fluid turbulence [56, 57]. The effect of evapora-
tion is embodied through an extra linear term monitored
by the Damköhler number α. The main accomplishment
of shifting from Thess’ to Crowdy’s formulation is that lo-
cality is now restored in the Burgers Eq. (12). Moreover,
a rigorous mathematical transformation allows to further
transform the nonlinear Burgers equation into a linear
partial differential equation [58]. As a consequence, an-
alytical solutions for the transient spreading of insoluble
surfactants can be derived and discussed in a systematic
way. We now proceed to do so.

III. TRANSIENT SPREADING AT INFINITE
PÉCLET NUMBER

The situation most amenable to analytical treatment
is when diffusion and evaporation are both absent (α =
ǫ = 0 or Da = Pe−1 = 0). The equation to solve in this
case is the inviscid Burgers equation [56, 57, 59]

∂tΨ+Ψ∂xΨ = 0. (14)

If Ψo(x) ≡ Ψ(x, 0) denotes the initial value, the solution
given by the method of characteristics [60] is simply

Ψ(x, t) = Ψo(x
∗) , with x∗ + tΨo(x

∗) = x. (15)

It remains only to solve the equation on x∗. We have
identified five relevant cases where this is possible: two
types of surfactant “pulses”, two types of surfactant
“holes” and one periodic distribution.

A. Spreading dynamics of surfactant pulses

Cauchy pulse. We first assume that the initial pro-
file is a Cauchy (or Lorentzian) distribution with ampli-
tude A and width a. The initial values are then

fo(x) =
Aa2

a2 + x2
, and f̆o(x) =

x

a
fo(x), (16)

so that Ψo(x) = aA/(x+ ia). Given the simplicity of the
expressions, Eq. (15) reduces to a second order equation
for x∗

x∗2 − (x − ia)x∗ +Aat− iax = 0, (17)

which leads to the solution

Ψ(x, t) =
1

2t

(

x+ ia− i
[

(a− ix)2 + 4aAt
]1/2

)

. (18)

Separating the real and imaginary parts [61], the con-
centration and velocity profiles are obtained explicitly as

f(x, t) =
1

2t

(

Υ+(ξ)− a
)

, (19a)

u(x, t) =
1

2t

(

x− Υ−(ξ)
)

, (19b)

where we define ξ ≡ a2 + 4aAt− x2 and

Υ±(ξ) ≡
√

(

√

ξ2 + (2ax)2 ± ξ
)

/2. (20)

To keep compact expressions, we have assumed x > 0.
The negative part can be obtained by symmetry since
f(x, t) and u(x, t) are respectively even and odd with
respect to x. The resulting concentration and velocity
profiles are shown in Fig. 2(a).

Circular pulse. As a second instance, we consider an
initial surfactant profile that is elliptical or “circular” af-
ter rescaling:

fo(x) = A
[

1− x2/a2
]1/2

+
, (21a)

f̆o(x) =
A
a

(

x−
[

x2 − a2
]1/2

+

)

, (21b)

with radius a and amplitude A. The brackets [.]
+

in-
dicate the positive part of the argument. Here we also
assume x > 0 for the sake of brevity. The initial values
lead to Ψo(x) =

(

sign(a− x)
√
a2 − x2 + ix

)

A/a. Equa-
tion (15) is again second order for x∗ and proceeding as
above, the concentration and velocity profiles then read

f(x, t) =
aA
a(t)

[

1− x2

a2(t)

]1/2

+

, (22a)

u(x, t) =
aA
a2(t)

(

x−
[

x2 − a2(t)
]1/2

+

)

, (22b)

where a(t) =
√
a2 + 2aAt. The circular solution, plotted

in Fig. 2(b), is self-similar. Indeed, Eq. (22) shows that
the profile at any time can be obtained by replacing the
initial radius a with a time-dependent radius a(t), while
keeping a fixed amount of surfactant. In the context
of Marangoni spreading, the circular solution was ini-
tially found by Thess [52] with an adhoc method. In the
mathematical literature [62], it is known as a fundamen-
tal solution which arises when assuming self-similarity.
Note that like other self-similar solutions, such as the
Barenblatt-Pattle solution for the porous medium equa-
tion [63, 64], the circular pulse solution has a finite sup-
port.
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FIG. 2. Spreading of a surfactant pulse: Concentration and velocity profiles for a Cauchy, circular and Gaussian pulse, from
left to right. The typical width is a = 1 and the total amount of surfactant is the same in all cases. Time is t = 0, 0.5, 1, 2, 5, 10
from top to bottom. Note that the vertical scale changes from one graph to the other.

More general pulse shapes. The Cauchy and circular
pulses are special because they both lead to a second or-
der equation for Eq. (15). Other pulse shapes yield an
equation on x∗ that in general cannot be solved explic-
itly [65]. Still, it is always possible to resort to numeri-
cal resolution. The example of a Gaussian pulse treated
this way is shown in Fig. 2(c). In the limit t → ∞,
all pulses eventually approach the fundamental circular
solution [66]. However, it is apparent that such loss of
memory of the initial profile happens only at long time,
for t ≃ 10 in dimensionless units. This indicates that the
shape of the initial pulse has a significant influence on
transient Marangoni spreading.

Effective diffusion coefficient. We now examine
whether the spreading process can be described as an
effective diffusion process, as suggested in several stud-
ies [33, 34, 67]. For the circular pulse, the spatial exten-
sion squared a2(t) = a2 + 2aAt increases linearly with
time, a feature typical of diffusion. But for the Cauchy
pulse, the second moment of the concentration profile is
infinite so that the width of the surfactant distribution
is not properly defined. One can use instead the posi-
tion xvmax where the velocity is maximal. In the large
time limit, one finds xvmax ≃ 2

√
aAt, a behavior again

reminiscent of diffusion. An effective diffusion coefficient
can thus be defined as Deff ∼ aA. Interestingly, Deff

is proportional to the total amount of surfactant in the
pulse. Thus, the more surfactant in the pulse, the faster
the spreading. Such a feature, which would not be per-
mitted with plain diffusion since the corresponding equa-
tion is linear, is a consequence of nonlinearity. Surfactant
spreading may thus be described as a diffusive process,
but only under specific circumstances and with regard to
the time evolution of the concentration profile.

B. Closure dynamics of surfactant holes

We now discuss the reverse situation where surfactant
is already present at the interface but with a concentra-
tion near the origin that is lower than the value c̄ far
away from it. Such surfactant “dimple” or for brevity
“hole” in the following is expected to close as a result of
Marangoni flow. As for the spreading case, we derive two
exact solutions for this process: the Cauchy hole and the
circular hole.

Cauchy hole. Consider the initial surfactant concen-
tration given by

fo(x) = c̄− a2A
a2 + x2

, (23)

with 0 6 A 6 c̄. Retracing the steps detailed above, the
Ψ function, concentration and velocity can all be writ-
ten explicitly in a straightforward manner. For the sake
of clarity, the mathematical expressions are reported in
App. C. An interesting feature occurs when the initial
concentration vanishes at the origin, i.e. when A = c̄. In
this case, the concentration profile exhibits a singularity
at a finite time t⋆ = a/c̄. Indeed, a small-x expansion
gives at lowest order

x → 0, f(x, t⋆) = −u(x, t⋆)

sign(x)
=

c̄√
2a

√

|x|. (24)

This indicates that the concentration profile has a cusp
near the origin, as illustrated in Fig. 3(a). Regarding
the velocity profile, it has an infinite slope at the origin
when t = t⋆. For larger time t > t⋆, the profile becomes
regular again. Note that this singularity has already been
identified in previous investigations [47], but focusing on
the dynamics of poles in the complex plane. For c̄ = A,
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FIG. 3. (a-b) Closing of a surfactant hole: Concentration and velocity profiles for Cauchy and circular holes. Here c̄ = a =
A = 1. Time is t = 0, 0.5, 1, 1.5, 2, 3, 5 from bottom to top. A singularity occurs at t⋆ = 1 and x⋆ = 0. (c) Relaxation of a
periodic distribution of surfactant: Concentration and velocity profiles for a sinusoidal initial distribution, with c̄ = a = A = 1.
Time is t = 0, 0.2, 0.5, 1, 1.5, 2, 5. A singularity occurs at t⋆ = 1 and x⋆ = ±π.

the concentration at the origin has a remarkably simple
expression

t 6 t⋆, f(0, t) = 0, (25a)

t > t⋆, f(0, t) = c̄

(

1− t⋆

t

)

. (25b)

The concentration remains zero until the cusp forms at
time t⋆, after which it relaxes as t−1.

Circular hole. The case of an elliptic initial dimple
can also be treated analytically. The initial density reads

fo(x) = c̄− A
a

[

a2 − x2
]1/2

+
, (26)

with the condition 0 6 A 6 c̄. The exact solution is
provided in App. C. The concentration and velocity pro-
files are displayed in Fig. 3(b). When A = c̄, the con-
centration exhibits a finite-time singularity as well, with
features similar to those discussed above. In particular,
Eq. (24) still holds, with the factor of 2 removed. Re-
garding the concentration at the origin, one now gets

t 6 t⋆, f(0, t) = 0, (27a)

t > t⋆, f(0, t) = c̄

(

1− t⋆

2t− t⋆

)

. (27b)

We therefore find that the concentration relaxes asymp-
totically with the same t−1 law.

C. Periodic distribution of surfactant

We now turn to a periodic initial distribution of sur-
factant with sinusoidal variations of period 2πa and am-
plitude A around the mean value c̄ [68]. From fo(x) =

c̄+A cos(x/a) and iΨo(x) = c̄+A exp(ix/a), the solution
can be found as

iΨ(x, t) = c̄+
a

t
W

(

tA
a

exp [(ix− c̄t)/a]

)

, (28)

where W is the principal value of the Lambert function
that satisfies W (x) exp [W (x)] = x [69]. The correspond-
ing profiles are plotted in Fig. 3(c). Once again, if the
initial concentration includes a point of vanishing con-
centration (i.e. A = c̄), the profile exhibits a singularity
at (t⋆, x⋆) = (1,±πa) with the same features as discussed
previously. As a side remark, we note that the solution
of Eq. (28) derived for an infinite system also applies
to a finite domain x ∈ [−πa, πa] with no-flux boundary
conditions.

The asymptotic behavior can also be extracted from
Eq. (28). In the large-time limit, the relaxation is found
to be exponential

t → ∞, f(x, t)− c̄ = A cos(x/a)e−t/τr . (29)

The characteristic time τr = a/c̄ is independent of the
modulation amplitude A but decreases with the mean
concentration c̄. In other words, a surfactant-laden inter-
face can erase initial inhomogeneities more rapidly when
richer in surfactant. At this point, it is instructive to
compare with a purely diffusive process. For diffusion,
the relaxation of a sinusoidal profile is exponential at
all time with a characteristic time τD = a2/D. Here,
Marangoni spreading exhibits a similar behavior: setting
τr = a2/Deff , one can define an effective diffusion coef-
ficient Deff ∼ ac̄ that is again proportional to the total
amount of surfactant involved, as already discussed in
Sec. III A. The analogy with diffusion is, however, incom-
plete. As clearly seen in Fig. 3(c), the concentration pro-
file in surfactant-poor and surfactant-rich regions evolves
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in a very asymmetric manner. Such a feature, that arises
from the nonlinearity of Eq. (14), would be proscribed in
a diffusion process.

IV. SPREADING DYNAMICS AT FINITE
DAMKÖHLER OR PÉCLET NUMBERS

When either evaporation or diffusion are relevant, ad-
ditional terms have to be accounted for and the inviscid
Burgers Eq. (14) has to be replaced by its more general
version Eq. (12). We discuss in this section the new so-
lutions that arise when considering finite Damköhler or
Péclet numbers.

A. Effect of evaporation

For finite Damköhler number, i.e. when evaporation is
considered, the equation to solve is ∂tΨ+Ψ∂xΨ = −αΨ.
One can easily check that the solution Ψ with evaporation
(α > 0) is directly related to the solution Ψ† without
evaporation (α = 0) by

Ψ(x, t) = e−αtΨ†(x, τeff), τeff =
1− e−αt

α
. (30)

Note in particular that combining Eq. (30) and the cir-
cular pulse solution Eq. (22) yields back the solution ob-
tained previously in Ref. [35].

Evaporation has two effects. First, both the concentra-
tion and the velocity include an exponential decay with
rate α. Second, the effective time τeff , which is equal to t
at short times t ≪ τeff , subsequently reaches a plateau
at longer times t ≫ τeff . The plateau value τ = α−1

corresponds to the characteristic time associated with
evaporation. This implies that the long-time behavior
of the relaxation is always exponential, whatever the ini-
tial distribution. Asymptotically, evaporation is thus the
dominant transport mechanism.

B. Effect of surface diffusion

1. Fundamental solution

We come back to the situation where there is no evapo-
ration and focus on the effect of surfactant diffusion along
the interface. We assume that the interface is initially
clean, with f(x, t = 0) → 0 for x → ∞. The equation to
solve is now the viscous Burgers equation

∂tΨ+Ψ ∂xΨ = ǫ ∂2
xxΨ, (31)

with ǫ the inverse Péclet number which is proportional to
the surface diffusion coefficient Ds. This nonlinear equa-
tion can actually be converted to a linear partial differ-
ential equation thanks to the Hopf transformation [58].

Denoting as Ψo(x) the initial value, the general solution
can be expressed as

Ψ(x, t) = −2ǫ ∂x log I(x), (32)

where we define

I(x) ≡
∫ ∞

−∞

exp (−g(u)/ǫ) du, (33)

g(u) ≡ (u− x)2

4t
+

1

2

∫ u

0

Ψo(u
′) du′. (34)

This general solution is now specified for a Cauchy pulse
because among the initial profiles we consider, this case
is the only one we found to be fully tractable analytically.
Considering the initial value Ψo(x) = aA/(x + ia), one
gets

I(x) =

∫ ∞

−∞

(1− iu/a)
− aA

2ǫ exp

[

− (u− x)2

4ǫt

]

du. (35)

While the result of the latter integral is available for any
width a and amplitude A [70], we focus for simplicity
on the limit a → 0 while keeping aA = 1/π, so that
the total amount of surfactant is unity. In this limit,
the initial Cauchy pulse approaches a Dirac distribution.
The explicit expression for I(x) is then

I(x) =Γ (ζ) 1F1

(

ζ,
1

2
,− x2

4ǫt

)

+

i
2x√
4ǫt

Γ

(

1

2
+ ζ

)

1F1

(

1

2
+ ζ,

3

2
,− x2

4ǫt

)

, (36)

where Γ denotes here the gamma function, 1F1 is the
confluent hypergeometric function [71] and ζ ≡ 1/4πǫ.
Using Eq. (32), fully explicit expressions can be written
for the velocity and concentration profiles. The result-
ing formulas then constitute the fundamental solution
for Marangoni spreading with surface diffusion.

2. Effective diffusion coefficient

The primary effect of diffusion is to smooth out the
distribution. This is illustrated in Fig. 4 at fixed time:
the stronger the diffusion coefficient, the wider the sur-
factant distribution. Because the spreading of a Cauchy
pulse is already diffusive-like when ǫ = 0, one expects
that the whole process — now including genuine surface
diffusion — can be described with an effective diffusion
coefficient. To do so, we focus on the concentration at
the origin, which is given by the remarkably simple ex-
pression

f(x = 0, t) =
1√

4πDefft
, (37)

with an effective coefficient Deff defined as

Deff(ǫ) = πǫ

[

Γ (1 + ζ)

Γ
(

1

2
+ ζ

)

]2

, ζ ≡ 1/4πǫ. (38)
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FIG. 4. Influence of surface diffusion on the transient spread-
ing of a Dirac pulse. Here, time is fixed to t = 0.5 and the
concentration profile is shown for ǫ = 0.1, 0.3, 1, 3, 10 from
top to bottom. The dashed lines correspond to Gaussian dis-
tributions with variance 2tDeff(ǫ). Inset: Effective diffusion
coefficient Deff(ǫ) as given by Eq. (38). Approximations from
Eqs. (39) and (40) are also shown with dashed lines.

Equation (37) is valid at all time and matches rigorously
what is expected for a purely diffusive process. A similar
dependence also holds asymptotically at long time for any
finite position x. The effective diffusion coefficient Deff(ǫ)
is plotted as a function of ǫ in the inset of Fig. 4. We can
identify the limiting behaviors

ǫ → 0, Deff(ǫ) =
1

4

(

1 + πǫ +
π2

2
ǫ2 + ...

)

, (39)

ǫ → ∞, Deff(ǫ) = ǫ+ C1, (40)

where C1 ≈ 0.22 is a numerical constant [72]. One thus
recovers the expected values in two limits. For very weak
diffusion ǫ ≪ 1, the value of the effective coefficient ap-
proaches Deff = 1/4, in agreement with Eq. (19a) for the
zero-diffusion case [73]. On the other hand, one obtains
Deff ≃ ǫ when intrinsic diffusion dominates. Finally,
since a Gaussian behavior is expected for pure diffusion,
the concentration profiles can be compared to Gaussian
distributions with variance 2tDeff(ǫ), as done in Fig. 4.
Though small discrepancies are visible in the tails of the
distributions, the agreement is fairly good. The funda-
mental solution of Marangoni spreading may thus be rea-
sonably approximated as a diffusive process with effective
coefficient Deff(ǫ) given by Eq. (38).

We have focused so far on surfactant spreading in
the transient regime. Yet another situation of interest
is when the surfactant is released continuously [34, 42,
43, 45, 74, 75]. We describe in App. A the solutions
that are available for this steady state source in the one-
dimensional case.

V. AXIALLY SYMMETRIC SPREADING IN
TWO DIMENSIONS

A. Closure relation and Riesz transform

In this section, we briefly discuss transient surfactant
spreading in higher dimensionality. Evaporation and dif-
fusion are discarded everywhere. Space dimensionality is
noted D and the dimension of the interface is d = D− 1.
Keeping the assumptions made in Sec. II, the closure rela-
tion of Eq. (7) can be generalized in any space dimension
as [49]

us(x) = −∇(−∆)−1/2f(x), (41)

or, equivalently, in Fourier representation

ûs(q) = − iq

q
f̂(q). (42)

Here, us denotes the in-plane velocity at the interface,

x is the position along the interface and f̂ ≡ F [f ] is the
Fourier transform of a function f [76]. For the dimension
d = 1 discussed until now, the velocity is given by the
Hilbert transform of the concentration. For the dimen-
sion d = 2 considered in this section, the velocity can be
expressed as the Riesz transform of the concentration,
us = R[f ], where we define

R[f ](x) ≡ 1

2π
p.v.

∫

x− x
′

|x− x′|3 f(x
′)dx′. (43)

Consequently, the closure relation is again non-local.
Whereas an extensive literature can be found on

Hilbert transforms, the use of Riesz transforms appears
to be less common. Moreover, it does not seem possi-
ble to recast the problem as a Burgers equation. From
now on, we restrict the discussion to radially symmetric
pulses, such that the concentration f depends only on
the distance r to the origin. Denoting as er the radial
unit vector, the velocity is also radial with component
ur = R[f ] · er ≡ f̌ . The equation governing the evolu-
tion of surfactant distribution f(r, t) is then

∂tf +
1

r
∂r

(

rf f̌
)

= 0. (44)

Even within these assumptions, computing the Riesz
transform is in general not straightforward. Several ex-
pressions that are useful for this purpose are given in
App. B.

B. Transient spreading

By analogy with the one-dimensional case, we consider
the spreading of a circular pulse

f(r, t) =
a2A
a2(t)

[

1−
(

r

a(t)

)2
]1/2

+

, (45)
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FIG. 5. Concentration and velocity profiles for the circular
solution to transient spreading. Shown are the rescaled con-
centration frs ≡ λ(t)f(r, t) and the rescaled velocity urs ≡
λ(t)u(r, t), with a scaling factor λ(t) = (a(t)/a)d/A, d the di-
mension, a(t) the radius at time t and a the initial radius. The
case d = 2 (solid lines) and d = 1 (dashed line) correspond
respectively to Eqs. (45)-(46) and Eq. (22). The dotted line
is the large distance approximation of velocity from Eqs. (48)
and (49) taken at lowest order.

where a and A are respectively the initial radius and
amplitude, and the time-dependent radius a(t) is to be
determined. Computing the Riesz transform, we get

f̌(r, t) =
πa2A
4a3(t)

r, (46)

f̌(r, t) =
a2A
2a3(t)

[

−a(t)

r

√

r2 − a2(t) + r arcsin

(

a(t)

r

)]

.

for r 6 a(t) and r > a(t) respectively. Equation (44)
is then satisfied provided a′(t)a2(t) = −πa2A/4, which
finally leads to

a(t) =

(

a3 +
3πa2A

4
t

)1/3

. (47)

We recover the self-similar solution that was identified in
the mathematical literature [62] but using a completely
different method. The transient spreading in the two-
dimensional geometry is therefore subdiffusive, since the
spatial extent increases as a(t) ∼ t1/3.

It is interesting to compare the characteristics of the
circular pulse for d = 1 and d = 2. As visible in Fig. 5,
both solutions have a finite support within which the
velocity is linear and also feature an angular point with
infinite slope at the boundary r = a(t). At distances
much larger than a(t), the velocity behaves as

d = 1,
u(x)

aA =
1

2x
+

a2 + 2aAt

8x3
+ ..., (48)

d = 2,
u(r)

a2A =
1

3r2
+

a2(t)

10r4
+ ... (49)

The velocity is thus proportional to the “volume” of the
pulse ∼ adA and decays as a power law u(r) ∼ r−d.

C. Steady spreading from a source

As the last solvable case, let us consider a punc-
tual source releasing a steady flux of surfactant Q that
spreads in two dimensions, without evaporation. Assum-
ing steady state, Eq. (44) or surfactant conservation gives

2πr f(r) f̌(r) = Q. (50)

Using the Riesz transform expressions of App. B, one can
show that a solution is

f(r) =

√

2

π

Γ
(

5

4

)

Γ
(

3

4

)

√

Q

r
, (51a)

u(r) =

√

2

π

Γ
(

3

4

)

Γ
(

1

4

)

√

Q

r
. (51b)

The concentration f and the velocity u = f̌ display the
same power-law dependence, a behavior clearly distinct
from diffusive behavior where no steady state exists when
d = 2. The r−1/2 dependence might be understood from
a simple argument. Since there is no characteristic length
scale other than the distance to the source, one can ex-
pect a typical viscous stress u(r)/r. On the other hand,
the typical Marangoni stress is f ′(r). Equating viscous
and Marangoni stresses and using Eq. (50), one finds
f ′(r)f(r) ∼ r−2 and f(r) ∼ u(r) ∼ r−1/2.

For a steady source of insoluble surfactant [44, 45],
Mandre found that the velocity field decays as r−ν

with ν = 3/5, whereas we find an exponent ν = 1/2.
The former applies when there is a boundary layer for
the flow, the latter holds for Stokes flow. An other point
of comparison is the exact solution from Bratukhin and
Maurin for a steady punctual source of heat or soluble
surfactant in three dimensions [77, 78], in which the far-
field velocity decays as r−1. Spreading of an insoluble
surfactant in the Stokes regime has thus a distinct hy-
drodynamic signature with the slowest velocity decay.

VI. DISCUSSION

To summarize, we developed a unified analytical ap-
proach to describe the transient and steady Marangoni
spreading of an insoluble surfactant in the Stokes flow
limit [79]. In the one-dimensional case, the mapping
between an intricate set of transport equations and a
complex Burgers equation is derived in a straightforward
manner using the properties of Hilbert transforms. The
solutions previously uncovered in the various fields of the
literature – from applied mathematics to physical chem-
istry through fluid mechanics – are gathered within a
single framework. Importantly, our approach allows to
identify all cases where a fully explicit solution is possi-
ble. By investigating a number of them, we show that the
nonlinearity of the Burgers equation may lead to a variety
of behaviors in spreading. Finally, for an initial surfac-
tant distribution with arbitrary shape, the solution will
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not be generally available in analytical form but may be
obtained numerically by solving a simple equation. With
a set of exact solutions in hands, we can now discuss
more thoroughly the physical insights they provide. To
do so, we consider several points in turn, focusing on the
one-dimensional case if not mentioned otherwise.

Time scale for Marangoni spreading. If we switch
back to dimensional variables, the time scale involved
with transient surfactant spreading reads τ = 2ηL/κΓo,
with L the characteristic length scale of the perturbation.
This time scale is thus inversely proportional to the sur-
factant concentration. Taking Γo ≃ 103 molecules/µm2,
which corresponds to a low surface fraction ϕ ≃ 10−3,
κ = kBT ≃ 4 × 10−21 J at room temperature and the
viscosity of water η ≃ 10−3 Pa s, one gets a macroscopic
time τ ≃ 1 s for L = 1mm. Our results are thus relevant
with regards to experimental time scales.

(Dis)similarities between pulses and holes. To com-
pare the complementary situations of pulses and holes,
we examine the long-time behavior of the concentra-
tion f(x, t), which is normalized by the “volume” aA of
the initial perturbation so that whatever the amount of
surfactant, the spatial integral is unity. For any finite
position x, the concentration evolves asymptotically as

t → ∞,
f(x, t)

aA ≃ 1√
χaAt

, (52)

for a pulse whereas for a hole

t → ∞,
c̄− f(x, t)

aA ≃ 1

χc̄t
, (53)

with χ a numerical constant [80]. Two differences can be
emphasized. (i) The time relaxation of pulses is essen-
tially diffusive-like, with an effective diffusion coefficient
Deff ∼ aA proportional to the total amount of surfac-
tant in the pulse. In contrast, hole closing cannot be
described as a diffusive process. (ii) The dynamics of
hole closing is much faster than pulse spreading. This
difference arises from the non-linear nature of the trans-
port equation. Indeed, with a linear equation, holes and
pulses would evolve in the same way. This clearly indi-
cates that any analogy with effective diffusion has to be
handled carefully.

Surfactant spreading on a contaminated surface. Our
results also indicate that Marangoni spreading is very
sensitive to the initial state of the surface: There is an
essential difference in the behavior expected with a per-
fectly clean surface and a surface already covered with
endogenous surfactants [81, 82]. Indeed, the solution for
the holes still holds when A < 0, that is when a surfactant
pulse is released on a surface with an initial homogeneous
concentration c̄. In the long-time limit, the spreading
dynamics thus depends on whether the interface is clean
or contaminated with surface-active molecules. Such a
change in behavior can be traced back to the additional

term c̄ ∂xf̆ appearing in Eq. (9), which describes the
transport of endogenous surfactants by the Marangoni

flow due to the added surfactant pulse. Because the dis-
tribution of endogenous surfactants may become inhomo-
geneous, a contaminated interface with concentration c̄
is not equivalent to a clean interface with surface ten-
sion γo − κc̄. In particular, the asymptotic dynamics of
Eq. (52) for a clean interface cannot be recovered by tak-
ing the limit c̄ → 0 in Eq. (53). This point is especially
relevant for experiments with aqueous solvents. Indeed,
it may provide a clear signature of interfacial contamina-
tion that could be tested experimentally.

Mode decomposition. Whether the decay of an ini-
tial surfactant pulse can be decomposed in sinusoidal
modes is a natural question. This issue has been ad-
dressed recently in a linearized version of the transport
equations [83]. Here, we solved the full nonlinear equa-
tions. We note in particular that, when the amplitude
of the perturbation is small with respect to mean level
(A ≪ c̄), the surfactant profile indeed remains sinusoidal
while decaying exponentially. This is expected since this
assumption makes the problem linear [84]. On the other
hand, nonlinear effects become relevant as soon as A/c̄ is
not well below unity and the mode decomposition does
not apply anymore.

Effective diffusion and space dimension. In the one-
dimensional geometry, we have identified several cases –
including surfactant pulse with and without surface dif-
fusion – where the Marangoni spreading can be mapped
to a diffusion process, though with specific features. For
a two-dimensional interface, the algebra is much more in-
volved and only two analytical solutions are so far avail-
able: the spreading dynamics for a circular pulse and the
steady state source. For the former, the spreading in the
long-time limit is subdiffusive with exponent 1/3. For the
latter, the velocity decays as a power law, at odds with a
diffusive behavior. Taken together, these findings point
to the impossibility of defining an effective diffusion co-
efficient in the two-dimensional case. Since this situation
is the most relevant experimentally, this calls for caution.
Even though the idea of effective diffusion is sometimes
invoked, it appears difficult, in general, to map a trans-
port process dominated by Marangoni convection onto a
simple diffusive process.

To conclude, we briefly discuss how our findings may be
tested experimentally. Predictions for Marangoni spread-
ing have long been confronted to experiments [1], using
for instance fluorescent surfactants [85, 86]. To repro-
duce the situations considered in this work, two peculiar
features are needed. First, the set-up must allow to tai-
lor the initial profile of surfactant to a prescribed shape.
Second, the one-dimensional geometry is preferable be-
cause it is best understood and amenable to complete
predictions. The controlled deposition of surfactant at
the interface might be a possible option. However, the
use of photoswitchable surfactant molecules [87–90] could
be an ideal method to induce the pulse, hole and peri-
odic patterns that we have considered theoretically. In-
deed, because the activated surfactants appear right at
the interface, the perturbations are minimal. Besides,



11

the one-dimensional geometry is easily imposed and the
concentration profile can be prescribed through the light
intensity. We thus hope that the exact solutions found
in this work can be put to experimental test, so as to
provide, for the one-dimensional case at least, a com-
plete picture for the viscous Marangoni spreading of an
insoluble surfactant.

Appendix A: Steady release of surfactant

We seek a steady state in the plane flow geometry when
the surfactant is continuously released at the surface with
a distributed source profile q(x). Introducing the com-
plex flux Q = q̆−iq and neglecting diffusion, the equation
to solve is now

Ψ∂xΨ = −αΨ+Q(x). (A1)

As before, the source profile more susceptible to ana-
lytical treatment is a Cauchy profile and we set Q =
1/(x+ ia).

No evaporation. For a single Cauchy source, the so-
lution to Eq. (A1) diverges for x → ∞, suggesting that
there is no steady state. Let us assume then that some
local surfactant sink exists, where surfactant molecules
disappear. This is physically realizable if a photoswitch-
able surfactant can be instantaneously disabled with a
certain light. We can thus consider a source surrounded
by two sinks at position ±l, all of Cauchy type. The
resulting steady state is described by

Ψ(x) = −i
√

Log(l2 + (a− ix)2)− 2 Log(a− ix). (A2)

In the limit of a punctual source a → 0, one gets Ψ(x) =

−i
√

Log(1 − l2/x2), where x > 0 is assumed for conve-
nience. The concentration and velocity fields can be writ-
ten explicitly by using the relation Log z = ln |z|+ iArg z
for a complex number z.

The resulting steady state is illustrated in Fig. 6a.
First, one can check that the flux of surfactant is constant
from the source to the sink. Second, the concentration
vanishes for |x| > l whereas the velocity does not. This
illustrates the non-local relation between concentration
and velocity. Third, one can note the diverging slope
of concentration and velocity profiles in the vicinity of
sources and sinks. Finally, the concentration is clearly
distinct from the linear profile expected with pure dif-
fusion. The one-dimensional steady source with sinks
is another situations where Marangoni spreading is not
diffusive-like.

With evaporation. Evaporation acts as a distributed
sink and presumably ensures the existence of a steady
state. Even with the simplest case of a Cauchy source,
the integration of Eq. (A1) leads to an equation on Ψ
that is untractable. We can however look for an expan-
sion of Ψ at small and large x. For small x, assuming
−iΨ(x) = c0 + c1ix+ c2x

2 with all coefficients real leads
to an approximation that depends only on c0. One finds

c1 = 1/ac0−α and c2 = (αac0+ c20−1)/(2a2c30). The co-
efficient c0 is solution of a transcendantal equation that
can only be solved numerically. In the vicinity of the
source, the concentration profile is thus parabolic and
the velocity profile is linear. For large x, assuming a
power series Ψ(x) =

∑∞
n=1

cnx
−n leads at lowest order

to Ψ(x) = 1/αx − ia/αx2 + ... Far from the source, the
velocity and concentration fields decay as x−1 and x−2

respectively. Figure 6(b) shows a solution of Eq. (A1)
obtained numerically, together with the approximations
above. The latter are quite satisfactory, except for po-
sition around unity. Note finally that, consistent with
the absence of steady solution when α = 0, the limit of
vanishing evaporation can not be taken.

Appendix B: Riesz transform of a radial function

Obtaining the Riesz transform is not straightforward,
even with the assumption of radial symmetry. Accord-
ingly, we give two expressions that we found useful in this
purpose. From its definition in Fourier space of Eq. (42),
the Riesz transform may be recast as

f̌(r) = −∂r

[

F−1
q→r

(

1

q
Fr→q(f(r))

)]

, (B1)

where F indicates a Fourier transform for a purely radial
two-dimensional function:

Fr→qf ≡ 2π

∫ ∞

0

f(r)J0(qr) r dr, (B2a)

F−1
q→rf ≡ 1

2π

∫ ∞

0

f(q)J0(qr) q dq, (B2b)

with Jm the Bessel function of the first kind of order m.
An equivalent expression can be given in terms of Hankel
transform [91]

f̌(r) = H−1
1,q→r [H0,r→qf(r)] , (B3)

where Hν is the Hankel transform of order ν:

Hν,r→qf ≡
∫ ∞

0

f(r)Jν(qr) r dr, (B4a)

H−1
ν,q→rf ≡

∫ ∞

0

f(q)Jν(qr) q dq. (B4b)

As a side remark, we note that the Riesz transform
may be interpreted by analogy with electrostatic or grav-
itational field. If f(r) is the radial density of charge on
an infinitely thin disk, f̌(r) is the radial component of
the electric field in the plane of the disk. Let us then
assume that identically charged particles are restricted
to move in a plane and in a quiescent medium so that
they have a fixed mobility, i.e. a linear relationship be-
tween their velocity and the force acting on them. Then,
if non-electrostatic interaction can be neglected, the evo-
lution of the charge density is governed by Eq. (44) and
the process is analogous to Marangoni spreading.
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FIG. 6. Steady state around a source of surfactant. (a) Without evaporation. The punctual source at the origin is surrounded
by two punctual sinks located at x = l = ±1. The dashed line is the local flux of surfactant j(x) = u(x)f(x). (b) With
evaporation. The source at the origin is of Cauchy type, with a = 1 and α = 1. The dashed lines show the approximations at
small and large x.

Appendix C: Long formulas

We give here some formulas that were too long to be included in the main body of the text in Sec. III B.
The Cauchy hole:

2tΨ(x, t) =x+ ia− ic̄t− i
√

a2 − a(4At− 2c̄t+ 2ix) + (c̄t− ix)2, (C1a)

f(x, t) =
1

2t

(

Υ+ − a+ c̄t
)

, Υ± ≡
√

√

ξ2 + (2(a+ c̄t)x)2 ± ξ/
√
2, (C1b)

u(x, t) =
1

2t

(

x−Υ−
)

, ξ ≡ a2 + 2a(−2A+ c̄)t+ c̄2t2 − x2. (C1c)

The circular hole:

Ψ(x, t) =
A
(

√
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√

√

ξ2 + (2c̄tx)2 ± ξ/
√
2, (C2b)

u(x, t) =
A

2At− a

(

x−Υ−
)

, ξ ≡ a2 − 2aAt+ c̄2t2 − x2. (C2c)
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