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Abstract—HPC systems expose configuration options that help
users optimize their applications’ execution. Questions related to
the best thread and data mapping, number of threads, or cache
prefetching have been posed for different applications, yet they
have been mostly limited to a single optimization objective (e.g.,
performance) and a fixed application problem size. Unfortunately,
optimization strategies that work well in one scenario may
generalize poorly when applied in new contexts.

In this work, we investigate the impact of configuration
options and different problem sizes over both performance and
energy. Through a search space exploration, we have found
that well-adapted NUMA-related options and cache prefetchers
provide significantly more gains for energy (5.9×) than perfor-
mance (1.85×) over a standard baseline configuration. Moreover,
reusing optimization strategies from performance to energy only
provides 40% of the gains found when natively optimizing for
energy, while transferring strategies across problem sizes is
limited to about 70% of the original gains.

In order to fill this gap and to avoid exploring the whole
search space in multiple scenarios for each new application,
we have proposed a new Machine Learning framework. Taking
information from one problem size enables us to predict the best
configurations for other sizes. Overall, our Machine Learning
models achieve 88% of the native gains when cross-predicting
across performance and energy, and 85% when predicting across
problem sizes.

I. INTRODUCTION

New High Performance Computing (HPC) systems come
with an increasingly higher number of cores spread across
multiple sockets and connected together with node-to-node
communications links. While these links provide the program-
mer with a convenient shared memory view of the memory
banks connected to distinct sockets, they also cause non-
uniform latency and bandwidth among memory accesses.
These Non-Uniform Memory Access (NUMA) effects can
result in long latency, low bandwidth remote accesses, and
congestion on the memory controller. Therefore, the program-

mer or the Operating System (OS) must carefully map the
applications threads and data to avoid hurting performance.

To optimize latency, modern systems rely on complex
memory hierarchies and hardware prefetching. The former
attempts to reduce access time on frequently accessed data,
while the latter attempts to fetch relevant pieces of data ahead
of time. The CPU implements them using complex cache
policies and data access pattern detectors to predict which
cache line to evict or to fetch ahead of time. Yet, an excessively
aggressive hardware prefetching can cause last-level cache
interferences and defeat NUMA mapping optimizations [39].
It is therefore mandatory to jointly optimize NUMA mapping
directives and hardware prefetcher configurations to achieve
an efficient execution. Moreover, because of the software and
hardware complexity and diversity in HPC, a unique strategy
for NUMA mapping and prefetcher configuration cannot fit
all usages in an optimal manner. Instead, a large parameter
space must be searched to determine a successful parameter
combination for executing a given application efficiently.

NUMA [14], [16], [17], [33], [39], [47] and prefetch [3],
[19], [21], [22], [28], [39] optimizations have been extensively
explored. They focus on selecting mapping policies that adjust
the thread and data mappings across nodes or by configuring
specific hardware prefetchers. To guide the selection of poli-
cies or prefetchers, studies use prediction models. They collect
information (e.g., performance counters) about the application
and supply it to Machine Learning models. Such models
achieve substantial performance gains (i.e., 2×).

A limitation of these studies is that the behavior and
performance of applications vary significantly across prob-
lem sizes [12] as illustrated by Figure 1 (horizontal axis).
We observe how, for the same application, the optimal
NUMA/prefetch configuration changes across sizes (i.e., the
best performance optimization for size B, shown as a green
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Fig. 1. [lower is better] Execution of x solve, a parallel region from NAS-
BT across different NUMA and prefetch configurations using 2 different
sizes: CLASS W and B. X-axis: execution time per iteration. Y-axis: energy
consumption per iteration. Each dot represents a possible execution with
different NUMA and prefetch settings. Energy and performance behaviors
change significantly across problem sizes. The red, blue, and green circles
refer to the best settings for CLASS W/performance, CLASS B/energy, and
CLASS B/performance respectively. The best settings change significantly
depending on both the size and performance/energy.

circle, is 1.55× faster than the best optimization for size W,
the red circle, applied on B). This is sometimes expected, as an
application executed with a small size can fit in the smaller but
faster cache levels. It is thus essential to factor the impact of
problem sizes when tuning an application in order to ensure
that NUMA and prefetch optimizations are still valid when
that application is later executed on new problem sizes.

Regarding the objective of optimization, energy consump-
tion has become an important factor to consider. Due to
their environmental impact as well as operating costs, HPC
systems are constrained to operate on a predefined power
budget. This further complicates the optimization process by
adding energy as a new dimension to consider, as illustrated
in Figure 1 (vertical axis). We similarly observe that the best
configuration for performance is sub-optimal for energy and
vice versa (i.e., for size B, the best energy optimization, shown
as a blue circle, provides 1.47× energy gains/saving over the
best performance optimization green circle).

Applications exhibit different patterns of sensitiveness in
terms of bandwidth, latency, and energy consumption, and are
executed on complex systems with distinct combinations of
NUMA factors (i.e., ratio of local to remote access latency),
prefetcher capabilities, and topologies (e.g., number of nodes
or cores). These characteristics cause different performance
and energy bottlenecks depending on the application, system
characteristics, prefetcher, problem size, and mapping. As
a result, selecting the best mapping/prefetching combination
strategy is a challenging task that requires modeling the
aforementioned factors and the optimization target (i.e., per-
formance and energy). Known previous works have solely
modeled NUMA and prefetching strategies with a single size
and with the unique goal of performance [39], [41]. These
simpler models are easier to build, but may generalize poorly
to alternate goals such as energy consumption optimization,
or to applications executed in the real world across a number
of different problem sizes.

In this work, we are the first to co-optimize NUMA and
prefetch strategies across multiple problem sizes and opti-
mization goals. We both quantify how distinct sizes affect the
effectiveness of joint NUMA/prefetch optimization strategies,
and characterize how tuning for performance impacts the level
of energy efficiency and how that efficiency compares against
optimizing for energy upfront (and vice versa). We show in
this context that tuning performance only provides 40% of
the potential energy savings. Moreover, applying optimizations
from one size to another provides 95% and 51% of the
potential performance and energy gains, respectively.

To exploit these significant optimization opportunities, we
propose a Machine Learning (ML) framework whose nov-
elty consists in predicting NUMA/prefetch performance
or energy optimizations across sizes. Our model provides
96% and 74% of the potential performance and energy gains
respectively. To achieve this accuracy, the model collects a
few reaction-based performance and energy measurements as
features [39], [49] on one problem size and uses them to
predict configurations for another size.

Our contributions are:
⋆ Quantifying how problem sizes affect NUMA and

prefetch optimizations. Optimizations from one size are
sub-optimal when applied on another size.

⋆ Characterizing performance and energy in the context
of NUMA and prefetcher configuration options. Energy
optimization has much more potential than performance
but it needs to be studied separately.

⋆ Analyzing the interaction between problem size, perfor-
mance, energy, and the complicated optimization space.

⋆ Designing prediction models that suggest efficient
NUMA and prefetch configurations across different prob-
lem sizes for both performance and energy.

II. SEARCH SPACE DEFINITION

This section describes the search space that we explore. A
summary of its dimensions and options is shown in Table I.
This optimization space is too large and complex for the
use of conventional profiling methods. Its complexity comes
from the interactions between different configuration options
at software and hardware levels [33], and different problem
characteristics related to the applications and optimization
targets. The actual methodology employed for profiling the
search space is detailed later in Section III.

A. Configuration Options

We divide the configuration options into two categories:
user-level options, and administrator-level options (for which
administrator privileges are required). We refer to a dimension
as a specific configuration option. Dimensions are presented
in this section in bold and followed by their abbreviations in
small caps. A group of one or more dimensions is seen as
a subspace. Finally, a configuration represents a setup for
executing an application and refers to a specific point in the
search space (i.e., each dimension has an assigned option).

2



1) User-level: NUMA: NUMA effects can be mitigated by
optimized thread and data mapping decisions. For instance,
the number of threads (PAR) to be used can be set when
starting an application. More threads may take advantage of
the available memory bandwidth to reduce the execution time
when enough parallelism is available. However, they may also
lead to increased synchronization overhead, or cache capacity
exhaustion and conflict misses.

Other thread-related decisions impact the number of cores
made available to the application and the mapping of
its threads. Processors with Simultaneous Multithreading
(SMT) capabilities let users map multiple threads (two on
Intel HT) to the same physical core. One can also choose
the number of NUMA nodes (NUMA) onto which to map
the threads. For instance, selecting a subset of the NUMA
nodes can let parts or whole processors go idle, reducing the
power consumption. Given certain numbers of threads and
cores, thread mapping (TMAP) policies decide which threads
are assigned to which cores. We consider two policies: scatter,
which spreads threads in round-robin to balance the resources’
load; and contiguous, which fills NUMA nodes one after the
other to favor locality. We refer to the subspace of these three
dimensions combined as TH.

Data-related decisions include data mapping (DMAP) poli-
cies that influence the distribution of pages among NUMA
nodes. We consider three policies: first-touch maps a page
to the NUMA node of the first thread to access it; locality
maps it to the node that accesses it the most; and balance
spreads pages across nodes to balance the number of accesses
per node. Together, data and thread mapping can be used to
improve data locality, reducing the time and energy costs of
moving data [44], and to spread memory accesses to avoid
contention or to benefit from the aggregated bandwidth of
multiple NUMA nodes (each with its own memory controller).

2) Administrator-level: Prefetching: Processors feature
cache prefetching mechanisms that perform expensive data
transfers ahead of time, usually having a positive impact on
the performance of common workloads. However, prefetchers
can fail to capture the specifics of more dynamic memory
access patterns, causing interference, spurious cache evictions
and general performance degradation. Thus, prefetchers can
be disabled using privileged, administrator-level means. In
the case of the Intel processor used in our study, each core
supports four independently controlled prefetchers (PREF):
the DCU IP-correlated prefetcher brings data from L2 to L1
based on a stride computed using the instruction pointer; the
DCU prefetcher brings the next line to the L1 cache; the L2
Adjacent Cache Line prefetcher brings the previous or next
cache line that completes a block aligned to 128 Bytes; and
the L2 Streamer prefetcher tries to identify data streams and
to bring the next predicted line to the L2 cache.

B. Problem Characteristics

1) Size-related Behavioral Variations: Applications can
exhibit variations in their behaviors given different problem
sizes. One may expect that larger sizes lead to larger memory

footprints and longer execution times, while offering greater
opportunities for parallel computation. It is known that this is
not always the case, as sometimes the qualitative aspects of an
application’s data have a deeper effect than their quantitative
aspects [18]. Nonetheless, it would be convenient to discover
good configurations for small, cheap to process sizes that
remain relevant for larger, more time-consuming problems. In
order to verify if this is actually possible, we consider two
problem sizes per application: small and large. Experimenting
with more size variations could provide more insights, but
it would also require many more experiments due to the
multiplicative factor of the search space’s dimensions. Addi-
tionally, finding representative problem sizes is not a trivial
task: excessively small sizes might be unrepresentative of real
world scenarios; excessively large sizes may require too much
time for experiments; and sizes too close to each other may
fail to cover the space of relevant application behaviors. We
explain how we set our problem sizes and verified the resulting
memory footprints in Section III-A3.

2) Optimization Target: We focus on two target goals:
performance and energy. The minimization of applications’
execution time has been the main objective on HPC systems
for natural reasons. More recently, energy has become an
additional concern due to its impact on the cost of ownership
of systems [4] and for environmental reasons. Unfortunately,
the energy consumed by these systems is not proportional
to their workloads [4]. This is the case even for recent
multicore processors, where optimizing thread mappings for
performance does not result in an optimal energy consump-
tion [24]. As a consequence, optimizing performance does not
necessarily translate into energy consumption reductions. In
this work, we optimize either performance or energy.

3) TS: Target-Size Optimization: We are interested in quan-
tifying the effects that configuration options and size variations
exert on our target goals. As problem size and target goal
are not part of our search space, we refer to them together
as Target-Size (TS). We use the notation <target, size> to
represent a specific couple.

TABLE I
SEARCH SPACE DESCRIPTION. OPTIONS IN BOLD REPRESENT THE

DEFAULT CONFIGURATION.

Dimensions Options No. opts Abbreviation
No. threads 64, 32, 16 3 PAR

SMT Yes, No 2 SMT
TH

No. NUMA nodes 2, 1 2 NUMA

Thread mapping Scatter, Contiguous 2 TMAP

Data mapping First-touch, Locality, Balance 3 DMAP

Prefetcher

DCU IP-correlated On, Off

16 PREF
DCU On, Off

L2 Adj. Cache Line On, Off
L2 Streamer On, Off

III. EXPLORATION METHODOLOGY

In this section, we present how we conducted the profiling of
the previously described configuration space. The main chal-
lenge is its size and complexity: we addressed it with sampled

3



execution. We also assess the quality of our measurements as
they condition both our analysis and the prediction capabilities
of our Machine Learning models. Section IV presents the
actual results analysis.

A. Experimental Setup

1) Hardware and Software: All experiments were per-
formed on an Intel Xeon Gold 6130, with two NUMA nodes
and 16 physical cores (32 virtual cores with Intel HT) per
node, and 192 GB of DDR4 memory at 2666 MHz. To increase
results stability, we used the base CPU frequency 2.1 GHz. We
compiled all the applications with clang-6.0, -O3, and executed
them on Linux 5.10.40-1.

All applications used in the experiments are codes written in
C/C++ and annotated with OpenMP directives. They include
established HPC benchmarks from the Rodinia Benchmark
Suite [11] (v.3.1), the NAS Parallel Benchmarks (NPB v.3.0
in C) [2], [32], the PARSEC benchmarks [6], along with
LULESH [20] (v.2) and CLOMP [8]. We have profiled 58
different parallel regions, each taking more than 5% of the
total execution time, for their individual analysis: for faster
evaluation, we do not factor inter-region configuration con-
flicts [33]. When comparing different configurations, values
are normalized to the baseline configuration (options in bold
in Table I). The baseline is a standard configuration that
tries to increase bandwidth (scattered thread mapping) while
preserving the developer’s insights about the application (first-
touch). We refer to performance improvements and energy
savings as gains and calculate them as baseline divided by
value.

2) Enforcing the Configuration Options: The options listed
in Table I are implemented using different mechanisms in
the system: we enabled or disabled the four prefetchers by
updating the Model Specific Register (MSR) 0x1A4. We set
parallelism and threads to cores using OMP_NUM_THREADS
and KMP_AFFINITY environment variables. Nonetheless, as
this is done through the runtime environment, the actual
thread mapping is only applied when the runtime is loaded at
the first parallel region of the application. This could cause
performance variation between runs because the OS could
initially map threads differently between runs, which would
also lead to different first-touch data mappings [33]. To address
this issue, we used a compiler pass to insert empty parallel
regions at the beginning of each application to force the
desired thread mapping. Pages are mapped to nodes using the
OS function move_pages. In order to identify pages for the
locality and balance page mapping policies, we profiled each
parallel region for each number of threads using Numalize
(a Pin-based memory access pattern tracking tool [17]). This
profiling also returns the memory footprint for each case. We
avoided recalculating offsets across executions by disabling
the Address Space Layout Randomization. Finally, the OS
migrates pages to maximize locality. We disabled it because
we already implemented a data policy that maximizes locality
with Numalize and we do not want the automatic migration
to disturb our decisions during the search space exploration.

3) Setting Varied Problem Sizes: Problem sizes are selected
differently depending on the benchmark suite. The NAS Paral-
lel Benchmarks are compiled with a selection of problem sizes
(i.e., classes) that affect the size of data structures as well as the
number of iterations to compute. The other benchmarks rely
either on generated inputs or arguments set at launch time. We
present the commands to replicate our experiments in Table II.

We empirically explored different options to define small
and large problem sizes for the different applications. We
considered classes A and B for NPB, and the largest possible
input sizes for Rodinia and LULESH along with smaller cases.
Because problem sizes are not consistent across benchmark
suites, we profiled the memory footprint of each parallel
region and reported it in Figure 2 when executed with 16
threads. Note that changing the parallelism affects the memory
footprint: the footprint increases on average across all the
applications by 35% and 13% for small and large sizes,
respectively, when executed with 64 threads. In other words,
increasing parallelism increases the memory footprint of an
application, especially if the application has a small footprint.

We define the problem sizes from an application point
of view: small and large are defined relative to each other
for a given application. We do so because we assume that
problem sizes are intrinsic to the applications. Thus, executing
a region with small size can result in a bigger footprint or
execution time than another region executed with large size
(e.g., bt xsolve and kmeans for footprint). While the generated
footprints are different, this approach enables us to preserve
the benchmark diversity across sizes.

B. Execution Sampling and Stability

The full search space that we evaluate is composed of 1152
configurations. We reduce it by pruning configurations that
produce the same execution (e.g., scatter or contiguous thread
mapping without SMT executed on one NUMA node results
in exactly the same thread mapping) to 768. Exhaustively
exploring it enables us to find the best configuration (Section V
presents how ML predicts the best configurations without such
exploration for new applications) but also to characterize the
applications through their behavior changes across configu-
rations. Nevertheless, evaluating all the benchmarks across
the entire space takes a huge amount of resources: running a
single parallel region of Streamcluster takes approximately 4
minutes, resulting in 50 hours of runtime (we have 58 regions).

We cannot afford this exploration but we also do not want
to further prune the configuration space as we may miss opti-
mizations opportunities (e.g., counter intuitive data placements
increasing remote accesses can improve performance [33]). An
idea would be to fully explore the space on one size, and then
sample the relevant configurations and only evaluate them on
the other size. Unfortunately, we have no guarantee that the
configurations will remain relevant across sizes as illustrated
in Figure 1. Therefore, instead of sampling the space, we
sampled the applications execution. Parallel applications using
the fork-join models are known to have regular behaviors
where the same parallel region is called hundreds of times
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TABLE II
EXECUTING/COMPILING CODES ACROSS THE 2 SIZES. THREADS REFERS TO THE NUMBER OF THREADS AT EXECUTION.

Application Compilation flag or execution option for the small input size Compilation flag or execution option for the large input size

BT, CG, EP,
make CLASS=A make CLASS=BFT, IS, LU,

MG, SP

Blackscholes ./blackscholes THREADS in 4.txt out ./blackscholes THREADS in 10M.txt out
clomp v1.2 ./clomp THREADS -1 16 400 32 1 100 ./clomp THREADS -1 16 6400 32 1 100
lulesh2.0.3 ./lulesh2.0 -s 40 ./lulesh2.0 -s 48

srad ./srad 100 0.5 383 300 THREADS ./srad 100 0.5 502 458 THREADS
myocyte ./myocyte.out 100 10 1 THREADS ./myocyte.out 100 50 1 THREADS

nn ./nn list20k 2.txt 5 30 90 ./nn filelist 4 5 30 90
cfd ./euler3d cpu ../../data/cfd/fvcorr.domn.193K ./euler3d cpu ../../data/cfd/missile.domn.0.2M

kmeans ./kmeans -n THREADS -i ../../../data/kmeans/204800.txt ./kmeans -n THREADS -i ../../../data/kmeans/kdd cup
hotspot ./hotspot 512 512 2 THREADS ../../data/hotspot/temp 512 ../../data/hotspot/power 512 output.out ./hotspot 1024 1024 2 THREADS ../../data/hotspot/temp 1024 ../../data/hotspot/power 1024 output.out

bfs ./bfs THREADS ../../data/bfs/graph65536.txt ./bfs THREADS ../../data/bfs/graph1MW 6.txt
particlefilter ./particle filter -x 128 -y 128 -z 10 -np 5000 ./particle filter -x 128 -y 128 -z 10 -np 10000
pathfinder ./pathfinder 50000 100 ./pathfinder 100000 100

lud ./lud omp -n THREADS -s 6000 ./lud omp -n THREADS -s 8000
hotspot3D ./3D 512 4 100 ../../data/hotspot3D/power 512x4 ../../data/hotspot3D/temp 512x4 output.out ./3D 512 8 100 ../../data/hotspot3D/power 512x8 ../../data/hotspot3D/temp 512x8 output.out
lavaMD ./lavaMD -cores THREADS -boxes1d 8 ./lavaMD -cores THREADS -boxes1d 10

streamcluster ./sc omp 10 20 128 1000000 100000 5000 none output.txt THREADS ./sc omp 10 20 128 1000000 200000 5000 none output.txt THREADS
nw ./needle 1024 10 THREADS ./needle 2048 10 THREADS

with the same behavior [42]. Executing a few calls of the
region can be used to extrapolate its behavior [33], [39]. Not
all regions have regular behaviors across calls [10], but this is
a reasonable compromise to fully explore the space. To sample
the execution of a region, we profile each region call and
interrupt the application run as soon as we register 10 calls. We
return the resulting median performance: we use the median
instead of a sum across calls to not overestimate cache warmup
effects during the first call. In the native execution, the cold
cache effects are negligible when a region is called hundreds
of times. On the contrary, they would have a disproportionate
impact if we were to sum the execution times over 10 calls.
For energy, we used Likwid [43] to report the aggregated
consumption of the whole system across the 10 calls. We note
that despite the execution sampling, it still took us over 3
weeks of continuous execution to evaluate the search space.

To ensure stability, we run 3 meta-repetitions for each
execution. We selected the number of meta repetitions as
a trade-off between a sufficient level of confidence and an
acceptable execution cost. The performance variation across
meta-repetitions was 3.1% and 1.8% when we sum or select
the median across the 10 calls respectively (thus illustrating
how cold cache effects create performance instability). By
taking the median as metric in this study, we ensure that our
performance results are stable. The average energy variation

across the 3 meta-repetitions is 13%, indicating that energy
measurements are much less stable than performance. We
are unsure why performance is more stable than energy: we
speculate they have different refresh-rates.

Figure 3 groups regions that share similar performance or
energy variations across the meta repetitions into buckets. For
instance, there are 54 regions which have, on average across all
the configurations, a performance variation under 5% against
only 27 for energy using the small size. We pruned from
our study regions with variation exceeding 25%. This is a
high stability threshold which results in optimizing regions
with significant energy variation across executions. However,
optimizing these regions result in huge energy gains (i.e., more
than 700% on average), making the stability threshold minor
in comparison.

To fairly compare the optimization impact across sizes
in Section IV, we only keep regions that are stable across
both sizes and targets. To ensure that we do not measure
changes because we optimize different applications, we kept
stable regions and preserved the same cross-validation folds
in Section V.

IV. SEARCH SPACE CHARACTERIZATION

This section presents the insights we have gathered through
the exploration of the search space for the different parallel
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We then count the number of regions per bucket.

applications. We start by studying how the different dimen-
sions of the search space affect our optimization goals (time
and energy) across different inputs. We then quantify how
changing the target goal or using a different problem size
affects the overall gains. These changes justify the need for
Machine Learning models to predict the best configurations
which are later presented in Section V.

A. Quantifying Potential Gains Across the Search Space, per
<target, size>

Quantifying the gains over the baseline provided by the
different dimensions of the search space helps to answer
different questions regarding the relative importance of the
configuration options with respect to each other, such as: Does
a single option provide all the gains? Should some options be
explored with a higher priority? Can we safely ignore some
options to reduce the search space?

Figure 4 presents the gains achieved when exhaustively
exploring the effect of different configuration options. Each
bar represents the gains of exploring a subspace: we average
the gains across all the regions and select the best configuration
per region within the considered subspace. On the top of the
figure, we observe that an average speedup of 1.85× can be
achieved for performance, while on the bottom we see that
the average energy consumption can be improved by a factor
of 5.90×. This difference between target optimization achieve-
ments highlights that the baseline configuration is much more
effective to optimize performance than energy. Indeed, 68%
of the configurations improve energy on average across all
regions against only 30% for performance: most of the config-
urations are more energy efficient than the default. Regarding
performance in the context of problem sizes, we see that the
optimizations always have a bigger impact when large inputs
are used. Conversely, energy consumption improvements are
mostly similar across problem sizes when TH and PAR are
not considered together. Only when both are optimized do we
see better energy savings for large inputs. Interestingly, if we
change the baseline to the optimized configuration contiguous,
32 threads using 2 nodes, with data locality, and all prefetch
on, we still observe that the energy gains are 4.1× and 8.9×
over small/large, while the performance gains are 1.6× for
both sizes. The takeaway is that efficiency across TS cannot

be achieved with a single configuration, independently on how
optimized it is.

The results in Figure 4 also indicate that no single option
provides all the gains nor can be completely ignored. We
further consider how interesting each dimension of the space
is by comparing its size (i.e., the number of options, efforts
to explore it) against the gains it provides. Some spaces
are larger compared to others (e.g., PREF 16 vs SMT 3).
Moreover, some dimensions (e.g., PREF) even require root
access which limits their optimization. Therefore, we note
that some parameters such as TH, SMT, or PAR are more
attractive to be explored in priority on a budget than others
such as PREF or dimension combinations. Nevertheless, we
need to explore all the dimensions to achieve the highest
gains. Finally, the figure legend also compares our exploration
with related work: we are the first to explore such a large
space for energy optimization across sizes.

B. Reusing Search Space Insights from One <target, size> to
Another

The pertinence of applying the insights and findings from
one TS to another TS relates to the transferability of the overall
gains. We say that gains are transferable from problem A to
B (with different problem sizes or targets) if, for each parallel
region, using the best configuration found in A in the context
of B (the cross configuration) leads to gains similar to the
best configuration found in B (the native configuration). We
call cross-optimization the process of evaluating whether —
and to quantify to which extent— gains are transferable from
one problem to another one. When cross-optimization fails to
apply from a problem A into a problem B, both problems must
be optimized individually.

We illustrate the cross-optimization outcome on average
across all the regions for the four combinations of problem
characteristics in Figure 5. Each TS on the X-axis is profiled
with different optimizations. Each color represents the TS used
for guiding these optimization (i.e. we cross-optimize using
the configurations from the color TS). Each Y-axis value repre-
sents the gains of the cross configurations selected using color
TS divided by the native gains (e.g., on <perf, large>, the
native and cross configurations from <energy, large> provide
1.91× and 1.32× gains respectively, resulting in 1.32

1.91 (69%),
efficiency between cross and native configurations).

Overall, we can take three lessons from these results:
• Cross-optimizing problem sizes while considering perfor-

mance: We observe that gains are mostly transferable,
leading to around 95% of the native gains.

• Cross-optimizing from energy to time: all results are kept
between 69% and 75% of the native gains. This gap
of 25% or more erases most of the previously achieved
gains. For instance, the speedup of 1.91× achieved by
<perf, large> is reduced to 1.32× (69%) and 1.44×
(75%) when cross-optimizing, meaning that these gains
are not transferable.

• Optimizing for energy: changing input sizes or cross-
optimizing from time to energy leads to non-transferable
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gains. In the most extreme case (for the native case with
large problem sizes), gains are capped at 33%, meaning
that the native optimization is at least three times better
than any cross-optimization.

These results indicate that performance optimization in-
sights do not apply to energy consumption optimization and
vice-versa. Additionally, optimizing for energy consumption
must be done with a problem size similar to the typical
optimization target workload, due to the limited transferability
of energy-related findings across multiple problem sizes. These
facts motivate the need of models for individual pairs of
problem sizes and optimization goals.

V. MACHINE LEARNING OPTIMIZATION

The results from the previous sections show that significant
gains can be achieved, but only when all dimensions of the
search space (Section IV-A) and a specific TS (Section IV-B)
are considered. This requires thousands of runs for each new
parallel region or TS of interest, which can be prohibitive. In

order to overcome this limitation, we propose to use Machine
Learning (ML) to train dedicated models per TS.

For a new parallel region and a given TS, we want mod-
els that avoid exploring the search space, predict efficient
NUMA/prefetch configurations, and only use a few profiling
runs. To do so, we train models by extracting, from each
parallel region, a large set of characteristics (called features)
along with the different NUMA/prefetch configurations per-
formance or energy measurements (called labels). Labels are
either performance or energy depending on the TS that we
are predicting (i.e., we use energy measurements as labels if
the target is energy). Features and labels are provided together
to a supervised learning classification algorithm which creates
a model that predicts labels for new, unseen parallel regions
based only on their features.

Models can either collect labels and features using the
same problem size or with different sizes. Using different
sizes, cross-predicting, (small to large or vice versa) is more
challenging as the information to predict the optimization
might not be available on the profiling size. Yet, it is also much
more attractive as we propose more generalized optimizations.
Predicting complex NUMA/prefetch configurations across
sizes is one of the key novelties of this work. For the rest of
this section, we present the training and validation of Machine
Learning models in Section V-A, the processing of labels and
features in Sections V-B and V-C, and finally the results in
Section V-D.

A. Training Machine Learning Models

Figure 6 presents the workflow of the ML models that we
train and evaluate for a target TS. We start by profiling a
set of training parallel regions. We collect features that we
subset (details in Section V-C). In parallel, we also evaluate
all the configurations (details in Section V-B) and return the
most efficient ones per parallel region as labels. For simplicity
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and clarity, the figure presents a TS set to size large using
features collected with size small (in practice we consider all
the possible size combinations, even a mix of both small and
large for the features to assess how the models perform if they
have access to all the information). We then group both labels
and features and provide them to Machine Learning algorithms
that generate prediction models. Different algorithms operate
more or less efficiently depending on the available data. Based
on the concept of bucketing [46] and following an approach
similar to Sanchez et al. [39], we implemented different
learning algorithms including Decision Tree (DT), Logistic
Regressions, and Support Vector Machines with Scikit learn
setup [30] (version 1.0). Similarly to Sanchez et al. [39], we
observed on preliminary results that DT outperforms the other
classifiers and have, therefore, selected it for the remaining
steps of our work.

To evaluate and validate our models, we deploy them
over new unseen parallel regions. We expect that, by just
collecting features over these new regions, our models will
predict the most efficient NUMA/prefetch configuration for
each region. We evaluate our models using a standard 10-fold
cross-validation [37]: for each TS, we train ten models and
evaluate each one over a validation fold composed of 5 or 6
unseen parallel regions (i.e., 10%). To check that our models
can operate over new unseen regions, all results presented in
Section V-D are generated by aggregating all the regions from
the ten validation folds.

B. Key Configurations for Classification (Labels)

Having a short list of configuration labels is particularly
important for reducing the stress over the Machine Learning
models [41]. Therefore, instead of exposing the entire search
space as labels for evaluation to the learner, we only provide
a small but impactful set of configurations that preserves the
improvements found in the whole search space. We follow the
same procedure previously employed by Sanchez et al. [39].
For a given TS, we first find the configuration that provides
the biggest average gain. We then find the next configuration
that further improves this gain the most, and we continue
on this process until we have ten distinct configurations (we
empirically observed that ten configurations was enough to
provide high gains). This process is applied to each TS,
resulting in four lists of ten configurations, one per TS. We

observe that, for a given size, selecting the best configuration
for each region among these ten configurations provides at
least 99% of the performance and 97% of the energy gains of
the exhaustive search across the whole space.

We further replicated the cross-evaluation of Section IV-B
using only our configuration lists. In this scenario, the average
difference between the cross-optimization using our lists and
the whole search space is only 1%. These results indicate
that our short configuration lists are effective proxies for the
original search space.

To illustrate the variety in the configuration lists, Table III
summarizes the number of times a given option was part of
the best configurations list for each TS. Indifferently from
dimension, all options besides two (i.e., contiguous thread
mapping and DCU IP-correlated prefetcher on) are present
among the best configurations at least 30% of the time (i.e.,
12 over 40 configurations). This variety is further emphasized
by the presence of 37 unique configurations. These results both
emphasize the conclusions of Section IV (i.e., no dimension
can be pruned without losses) and demonstrate the coverage
of the search space by the key configurations lists. Therefore,
we use, for a given TS, the associated list of configurations as
labels for our models.

TABLE III
OPTIONS FOUND IN THE KEY CONFIGURATIONS FOR EACH TS. FOR

INSTANCE, CONTIGUOUS IS INCLUDED 7 AND 9 TIMES IN THE 10 BEST
CONFIGURATIONS WHEN OPTIMIZING <ENERGY, LARGE> AND

<PERFORMANCE, LARGE>

Dimensions Options TSs
<perf, small> <perf, large> <energy, small> <energy, large>

No. threads 64, 32, 16 5,3,2 4,2,4 1,5,4 3,3,4
SMT Yes, No 4,6 3,7 6,4 4,6

No. NUMA nodes 2, 1 7,3 6,4 3,7 6,4
Thread mapping Scatter, Contiguous 0,10 1,9 3,7 3,7
Data mapping First-touch, Locality, Balance 2,4,4 3,4,3 5,3,2 4,3,3

Prefetcher On for each of the 4 pref. 10,7,6,5 8,6,3,5 8,6,4,3 8,5,3,5

C. Application Characteristics (Features)

ML models use features to predict what configuration to use
at deployment. As previously described, naively optimizing
NUMA/prefetch requires exploring many different configu-
rations. On the other hand, an application’s features can
be cheaply collected through light profiling in comparison.
We investigate features that maximize information to make
accurate predictions while minimizing collection overhead to
reduce deployment costs. Traditional dynamic features (i.e.,
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collected at execution) used to predict NUMA or prefetch
include performance counters and communication metrics.

Communication metrics have been proposed in the context
of thread and process mapping in NUMA systems [7], [15],
[17]. They are based on communication matrices that represent
how much data is shared between two threads (e.g., the number
of accesses to the same page, the number of messages sent, the
number of bytes exchanged). We consider in our models six
communication metrics profiled across the different degrees
of parallelism resulting in a total of 18 features: CA [17]
represents the average communication cost of the matrix;
CB [15] captures how balanced the matrix is; CC [7] calculates
the dispersion of communication from the main diagonal of
the matrix; CH [17] measures the average communication
variance; NBC [7] indicates the fraction of communication
between threads with close identifiers; and SP(16) [7] repre-
sents the fraction of communication happening among threads
in 16×16 blocks in the matrix. We used Numalize to identify
how threads access pages and then calculated the resulting
communication metrics. Finally, we normalize each metric by
the highest value recorded for that metric across all regions.

Performance counters are standard metrics that characterize
an application’s execution and are available across many
systems. We can collect counters by either executing the appli-
cation over a single configuration or across different ones. Col-
lecting counters from a single configuration is more straight-
forward as we do not need to change the NUMA/prefetch
configuration across executions. However, collecting counters
across configurations has higher tuning potential in the context
of compiler [49] or NUMA/prefetch performance optimiza-
tion [39]. By profiling the same counter across different
configurations, we measure its reaction to various contexts.
This reaction is valuable information to guide optimizations, a
so-called reaction-based profiling [39], [49]. We also consider
the 1536 (768 ∗ 2) performance and energy measurements as
reaction-based features in our models. Incorporating diverse
counters may potentially characterize memory/compute-bound
applications to improve our predictions. Nevertheless, we only
consider counters tracking performance and energy because
1) reaction-based energy has already successfully optimized
NUMA/prefetch performance [39], and 2) including more
counters comes at an extremely high profiling cost as we
need to execute the new counters across the whole space. To
provide the reaction-based performance or energy features to
the model, we take all the measurements and normalize them
against the baseline configuration. The performance or energy
changes between the baseline or the different configurations
are the reaction-based information provided to the model.

In total, we consider 18 communication metrics and 1536
reaction-based performance and energy measurements for a
total of 1554 features that can be collected on a given size.
Using multiple features for a model increases its information
and prediction potential. However, it creates noise as some
information might not be relevant to the optimization. More
importantly, it increases the profiling cost at deployment.
To reduce deployment cost, we use feature selection: we

train different models using only a subset of features at a
time. Using feature subsets drastically complicates the training
process: instead of training models which consider all the
features at once, we must train different models, one per
subset. Therefore, for each TS and subset of features, we
evaluate ten models because of cross-validation. In addition,
we consider features collected with small, large, or both sizes
(we discuss mixing sizes in Section V-D). However, this
enables us to deploy learning algorithms that predict the best
NUMA/prefetch configuration using only a subset of features.

We empirically evaluated models with 1, 2, or 3 features.
Moreover, because collecting communication metrics is more
expensive than collecting counters, we consider models using
only communication metrics, reaction-based counters, or com-
binations of both. While we can easily exhaustively evaluate
all the combinations of 1 feature, training models with 2 or
more features drastically increases the feature space: we need
to train over a million models to explore all combinations
of 2 features. Therefore, we reduced the feature space for
each TS to 15, 000 by randomly evaluating combinations of
features. We also used Genetic Algorithms (GA) to guide the
feature selection and return the most efficient subset of features
accordingly. This was implemented with pyeasyga [1] (version
0.3.1) with population size 2500, 25 generations, 90% and
10% crossover and mutation probabilities respectively).

D. Machine Learning Results

Figure 7 presents the gains of the models described in
Section V-A and compares them against the naive cross-
optimizations from Section IV-B. Similarly to Figure 5, all
values are normalized to the native optimizations. Cross-
optimizations between TSs are presented using horizontal
lines (e.g., the straight line <perf, small> indicates the gains
achieved when selecting the best configuration per region for
<perf, small>). The colors show the size used to collect the
features (e.g., if the color is different from the predicted size,
we are predicting configurations on a different size than the
one used to collect the features). small+large presents models
trained using features collected from both sizes. Finally, and
as described in Section V-C, we consider different subsets of
features. In particular, we evaluated models using 1 feature
(exhaustively explored), 2 features (15, 000 random subsets or
using GA), and 3 features (only with GA).

ML models consistently outperform any cross-optimiza-
tions across all TSs. Cross-optimizing <energy, large> with
<energy, small> only provides 34% of the peak gains. On the
opposite, ML with 3 features achieves 73% of the gains. Even
for <perf, small> where cross-optimization mostly preserves
the gains (i.e., <perf, large> provides 95% of the peak gains),
models with 3 features from small and large sizes provide 98%
and 96% gains, respectively.

We also compute the absolute distance (|native −
cross|/max(native, cross)) between the gains of native mod-
els and their cross-predicting counterparts: native models with
3 features provide 3.5% more gains than cross-predicting ones.
This difference is very small when compared to some naive
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cross-optimizations from different TSs (up to 60% losses when
cross optimizing <energy, large>). This emphasizes how it
is more difficult to optimize energy than performance. We
also assess if collecting features from both sizes improves
predictions over collecting them with a single size. Overall,
both approaches return relatively similar gains, indicating that
considering a single size is enough (i.e., the features collected
on that size contain enough information to take optimization
decisions).

We observe that reaction-based counters systematically out-
perform communication metrics when used as features. Not
only do they provide more gains but even when we mixed
communication metrics with reaction-based counters using
2 or 3 features, our feature selection process only returned
reaction-based counters. Denoyelle et al. [14] compared per-
formance counters (i.e. memory information) against com-
munication metrics and concluded that both provide similar
gains for NUMA predictions (while communication metrics
are approximately 10× more costly to collect). Our results
indicate that reaction-based performance/energy provide

more gains than any of these two approaches and can be
collected during execution without costly instruction instru-
mentation. However, they require exploring a large feature
space [39] at training as illustrated by Table IV. This table
shows the most efficient groups of 3 features for the most
difficult to predict TS <energy, large> using either small or
large sizes. We observe that we must profile performance or
energy across quite different configurations.

TABLE IV
BEST REACTION-BASED COUNTERS COLLECTED EITHER WITH SMALL OR

LARGE SIZES PREDICTING <ENERGY, LARGE>. WE NOTE THAT
PERFORMANCE IS USED TO PREDICT ENERGY OPTIMIZATIONS.

Target No. threads SMT No. NUMA nodes Thread mapping Data mapping Prefetcher

Size small
performance 32 no 2 scatter first-touch off/off/on/off

energy 32 no 2 contiguous locality on/on/off/on
energy 32 no 2 scatter locality on/off/on/on

Size large
energy 16 no 1 contiguous balance off/off/on/off
energy 64 no 2 scatter locality on/on/on/off

performance 32 no 2 contiguous first-touch on/on/on/off

We further analyzed our results for <energy, large>: Fig-
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ure 8 presents prediction errors calculated using the absolute
distance (|peak−predicted|/max(peak, predicted)) for each
region between its peak gains and the model prediction gains
using small or large sizes with the 3 features presented in
Table IV. The average distance across all the regions is
15%. 4 regions have over 30× energy gains and our model
mispredicts some of them. As a result, removing such outlier
regions increases the gains of our models to over 85% of the
peak gains: we believe that adding more regions with such
gains would help our models to better recognize them. To
summarize, ML gives most of the gains across different TSs
while only collecting 3 measurements on a single problem
size.

VI. RELATED WORK

Search space exploration. Standard techniques for finding
the best NUMA and prefetch-related configuration options
often require exploring a large optimization space. Khan et
al. [22] and Jimenez et al. [21] evaluate different prefetchers
at runtime to select the most efficient ones for performance
on Intel and IBM systems, respectively. Radojkovic et al. [35]
explore different thread mappings to optimize performance.
Popov et al. [33] couple thread and data mapping options to
boost performance gains in NUMA systems, while Sanchez
et al. [39] extends these options with prefetch settings. Our
work takes this state-of-the-art search space and incorporates
an SMT dimension, while also considering different problem
sizes and optimization targets.

Native search limitation. While exhaustive explorations
lead to good configurations for some applications, they require
thousands of runs [33]. This overhead is present every time
a new application is considered. Additionally, one may also
find applications that benefit very little from optimizations
beyond the standard configuration [17]. In order to avoid
these overheads, models, either based on Machine Learning
or designed by domain experts, can directly predict relevant
configurations or prune the search space.

Features selection. Different models use distinct means to
collect application characteristics (features) for their decisions,
as collecting this information is seen as far less costly than
the space exploration. There is a wide spectrum of feature
extraction techniques, each with its own benefits and collection
costs. These techniques include compiler analysis [31], [41],
performance counters [9], [25], [26], [47], reaction-based
profiling [23], [49], instrumentation [17] (e.g. communication
metrics, pin memory profiling), or even a combination of
techniques [14], [19], [39]. Our work experiments for the first
time how a combination of instrumentation and reaction-based
profiling can feed a Machine Learning model.

Configurations selection. Different approaches predict con-
figurations across the diverse subspaces. Piccoli et al. [31]
are able to optimize data placement using compiler loop
analysis. Similarly, Tehrani et al. [41] demonstrate that com-
piler Intermediate Representation analysis can provide 70%
of the gains from reaction-based profiling. Guo et al. [19] use
both compiler information and performance counters to reduce

energy overheads due to prefetching. Counters are also used to
optimize prefetch [26] and NUMA effects [25] through thread
and memory migration. Using performance counters, Wang et
al. [47] further predict the number of NUMA nodes to use to
optimize performance, while Castro et al. [9] select thread
mappings for Software Transactional Memory applications.
Denoyelle et al. [14] unify NUMA optimizations by consid-
ering both thread and data placements using instrumentation
and performance counters together. Reaction-based profiling is
employed by Sanchez et al. [39] in order to optimize perfor-
mance for different applications based on NUMA and prefetch
configurations. Other examples of reaction-based prediction
include compiler optimization [23], [49].

Machine Learning models. We also note that more or
less computation-intensive ML models are used for predic-
tion, ranging from simple decision trees or support vector
machine [39], [48], [49], to complex deep learning meth-
ods [41], [45]. Multiple models can also be considered as
illustrated by Roy et al. [38]. They auto-tune OpenMP pa-
rameters and system frequencies using multiple light-weight
Bayesian Optimization models. In our work, we use decision
trees with reaction-based performance and energy along with
instrumentation and observe that reaction features outperform
communication metrics collected from instrumentation.

Energy and problem size. While performance tuning is still
commonly studied considering a single problem size, works
have emerged to explore multiple problem sizes or to consider
energy and performance. Indeed, performance and energy are
not proportional across different search spaces including thread
scheduling, cache reconfiguration, and frequency [24] or in
the context of heterogeneous systems [13], [40]. Reddy et
al. [36] proposed a data partitioning algorithm for NUMA
that optimizes both performance and energy. Berned et al. [5]
further combine performance and energy using thread mapping
across three problem sizes by natively exploring the space.
Similarly, Marques et al. [27] combine concurrency throttling
with turbo-boosting while Papadimitriou et al. [29] consider
Voltage/Frequency scaling with core allocations.

To the best of our knowledge, in the context of NUMA
(i.e., considering both thread and data) and prefetch-related
settings optimization, this paper is the first 1) that investigates
the impact of problem sizes on the effectiveness of configu-
rations and thus on models; 2) that quantifies the gap due to
configuration transposition between performance or energy; 3)
that proposes a model to predict overall efficient configurations
and succeeds in doing so using reaction-based features.

VII. CONCLUSION

In this study, we have explored the search space of NUMA
and prefetch-related configurations to optimize both perfor-
mance and energy across two different problem sizes per
application. Our research has shown the impact of these
configuration options in all cases with performance and energy
gains of 1.85× and 5.9× over a baseline. Unfortunately, the
configuration combinations achieving these gains are condi-
tioned by the problem size and optimization target, i.e., we
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cannot simply transpose optimization strategies discovered for
performance and expect to obtain high energy gains as well.
Similarly, we observed that the best optimizations for energy
on one problem size do not apply to another problem size. To
address these limitations, we proposed a Machine Learning
framework for modeling and predicting both performance and
energy optimizations by quickly profiling a single problem
size. This approach has achieved over 85% of the peak gains
from the search space exploration.

As future work, we envision larger search spaces that
consider heterogeneous systems, frequency scaling, as well
as the selection of compiler optimization settings. Indeed,
preliminary results show that the same application compiled
with different compiler options experiences different NUMA
effects. Finally, to further reduce the overhead of our model at
deployment, we contemplate the evaluation of static features
for modeling.
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