Jakub Klemsa
email: jakub.klemsa@eurecom.fr

Hitchhiker's Guide to a Practical Automated TFHE Parameter Setup for Custom Applications

Introduction

Lately, several authors work on practical applications of FHE [START_REF] Bourse | Fast homomorphic evaluation of deep discretized neural networks[END_REF][START_REF] Izabachène | Practical fully homomorphic encryption for fully masked neural networks[END_REF][START_REF] Lou | She: A fast and accurate deep neural network for encrypted data[END_REF] using the TFHE scheme [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF], often with an integer ring as the desired native cleartext space [START_REF] Bourse | Improved secure integer comparison via homomorphic encryption[END_REF][START_REF] Guimarães | Revisiting the functional bootstrap in tfhe[END_REF][START_REF] Klemsa | Parallel operations over tfhe-encrypted multi-digit integers[END_REF] 1 . It shows that for the best performance of particular application, the TFHE parameters must be carefully selected with respect to the bit-size of the cleartexts, as well as to the number of homomorphic additions before bootstrapping is applied to refresh the noise. On top of that, the parameters must be derived with respect to a chosen security level λ. To the best of our knowledge, not a single existing TFHE library [START_REF]CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending TfhE[END_REF][START_REF] Nucypher | A GPU implementation of fully homomorphic encryption on torus[END_REF][START_REF] Palisade | PALISADE Lattice Cryptography Library[END_REF][START_REF] Tfhe | Fast Fully Homomorphic Encryption Library over the Torus[END_REF] implements a configurable parameter derivation tool. Instead, they provide a few hard-coded parameter sets, which are only useful/effective in a limited range of applications.

In this contribution, we outline an approach, how to generate a set of tailor-made TFHE parameters, and we present a practical (semi-)automatic tool that executes this process, with particular respect to efficient resource utilization during the TFHE bootstrapping. Finally, we run our tool on several setups and we compare resulting parameters with those hard-coded in existing libraries. E.g., compared to the parameters by Zama in their Z/16Z demo [START_REF] Zama | Demo Z/8Z[END_REF], we achieved by 38% faster bootstrapping time and by 57% smaller keying material, at a comparable security and noise level.

Towards TFHE Parameter Derivation

First, we formally introduce all input parameters, which reflect the needs of a particular application using TFHE. Next, we summarize the limitations that are imposed on the TFHE parameters. Finally, we outline an approach how to derive all the TFHE parameters, given the input parameters and respecting the identified limitations, with a focus on the bootstrapping efficiency.

Input Parameters

Given a specific application, which aims at utilizing TFHE for homomorphic calculations over encrypted data, we need to gather the following requirements: (A) bit-security level denoted by λ; (B) cleartext space bit-precision denoted by π; and (C) a parameterized bound on the number of homomorphic addition/scalar multiplication operations before the sample gets bootstrapped, denoted by 2 2∆ , referred to as the quadratic weights. Let us discuss each input parameter in detail.

Security Level λ. To estimate the bit-security of particular instance of TLWE/TRLWE, which are the underlying ciphers of TFHE, we use the LWE Estimator by Albrecht et al. [START_REF] Martin R Albrecht | On the concrete hardness of learning with errors[END_REF][START_REF] Martin R Albrecht | LWE Estimator[END_REF].

Observation 1. At given security level λ, the logarithm of the standard deviation of the LWE noise, denoted by α, depends roughly linearly on the LWE dimension n with a factor denoted by s λ :

-log 2 (α) ≈ s λ • n; (1)
cf. Figure 1. Due to the collision attack, the relation is limited to n ≥ 2λ. In addition, the precision of the underlying torus implementation, denoted by τ , changes the behavior forlog 2 (α) > τ .

Est [START_REF] Martin R Albrecht | On the concrete hardness of learning with errors[END_REF][START_REF] Martin R Albrecht | LWE Estimator[END_REF]. Interpolation between grid points, not calculated for λ < 64 bits. For λ = 128 bits, s λ ≈ 0.0235. N.b., identified values of λ show to be lower than in [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF]Fig. 9].

Cleartext Space Bit-Precision π. Calculations with encrypted data using TFHE are limited by the range of operations offered. First, it shows that the complexity of the TFHE bootstrapping grows roughly exponentially with the cleartext bit-precision -practical bootstrapping times can be achieved for up to about π = 7 bits only. Next, bootstrapping is on the one hand capable of evaluating a custom Look-Up Table (LUT), on the other hand, the values can only be given for the first half of the cleartexts -the rest is given implicitly by a negacyclic extension, i.e.,

LU T (2

π-1 + m) = -LU T (m), m ∈ 0, 2 π-1 . (2)
Both limitations must be carefully considered before choosing the right cleartext precision π.

Quadratic Weights 2 2∆ . With each additive homomorphic operation, the noises add to each other. For the noise variance of a weighted sum of independent TLWE samples c i with an equal noise variance, denoted by V 0 , it holds

Var Err w i • c i = w 2 i 2 2∆ • Var(Err(c i)) V0 , w i ∈ Z. (3)
We denote the sum of squares of weights by 2 2∆ , where ∆ expresses the number of additional bits of the standard deviation of the noise (due to the addition).

Parameter Restrictions

The overall goal is to limit the noise of a fresh(ly bootstrapped) sample, so that a limited number of addition operations can be performed and the noise can be refreshed correctly during bootstrapping. N.b., during bootstrapping, there occurs an additional rounding noise with a variance denoted by V round . With 2 π values in the cleartext space, it follows that the maximum error shall be bounded by 1 /2 π+1 . Using the rule of 3σ, it follows that the maximum error variance shall be bounded as

V max ≤ 2 2∆ V 0 + V round ! ≤ 1 3 2 • 2 2π+2 ,
where

V round = n + 1 48N 2 . (4
)
The bound on V 0 depends on particular implementation, e.g., Bourse et al. [START_REF] Bourse | Fast homomorphic evaluation of deep discretized neural networks[END_REF] propose an improvement of one of the bootstrapping algorithms, which decreases the number of operations, but it increases the noise. Therefore, we present the bound on V 0 as it holds for the basic variant of TFHE [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF], with one generalization that is widely implemented in TFHE libraries -the configurable base in the key switching algorithm:

2 2∆ V 0 ≤ 2 2∆ • 2nlN 2 2(γ-1) V BK (N) (♥) + 2 2∆ • n(1 + N)2 -2(γl+1) (♦) + 2 2∆ • Var Err(u, v) = 0 + + 2 2∆ • tN 2 2(κ-1) V KS (n) (♣) + 2 2∆ • 2 -2(κt+1) N (♠) , (5
)
where N is the TRLWE polynomial degree, n is the TLWE dimension, γ is the base log of bootstrapping keys (per [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF], γ = log 2 (B g)), κ is the base log of key switching keys (not considered in [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF], implemented in [START_REF]CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending TfhE[END_REF][START_REF] Tfhe | Fast Fully Homomorphic Encryption Library over the Torus[END_REF]), l, t is the level of bootstrapping keys, or key switching keys, respectively, and V BK , V KS is the error variance used in bootstrapping, or key switching keys, respectively. Note that we assume that the bootstrapping LUT, represented by the sample (u, v), is public, hence it contains zero noise.

Idea of Parameter Generation

To derive a good set of TFHE parameters, we need to (i) satisfy the bound (4) (with the use of (5)), and (ii) check its quality in terms of the bootstrapping time. For (i), the bound (4) can be viewed as an error budget, which gets consumed by individual error terms V round and (♥)-(♠). We suggest to proceed from the most restricted parameters: namely, we first set n min = 2λ, we loop N ∈ {256, 512, . . . , 4096} (or more), and we derive n max from V round using the entire budget. We continue by setting the minimum on κt from (♠) using the maximum available error budget, then we loop κ from 1 and t from ⌈ κtmin /κ⌉ until some fixed bound t max ≈ 10 (note that t would indeed overflow due to (♣), however from some point, there is no efficiency gain). Next, we loop n = n min . . . n max , possibly with a step greater than one2 . Finally, we use the remaining error budget (if any) to obtain γ and l, analogically to κ and t. This way, we obtain thousands of parameter sets that satisfy the bound (4).

For (ii), to make a good choice of the parameters, we need some measure to compare them with each other. Either we know our implementation of TFHE by heart and we can deduce an analytical relation for the bootstrapping time, or we estimate the bootstrapping time using the sizes of the bootstrapping and the key switching keys, which can be expressed respectively as follows (for [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF]):

(BK i) n i=1 = 6nlN τ [bits],
and

(KS i,j) N,t i=1,j=1 = (n + 1)tN τ [bits]. (6)
Running a couple of benchmarks with selected TFHE implementation, we derive a heuristic relation between key sizes and respective bootstrapping time.

The final selection can be made either completely automatically, or a human intervention may be applied, e.g., if there is a huge efficiency gap for just a little security reduction.

Experimental Results

Finally, in Table 1, we put forward experimental results for selected use cases: the binary TFHE [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF], which uses an equivalent of 2-bit cleartext space, selected parallel addition [9, Alg. IIa-F], which employs 5-bit cleartexts, and two integer demos [START_REF] Zama | Demo Z/8Z[END_REF] by Zama, operating over Z/8Z and Z/16Z with 5-bit and 6-bit cleartext space, respectively. Note that in the parallel addition scenario, we originally used parameters with λ = 112, hence the parameters cannot be directly compared.

Binary TFHE: π = 2, 2 2∆ = 2
Parallel addition: π = 5, 2 [START_REF]CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending TfhE[END_REF] on Intel Core i7-7800X were executed. η C and η m stand for the usage of the 3σ max error budget as calculated by Concrete and as measured after decryption, respectively. Find our experimental code at https://gitlab.eurecom.fr/fakub/tfhe-param-testing.

Discussion & Conclusion

We commented on and we also practically demonstrated the importance of careful TFHE parameter generation, given a particular usage scenario. We defined three input parameters that describe the scenario and we presented a tool that automates the parameter generation process. In the experimental results, we showed that for the binary TFHE and for the Z/16Z demo, we can achieve by 36-38% faster bootstrapping times, only for the Z/8Z demo, we did not achieve much improvement.

Figure 1 :

 1 Figure 1: LWE bit-security λ estimated by the LWE Estimator by Albrecht et al.[START_REF] Martin R Albrecht | On the concrete hardness of learning with errors[END_REF][START_REF] Martin R Albrecht | LWE Estimator[END_REF]. Interpolation between grid points, not calculated for λ < 64 bits. For λ = 128 bits, s λ ≈ 0.0235. N.b., identified values of λ show to be lower than in[START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF] Fig. 9].

 . bit-security of LWE

	0	256	512	768	1024	1280	1536	1792	2048
				LWE dimension n			

Table 1 :

 1 Comparison of selected original and newly identified TFHE parameters. 500 bootstraps with Concrete

	2∆ = 20

Z/8Z Demo: π = 5, 2 2∆ = 2 Z/16Z Demo: π = 6, 2 2∆ = 2

Orig. param's

[START_REF] Zama | Demo Z/8Z[END_REF]

New param's Orig. param's

[START_REF] Zama | Demo Z/8Z[END_REF]

New param's

Also ongoing discussion within the community.

E.g., in Concrete[START_REF]CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending TfhE[END_REF], the noise stddev can only be an integer, hence we can deduce the step from (1).

Acknowledgements

This work was supported by the MESRI-BMBF French-German joint project UPCARE (ANR-20-CYAL-0003-01).