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Abstract: Additive manufacturing is a modern manufacturing technology allowing the material
structuring at a fine scale. This structuring affects the performance of printed parts. In this study, the
quantification of the material arrangement in 3D printed ceramic on the mechanical performance is
tackled. The experimental layout considers two main printing parameters, namely, part orientation
and printing angle, where 12 different printing configurations are studied. These configurations
differ in terms of filament arrangement in the building direction, and within the plane of construction.
Material characterisation is undertaken through tensile testing, which are performed for vertical,
lateral and longitudinal orientations, and combined with a printing angle of 0◦, 15◦, 30◦, and 45◦. In
addition, Scanning Electron Microscopy is considered to study how the material symmetry affects
the fractured patterns. This analysis is completed with optical imaging and is used to monitor
the deformation sequences up to the rupture point. The experimental results show a wide variety
of deformation mechanisms that are triggered by the studied printing configurations. This study
concludes on the interpretation of the observed trends in terms of mechanical load transfer, which is
related to the lack of material connectivity, and the relative orientation of the filaments with respect
to the loading directions. This study also concludes on the possibility to tune the tensile performance
of 3D printed ceramic material by adjusting both the part orientation and the printing angle.

Keywords: additive manufacturing; 3D printed ceramic material; tensile performance; microstructure

1. Introduction

Additive manufacturing is one of the break-through technologies that has attracted
many research areas for designing and manufacturing products with a large degree of
freedom in design and architectural complexity [1,2]. This processing route for material
processing can be defined as a manufacturing layer by layer technique from a digitalised
model [3]. One of the distinctive features of AM is its ability to control the material laying
down at a relatively fine scale [4]. Several manufacturing routes fall within the definition of
AM [5,6]. One of the most known is fused deposition modelling, which is used to process
polymeric structures [7,8]. In this process, the material is extruded as a filament from a near
1.75 mm in diameter as-received filament down to 0.1–0.4 mm extruded filament [9]. The
motion of the printing nozzle that contains the extrusion space, and the building platform
on which the filament is laid down, creates the 3D shape of the material by exploiting the
rheological properties of the polymeric filament to quickly solidify after passing its thermal
transition [10,11]. This process generates a particular symmetry in the material due to
the crossing of filaments at particular angles [12]. The material is only continuous in one
direction, which leaves two directions in which the material discontinuity materialises as a
defect in cohesion between adjacent filaments called necking, but also through the building
direction [13]. The presence of these discontinuities influences the mechanical performance
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of the parts [14]. For instance, tensile properties measured in the direction parallel to
the building direction are several orders of magnitudes lower than the same properties
measured in the normal directions [15]. The examination of the literature mentioned above
reveals the need to conduct in depth studies to measure the footprint of the printing process
on the performance of technical parts. The study of the sensitivity of process parameters
on the mechanical performance of printed structures has received much attention among
the community of AM users [16–18]. Sood et al. [17] considered the role of several printing
parameters such as part orientation, layer thickness, and raster angle on the tensile, flexural,
and impact properties of ABS material. Tanikella et al. [18] studied the tensile performance
of different materials by varying the part orientation and printing temperature. One
of the main process parameters that contributes to tune the mechanical performance is
part orientation [19,20], which is found to significantly determine the amount of loss in
properties depending on the loading pattern [19]. In addition, the way the filaments are
arranged within the building plane is also an influential factor [21]. Generally speaking, the
filaments are organised in layups with a crossing configuration at −45◦/+45◦ [22]. These
layups are complemented by an external frame, i.e., an external contour to improve the
structural stability of the printed part [23]. Dawoud et al. [24] considered the role of the
printing angle corresponding to different layups on the performance of ABS material. The
authors showed that the load bearing capabilities are significantly improved when the
selection of the printing angle allows filaments to be aligned in the loading direction.

An analysis of the literature work shows various attempts to find meaningful correla-
tions between the process parameters and the performance of the printed parts [23]. These
attempts focus mainly on the design of experiment approach that allows finding the proper
windows for printing the materials [25]. However, a lack of physical explanation is gener-
ally witnessed, especially if complementary microstructural analysis is not conducted. In
order to close this gap in deformation mechanism identification, the objective of this study
is to relate the material symmetry generated by the filament layups in the fused filament
process with the mechanical performance of a material that did not receive significant atten-
tion, namely PLA—a ceramic composite. In this study, the combined influence of the part
orientation and the filament crossing angle are studied to reveal the effect of a symmetry
break in material organisation at the filament scale on the mechanical performance of the
printed part under tensile loading. These parameters are believed to play a central role in
tuning the mechanical performance of printed materials by fused filament technology.

2. Experimental Layout

The printing concept using FDM technology is illustrated in Figure 1a. Two main
parameters determine the 3D filament arrangement within the part (Figure 1b). The first is
the in-plane filament arrangement exemplified by the raster. The second is the out-of-plane
filament packing materialised by the building direction. The geometry of the part to be
printed is a typical dog-bone structure. Depending on the relative orientation of the dog-
bone structure with respect to the building direction, three main orientations can be selected:
vertical (VE), longitudinal (LO), and lateral (LA). The filament arrangement within the plane
of construction can be selected with the help of the printing angle parameter. Four different
levels of printing angles are selected: 0◦, 15◦, 30◦, and 45◦. These levels correspond to
filament crossings at −45◦/+45◦, −30◦/+60◦, −15◦, +75◦, and 0◦/+90◦, respectively. By
combining the part orientation and the printing angle, nine different filament arrangements
can be achieved, which are illustrated in Figure 1c. The nomenclature CER-XX-YY is used
to differentiate between the sample conditions, where CER is PLA-ceramic filament, XX is
the printing angle, and YY is the printing orientation. The printing orientation can take one
of the following labels: LO (longitudinal), VE (vertical), and LA (lateral).
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Figure 1. (a) Illustration of the fused deposition modelling technique; (b) filament arrangement in 3D
printed parts; (c) printing configurations using a combination of orientation and printing angle; and
(d) typical stress—strain response for two replicates.
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The printing process is conducted using a commercially available printer (Raise 3D
Pro2 Plus) allowing high printing temperatures as large as 330 ◦C. The feedstock material
is a polylactic—ceramic filament (CER) from Frontierfila company. The recommended
printing temperatures for this filament are above 200 ◦C with a mandatory heated bed.
As for the ceramic type, analysis by Energy Dispersive X-Ray Analysis (EDX) performed
on areas of 5 × 5 µm2 show the presence of the following elements: C, Mo, Zn, and Si,
which suggests a mixture of ceramics of the form SiC, MoC, MoC2. The fixed printing
conditions are shown in Table 1. As mentioned earlier, the varied printing parameters are
the part orientation and the printing angle. Table 1 also summarises the levels considered
in this study. The printed dog-bone structures are subjected to tensile loading using a
universal machine (Zwick Roell Group, Ulm, Germany). The standard ISO 527-1/-2 is
adopted to perform tensile tests. This machine is equipped with a load cell of 10 kN. The
rate of displacement is adjusted to 5 mm/min. The experiment is conducted up to the
rupture point of the sample. The number of tested samples is 24 with two replicates per
printing configuration. Out of the testing, stress—strain curves are built (Figure 1c) and the
engineering constants, such as Young’s modulus, tensile strength, elongation at break are
extracted and related to the printing conditions. It has to be mentioned that preliminary
testing of the 3D printed samples shows that due to the local control of material laying
down in 3D printing, there is a great confidence in the results achieved even with two prints
per condition. The source of error has to come from another source which is more related
to the testing setup. Indeed, several bias can be associated with tensile experiments such
as if the sample length is misaligned with the loading direction, varied gauge length, etc.
These are fixed in this study by monitoring the sample positioning by optical camera to
ensure that the same testing conditions hold for each replicate (Figure 1d).

Table 1. Fixed and varied printing conditions considered in this study.

Property Level

Infill, IF (%) 100

Nozzle diameter, DN (mm) 0.4

Printing temperature, TP (◦C) 210

Layer height (mm) 0.2

Bed temperature, TB (◦C) 60

Printing speed, VP (mm/s) 50

Support density, SPD (%) 10

Frame width, WF (mm) 0.8

Orientation, OR (-) Vertical (VE), Longitudinal (LO), Lateral (LA)

Printing angle, AP (◦) 0, 15, 30, 45

All experiments are monitored using optical observation. A high-speed camera (Phan-
tom V7.3, Photonline, Marly Le Roi, 78-France) operating at a full frame of 800 × 600 pixels
is used where the frame rate is adjusted between 100 and 5000 fps (frames per second).

The fractured surfaces of the tested samples are characterised using scanning elec-
tron microscopy (SEM) to reveal the relationship between the symmetry of the material
and the loading configuration. SEM observations are performed on a QuattroS ESEM
(ThermoScientific) microscope. Images are recorded using the low vacuum detector to
avoid any deformations of the sample at high vacuum and metallization. An acceleration
voltage from 5 to 8 kV is applied and a pressure of 100 Pa. Each sample is cut and taped on
a carbon sheet support placed on the sample holder.
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3. Results and Discussion
3.1. Microstructural Features

Figure 2a illustrates the modification of the PLC filament shape from nearly circular to
elliptical due to the strategy of laying down. Indeed, the layer height is adjusted to half
of the nozzle diameter, which forces the layers to have a larger contact along the building
direction. In former studies [26–28], the layer height is introduced as a key parameter
to control the overlapping between filaments in the building direction. A value lower
than the nozzle diameter is found to improve both the mechanical performance and the
surface finish. In this study, the same strategy is used to improve the mechanical stability
of the 3D printed parts. The consequence is the change in the filament shape factor that
affects the packing of the filaments, and in turn the generated porosity network. Within
the filament, the ceramic particles are not affected by the increase of the temperature
during the printing stage (Figure 2b). These appear as globular particles with a typical
dimension of the order of 1 µm and a volume content of 15% according to the manufacturer
datasheet. The examination of the interface between PLA and ceramic particles does not
reveal particular interfacial damage, which puts more weight on the effect of filament
arrangement in triggering the mechanical performance.

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 27 
 

 

the order of 1 μm and a volume content of 15% according to the manufacturer datasheet. 
The examination of the interface between PLA and ceramic particles does not reveal par-
ticular interfacial damage, which puts more weight on the effect of filament arrangement 
in triggering the mechanical performance. 

(a) 

 
(b) 

Figure 2. Extruded PLC filament showing (a) the shape factor and (b) the ceramic particle shape. 

Figure 3 shows the out-of-plane layered structure corresponding to the vertical ori-
entation, which is taken at an area far from the rupture region. Continuity in material 

Figure 2. Extruded PLC filament showing (a) the shape factor and (b) the ceramic particle shape.



Symmetry 2023, 15, 28 6 of 22

Figure 3 shows the out-of-plane layered structure corresponding to the vertical ori-
entation, which is taken at an area far from the rupture region. Continuity in material
structuring goes normal to the building direction (Figure 3a). The distance between adja-
cent filaments is nearly 200 µm, which also refers to the layer height. The central part of
the filament appears smooth. However, the junction between adjacent filaments highlights
a gap called necking. A close view of the necking (Figure 3b) reveals a textured white
large structure of about 100 µm in width. This area emerges as a result of the deformation
induced by the packing as the filament is forced to reduce its lateral dimension for 400 µm
to 200 µm in the building direction. The cohesion between the filaments in this direction is
only ensured by the limited contact area, which makes the 3D printed structure vulnerable
to uniaxial loading along the same direction.
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The in-plane arrangement of filaments for a sample printed according to the longi-
tudinal orientation is shown in Figure 4. In order to highlight the filament crossing at
+45◦/−45◦ within the raster, the observed area is selected near the ruptured region where
the stretching of the filaments allows both bottom and top layers to be viewed. Besides
the limited connectivity between adjacent filaments within the same layer, filaments are
cohesively connected between layers, where the contact area is substantially larger than
for printed samples according to the vertical orientation. This connectivity confers to the
printed part a tuneable performance depending on the relative orientation between the
loading direction and the raster angle [29,30].
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Figure 4. In-plane filament arrangement in (a) 3D printed sample according to the longitudinal
orientation and (b) filament arrangement in the external frame.

In addition to the raster that is defined by the in-plane filament arrangement within the
core of the sample, an external frame is added to confer more structural stability. Figure 4b
shows the structure of this external frame along the edges in the case of a sample printed
according to the vertical orientation. At the edges of the printed structure, the filament
dimension is affected by both the compression of the top layers and the deceleration of
the printing nozzle that occurs when trajectory changes drastically close to the edge. In
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addition, after the completion of the frame, the printing nozzle moves to the next position,
which leaves a discontinuity as the one shown in Figure 4b.

3.2. Effect of Part Orientation

Figure 5a shows the effect of the vertical orientation on the fracture patterns of PLC
printed samples. As the loading is performed in the same direction of material building,
the load transfer is directed into a large area where the cohesion between filament is limited.
As a consequence, this building configuration results in a limited mechanical strength
and the instable cracking along the necking occurs substantially causing the ruin of the
material (Figure 5b). This leads to a limited performance as observed in several studies,
for instance in bending loading configuration when upright position is selected [31], or in
tensile configuration leading to the lowest mechanical strength scores [32]. The uniaxial
loading is also transferred to the sample edge, which leads to the filament decohesion
observed in Figure 5c. It can be concluded that for the vertical orientation, the structural role
of the external frame is limited because the load bearing does not exploit the longitudinal
performance of the filament.Symmetry 2023, 15, x FOR PEER REVIEW 10 of 27 
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direction. This means that the uniaxial stretching of the filament along its length repre-
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Figure 5. Fractured surfaces of samples printed according to the vertical orientation (i.e., building
direction parallel to the loading direction): (a) zoom-out; and (b) zoom-in views at the central part of
the printed sample; (c) a shifted view at the edge of the sample; and (d) a zoom-in view of the edge
highlighting the filament decohesion along the neck.

Figure 6a shows the effect of the lateral orientation on the fracture patterns of PLC
printed structures. In this case, the loading direction is no more aligned with the building
direction. This means that the uniaxial stretching of the filament along its length represents
most of the load transfer. This result is confirmed by several studies such as by Eryildiz [33],
which shows the improvement of the tensile performance of PLA when the specimen is
printed throughout its edge compared to the upright configuration. This is also confirmed
by Yao et al. [34] in the case of PLA printing according to different out-of-plane angles,
where the configuration similar to the one considered here calls for an out-of-plane angle of
90◦. Because the volume fraction of PLA matrix is predominant, the amount of stretching
induces a severe plasticity behaviour, which is followed by a localisation phenomenon
as shown in Figure 6a. The strain localisation induces significant reduction in filament
cross-section prior rupture. A closer view at the junction between original and reduced
sections of the filament highlights the presence of series of transverse cracks organised
in bands (Figure 6b). The filament section reduction allows a large filament volume to
be heterogeneously stretched along the length. This section reduction also has another
consequence on the filament cohesion in the transverse direction. As shown in Figure 6b,
a decohesion front develop in the direction opposite to the loading direction. Between
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adjacent filaments, the decohesion can be complete or partial, and can possibly leads to the
formation and detachment of microfilaments as shown in Figure 6b.
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Far from the localisation area, the overstretching of filaments involves mostly the
filaments belonging to the external frame (Figure 6c). When the amount of stretching
reaches the ultimate elongation at break of the filaments, the rupture pattern captured in
Figure 6d eventually occurs. This pattern is typical of a ductile behaviour associated with
the PLA matrix behaviour.

Figure 7a shows the last configuration among the possible part orientations, which
is the longitudinal orientation. In this configuration, the filaments are stretched in a
predominant +45◦/−45◦ arrangement. This means that only a partial load transfer is
obtained in the loading direction. This partial load transfer limits the stretching of the
filaments compared to the previous filament arrangement (Figure 7a). A zoom-in view
on the ruptured filaments shows the change of orientation of the filament observed in
Figure 7b, which is a distinctive feature of the longitudinal orientation. This orientation
shows also superior performance compared to the vertical orientation. This is confirmed
by Ambrus et al. [35] in the case of a PLA-copper filament, where the tensile strength
was found superior for the horizontal orientation. In addition, out-of-plane decohesion
between successive layers generates an inhomogeneous deformation for which the extent is
guided by the width of the contact area. In fact, the filaments are overstretched between the
contact points which act as anchoring points. Figure 7c provides proof of the development
of inhomogeneous stretching, for which the overstretched areas can be as large as 2 mm. A
closer view of the overstretched filament does not show the presence of significant cracking
bands. In addition, the transition between overstretched and under-stretched areas is abrupt.

3.3. Effect of Printing Angle

Depending on the part orientation, the effect of the printing angle can be amplified or
inhibited. For a sample printed in the longitudinal direction, the in-plane arrangement of
the filaments significantly influences the load transfer. The printing angle associated to the
longitudinal orientation can alter significantly the magnitude of the load transfer as well as
the nature of the deformation mechanisms. This is, for instance, highlighted in the study by
Khosravani et al. [36], which show the dependence of the cracking behaviour with respect
to the raster angle. Figure 8 illustrates such influence for a part printed according to the lon-
gitudinal direction with a printing angle of 45◦. The filament arrangement corresponding
to this printing angle generates layups of 0◦/90◦. This arrangement allows half of the fila-
ments to be oriented along the loading direction, which contributes significantly to the load
bearing. It also generates a particular deformation mechanism that trigger inter-filament
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cracking due to the retraction of the filament in the transverse direction. This retraction
induces inter-filament decohesion, which travels in the loading direction (Figure 8a). This
situation occurs at multiple spots driven by the lack of connectivity between the filament
on top of each other. The longitudinal cracks that are created along the loading direction
grow in number and possibly connect to each other as suggested in Figure 8b. Below these
cracks, where another mechanism of inter-filament decohesion occurs in the transverse
direction. However, the resulting crack propagates faster because the filament necking
is normal to the loading direction. This explains the low performance of such printing
configuration as observed by Iyer et al. [37] for the short carbon fibre reinforced acrylonitrile
butadiene styrene (ABS) filament. Figure 8c shows a closer view of the residual necking,
which hosts a large number of microcracks that are formed by the reduction in filament
section. According to this process, the crack bridging in the longitudinal direction adds
more complexity to the deformation mechanisms induced by uniaxial loading.Symmetry 2023, 15, x FOR PEER REVIEW 15 of 27 
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Figure 8. Top view normal to the raster showing the layup of 0◦/90◦ corresponding to a printing
angle of 90◦. (a) The formation of inter-filament cracking, which propagates in the loading direction;
(b) a magnified view showing the bridging process between longitudinal cracks generated by the
inter-filament decohesion; and (c) a magnified view showing the residual necking (region highlighted
by arrows) in sandwich between two longitudinal cracks.

Figure 9a shows the effect of an intermediate printing angle between 0◦ and 45◦ for a
sample printed according to the longitudinal orientation. This figure exhibits partial de-
tachment of the filament, which is induced by a large contact area between two successive
filaments. This induces particular fracture patterns with significant deviation as illustrated
in the former work by Khosravani et al. [36] for raster angles between 30◦ and 60◦. The
amount of damage observed is directly related to the extent of connectivity that is induced
by the printing angle. In Figure 9b, the combination of lateral orientation with a printing
angle of 30◦ allows more filaments to be more aligned with the loading direction. As a con-
sequence, the localisation phenomenon introduced earlier results in the partial detachment
of filaments according to the same mechanism shown in Figure 6b. However, the larger
load transfer triggered by a larger printing angle (30◦) allows more the microfilaments to
act transversely against longitudinal cracking. This is further enhanced when the printing
angle is increased to 45◦ (Figure 9c).
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3.4. Consequence on Mechanical Behaviour

Figure 10 illustrates the consequence of printing configurations on the overall tensile
behaviour. Figure 10a demonstrates that irrespective of the printing angle, the deformation
behaviour of printed structures according to the vertical orientation share the same cracking
behaviour and the limited stretching prior rupture. It can be stated that when the building
direction is parallel to the loading direction, the printing angle has no significant effect on
the tensile response. However, this printing orientation leads in all cases to limited perfor-
mance. This is confirmed by several studies irrespective of the filament material [31–33].
The opposite situation is shown in Figure 10b for samples printed according to the longi-
tudinal orientation. In this case, the plane of construction contributes significantly to the
overall load bearing as shown by several contributions [34,35]. Indeed, according to this
orientation, the plane defining the filament arrangement contains the direction of loading.
This means that the overall tensile behaviour depends on the printing angle as shown in
Figure 10b. For instance, cracking behaviour is directly related to the printing angle. In
addition, shearing develops for particular printing angles such as 0◦, 15◦, and 30◦, whereas
for 45◦, uniaxial deformation prevails. Additionally, the large deformation observed in the
case of longitudinal orientation compared to Figure 10a is directly related to the stronger
contribution of the filament stretching in the load transfer. The most contrasting case is
related to the lateral orientation (Figure 10c). This orientation allows the filaments be-
longing to the frame to be fully oriented in the loading direction. As a consequence, a
large stretching prior ruptured is observed for all printing configurations. In addition,
similarly to Figure 10b, there is a correlation between the printing angle and the amount of
deformation that the printed structures can ensure prior rupture.

Figure 11 summarises the quantified effects of both the printing angle and print-
ing orientation on the mechanical parameters extracted from the mechanical responses.
There is no clear trend between the density of the printed structures and the printing
angle (Figure 11a). However, on average, it is found that the printed structures accord-
ing to the lateral orientation exhibits the lowest densities (ρ = 1.06 ± 0.009 g/cm3). The
same parts printed according to the longitudinal orientation exhibit the highest densi-
ties (ρ = 1.09 ± 0.013 g/cm3). This can be attributed to the amount of support needed to
stabilise the structure during the printing process. The removal of this support can alter
the density of the material. The intermediate case corresponds to the vertical orientation
(ρ = 1.07 ± 0.012 g/cm3). Considerations about large discontinuities in the filament tra-
jectories and the limited length laid down within the plane of construction can explain
the lower density associated with this printing orientation. Regarding the mechanical
performance, although it appears that there is no strong trend with respect to the printing
angle, the reported results in Figure 11 suggest that higher performance is expected from a
large printing angle. This is, for instance, true for Young’s modulus at θ = 30◦ and θ = 45◦,
irrespective of the printing orientation (Figure 11a). In the case of the longitudinal orienta-
tion, the stiffness performance of the as-received filament is even restored for these angles.
In average, samples printed according to the longitudinal orientation are the top ranked
ones (EY = 730 ± 72 MPa). The lowest ranked ones correspond to the vertical orientation
(EY = 474 ± 78 MPa), which corresponds to a 40% of loss in the stiffness with respect to the
as-received filament performance.
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Figure 11. Observed tensile performance of CER versus printing conditions. In the nomenclature
CER-XX-YY, CER is PLA-ceramic filament, XX is the printing angle, and YY is the printing orientation.
(a) The density and Young’s modulus; (b) yield stress and tensile strength; and (c) ultimate stress and
elongation at break.

The fitting procedure allows to capture the general trend of Young’s modulus depen-
dence on the printing angle, as follows.

For longitudinal orientation, the linear approximation is verified with a large correla-
tion factor:

EY(MPa) = 688 + 2.27 × θ(deg.); R2 = 0.96 (1)

For the lateral orientation, the linear trend is not obvious due to the small value of the
correlation factor:

EY(MPa) = 679 + 1.31 × θ(deg.); R2 = 0.76 (2)

For the vertical orientation, the linear fitting routine fails.
Thus, the overall trend of Young’s modulus dependence on the printing angle is

verified but the linear fitting result does not suggest a strong dependence.
The analysis of the yield performance shows that the same rationale holds for the effect

of the printing angle (Figure 11b). However, the yield stress is found to be the largest one
for the lateral orientation (σY = 35 ± 2.32 MPa) whereas it decreases to σY = 6 ± 1.4 MPa
for the vertical orientation. For both cases, the yielding performance of the CER as-
received filament are not restored. The loss in the yielding performance represents
6% and 82%, respectively.

The fitting analysis performed to show the dependence of yield stress on the printing
angle generate the following trend.
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For longitudinal orientation, the linear approximation is nearly perfect:

σY(MPa) = 28 + 0.09 × θ(deg.); R2 = 0.98 (3)

For the lateral orientation, the linear trend is not obvious due to the small value of the
correlation factor:

σY(MPa) = 33 + 0.09 × θ(deg.); R2 = 0.48 (4)

For the vertical orientation, the linear fitting routine fails.
Thus, the overall trend for yield stress is thus similar to that of Young’s modulus with

regards to the dependence on the printing angle.
The tensile strength of the printed material follows the same tendency, where the

gap between the yield stress and the tensile strength is limited for the longitudinal
((σM − σY)/σM = 11± 3%) and lateral ((σM − σY)/σM = 4± 1%) orientation (Figure 11b).
The samples printed according to the vertical orientation do not present a plasticity be-
haviour. This means that the plasticity behaviour is significantly affected by the printing
orientation. The best performing structures are those printed according to the lateral orien-
tation (σM = 36 ± 2.47 MPa) whereas the less performing ones are those printed according
to the vertical orientation (σM = 6 ± 1.41 MPa). This corresponds to a 28% and 87% of loss
in the tensile strength with respect to the as-received filament performance, respectively.

The fitting analysis performed on the tensile strength shows the following results.
For longitudinal orientation, the linear function works fine:

σM(MPa) = 32 + 0.06 × θ(deg.); R2 = 0.96 (5)

For the lateral orientation, the linear trend is realistic due to the small correlation factor
(R2 = 0.31) whereas it fails again for the vertical orientation.

The low values of ultimate stress (σR) compared to the tensile strength observed
for the lateral and longitudinal orientation demonstrates the development of localisation
behaviour as shown in Figures 6 and 7. There is no clear difference between the printing
orientations and all configurations rank the same (σR = 7 ± 0.84 MPa). The ultimate stress is
significantly reduced by 83% compared to the as-received filament properties (Figure 11c).

The linear fitting function provides the trend of the ultimate stress with respect to the
printing angle.

For longitudinal orientation, the linear approximation is successful:

σR(MPa) = 6.3 + 0.01 × θ(deg.); R2 = 0.98 (6)

For the other orientations, the linear trend produces the same unrealistic result simi-
larly to the tensile strength.

The elongation at break follows the same trend as the tensile strength (Figure 11c). It is
significantly reduced for the vertical orientation (εR = 1 ± 0.12%), which represents 98% of
reduction with respect to the as-received filament properties. The same elongation at break
increases to its maximum level for the lateral orientation (εR = 29 ± 11.71%), allowing to
limit the performance loss to 62%.

The linear fitting procedure does not provide a clear trend of both longitudinal and
lateral orientations. However, it does for the vertical orientation:

εR(%) = 47 − 0.06 × θ(deg.); R2 = 0.90 (7)

4. Conclusions

This study demonstrates that the modulation of the mechanical performance of 3D
printed ceramic materials can be obtained by combining both the part orientation and
printing angle with respect to the loading direction. The SEM micrographs of fractured
patterns conclude on varieties of deformation mechanisms that are activated and enhanced
by playing on the relative orientation of the filaments with respect to the loading direc-
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tion. These mechanisms are explained by the lack of material connectivity both in the
building direction and within the plane of construction. The worst performing printing
configurations are those printed according to the vertical orientation, in which the limited
load transfer affects severely the stiffness, strength and ultimate performance. This is
proved from SEM observations showing that the load is directed into a large area where
the cohesion between filament is limited. The lateral orientation appears to be the best
compromise if the strength and ultimate properties are the main target. The maximum
modulation of the tensile performance is found for the longitudinal orientation, where
it is possible to significantly change the resulting performance by adjusting the printing
angle. This configuration also fully restores the stiffness of the ceramic reinforced polymer
filament, especially for two printing angles, namely θ = 30◦ and θ = 45◦, where the same
Young’s modulus of the as-received filament is obtained for the 3D printed structures.
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