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Introduction

We are interested in the dependence of the cost of fast controls for the heat equation on the support (location) of the initial data. Let ω Ω be a bounded, open subset of R d (d ≥ 1), T > 0, u 0 ∈ L 2 (Ω), and f ∈ L 2 ((0, T ) × ω). Let A be a Lipschitz, symmetric, uniformly elliptic, matrixvalued function defined in Ω. Consider the unique solution u ∈ L 2 ((0, T ); H 1 0 (Ω))∩C([0, T ]; L 2 (Ω)) of the system (1.1)

       ∂ t u -div A(x)∇u = f 1 ω in (0, T ) × Ω, u = 0 on (0, T ) × ∂Ω, u(0, •) = u 0 in Ω.
Here and in what follows, 1 D denotes the characteristic function of a set D of R d . It is well-known from the work of Gilles Lebeau and Luc Robbiano [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], via spectral inequalities and the work of Andrei Fursikov and Yu Imanuvilov [START_REF] Fursikov | Controllability of evolution equations[END_REF], via Carleman's estimates that one can act on ω using f to bring u from the initial state u 0 (arbitrary) at time 0 to the final state 0 at time T (arbitrarily positive). For D ⊂ Ω, set f L 2 ((0,T )×ω) .

For T ∈ (0, 1), one can prove that (1.3) c 1 e c 2 /T ≤ c(T, ω, Ω) ≤ C 1 e C 2 /T , for some positive constants c 1 , c 2 , C 1 , and C 2 independent of T . The second inequality follows from the observability inequality [START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], and the first inequality was obtained by Luc Miller [START_REF] Miller | The control transmutation method and the cost of fast controls[END_REF] and others [START_REF] Ervedoza | Sharp observability estimates for heat equations[END_REF][START_REF] Tenenbaum | New blow-up rates for fast controls of Schrödinger and heat equations[END_REF]. There is significant literature covering other aspects of the cost of the control for heat equations [START_REF] Dardé | On the cost of observability in small times for the one-dimensional heat equation[END_REF][START_REF] Fernández | The cost of approximate controllability for heat equations: the linear case[END_REF], the transport equation with small viscosities [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF][START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF][START_REF] Lissy | A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation[END_REF][START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation[END_REF], and the wave equation [START_REF] Laurent | Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves[END_REF][START_REF] Dang | Waves, damped wave and observation, Some problems on nonlinear hyperbolic equations and applications[END_REF][START_REF] Robbiano | Fonction de coût et contrôle des solutions des équations hyperboliques[END_REF]. The cost of fast controls were also considered for linear thermoelasticity [START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF], Schrödinger equations [START_REF] Fernández | The cost of approximate controllability for heat equations: the linear case[END_REF][START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation[END_REF][START_REF] Miller | How violent are fast controls for Schrödinger and plate vibrations?[END_REF][START_REF] Dang | Observability and control of Schrödinger equations[END_REF], and plate vibrations [START_REF] Miller | How violent are fast controls for Schrödinger and plate vibrations?[END_REF]. Similar questions were previously addressed in finite dimensions by Thomas Seidman [START_REF] Thomas | How violent are fast controls?[END_REF].

The goal of this paper is to show a dependence of c(T, ω, D) on D. More precisely, we prove Theorem 1.1. Let T ∈ (0, 1) and ε > 0. Assume that ω Ω is of class C 2 , and set, for r > 0, (1.4)

ω r = x ∈ R d ; dist(x, ω) < r .
There exist two constants δ ∈ (0, 1) and C ε > 0, depending only on ε, ω, Ω, and the elliptic and Lipschitz constants of A, such that

(1.5) c(T, ω, ω δ ) ≤ C ε e ε/T .
Remark 1.1. The constants δ and C ε in Theorem 1.1 are independent of T .

When ω = Ω, the dependence of c 2 and C 2 on Ω has been studied extensively, see e.g. [START_REF] Ervedoza | Sharp observability estimates for heat equations[END_REF][START_REF] Miller | The control transmutation method and the cost of fast controls[END_REF] and the references therein. Nevertheless, to our knowledge, the dependence of the cost on the support of initial datum for the heat equation has not been considered in the literature. Theorem 1.1 is new even in one dimensional case.

Theorem 1.1 is expected in the sense that if the support of the initial data is not too far from the control region, then it is easier to control. Even in this regard, this intuition is not completely transparent since the propagation speed is infinite and hence the support of the solution at any positive time is generally the whole domain Ω. Known examples used in the moment method for the heat equations (mainly for one dimensional space) and other equations give the same size of the control cost for initial datum formed by eigenfunctions of the corresponding operator. From this aspect, Theorem 1.1 is thus unexpected.

The proof of Theorem 1.1 is in the spirit of Gilles Lebeau and Luc Robbiano's approach [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] in which we establish a new spectral inequality. Let 0 < λ 1 ≤ λ 2 ≤ . . . be the sequence of the eigenvalues of the operator -div(A∇•) with the zero Dirichlet boundary condition, and let e 1 , e 2 , . . . be the corresponding eigenfunctions, i.e., (1.6) -div(A∇e i ) = λ i e i in Ω,

e i = 0 on ∂Ω.
Assume that {e i , i ≥ 1} forms an orthogonal basis in L 2 (Ω). Set, for λ > 0,

(1.7)

E ≤λ =    λ i ≤λ a i e i (x); a i ∈ R    .
One of the key elements of Gilles Lebeau and Luc Robbiano's approach is the following spectral inequality

(1.8) v H 1 (Ω) ≤ Ce C √ λ v L 2 (ω) ∀ v ∈ E ≤λ ,
where C is a positive constant independent of λ.

In this paper, we also follow this approach. Nevertheless, to capture the dependence on the support of the initial datum, we use and establish the following new spectral inequality (compare with (1.8)).

Proposition 1.1. Let ε ∈ (0, 1). There exist two constants δ ∈ (0, 1) and C ε > 0, depending only on ε, ω, Ω, and the elliptic and Lipschitz constants of A, such that, for λ > 0,

v L 2 (ω δ ) ≤ C ε e ε √ λ v L 2 (ω) ∀v ∈ E ≤λ . Remark 1.2.
It is important to emphasize here that the constants δ and C ε in Proposition 1.1 are independent of λ.

The proof of Proposition 1.1 is in the spirit of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. Nevertheless, we use three-sphere inequalities with partial data, which was recently established by the author, to quantitatively capture the dependence of the support. These inequalities have been derived and applied to the study of cloaking using negative-index materials [START_REF] Nguyen | Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object[END_REF][START_REF] Nguyen | Cloaking property of a plasmonic structure in doubly complementary media and threesphere inequalities with partial data[END_REF]. A typical example of these inequalities is, see [

16, Theorem 2.1], Theorem 1.2. Let d ≥ 2, Λ ≥ 1, 0 < R 1 < R 3 , and let Γ = x = (x , x d ) ∈ ∂B R 1 ; x d = 0 . Denote O r = x ∈ R d ; dist(x, Γ) < r , D r = B R 3 \ (B R 1 ∪ O r ), and Σ r = ∂B R 1 \ Ōr for r > 0.
For every α ∈ (0, 1), there exists r 2 ∈ (0, R 3 -R 1 ), depending only on α, Λ, Γ, R 1 , and R 3 , such that for every r 1 ∈ (0, r 2 ), there exists r 0 ∈ (0, r 1 ), depending only on r 1 , α, Λ, R 1 , and R 3 , such that for (d × d) Lipschitz, uniformly elliptic, symmetric, matrix-valued function M defined in D r 0 verifying, in D r 0 ,

(1.9) Λ -1 |ξ| 2 ≤ M(x)ξ, ξ ≤ Λ|ξ| 2 ∀ ξ ∈ R d and |∇M(x)| ≤ Λ,
and for V ∈ [H 1 (D r 0 )] m satisfying (1.10) | div(M∇V )| ≤ Λ 1 |∇V | + |V | in D r 0 for some Λ 1 ≥ 0,
we have

(1.11) V H 1 (B R 1 +r 2 \B R 1 +r 1 ) ≤ C V H 1/2 (Σr 0 ) + M∇V • x/|x| H -1/2 (Σr 0 ) α V 1-α H 1 (Dr 0 )
, for some positive constant C, depending only on α, Λ, Λ 1 , R 1 , R 3 , and d.

The geometry of Theorem 1.2 is given in Figure 1.

We will use a variant of Theorem 1.2, given in Proposition 1.2, to derive Theorem 1.1. Nevertheless, we present Theorem 1.2 here to highlight the difference between the three-sphere inequalities used in this paper and the standard three-sphere ones. In (1.11), one only uses the information of Σ r 0 (a portion of ∂B R 1 , see Figure 1) in the first interpolation term. The terminology partial data comes from this. The constants r 1 , r 2 , and r 0 are independent of Λ 1 , but the constant C does depend on Λ 1 . If instead of Σ r 0 , one uses ∂B R 1 , inequality (1.11) is then known. Using known three-sphere inequalities and the arguments of the propagation of smallness, one can prove (1.11) for some α ∈ (0, 1). Nevertheless, the non-triviality and the novelty of Theorem 1.2 rely on the fact that, for a given arbitrary α ∈ (0, 1), (1.11) holds for some r 0 , r 1 , r 2 . Even if v is a solution of the Laplace equation in two dimensions, using Hadamard three-sphere (circles) inequalities and the arguments of propagation of smallness, as far as we know, one can only obtain (1.11) for some small α, even though one replaces Σ r 0 by ∂B R 1 \ {x 0 } for some x 0 ∈ ∂B R 1 . The possibility to take α close to 1 is crucial for the proof of Theorem 1.1 where ε can be arbitrarily small. This point is also crucial for the cloaking applications considered in [START_REF] Nguyen | Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object[END_REF][START_REF] Nguyen | Cloaking property of a plasmonic structure in doubly complementary media and threesphere inequalities with partial data[END_REF]. Several applications of Theorem 1.2 concerning variants of Hadamard's three-circle inequalities with partial data are given in [START_REF] Nguyen | Cloaking property of a plasmonic structure in doubly complementary media and threesphere inequalities with partial data[END_REF].
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in two dimensions

We now introduce some notations to state the local version of Theorem 1.2, which is used in the proof of Proposition 1.1. For d ≥ 2 and

x = (x 1 , x 2 , x) ∈ R × R × R d-2 , we use the polar coordinate (r, θ) with θ ∈ (-π, π] for the pair (x 1 , x 2 ); the variable x is irrelevant for d = 2. For 0 < γ 1 < γ 2 < 1 and for R > 0, we denote (1.12) Y γ 1 ,γ 2 ,R = x ∈ R d ; θ ∈ (-π/2, π/2), γ 1 R < r < γ 2 R, and | x| < R ,
(see also Figure 2). The following variant of Theorem 1.2 in a half plane, see [16, Theorem 3.1], is the key ingredient of the proof of Proposition 1.1.

Proposition 1.2. Let d ≥ 2, Λ ≥ 1, and R * < R < R * . Then, for any α ∈ (0, 1), there exists a constant γ2 ∈ (0, 1), depending only on α, Λ, R * , R * , and d such that for every γ1 ∈ (0, γ2 ), there exists γ0 ∈ (0, γ1 ), depending only on α, γ1 , Λ, R * , R * , and d such that, for real, symmetric, uniformly elliptic, Lipschitz matrix-valued functions M defined in

D γ0 := Y γ0 ,1,R verifying, in D γ0 , (1.13) Λ -1 |ξ| 2 ≤ M(x)ξ, ξ ≤ Λ|ξ| 2 ∀ ξ ∈ R d and |∇M(x)| ≤ Λ,
and for V ∈ [H 1 (D γ0 )] m satisfying (1.14) | div(M∇V )| ≤ Λ 1 |∇V | + |V | in D γ0 for some Λ 1 ≥ 0, we have, with Σ γ0 = ∂D γ0 ∩ x 1 = 0 , (1.15) V H 1 (Y γ1 ,γ 2 , R 4 ) ≤ C V H 1/2 (Σ γ0 ) + M∇V • η 1 H -1/2 (Σ γ0 ) α V 1-α H 1 (D γ0 ) ,
for some positive constant C, depending only on α, γ1 , Λ, Λ 1 , R * , R * , and d.

Here and in what follows, η 1 , • • • , η d denotes the standard basis of R d , i.e., η 1 = (1, 0, . . . , 0), . . . , η d = (0, . . . , 0, 1).

The proof of Proposition 1.2 given in [START_REF] Nguyen | Cloaking property of a plasmonic structure in doubly complementary media and threesphere inequalities with partial data[END_REF] is quite delicate and involves new (uniform) Carleman's inequalities applied to second-order elliptic equations in which the coefficients might be degenerate and in which the geometry of the considered domain is taken into account in the
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, Σ γ0 , and D γ0 in two dimensions.

proof. The proof is much simpler for the case A = I and d = 2, but already contains several key ideas [START_REF] Nguyen | Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object[END_REF].

The paper is organized as follows. Section 2 is devoted to the proof of Proposition 1.1. The proof of Theorem 1.1 is given in Section 3.

Spectral inequality

This section is devoted to the proof of Proposition 1.1. The key ingredient of the proof is: Lemma 2.1. Let M be a Lipschitz, symmetric, uniformly elliptic, matrix-valued defined in Ω × (-1, 1) and let ϕ ∈ H 1 (Ω × (-1, 1)) be such that

| div(M ∇ϕ)| ≤ Λ(|∇ϕ| + |ϕ|) in Ω × (-1, 1). Set D r = X = (x, x d+1 ) ∈ R d+1 ; dist(X, ω × {0}) < r for r > 0.
Given α ∈ (0, 1), there exist two constants δ ∈ (0, 1) and C α > 0, depending only on α, ω, Ω, and the Lipschitz and elliptic constants of M , such that

(2.1) ϕ H 1 (D δ ) ≤ C α ϕ H 1/2 (ω×{0}) + M ∇ϕ • η d+1 H -1/2 (ω×{0}) α ϕ 1-α H 1 (Ω×(-1,1)) .
Remark 2.1. The constant δ and C α are independent of ϕ.

Proof of Lemma 2.1. Since ω is of class C 2 , by using local charts and a change of variables, it suffices to prove the following result: Let M be a Lipschitz, symmetric, uniformly elliptic, matrix-valued function defined in Q := (-1, 1) d+1 , and let φ ∈ H 1 (Q) be such that Given α ∈ (0, 1), there exists δ > 0, depending only on α, and the Lipschitz and elliptic constants of M , such that

(2.2) | div( M ∇ φ)| ≤ Λ(|∇ φ| + | φ|) in Q. Q x 1 x d+1 δ Σ a) Q x 1 x d+1 b)
(2.3) φ H 1 (B δ ) ≤ C φ H 1/2 (Σ) + M ∇ φ • η d+1 H -1/2 (Σ) α φ 1-α H 1 (Q)
, where Σ := Q ∩ {x d+1 = 0; x 1 < 0} for some positive constant C depending only on α, the Lipschitz and elliptic constants of M , and Λ.

Here and in what follows in this proof, B r denotes the open ball centered at 0 and of radius r > 0 in R d+1 .

It is important to note that in (2.3), the norms in the RHS are considered in the set Σ which is defined by Q ∩ {x d+1 = 0; x 1 < 0} and is not given by the set Q ∩ {x d+1 = 0}. See a) of Figure 3 for the geometry of (2.3) and b) of Figure 3 for the ideas behind using local charts and covering arguments to obtain (2.1) from (2.3).

We will make a change of variables in order to apply Proposition 1.2. To this end, for

X = (x 1 , • • • , x d+1 ) ∈ Q \ x d+1 = 0; x 1 ≤ 0 , define R(X) = (y 1 , x 2 , • • • , x d , y d+1 ), with (y 1 , y d+1 ) = re iθ/2 if (x 1 , x d+1 ) = re iθ for r > 0, and θ ∈ (-π, π). Set φ1 = φ • R -1 in Q1 := R Q \ x d+1 = 0; x 1 ≤ 0 . Set f (x) = div( M ∇ φ)(x) in Q, f 1 (x) = f | det(∇R)| • R -1 (x) in Q 1 , and 
(2.4) M1 = ∇R M ∇R T | det(∇R)| • R -1 in Q1 .
It is clear from (2.4) that the elliptic and Lipschitz constants of M1 are bounded by the elliptic and Lipschitz constants of M , up to a constant C, depending only on d.

Since div( M ∇ φ) = f in Q, it follows from a change of variables that

(2.5) div( M1 ∇ φ1 ) = f 1 in Q 1 .
We have det(∇R

)(x) = 1/2 for x ∈ Q, |∇ φ(x)| ≤ |∇R(x)||∇ φ1 • R(x)| ≤ C|∇ φ1 • R(x)| for x ∈ Q. Since |f | ≤ C |∇ϕ| + |ϕ| in Q by (2.
2), we derive from (2.5) that

| div( M1 ∇ φ1 )| ≤ Λ1 |∇ϕ 1 | + |ϕ 1 | in Q 1 ,
for some Λ1 > 0, depending only on Λ and d. Set

(2.6) Γ 1,+ = (x 1 , . . . , x d+1 );

x 1 = 0, x d+1 > 0, x j ∈ (-1, 1) for 2 ≤ j ≤ d and (2.7) Γ 1,-= (x 1 , . . . , x d+1 ); x 1 = 0, x d+1 < 0, x j ∈ (-1, 1) for 2 ≤ j ≤ d .
Apply Proposition 1.2 to φ1 with R = 1, γ1 = γ2 /2, and γ0 = 0, and in R d+1 with (x 1 , x 2 , x) being replaced by

x 1 , x d+1 , (x 2 , • • • , x d ) . There exists γ2 > 0 such that φ1 H 1 (B γ2 \B γ2 /2 )∩{x 1 >0} ≤ C φ1 1-α H 1 ( Q1 ) × φ1 H 1/2 Γ 1,+ + M1 ∇ φ1 • η 1 H 1/2 Γ 1,+ + φ1 H 1/2 Γ 1,- + M1 ∇ φ1 • η 1 H 1/2 Γ 1,- α .
Since φ = φ1 • R in Q, it follows from a change of variables, see e.g. [14, Lemma 2], that φ

H 1 (B γ2 \B γ2 /2 )\{x d+1 =0;x 1 <0} ≤ C φ 1-α H 1 (Q) φ H 1/2 (Σ) + M ∇ φ • η d+1 H -1/2 (Σ) α .
Since φ ∈ H 1 (Q), and hence in particular φ ∈ H 1 (B γ2 ), we obtain

(2.8) φ H 1 (B γ2 \B γ2 /2 ) ≤ C φ 1-α H 1 (Q) φ H 1/2 (Σ) + M ∇ φ • η d+1 H -1/2 (Σ) α . Using the fact | div( M ∇ φ)| ≤ Λ(|∇ϕ| + |ϕ|) in Q,
and M is symmetric, uniformly elliptic and Lipschitz, one has 1

(2.9) φ H 1 (Bγ 2 ) ≤ C φ H 1 (Bγ 2 \B γ 2 /2 ) .
Assertion (2.3) now follows from (2.8) and (2.9) with δ = γ 2 . The proof is complete.

Remark 2.2. One of the key points of the proof is the assertion (2.3). This assertion is known if one replaces the set Q ∩ {x d+1 = 0; x 1 < 0} by Q ∩ {x d+1 = 0} and the proof in this case can be done as in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. However, this does not imply (2.1). The proof of (2.3) follows from Proposition 1.2, which is non-trivial.

We are ready to give

1 One can prove (2.9) using a contradiction argument and the unique continuation principle.

Proof of Proposition 1.1. Since v ∈ E ≤λ , there exists

a i ∈ R with λ i ≤ λ, such that v(x) = λ i ≤λ a i e i (x) in Ω.
As in the spirit of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], set, with

X = (x, x d+1 ) ∈ Ω × R, V (X) = λ i ≤λ λ -1/2 i a i sinh(λ 1/2 i x d+1 )e i (x),
where sinh t = 1 2 (e t -e -t ) for t ∈ R. Since -div x (A(x)∇e i (x)) = λ i e i (x) in Ω, it follows that (2.10)

       ∂ 2 x d+1 V + div x A(x)∇ x V = 0 in Ω × R, V (X) = 0 for X ∈ Ω × {0}, ∂ x d+1 V (X) = v(x) for X ∈ Ω × {0}.
Given α ∈ (0, 1), by applying Lemma 2.1 to V , there exist two constants δ = δ(α) ∈ (0, 1) and C α > 0, depending only on α, ω, Ω, and the elliptic and Lipschitz constants of A, such that (2.11)

V H 1 (D 2δ ) ≤ C α V H 1/2 (ω×{0}) + ∂ x d+1 V H -1/2 (ω×{0}) α V 1-α H 1 (Ω×(-1,1)) .
Using (2.10), we derive from (2.11) that (2.12)

V H 1 (D 2δ ) ≤ C α v α L 2 (ω) V 1-α H 1 (Ω×(-1,1)) .
Since A is Lipschitz, by the regularity theory of elliptic equations 2 , one has

∂ x d+1 V L 2 (ω δ ) ≤ C α V H 1 (D 2δ ) , which yields (2.13) v L 2 (ω δ ) ≤ C α V H 1 (D 2δ ) .
On the other hand, from the definition of V and e i , one has

V H 1 (Ω×(-1,1)) ≤ Ce C √ λ v H 1 (Ω) ,
and then, by the standard spectral inequality (1.8), one gets

(2.14) V H 1 (Ω×(-1,1)) ≤ Ce C √ λ v L 2 (ω) ,
for some positive constant C, depending only on ω, Ω, and the elliptic and Lipschitz constants of A.

Combining (2.12), (2.13) and (2.14) yields

(2.15) v L 2 (ω δ ) (2.13) ≤ C α V H 1 (D 2δ ) (2.12) ≤ C α v α L 2 (ω) V 1-α H 1 (Ω×(-1,1)) (2.14) ≤ C α e C(1-α) √ λ v L 2 (ω) .
By choosing α such that C(1 -α) = ε, we derive from (2.15) that

(2.16) v L 2 (ω δ ) ≤ C ε e ε √ λ v L 2 (ω δ ) .
The proof is complete.

2 One can directly apply the quotient method due to Louis Nirenberg [START_REF] Nirenberg | On elliptic partial differential equations[END_REF].

Proof of Theorem 1.1

The proof of Theorem 1.1 is based on the following lemma, which will be derived from the spectral inequality stated in Proposition 1.1.

Lemma 3.1. Let 0 < T < 1, λ > 0, and let v 0 ∈ E ≤λ . Let v ∈ L 2 ((0, T ), H 1 0 (Ω))∩C([0, T ], L 2 (Ω))
be the unique solution of the system

(3.1)        ∂ t v -div(A∇v) = 0 in (0, T ) × Ω, v = 0 on (0, T ) × ∂Ω, v(0, •) = v 0 in Ω.
For ε > 0, there exist two constants δ ∈ (0, 1) and C ε > 0, depending only on ε, ω, and Ω, and the elliptic and Lipschitz constants of A, such that

v(T, •) L 2 (ω δ ) ≤ C ε δ -1 T -1/2 e ε √ λ v L 2 ((0,T )×ω) .
Recall that ω r is defined in (1.4).

Remark 3.1. The constants δ and C ε in Lemma 3.1 are independent of λ and T .

Proof. By Proposition 1.1, there exist δ ∈ (0, 1) and 

C ε > 0, such that (3.2) ξ L 2 (ω 2δ ) ≤ C ε e ε √ λ ξ L 2 (ω) for ξ ∈ E ≤λ . Since v 0 ∈ E ≤λ , it follows that v(t, •) ∈ E ≤λ for t ∈ (0, T ). We derive from (3.2) that (3.3) v(t, •) L 2 (ω 2δ ) ≤ C ε e ε √ λ v(t, •) L 2 (ω) for t ∈ (0, T ). Fix ϕ ∈ C ∞ c (R d ) such that 0 ≤ ϕ ≤ 1, ϕ = 1 in ω δ , supp ϕ ⊂ ω 2δ ,
u(t, x) = ϕ(x)v(t, x) in (0, T ) × Ω,
and denote

(3.5) g(t, x) = -2 A(x)∇v(t, x), ∇ϕ(x) + v(t, x) div(A(x)∇ϕ(x)) in (0, T ) × Ω,
where •, • denotes the standard scalar product in R d . We derive from (3.1) and the symmetry of A that

∂ t u -div(A∇u) = g in (0, T ) × Ω, u = 0 on (0, T ) × ∂Ω.
Multiplying the equation of u by u and integrating by parts in (t, T )×Ω, we obtain, for 0 ≤ t ≤ T ,

(3.6) 1 2 ˆΩ |u(T, x)| 2 dx + ˆT t ˆΩ A(x)∇u(s, x), ∇u(s, x) dx ds = 1 2 ˆΩ |u(t, x)| 2 dx + ˆT t ˆΩ g(s, x)u(s, x) dx ds.
We next estimate the last term of (3.6). Since, for x ∈ Ω and s ∈ (0, T ), A(x)∇v(s, x), ∇ϕ(x) u(s, x)

(3.4) = A(x)ϕ(x)∇v(s, x), ∇ϕ(x) v(s, x) (3.4) 
= A(x)(∇u(s, x) -v(s, x)∇ϕ(x)), ∇ϕ(x) v(s, x), it follows that, for s ∈ (0, T ), (3.7) ˆΩ

A(x)∇v(s, x), ∇ϕ(x) u(s, x) dx ≤ C ˆΩ δ -1 |∇u(s, x)||v(s, x)| dx + C ˆΩ δ -2 |v(s, x)| 2 dx.
We also have, for x ∈ Ω and s ∈ (0, T ), Integrating the above inequality with respect to t from 0 to T , we derive that

(
ˆΩ |u(T, x)| 2 dx ≤ Cδ -2 T -1 ˆT 0 ˆΩ |v(s, x)| 2 dx ds. Since u = ϕv, 0 ≤ ϕ ≤ 1, ϕ = 1 in ω δ , and supp ϕ ⊂ ω 2δ , it follows that ˆωδ |v(T, x)| 2 dx ≤ Cδ -2 T -1 ˆT 0 ˆω2δ |v(t, x)| 2 dx dt. We derive from (3.3) that ˆωδ |v(T, x)| 2 dx ≤ C ε δ -2 T -1 e ε √ λ ˆT 0 ˆω |v(t, x)| 2 dx dt,
which is the conclusion. The proof is complete.

We are ready to give Proof of Theorem 1.1. Fix λ = c 0 /T 2 where c 0 is a large positive constant determined later. Set (3.10)

H :=    λ i ≤λ a i e -λ i (T /3-t) e i (x); a i ∈ R, x ∈ Ω, t ∈ (0, T /3)    ⊂ L 2 (0, T /3) × Ω .
Equip H with the standard scalar product in L 2 (0, T /3) × Ω . Then, H is a Hilbert space (of finite dimensions). Let ϕ ∈ H, and set (3.11) v(t, x) = ϕ(T /3 -t, x) for (t, x) ∈ (0, T /3) × Ω.

It follows from the definition of H in (3.10) that

∂ t v -div(A∇v) = 0 in (0, T /3) × Ω, v = 0 on (0, T /3) × ∂Ω,
and moreover, v(t = 0, •) ∈ E ≤λ . By Lemma 3.1, there exist two constants δ ∈ (0, 1) and C ε > 0, depending only on ε, ω, Ω, c 0 , and the Lipschitz and elliptic constants of A, such that

v(T /3, •) L 2 (ω δ ) ≤ C ε δ -1 T -1/2 e ε/T v L 2 (0,T /3)×ω .
This implies, by (3.11), (3.12) ϕ(0,

•) L 2 (ω δ ) ≤ C ε δ -1 T -1/2 e ε/T ϕ L 2 (0,T /3)×ω .
Fix such constants δ and C ε . Fix u 0 ∈ L 2 (Ω) with supp u 0 ⊂ ω δ . We will construct a control with support in (0, T ) × ω, which steers u 0 from time 0 to 0 at time T for which the cost is bounded by C ε e ε/T u 0 L 2 (Ω) .

Since u 0 ∈ L 2 (Ω) with supp u 0 ⊂ ω δ , using the Riesz representation theorem, we derive from (3.12) that there exists f 1 ∈ H 3 , such that 

f 1 L 2 (0,T /3)×ω ≤ C ε δ -1 T -1/2 e ε/T u 0 L 2 (Ω) .
Let u 1 ∈ L 2 ((0, T /3); H 1 0 (Ω)) ∩ C([0, T /3]; L 2 (Ω)) be the unique solution of the system (3.15)

       ∂ t u 1 -div A(x)∇u 1 = f 1 1 ω in (0, T /3) × Ω, u 1 = 0 on (0, T /3) × ∂Ω, u 1 (0, •) = u 0 in Ω. Since ∂ t ϕ + div(A∇ϕ) = 0 in (0, T /3) × Ω, ϕ = 0 on (0, T /3) × ∂Ω, for ϕ ∈ H,
multiplying the equation of u 1 by ϕ (∈ H) and integrating by parts in (0, T /3) × Ω, we obtain ˆΩ u 1 (T /3, x)ϕ(T /3, x) dx -ˆΩ u 1 (0, x)ϕ(0, x) dx = ˆT/3 0 ˆω f 1 (s, x)ϕ(s, x) dx ds for ϕ ∈ H. 3 We apply the Riesz representation theorem to the space ξ ∈ L 2 (0, T /3) × ω ; ξ = ϕ in (0, T /3) × ω for some ϕ ∈ H equipped with the standard scalar product of L 2 (0, T /3) × ω , and the linear application is given by the LHS of (3.13).

Using (3.13), we derive that (3.16) ˆΩ u 1 (T /3, x)ϕ(T /3, x) dx = 0 for ϕ ∈ H.

In other words, the projection of u(T /3, •) into E ≤λ is 0. Thus, (3.17)

u 1 (T /3, x) = λ i >λ u 1 (T /3, •), e i L 2 (Ω) e i (x) in Ω,
where •, • L 2 (Ω) denotes the standard scalar product in L 2 (Ω).

On the other hand, by the standard energy estimate, we have

ˆΩ |u 1 (T /3, x)| 2 dx ≤ 2 ˆΩ |u 1 (0, x)| 2 dx + C ˆT/3 0 ˆω |f 1 (s, x)| 2 ds dx.
We derive from (3.14) that

(3.18) u 1 (T /3, •) L 2 (Ω) ≤ C ε δ -1 T -1/2 e ε/T u 0 L 2 (Ω) . Let u 2 ∈ L 2 ((T /3, 2T /3); H 1 0 (Ω)) ∩ C([T /3, 2T /3]; L 2 (Ω)) be the unique solution of the system (3.19)        ∂ t u 2 -div A(x)∇u 2 = 0 in (0, T /3) × Ω, u 2 = 0 on (0, T /3) × ∂Ω, u 2 (T /3, •) = u 1 (T /3, •) in Ω.
It follows from (3.17 The conclusion follows by replacing ε by ε/2 and noting that T -1/2 e ε/(2T ) ≤ C ε e ε/T ; this follows by considering the case T ≥ ε and the case 0 < T < ε.

Remark 3.2. The conclusion of Theorem 1.1 also holds if in the definition of c(T, w, D), one additionally requires that supp f [0, T ] × ω. The conclusion in this case follows by applying the established result for the set x ∈ ω; dist(x, ∂ω) ≥ γ for small γ after noting that the constant δ for such a set is independent of γ for small γ.

f

  ∈L 2 ((0,T )×ω) u(T,•)=0 where u satisfies(1.1) 

Figure 3 .

 3 Figure 3. a): Geometry of inequality (2.3) in two dimensions with Σ:= Q ∩ {x d+1 = 0; x 1 < 0}. b)The way to obtain (2.1) from (2.3) for d = 1; ω is the orange interval, Ω is the blue interval, D δ is the region whose boundary is violet.

  and |∇ α x ϕ| ≤ C/δ |α| for all multi-indices α with |α| ≤ 2. Here and in what follows in this proof, C denotes a positive constant, depending only on ω, Ω, and the elliptic and Lipschitz constants of A. Set (3.4)

(3. 13 ) 3 0ˆω f 1

 1331 ˆΩ u 0 (x)ϕ(0, x) dx = -ˆT/(s, x)ϕ(s, x) dx ds for ϕ ∈ H, and(3.14) 

3 ∂ t u 3 -f 1 1 3 ∂

 3313 ) and (3.18) that u 2 (2T /3, •) L 2 (Ω) ≤ e -λT /3 u 2 (T /3, •) L 2 (Ω) ≤ C ε δ -1 T -1/2 e ε/T -λT /3 u 0 L 2 (Ω) , which yields, since λ = c 0 /T 2 , (3.20)u 2 (2T /3, •) L 2 (Ω) ≤ C ε δ -1 T -1/2 e ε/T -c 0 /(3T ) u 0 L 2 (Ω) .On the other hand, there existsf 3 ∈ L 2 ((2T /3, T ) × Ω) with support in [2T /3, T ] × ω, such that (3.21) f 3 L 2 (2T /3,T )×Ω ≤ Ce C/T u 2 (2T /3, •) L 2 (Ω) ,and(3.22) u 3 (T, •) = 0 in Ω,whereu 3 ∈ L 2 (2T /3, T ); H 1 0 (Ω) ∩ C [2T /3, T ]; L 2 (Ω)is the unique solution of the system(div A(x)∇u 3 = f 3 in (2T /3, T ) × Ω, u 3 = 0 on (T /2, T ) × ∂Ω, u 3 (2T /3, •) = u 2 (2T /3, •) in Ω. Define f ∈ L 2 (0, T ) × Ω as follows (3.24) f (t, x) = ω in (0, T /3) × Ω, 0 in (T /3, 2T /3) × Ω, f 3 in (2T /3, T ) × Ω. Since supp f 3 ⊂ [2T /3, T ] × ω, it follows that supp f ⊂ [0, T ] × ω. Let u ∈ L 2 (0, T ); H 1 0 (Ω) ∩ C [0, T ]; L 2 (Ω)be the unique solution of the system(t u -div A(x)∇u = f in (0, T ) × Ω, u = 0 on (T /2, T ) × ∂Ω, u(0, •) = u 0 in Ω.It follows from (3.15), (3.19), (3.22), and (3.23) that u 3 (T, •) = 0 in Ω. Combining (3.14) and (3.21), and using (3.20), we deduce thatf L 2 ((0,T )×Ω) ≤ C ε δ -1 T -1/2 e ε/T u 0 L 2 (Ω) 1 + e -c 0 /(3T )+C/T .By fixing c 0 such that c 0 /3 ≥ C, we obtain f L 2 ((0,T )×Ω) ≤ C ε δ -1 T -1/2 e ε/T u 0 L 2 (Ω) .
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